BIOS760: 2012 FALL SEMESTER FINAL EXAM

1. Let X_{1}, \ldots, X_{n} be an i.i.d. sample of random variables with density

$$
f_{\theta}(x)=e^{-(x-\theta)} 1\{x>\theta\},
$$

where $1\{A\}$ is the indicator of A and the parameter θ is a real number; and let $X_{(1)}$ be the smallest value in the sample. Do the following:
(a) (3 points) Show that $f_{\theta}(x)$ is a density and that $X_{(1)}$ is a sufficient statistic for θ.
(b) (3 bonus points) Show that $X_{(1)}$ has density

$$
g_{\theta}(x)=n e^{-n(x-\theta)} 1\{x>\theta\},
$$

and verify that $X_{(1)}$ is also a complete statistic for θ.
(c) (2 bonus points) Derive the UMVU estimator of θ.
2. Let U_{1}, \ldots, U_{n} be an i.i.d. sample of random variables with density

$$
h_{p}(u)=2[p u+(1-p)(1-u)] 1\{0 \leq u \leq 1\},
$$

where $p \in[0,1]$. Do the following:
(a) (2 points) Compute the score $\dot{\ell}_{n}(p)$ and information $I_{n}(p)=-\ddot{\ell}_{n}(p)$ for the sample.
(b) (3 points) Verify that the Newton-Raphson update for finding the maximum likelihood estimator for p has the form

$$
p^{(k+1)}=p^{(k)}+\left[\sum_{i=1}^{n} \frac{\left(2 U_{i}-1\right)^{2}}{\left[p^{(k)} U_{i}+\left(1-p^{(k)}\right)\left(1-U_{i}\right)\right]^{2}}\right]^{-1} \sum_{i=1}^{n} \frac{2 U_{i}-1}{p^{(k)} U_{i}+\left(1-p^{(k)}\right)\left(1-U_{i}\right)} .
$$

(c) (3 points) Now suppose we use the EM algorithm to stabilize computation of the estimator, and so we add a latent Bernoulli random variable Δ with probability of success p to form the random pair (Δ, U) with joint density

$$
m_{p}(\delta, u)=2(p u)^{\delta}[(1-p)(1-u)]^{1-\delta}
$$

Verify that the marginal density of u based on $m_{p}(\delta, u)$ equals $h_{p}(u)$ given above, and show that the sample log-likelihood for the full model is

$$
\sum_{i=1}^{n} \log (2)+\Delta_{i}\left[\log (p)+\log \left(U_{i}\right)\right]+\left(1-\Delta_{i}\right)\left[\log (1-p)+\log \left(1-U_{i}\right)\right]
$$

(d) (3 points) Denoting $p^{(k)}$ as the current iteration of the estimator for p, show that

$$
\mathrm{E}\left[\Delta_{i} \mid U_{i}, p^{(k)}\right]=\frac{p^{(k)} U_{i}}{p^{(k)} U_{i}+\left(1-p^{(k)}\right)\left(1-U_{i}\right)}
$$

(e) (4 points) If we denote the term on the right side of the above expression as $W_{k}\left(U_{i}\right)$, show that the EM update for estimating p is

$$
p^{(k+1)}=n^{-1} \sum_{i=1}^{n} W_{k}\left(U_{i}\right)
$$

(f) (2 points) What happens to $p^{(k+1)}$ in the above EM algorithm if $p^{(k)}=0$? What happens to $p^{(k+1)}$ in the Newton-Raphson update if $p^{(k)}=0$. What does this say about the EM algorithm in this situation?

