- 1. Suppose that $\epsilon_1, ..., \epsilon_n$ are i.i.d from $N(0, \sigma^2)$. Let $Y_i = \mu + \epsilon_i / \sqrt{i}$.
 - (a) (5 points) What are the complete sufficient statistics for parameters (μ, σ^2) ?
 - (b) (5 points) Find the UMVU estimator for μ .
 - (c) (5 points) Does the UMVU estimator attain the Crame-Rao lower bound? Justify.
- 2. Suppose that $\epsilon_1, ..., \epsilon_n$ are i.i.d from a distribution with mean zero and variance σ^2 . Let $Y_i = \mu + \epsilon_i / \sqrt{i}$.
 - (a) (5 points) Clearly, for any non-negative constants $a_1, ..., a_n$ satisfying $\sum_{i=1}^n a_i = 1$, $\sum_{i=1}^n a_i Y_i$ is an unbiased estimator for μ . From this class of estimators, find the one which has the smallest variance, denoted as \bar{Y}_n^* .
 - (b) (10 points) Derive and justify the asymptotic distribution of \bar{Y}_n^* (after proper normalization).
- 3. Suppose that $Y_1, ..., Y_n$ are i.i.d from $N(\mu, \sigma^2)$ where $\mu \ge 1$ and $\sigma > 0$ are two parameters. One important quantity measuring the dispersion of the distribution is called the coefficient of variation (CV), defined as σ/μ .
 - (a) (10 points) Suppose that the true mean is larger than 1. What are the efficient influence function and information bound for CV? Hint: the efficient influence function and information bound are defined based on only one observation.
 - (b) (10 points) Clearly, we can estimate CV by

$$\widehat{CV} = \frac{\sqrt{n^{-1}\sum_{i=1}^{n}(Y_i - \bar{Y}_n)^2}}{\bar{Y}_n}$$

where \overline{Y}_n is the sample mean. Find the asymptotic distribution of \widehat{CV} (after proper normalization).

(c) (10 points) Another procedure to estimate CV is: we first calculate the maximum likelihood estimates for μ and σ and denote them as $\hat{\mu}_n$ and $\hat{\sigma}_n$; then the estimate for CV is $\hat{\sigma}_n/\hat{\mu}_n$. Give the explicit expression for $(\hat{\mu}_n, \hat{\sigma}_n)$ and show that if the true mean is larger than 1, then $\hat{\sigma}_n/\hat{\mu}_n$ has the same asymptotic distribution as \widehat{CV} . Hint: in calculating the maximum likelihood estimates, pay attention to the condition $\mu \geq 1$ and $\sigma > 0$.

- 4. Let $Y_1, ..., Y_n$ denote the log(CD4 cell count) from *n* HIV patients. Suppose that $Y_1, ..., Y_n$ are i.i.d from a normal distribution with mean μ and variance 1. However, due to the limitation of techniques measuring the CD4 cell count, we can only observe those Y_i 's such that $Y_i > y_0$, where y_0 is a constant denoting the threshold value. We thus introduce indicators $R_1, ..., R_n$ where $R_i = I(Y_i > y_0)$ so $R_i = 1$ indicates that Y_i is observable and vice versa. Note the observed statistics for patient *i* are R_iY_i and R_i .
 - (a) (5 points) Write out the observed likelihood function in terms of Y's and R's.
 - (b) (5 points) Show that the parameter μ is identifiable from the observed data. Hint: to verify the identifiability, you need only consider n = 1 case.
 - (c) (5 points) Give the likelihood equation for calculating the maximum likelihood estimator for μ and describe the Newton-Raphson algorithm for solving this equation.
 - (d) (15 points) Provide an EM algorithm for calculating the maximum likelihood estimator. Make the final expressions as simple as possible.
 - (e) (5 points) What is the asymptotic distribution of the maximum likelihood estimator?
 - (f) (5 points) Construct an asymptotic confidence interval for μ with coverage 95%.