
BIOS 760 Final, 2012: Solution

1. (a) Using the change of variable v = x− θ, we obtain that∫
R

fθ(x)dx =

∫ ∞
θ

e−(x−θ)dx =

∫ ∞
0

e−vdv = 1.

The full likelihood has the form

n∏
i=1

fθ(Xi) = exp

[
n∑
i=1

Xi

]
enθ1{X(1) > θ}

= a(X1, . . . , Xn)b(θ,X(1)),

and thus X(1) is sufficient by factorization.

(b) The density of the smallest order statistic in an i.i.d. sample with density fθ(x),

where we let Fθ(x) be the corresponding c.d.f., is

nfθ(x)(1− Fθ(x))n−1 = ne−(x−θ) exp[−(n− 1)(x− θ)],

and the given form of the density follows. Now let γ(x) be an arbitrary measurable

integrable function, and note that for any θ ∈ R,∫
R

γ(x)gθ(x)dx = 0 ⇒
∫ ∞
θ

γ(x)ne−n(x−θ)dx = 0,

which implies that ∫ ∞
θ

γ(x)e−nxdx = 0 ⇒ γ(θ)e−nθ = 0,

where the last equality follows from differentiating both sides of the left-hand equal-

ity with respect to θ. This now implies that γ(θ) = 0 for all θ ∈ R. Thus X(1) is

complete since γ(x) was arbitrary.

(c) The expectation of X(1) is∫ ∞
θ

xne−n(x−θ)dx = θ +

∫
R

n(x− θ)e−n(x−θ)dx

= θ + n−1
∫ ∞
0

ve−vdv

= θ + n−1,

where the second-to-last equality uses the change of variables v = n(x− θ). Thus,

since X(1) is complete and sufficient for θ, the UMVU of θ is X(1) − n−1.
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2. (a) Since the log-likelihood for a single observation is `(p) = log [pU + (1− p)(1− U)],

the corresponding score and information for the sample are

˙̀
n(p) =

n∑
i=1

2Ui − 1

pUi + (1− p)(1− Ui)

and

In(p) = −῭
n(p) =

n∑
i=1

(2Ui − 1)2

[pUi + (1− p)(1− Ui)]2
.

(b) The result follows directly from the standard Newton-Raphson iteration formula

for the sample log-likelihood:

p(k+1) = p(k) +
[
In(p(k))

]−1 ˙̀
n(p(k)).

(c) The form of mp(δ, u) follows directly from the mixture structure. The marginal

density for U is obtained by summing over δ (corresponding to the ∆ component)

which yields that the marginal is hp(u). The form of the sample log-likelihood fol-

lows directly from the log-likelihood for a single observation obtained from mp(δ, u),

which is

log(2) + ∆ [log(p) + log(U)] + (1−∆) [log(1− p) + log(1− U)] .

(d) The expectation of ∆i, given Ui at the value p = p(k), is the same as the probability

that ∆i = 1, given Ui evaluated at p = p(k), which is

mp(k)(1, Ui)∑
δ=0,1mp(k)(δ, Ui)

=
p(k)Ui

p(k)Ui + (1− p(k))(1− Ui)
.

(e) The expectation of the full sample log-likelihood, with individual components hav-

ing the from in (c) above, given the observed data, after throwing out the constant

log(2), has the form

E

[
n∑
i=1

∆i [log(p) + log(Ui)] + (1−∆i) [log(1− p) + log(1− Ui)]

∣∣∣∣∣Yobs, p(k)
]

=
n∑
i=1

E
{

∆i [log(p) + log(Ui)] + (1−∆i) [log(1− p) + log(1− Ui)]|Ui, p(k)
}

=
n∑
i=1

Wk(Ui) [log(p) + log(Ui)] + (1−Wk(Ui)) [log(1− p) + log(1− Ui)] ,
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where the second equality follows from the independence across observation. Now

differentiate the last term above with respect to p, to obtain that the next EM

update p(k+1) is the solution of

n∑
i=1

[
Wk(Ui)

p
− 1−Wk(Ui)

1− p

]
= 0,

and the desired conclusion follows.

(f) In the EM algorithm, if p(k) = 0, then p(k+1) = 0 and the EM iteration is stuck at

zero. For the Newton-Raphson iteration, p(k+1) is almost surely not zero if p(k) = 0.

This says that the EM has faulty local solutions which need to be avoided or worked

around in the estimation process. The Newton-Raphson algorithm appears to not

have this problem.
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