1. (10 Points +3 Extra Credit Points). Let X_{1}, \ldots, X_{n} be an i.i.d. sample from density $f_{\alpha}(x)=I\{0 \leq x \leq 1\}(\alpha+1) x^{\alpha}$, where $-1<\alpha<\infty$. Our goal is to develop and study estimators for α.
(a) We first obtain various moments for X_{1} and $\log X_{1}$. Define functions

$$
g_{0}(u)=\frac{1}{u}-1 \quad \text { and } \quad g_{1}(u)=\frac{u}{1-u}-1 .
$$

i. (2 Points) Let $m_{0}(\alpha)=-E\left(\log X_{1}\right)$ and calculate the form of the function m_{0}. Show that $g_{0}\left(m_{0}(\alpha)\right)=\alpha$ and that $\operatorname{var}\left(\log X_{1}\right)=(\alpha+1)^{-2}$.
ii. (2 Points) Let $m_{1}(\alpha)=E\left(X_{1}\right)$ and calculate the form of the function m_{1}. Show that $g_{1}\left(m_{1}(\alpha)\right)=\alpha$ and that $\operatorname{var}\left(X_{1}\right)=(\alpha+1)(\alpha+2)^{-2}(\alpha+3)^{-1}$.
(b) (2 Points) We now derive consistent estimators. Let $M_{0 n}=-n^{-1} \sum_{i=1}^{n} \log X_{i}$ and $M_{1 n}=n^{-1} \sum_{i=1}^{n} X_{i}$. Show that $g_{0}\left(M_{0 n}\right) \rightarrow_{p} \alpha$ and $g_{1}\left(M_{1 n}\right) \rightarrow_{p} \alpha$.
(c) We now establish asymptotic normality.
i. (3 Points) Show that $\sqrt{n}\left(g_{0}\left(M_{0 n}\right)-\alpha\right) \rightarrow{ }_{d} N\left(0, \sigma_{0}^{2}(\alpha)\right)$, where $\sigma_{0}^{2}(\alpha)=(\alpha+1)^{2}$.
ii. (Extra Credit: 2 Points) Show that $\sqrt{n}\left(g_{1}\left(M_{1 n}\right)-\alpha\right) \rightarrow_{d} N\left(0, \sigma_{1}^{2}(\alpha)\right)$, where $\sigma_{1}^{2}(\alpha)=(\alpha+1)(\alpha+2)^{2}(\alpha+3)^{-1}$.
(d) Let $r(\alpha)=\sigma_{1}^{2}(\alpha) / \sigma_{0}^{2}(\alpha)$.
i. (Extra Credit: 1 Point) Show that $r(\alpha)>1$ for all $-1<\alpha<\infty$ and that $\lim _{\alpha \rightarrow-1} r(\alpha)=\infty$, where the limit is taken from the right.
ii. (1 Point) Interpret in words what the above statement means for the relative performance of $g_{0}\left(M_{0 n}\right)$ and $g_{1}\left(M_{1 n}\right)$ for estimating α.
2. (10 Points) Continuing with the above setting, let $T_{n}=g_{0}\left(M_{0 n}\right)$. The goal of this problem is to show that T_{n} is a regular and efficient estimator of α.
(a) (3 Points) Show that T_{n} is asymptotically linear with influence function $H_{\alpha}(X)=$ $(\alpha+1)^{2}\left(\log X+(\alpha+1)^{-1}\right)$.
(b) (3 Points) Show that $H_{\alpha}(X)$ is the efficient influence function for estimating α.
(c) (1 Point) Argue briefly why this now implies that T_{n} is regular and efficient.
(d) (3 Points) Let $\tilde{\alpha}_{n}=g_{1}\left(M_{1 n}\right)$. Derive a one-step estimator based on $\tilde{\alpha}_{n}$ that is also regular and fully efficient.
3. (10 Points) Assume that Y_{1}, \ldots, Y_{n} are an i.i.d. sample from density $h_{\alpha}(y)=I\{0 \leq y \leq$ $1\}\left(1 / 2+f_{\alpha}(y) / 2\right)$, where f_{α} is as defined in Problem 1. We are going to develop an EM algorithm for calculating the maximum likelihood estimate for α based on Y_{1}, \ldots, Y_{n}.
(a) (2 Points) Let Δ be a Bernoulli random deviate with $\operatorname{Pr}(\Delta=1)=1 / 2$ and let Y given $\Delta=\delta$ have density $I\{0 \leq y \leq 1\} f_{\alpha}^{1-\delta}(y)$. Show that the marginal density of Y is $h_{\alpha}(y)$.
(b) (2 Points) Show that $E(\Delta \mid Y=y, \alpha)=\left(1+f_{\alpha}(y)\right)^{-1}$.
(c) (1 Points) Show that the full log-likelihood $\ell_{n}(\alpha)$ for the sample $\left(\Delta_{1}, Y_{1}\right), \ldots,\left(\Delta_{n}, Y_{n}\right)$ is $-n \log (2)+\sum_{i=1}^{n}\left(1-\Delta_{i}\right)\left(\alpha \log \left(Y_{i}\right)+\log (1+\alpha)\right)$.
(d) (2 Points) Show that

$$
E\left[\ell_{n}(\alpha) \mid Y_{1}, \ldots, Y_{n}, \alpha^{(k)}\right]=-n \log (2)+\sum_{i=1}^{n} w_{i}\left(\alpha^{(k)}\right)\left[\alpha \log \left(Y_{i}\right)+\log (\alpha+1)\right]
$$

where $w_{i}(\alpha)=f_{\alpha}\left(Y_{i}\right)\left[1+f_{\alpha}\left(Y_{i}\right)\right]^{-1}$.
(e) (3 Points) Now maximize over α and prove that

$$
\alpha^{(k+1)}=\frac{-\sum_{i=1}^{n} w_{i}\left(\alpha^{(k)}\right)}{\sum_{i=1}^{n} w_{i}\left(\alpha^{(k)}\right) \log \left(Y_{i}\right)}-1 .
$$

4. (2 Extra Credit Points) Define mathematically the following concepts:
(a) (1 Extra Credit Point) Complete Statistic.
(b) (1 Extra Credit Point) Martingale.
