BIOS 760 Final, 2014: Solution

1. (a) The likelihood is $\beta^{2 n}\left(\prod X_{i}\right) e^{-\beta \sum_{i=1}^{n} X_{i}}$ which implies that U_{n} is sufficient. It is also complete since this is a full rank exponential family. The density of a single observation is gamma with shape parameter $\alpha=2$ and scale parameter β which implies that its n-fold convolution is gamma with shape parameter $2 n$ and scale parameter β, which implies U_{n} has density $u \mapsto \beta^{2 n} u^{2 n-1} e^{-\beta u} / \Gamma(2 n)$.
(b) The UMVUE (if it exists) is that function of U_{n} which is unbiased for β. Note that

$$
E U_{n}^{-t}=\int_{0}^{\infty} \frac{\beta^{2 n-t} u^{2 n-t} e^{-\beta u}}{\Gamma(2 n-t)} d u \cdot \frac{\beta^{t} \Gamma(2 n-t)}{\Gamma(2 n)}
$$

which implies that $E U_{n}^{-1}=\beta /(2 n-1)$ and

$$
E U_{n}^{-2}=\frac{\beta^{2}}{(2 n-1)(2 n-2)}
$$

Thus the variance of U_{n}^{-1} is

$$
\beta^{2}\left(\frac{1}{(2 n-1)(2 n-2)}-\frac{1}{(2 n-1)^{2}}\right)=\frac{\beta^{2}}{(2 n-1)^{2}(2 n-2)},
$$

and thus

$$
\tilde{\beta}_{n}=\frac{2 n-1}{U_{n}} \text { and } \tilde{M}_{n}=\frac{\beta^{2}}{2 n-2} .
$$

(c) The \log-likelihood is proportional to $2 n \log \beta-\beta U_{n}$, and thus $\hat{\beta}_{n}=2 n / U_{n}$. Since $E \hat{\beta}_{n}=2 n \beta /(2 n-1)$ and the variance of $\hat{\beta}_{n}$ is

$$
\frac{(2 n)^{2} \beta^{2}}{(2 n-1)^{2}(2 n-2)},
$$

the MSE is

$$
\hat{M}_{n}=\frac{\beta^{2}}{(2 n-1)^{2}}+\frac{(2 n)^{2} \beta^{2}}{(2 n-1)^{2}(2 n-2)}=\frac{\left(4 n^{2}+2 n-2\right) \beta^{2}}{(2 n-1)^{2}(2 n-2)}
$$

(d) From (b) and (c) above, $\hat{M}_{n}-\tilde{M}_{n}=$

$$
\frac{\beta^{2}}{2 n-2}\left(\frac{4 n^{2}+2 n-2-4 n^{2}+4 n-1}{(2 n-1)^{2}}\right)=\frac{(6 n-3) \beta^{2}}{(2 n-1)^{2}(2 n-2)}=\frac{3 \beta^{2}}{(2 n-1)(2 n-2)} .
$$

(e) From (b) and (c) above, when $n=1$, both \tilde{M}_{n} and \hat{M}_{n} are infinite.
2. (a) This is a mixture of two gamma densities, and thus $E X=(1 / 2)(1 / \beta)+(1 / 2)(2 / \beta)=$ $3 /(2 \beta)$ and $E X^{2}=(1 / 2)\left(2 / \beta^{2}\right)+(1 / 2)\left(6 / \beta^{2}\right)=4 /\left(\beta^{2}\right)$. Thus

$$
\operatorname{var}(X)=\frac{4}{\beta^{2}}-\frac{9}{4 \beta^{2}}=\frac{7}{4 \beta^{2}},
$$

and hence

$$
\sqrt{n}\left(\bar{X}_{n}-\frac{3}{2 \beta}\right) \rightarrow_{d} N\left(0, \frac{7}{4 \beta^{2}}\right) .
$$

Applying the delta method to the function $x \mapsto g(x)=3 /(2 x)$, where $\dot{g}(\mu)=$ $-3 /\left(2 \mu^{2}\right)$, and $\mu=3 /(2 \beta)$, we obtain that $\dot{g}(\mu)=2 \beta / 3$; and thus

$$
\sqrt{n}\left(\tilde{\beta}_{n}-\beta_{0}\right) \rightarrow_{d} N\left(0, \frac{7[\dot{g}(\mu)]^{2}}{4 \beta^{2}}\right)=N\left(0, \frac{7 \beta^{2}}{9}\right) .
$$

(b) $\ell_{\beta}(X)=\log \left((1 / 2) \beta e^{-\beta X}(1+\beta X)\right)=-\log 2+\log \beta-\beta X+\log (1+\beta X)$. Hence

$$
\dot{\ell}_{\beta}(X)=\frac{1}{\beta}-X+\frac{X}{1+\beta X},
$$

and thus

$$
-\ddot{\ell}_{\beta}(X)=\frac{1}{\beta^{2}}+\frac{X^{2}}{(1+\beta X)^{2}} .
$$

Hence the given form for I_{0} is obtained.
(c) i. Since

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \ddot{\ell}_{\beta}(X) & =\frac{2}{\beta^{3}}+\frac{2 X^{3}}{(1+\beta X)^{3}} \\
& =\frac{2}{\beta^{3}}\left(1+\frac{\beta^{3} X^{3}}{(1+\beta X)^{3}}\right) \\
& \leq \frac{4}{\beta^{3}}
\end{aligned}
$$

the mean value theorem yields that for some $\tilde{\beta}_{n}^{*}$ in between β_{n}^{*} and β_{0},

$$
\left|I_{n}\left(\beta_{n}^{*}\right)-I_{n}\left(\beta_{0}\right)\right| \leq \frac{4}{\left(\tilde{\beta}_{n}^{*}\right)^{3}}\left|\beta_{n}^{*}-\beta_{0}\right| \leq \frac{4}{\left(\beta_{n}^{*} \wedge \beta_{0}\right)^{3}}\left|\beta_{n}^{*}-\beta_{0}\right|
$$

Thus $\left|I_{n}\left(\beta_{n}^{*}\right)-I_{n}\left(\beta_{0}\right)\right|=o_{P}(1)$ which implies that $I_{n}\left(\beta_{n}^{*}\right) \rightarrow_{P} I_{0}$ since $I_{n}\left(\beta_{0}\right) \rightarrow_{a . s}$ I_{0} by the strong law of large numbers.
ii. By Taylor expansion,

$$
\begin{aligned}
\hat{\beta}_{n}-\beta_{0} & =\tilde{\beta}_{n}-\beta_{0}+\frac{n^{-1} \sum_{i=1}^{n} \dot{\ell}_{\beta_{0}}\left(X_{i}\right)+\ddot{\ell}_{\beta_{n}^{*}}\left(X_{i}\right)\left(\tilde{\beta}_{n}-\beta_{0}\right)}{I_{n}\left(\tilde{\beta}_{n}\right)} \\
& =\tilde{\beta}_{n}-\beta_{0}+\left[I_{n}\left(\tilde{\beta}_{n}\right)\right]^{-1} n^{-1} \sum_{i=1}^{n} \dot{\ell}_{\beta_{0}}\left(X_{i}\right)-\frac{I_{n}\left(\beta_{n}^{*}\right)}{I_{n}\left(\tilde{\beta}_{n}\right)}\left(\tilde{\beta}_{n}-\beta_{0}\right),
\end{aligned}
$$

where β_{n}^{*} is between $\tilde{\beta}_{n}$ and β_{0}. Now, by part (i) above,

$$
\begin{aligned}
\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right)= & \sqrt{n}\left(\tilde{\beta}_{n}-\beta_{0}\right)-\left(1+o_{P}(1)\right) \sqrt{n}\left(\tilde{\beta}_{n}-\beta_{0}\right) \\
& +\left(I_{0}^{-1}+o_{P}(1)\right) n^{-1 / 2} \sum_{i=1}^{n} \dot{\ell}_{\beta_{0}}\left(X_{i}\right) \\
= & n^{-1 / 2} \sum_{i=1}^{n} I_{0}^{-1} \dot{\ell}_{\beta_{0}}\left(X_{i}\right)+o_{P}(1),
\end{aligned}
$$

which means that $\hat{\beta}_{n}$ is asymptotically linear with influence function equal to the efficient influence function, and thus it is both regular and asymptotically efficient.

