
Solution to BIOS760: 2011 FALL SEMESTER FINAL EXAM

1. (a) The joint density is given as

(2θ)−nI(|X1| ≤ θ, ..., |Xn| ≤ θ) = (2θ)−nI(|X|(n) ≤ θ).

Thus, |X|(n) is sufficient. Suppose E[Q(|X|(n))] = 0. Since

P (|X|n ≤ x) = xn/θnI(0 ≤ x ≤ θ) + I(x ≥ θ),

we have

E[Q(|X|(n))] =
∫ θ

0
Q(x)nxn−1/θndx = 0.

That is,
∫ θ
0 Q(x)x(n−1)dx = 0 so after taking derivatives, we obtain Q(θ) = 0.

This implies that |X|(n) is also complete.

(b) Note that if x ≤ 0, P (n(1− |X|(n)/θ) ≤ x) = 0; if x > 0, for n large enough,

P (n(1− |X|(n)/θ) ≤ x) = P (|X|(n) ≥ θ − θx/n) = 1− (1− x/n)n → 1− e−x.

We conclude that n(1 − |X|(n)/θ) converges in distribution to the exponential
distribution.

(c) Clearly, the MLE for θ is |X|(n). Thus, the MLE for g(θ) is g(|X|(n)). By the
delta method, we obtain

n(g(θ)− g(|X|(n)))/θ →d g′(θ)Exp(1).

Thus, n(g(θ) − g(|X|(n))) →d θg′(θ)Exp(1). That is, the limiting distribution is
the exponential distribution with mean θg′(θ). Let t1−α be the (1−α)th quantile
of Exp(1), i.e., t1−α = − log(α). Then by estimating θ using |X|(n), a confidence
interval for g(θ) is [0, g(|X|(n)) + |X|(n)g

′(|X|(n))t1−α/n].

(d) To find the UMVUE, we need to determine Q(|X|(n)) satisfying E[Q(|X|(n))] =
g(θ). Equivalently, ∫ θ

0
Q(x)nxn−1dx = g(θ)θn.

Taking derivatives on both sides, we obtain

Q(x) = g(x) + g′(x)x/n.

The UMVUE for θ is Tn = g(|X|(n)) + g′(|X|(n))|X|(n)/n.

(e) We note
n(g(θ)− Tn) = n(g(θ)− g(|X|(n)))− g′(|X|(n))|X|(n).

Since the previous result implies that |X|(n) →p θ, we obtain from the Slutsky
lemma that

n(g(θ)− Tn) →d θg′(θ)Exp(1)− g′(θ)θ.

A confidence interval for g(θ) is [0, Tn + |X|(n)g
′(|X|(n))t1−α/n− g′(|X|(n))|X|(n)].
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2. (a) The conditional density is given as
∫

ξ
eβXξ exp{−Y eβXξ}Γ(λ)−1λλξλ−1 exp{−λξ}dξ = eβX(1 + Y eβX/λ)−(λ+1).

Thus, the likelihood function is given as
n∏

i=1

[
eβXi(1 + Yie

βXi/λ)−(λ+1)f(Xi)
]
,

where f(x) is the density of X.

(b) Assume that X has a full rank with positive probability. Then β is identifiable
since

[
eβXi(1 + Yie

βXi/λ)−(λ+1)f(Xi)
]

=
[
eβ∗Xi(1 + Yie

β∗Xi/λ)−(λ+1)f ∗(Xi)
]

leads to βXi = β∗Xi.

(c) It follows from

E[Y |X] = [E[Y |X, ξ]|X] = E[e−βXξ−1|X] = e−βXc,

where c = E[ξ−1] = λ/(λ − 1). From the results for estimating equation, if β̃ is
the solution, then

√
n(β̃ − β) converges in distribution to a normal distribution

with mean zero and variance (sandwich formula)

E[cX2e−βX ]−1E[X2(Y − ce−βX)2]E[cX2e−βX ]−1.

(d) The score equation is

n∑

i=1

[
Xi − (λ + 1)YiXie

βXi

λ + YieβXi

]
= 0.

The Newton-Raphson iteration is

β(k+1) = β(k) −


−

n∑

i=1

(λ + 1)YiX
2
i eβ(k)Xi

λ + Yieβ(k)Xi
+

n∑

i=1

(λ + 1)Y 2
i X2

i e2β(k)Xi

(λ + Yieβ(k)Xi)2





−1

×
n∑

i=1


Xi − (λ + 1)YiXie

β(k)Xi

λ + Yieβ(k)Xi


 = 0.

(e) The complete log-likelihood function (concerning β) is

n∏

i=1

[
eβXiξi exp{−Yie

βXiξi}
]
.

Then the M-step solves equation
n∑

i=1

[
Xi − Yie

βXiXiwi

]
= 0.

In the E-step, we calculate wi as the conditional expectation of ξi given observed
data: since ξ|Yi, Xi follows a gamma distribution with parameter (1+λ, [Yie

βXi +
λ]−1),

wi = E[ξi|Yi, Xi] = (1 + λ)/[Yie
βXi + λ].
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