BIOS760 Final Exam, Fall 2007

1. Suppose that we observe n independent pairs (Y_i, X_i) , where

$$X_i = \frac{1}{2}\log i + U_i, \quad Y_i = \beta + e^{X_i}\epsilon_i$$

with $U_i, i = 1, ..., n$ i.i.d from Uniform(0,1), $\epsilon_i, i = 1, ..., n$ from N(0, 1), and U_i independent of ϵ_i . By noting

$$Y_i e^{-X_i} = \beta e^{-X_i} + \epsilon_i,$$

we can obtain an alternative least-square estimator for β given as

$$\hat{\beta} = \frac{\sum_{i=1}^{n} Y_i e^{-2X_i}}{\sum_{i=1}^{n} e^{-2X_i}}.$$

- (a) (5 points) Write down the observed likelihood function for β .
- (b) (5 points) What is the Cramer-Rao lower bound for β ? We want to derive the asymptotic distribution for $\hat{\beta}$ after a proper normalization. Particulary, we take the following steps.
- (c) (5 points) Derive the asymptotic distribution of $\sum_{i=1}^{n} i^{-1/2} e^{-U_i} \epsilon_i$, after a proper normalization;
- (d) (5 points) Show

$$\frac{\sum_{i=1}^{n} i^{-1} e^{-2U_i}}{(1-e^{-2})/2\sum_{i=1}^{n} i^{-1}} \to_p 1;$$

- (e) (5 points) Obtain the asymptotic distribution for $\hat{\beta}$ after a proper normalization.
- 2. Suppose $X_1, ..., X_n$ are i.i.d from density

$$f(x) = I(x \ge \theta) \exp\{-(x - \theta)\}.$$

- (a) (5 points) Find a complete and sufficient statistic for θ .
- (b) (5 points) Derive the UMVUE for θ and denote it as $\hat{\theta}_1$.
- (c) (5 points) Find the maximum likelihood estimate for θ and denote it as $\hat{\theta}_2$.
- (d) (5 points) Calculate the variance of $\hat{\theta}_2$ and show that $\hat{\theta}_2$ is consistent using the Chebyshev's inequality.
- (e) (5 points) Find some constant a_n such that $a_n(\hat{\theta}_2 \theta_0)$ converges in distribution to a nondegenerate distribution. Identify the limiting distribution. Here, θ_0 is the true value for θ .
- (f) (5 points) Find some constant b_n such that $b_n(\hat{\theta}_1 \theta_0)$ converges in distribution to a nondegenerate distribution. Identify the limiting distribution.
- 3. Let $Z_1, ..., Z_n$ be the measurements of body mass index (BMI) and $X_1, ..., X_n$ be the daily fat intake from n independent adults. Assume

$$Z_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where ϵ_i follows distribution $N(0, \sigma^2)$ and is independent of X_i . Assume X_i has a known density g(x). In a real study, we observe $X_1, ..., X_n$ but instead of Z_i , only the categories of BMI are observed: such categories are defined as

$$Y_i = \begin{cases} \text{normal,} & Z_i < 25, \\ \text{overweight,} & 25 \le Z_i. \end{cases}$$

Therefore, the observed data are $(Y_1, X_1), ..., (Y_n, X_n)$. We may code $Y_i = 0$ for "normal" category and $Y_i = 1$ for "overweight" category.

- (a) (5 points) Write down the observed likelihood function.
- (b) (5 points) Write down the likelihood function of the complete data.
- (c) (15 points) We want to use the EM algorithm to calculate the maximum likelihood estimates for β_0 , β_1 and σ^2 . Give the explicit calculations in both E-step and M-step. In the expressions, you may use $\Phi(x)$ and $\phi(x)$ to denote the respective cumulative distribution function and density function of standard normal distribution.