- 1. (10 Points + 3 Extra Credit Points). Let X_1, \ldots, X_n be an i.i.d. sample from density $f_{\alpha}(x) = I\{0 \le x \le 1\}(\alpha + 1)x^{\alpha}$, where $-1 < \alpha < \infty$. Our goal is to develop and study estimators for α .
 - (a) We first obtain various moments for X_1 and $\log X_1$. Define functions

$$g_0(u) = \frac{1}{u} - 1$$
 and $g_1(u) = \frac{u}{1 - u} - 1.$

- i. (2 Points) Let $m_0(\alpha) = -E(\log X_1)$ and calculate the form of the function m_0 . Show that $g_0(m_0(\alpha)) = \alpha$ and that $\operatorname{var}(\log X_1) = (\alpha + 1)^{-2}$.
- ii. (2 Points) Let $m_1(\alpha) = E(X_1)$ and calculate the form of the function m_1 . Show that $g_1(m_1(\alpha)) = \alpha$ and that $\operatorname{var}(X_1) = (\alpha + 1)(\alpha + 2)^{-2}(\alpha + 3)^{-1}$.
- (b) (2 Points) We now derive consistent estimators. Let $M_{0n} = -n^{-1} \sum_{i=1}^{n} \log X_i$ and $M_{1n} = n^{-1} \sum_{i=1}^{n} X_i$. Show that $g_0(M_{0n}) \to_p \alpha$ and $g_1(M_{1n}) \to_p \alpha$.
- (c) We now establish asymptotic normality.
 - i. (3 Points) Show that $\sqrt{n}(g_0(M_{0n}) \alpha) \rightarrow_d N(0, \sigma_0^2(\alpha))$, where $\sigma_0^2(\alpha) = (\alpha + 1)^2$.
 - ii. (Extra Credit: 2 Points) Show that $\sqrt{n}(g_1(M_{1n}) \alpha) \rightarrow_d N(0, \sigma_1^2(\alpha))$, where $\sigma_1^2(\alpha) = (\alpha + 1)(\alpha + 2)^2(\alpha + 3)^{-1}$.
- (d) Let $r(\alpha) = \sigma_1^2(\alpha) / \sigma_0^2(\alpha)$.
 - i. (Extra Credit: 1 Point) Show that $r(\alpha) > 1$ for all $-1 < \alpha < \infty$ and that $\lim_{\alpha \to -1} r(\alpha) = \infty$, where the limit is taken from the right.
 - ii. (1 Point) Interpret in words what the above statement means for the relative performance of $g_0(M_{0n})$ and $g_1(M_{1n})$ for estimating α .
- 2. (10 Points) Continuing with the above setting, let $T_n = g_0(M_{0n})$. The goal of this problem is to show that T_n is a regular and efficient estimator of α .
 - (a) (3 Points) Show that T_n is asymptotically linear with influence function $H_{\alpha}(X) = (\alpha + 1)^2 (\log X + (\alpha + 1)^{-1}).$
 - (b) (3 Points) Show that $H_{\alpha}(X)$ is the efficient influence function for estimating α .
 - (c) (1 Point) Argue briefly why this now implies that T_n is regular and efficient.
 - (d) (3 Points) Let $\tilde{\alpha}_n = g_1(M_{1n})$. Derive a one-step estimator based on $\tilde{\alpha}_n$ that is also regular and fully efficient.

- 3. (10 Points) Assume that Y_1, \ldots, Y_n are an i.i.d. sample from density $h_{\alpha}(y) = I\{0 \le y \le 1\} (1/2 + f_{\alpha}(y)/2)$, where f_{α} is as defined in Problem 1. We are going to develop an EM algorithm for calculating the maximum likelihood estimate for α based on Y_1, \ldots, Y_n .
 - (a) (2 Points) Let Δ be a Bernoulli random deviate with $Pr(\Delta = 1) = 1/2$ and let Y given $\Delta = \delta$ have density $I\{0 \le y \le 1\} f_{\alpha}^{1-\delta}(y)$. Show that the marginal density of Y is $h_{\alpha}(y)$.
 - (b) (2 Points) Show that $E(\Delta|Y = y, \alpha) = (1 + f_{\alpha}(y))^{-1}$.
 - (c) (1 Points) Show that the full log-likelihood $\ell_n(\alpha)$ for the sample $(\Delta_1, Y_1), \ldots, (\Delta_n, Y_n)$ is $-n \log(2) + \sum_{i=1}^n (1 - \Delta_i) (\alpha \log(Y_i) + \log(1 + \alpha)).$
 - (d) (2 Points) Show that

$$E\left[\ell_{n}(\alpha)|Y_{1},\ldots,Y_{n},\alpha^{(k)}\right] = -n\log(2) + \sum_{i=1}^{n} w_{i}(\alpha^{(k)})\left[\alpha\log(Y_{i}) + \log(\alpha+1)\right],$$

where $w_i(\alpha) = f_{\alpha}(Y_i) [1 + f_{\alpha}(Y_i)]^{-1}$.

(e) (3 Points) Now maximize over α and prove that

$$\alpha^{(k+1)} = \frac{-\sum_{i=1}^{n} w_i(\alpha^{(k)})}{\sum_{i=1}^{n} w_i(\alpha^{(k)}) \log(Y_i)} - 1$$

- 4. (2 Extra Credit Points) Define mathematically the following concepts:
 - (a) (1 Extra Credit Point) Complete Statistic.
 - (b) (1 Extra Credit Point) Martingale.