BIOS760: 2009 FALL SEMESTER FINAL EXAM

Dec. 14, 12-3pm

A new technology is developed to accurately measure the tumor cell secretion level in cancer patients. However, even so, there is a lower limit detection bound, denoted by τ , a positive constant; that is, if the level is less than τ , the technology will not be able to measure it. Suppose that we take measurements from n i.i.d patients and find that m patients of them have detectable levels with values $X_1, ..., X_m$. For the rest of (n - m) patients, their levels $X_{m+1}, ..., X_n$ are below τ so undetectable. Moreover, we assume that each X_i , i = 1, ..., n, follows an exponential distribution with rate $1/\lambda$, i.e., the density is $\lambda^{-1}e^{-x/\lambda}$, x > 0. Our goal is to estimate λ .

Likelihood function

1(a) (5 points) The observed data can be expressed as

$$X_1, ..., X_m, I(X_{m+1} < \tau), ..., I(X_n < \tau).$$

Write down the observed likelihood function of λ based on these observations.

Method of moments

- 2(a) (5 points) Note that m, the number of the patients whose levels are detectable, is random. What is the distribution of m?
- 2(b) (5 points) Show $E[m] = ne^{-\tau/\lambda}$. Thus, a simple estimator for λ , denoted by $\hat{\lambda}_1$, can be obtained by solving the following equation

$$m = ne^{-\tau/\lambda}.$$

Show $\hat{\lambda}_1$ is consistent and derive the asymptotic distribution of $\hat{\lambda}_1$.

Complete data analysis

3(a) (5 points) In this approach, we only use the data from the patients whose levels are detectable, i.e., $X_1, ..., X_m$. Then the likelihood function should be

$$f(X_1|X_1 \ge \tau) \times \cdots \times f(X_m|X_m \ge \tau),$$

where f denotes the conditional density. Explain why the likelihood function should be like this and explicitly write out the above expression.

(ATTN: more questions on the back of this page)

- 3(b) (5 points) Using the above likelihood function and conditional on $X_1 \ge \tau, ..., X_m \ge \tau$ and m, find the UMVUE for λ , denoted by $\hat{\lambda}_2$, and calculate its conditional variance.
- 3(c) (5 points) Does the UMVUE attain the Cramer-Rao bound, conditional on $X_1 \ge \tau, ..., X_m \ge \tau$ τ and m?
- 3(d) (5 points) What is the asymptotic distribution of $\hat{\lambda}_2$? The asymptotic distribution should be unconditional.

Maximum likelihood estimation

- 4(a) (10 points) We aim to obtain the maximum likelihood estimator for λ , denoted by $\hat{\lambda}_3$, using all the observations from n patients. Since the last (n - m) patients have undetectable levels, the EM algorithm can be used to calculate $\hat{\lambda}_3$. Write out the E-step and M-step explicitly.
- 4(b) (5 points) What is the asymptotic distribution of $\hat{\lambda}_3$?
- 4(c) (5 points) Construct an asymptotic 95%-confidence interval for λ based on $\hat{\lambda}_3$.
- 4(d) (5 points) What are the asymptotic relative efficiencies of $\hat{\lambda}_1$ vs $\hat{\lambda}_3$ and $\hat{\lambda}_2$ vs $\hat{\lambda}_3$?