BIOS 760: Final 2010

For the following problems, assume that T_1, \ldots, T_n are i.i.d. random variables and that each $T_i, i = 1, \ldots, n$ follows an exponential distribution with rate λ , i.e., the density is $\lambda^{-1}e^{-t/\lambda}, t > 0$. Our goal is to estimate λ .

As a reminder, here are a few facts regarding exponential random variable T_i with rate λ .

- $E[T_i] = \lambda$ and $Var(T_i) = \lambda^2$.
- $\sum_{i=1}^{n} T_i \sim \Gamma(n, \lambda)$ where the density of $\Gamma(n, \lambda)$ is given by $\lambda^{-n} t^{n-1} e^{-t/\lambda} / (n-1)!$
- The memoryless property: $P(T_i > s + t | T_i > t) = P(T_i > s)$ for all $t, s \ge 0$
- 1. Answer the following questions about UMVUE estimation of λ :
 - (a) (3 points) Find the UMVUE estimator for λ . Does the estimator attain the information bound?
 - (b) (3 points) Use the fact that $T_{(1)} = \min\{T_1, \ldots, T_n\}$ has exponential distribution with rate λ/n to derive another unbiased estimator for λ based on $T_{(1)}$. Compare to the UMVUE estimator derived in Problem 1(a). Which one is better? Give a qualitative explanation.
 - (c) (3 points) Find the UMVUE estimator for λ^k for any positive integer k.
- Assume that C₁,..., C_n are i.i.d. random censoring times with distribution function G and density g. Assume also that C₁,..., C_n are independent of the failure times T_i, where T_i are exponential with rate λ as defined above. Assume that we observe i.i.d. pairs (Z₁, Δ₁),..., (Z_n, Δ_n), where Z_i = min{T_i, C_i} and Δ_i = 1_{T_i≤C_i}. Do the following:
 - (a) (2 points) Show that the observed likelihood function of λ based on the observed pairs $(Z_1, \Delta_1), \ldots, (Z_n, \Delta_n)$ has the following form:

$$\prod_{i=1}^{n} \left(\lambda^{-1} e^{-Z_i/\lambda} (1 - G(Z_i)) \right)^{\Delta_i} \left(e^{-Z_i/\lambda} g(Z_i) \right)^{1-\Delta_i}$$

(b) (2 points) Show that the maximum likelihood estimator for $\hat{\lambda}$ based on the above likelihood has the form:

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} Z_i}{\sum_{i=1}^{n} \Delta_i}$$

- (c) (3 points) Calculate the information bound for λ in this censored setting.
 Hint: It is easier to change the parametrization from λ to θ = 1/λ. Use the likelihood in question 2a and substitute θ accordingly. Compute the information bound for θ. Then, calculate the bound for λ.
- (d) (3 bonus points) Derive the asymptotic distribution of $\hat{\lambda}$.
- 3. Maximum likelihood estimation for the above censored model can also be accomplished using the EM algorithm. Do the following:
 - (a) (3 points) Show that the conditional density of T_i given λ , $Z_i = z_i$ and $\Delta_i = d_i$ has the form:

$$f(t_i|z_i, d_i, \lambda) = d_i \mathbb{1}_{\{t_i = z_i\}} + (1 - d_i) \mathbb{1}_{\{t_i > z_i\}} \lambda^{-1} e^{-(t_i - z_i)/\lambda}$$

(b) (2 bonus points) Show that the log likelihood for (T_i, Z_i, Δ_i) given $T_i = t_i$, $Z_i = z_i$, and $\Delta_i = d_i$, which we denote log $f(t_i, z_i, d_i | \lambda)$, is given by

$$\log f(t_i, z_i, d_i | \lambda) = \mathbb{1}_{\{t_i \ge z_i\}} \left(-\log \lambda - \frac{t_i}{\lambda} \right) + d_i \mathbb{1}_{\{t_i = z_i\}} \log(1 - G(z_i)) + (1 - d_i) \mathbb{1}_{\{t_i > z_i\}} \log g(z_i) \,.$$

Hint: You may use the fact that $f(t_i, z_i, d_i | \lambda) = f(z_i, d_i | \lambda) f(t_i | z_i, d_i, \lambda)$, and then show that this product equals

$$\left(\lambda^{-1}e^{-t_i/\lambda}\right)^{1_{\{t_i\geq z_i\}}} (1-G(z_i))^{d_i 1_{\{t_i=z_i\}}} g(z_i)^{(1-d_i) 1_{\{t_i>z_i\}}}$$

(c) (3 points) Use the previous questions to derive the E-step of an EM algorithm for estimating λ .

Hint 1: Recall that given an estimator $\lambda^{(k)}$, the E-step consists of computing

$$E\left[\sum_{i=1}^{n}\log f(T_i, Z_i, \Delta_i | \lambda) \middle| \{Z_1 = z_1, \Delta_1 = d_1\}, \dots, \{Z_n = z_n, \Delta_n = d_n\}, \lambda^{(k)}\right].$$

Hint 2: Note that this is done by computing

$$\sum_{i=1}^{n} \int_{0}^{\infty} \log f(t_i, z_i, d_i | \lambda) f(t_i | z_i, d_i, \lambda^{(k)}) dt_i$$

- (d) (3 points) Derive the M-step of an EM algorithm for estimating λ. Explain how to estimate λ using the E and M steps.
- (e) (3 bonus points) Find a fixed point of the algorithm. In other words, find a $\hat{\lambda}$ such that $\tilde{\lambda}^{(k+1)} = \tilde{\lambda}^{(k)} = \tilde{\lambda}$ for all k. Explain why $\tilde{\lambda}$ is the maximum point of the likelihood. Compare to the estimator $\hat{\lambda}$ of question 2b.