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CHAPTER 1 A REVIEW OF
DISTRIBUTION THEORY

This chapter reviews some basic concepts of discrete and continuous random variables. Distri-
bution results on algebra and transformations of random variables (vectors) are given. Part of
the chapter pays special attention to the properties of the Gaussian distributions. The final
part of this chapter introduces some commonly-used distribution families.

1.1 Basic Concepts

Random variables are often classified into discrete random variables and continuous random
variables. By names, discrete random variables are some variables which take discrete values
with an associated probability mass function; while, continuous random variables are variables
taking non-discrete values (usually R) with an associated probability density function. A proba-
bility mass function consists of countable non-negative values with their total sum being one and
a probability density function is a non-negative function in real line with its whole integration
being one.

However, the above definitions are not rigorous. What is the precise definition of a random
variable? Why shall we distinguish between mass functions or density functions? Can some
random variable be both discrete and continuous? The answers to these questions will become
clear in next chapter on probability measure theory. However, you may take a glimpse below:

(a) Random variables are essentially measurable functions from a probability measure space
to real space. Especially, discrete random variables map into discrete set and continuous
random variables map into the whole real line.

(b) Probability (probability measure) is a function assigning non-negative values to sets of a
σ-field and it satisfies the property of countable additivity.

(c) Probability mass function for a discrete random variable is the Radon-Nykodym derivative
of random variable-induced measure with respect to a counting measure. Probability
density function for continuous random variable is the Radon-Nykodym derivative of
random variable-induced measure with respect to the Lebesgue measure.

For this chapter, we do not need to worry about these abstract definitions.
Some quantities to describe the distribution of a random variable include cumulative distri-

bution function, mean, variance, quantile, mode, moments, centralized moments, kurtosis and
skewness. For instance, if X is a discrete random variable taking values x1, x2, ... with probabili-
ties m1,m2, .... The cumulative distribution function of X is defined as FX(x) =

∑
xi≤xmi. The
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kth moment of X is given as E[Xk] =
∑

imix
k
i and the kth centralized moment of X is given as

E[(X − µ)k] where µ is the expectation of X. If X is a continuous random variable with prob-
ability density function fX(x), then the cumulative distribution function FX(x) =

∫ x
−∞ fX(t)dt

and the kth moment of X is given as E[Xk] =
∫∞
−∞ x

kfX(x)dx if the integration is finite.

The skewness of X is given by E[(X − µ)3]/V ar(X)3/2 and the kurtosis of X is given by
E[(X − µ)4]/V ar(X)2. The last two quantities describe the shape of the density function:
negative values for the skewness indicate the distribution that are skewed left and positive val-
ues for the skewness indicate the distribution that are skewed right. By skewed left, we mean
that the left tail is heavier than the right tail. Similarly, skewed right means that the right
tail is heavier than the left tail. Large kurtosis indicates a “peaked” distribution and small
kurtosis indicates a “flat” distribution. Note that we have already used E[g(X)] to denote the
expectation of g(X). Sometimes, we use

∫
g(x)dFX(x) to represent it no matter wether X is

continuous or discrete. This notation will be clear after we introduce the probability measure.
Next we review an important definition in distribution theory, namely the characteris-

tic function of X. By definition, the characteristic function for X is defined as φX(t) =
E[exp{itX }] =

∫
exp{itx}dFX (x ), where i is the imaginary unit, the square-root of -1. Equiva-

lently, φX(t) is equal to
∫

exp{itx}fX (x )dx for continuous X and is
∑

jmj exp{itxj} for discrete
X. The characteristic function is important since it uniquely determines the distribution func-
tion of X, the fact implied in the following theorem.

Theorem 1.1 (Uniqueness Theorem) If a random variable X with distribution function
FX has a characteristic function φX(t) and if a and b are continuous points of FX , then

FX(b)− FX(a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φX(t)dt.

Moreover, if FX has a density function fX (for continuous random variable X) , then

fX(x) =
1

2π

∫ ∞
−∞

e−itxφX(t)dt.

†

We defer the proof to Chapter 3. Similar to the characteristic function, we can define the
moment generating function for X as MX(t) = E[exp{tX}]. However, we note that MX(t) may
not exist for some t but φX(t) always exists.

Another important and distinct feature in distribution theory is the independence of two
random variables. For two random variables X and Y , we say X and Y are independent if
P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y); i.e., the joint distribution function of (X, Y )
is the product of the two marginal distributions. If (X, Y ) has a joint density, then an
equivalent definition is that the joint density of (X, Y ) is the product of two marginal den-
sities. Independence introduces many useful properties, among which one important property
is that E[g(X)h(Y )] = E[g(X)]E[h(Y )] for any sensible functions g and h. In more gen-
eral case when X and Y may not be independent, we can calculate the conditional density
of X given Y , denoted by fX|Y (x|y), as the ratio between the joint density of (X, Y ) and
the marginal density of Y . Thus, the conditional expectation of X given Y = y is equal to
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E[X|Y = y] =
∫
xfX|Y (x|y)dx. Clearly, when X and Y are independent, fX|Y (x|y) = fX(x)

and E[X|Y = y] = E[X]. For conditional expectation, two formulae are useful:

E[X] = E[E[X|Y ]] and V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ]).

So far, we have reviewed some basic concepts for a single random variable. All the above
definitions can be generalized to multivariate random vector X = (X1, ..., Xk)

′ with a joint
probability mass function or a joint density function. For example, we can define the mean
vector of X as E[X] = (E[X1], ..., E[Xk])

′ and define the covariance matrix for X as E[XX ′]−
E[X]E[X]′. The cumulative distribution function for X is a k-variate function FX(x1, ..., xk) =
P (X1 ≤ x1, ..., Xk ≤ xk) and the characteristic function of X is a k-variate function, defined as

φX(t1, ..., tk) = E[ei(t1X1+...+tkXk )] =

∫
Rk
ei(t1 x1+...+tkxk )dFX(x1, ..., xk).

Same as Theorem 1.1, an inversion formula holds: Let A = {(x1, .., xk) : a1 < x1 ≤ b1, . . . , ak <
xk ≤ bk} be a rectangle in Rk and assume P (X ∈ ∂A) = 0, where ∂A is the boundary of A.
Then

FX(b1, ..., bk)− FX(a1, ..., ak) = P (X ∈ A)

= lim
T→∞

1

(2π)k

∫ T

−T
· · ·
∫ T

−T

k∏
j=1

e−itj aj − e−itj bj
itj

φX(t1, ..., tk)dt1 · · · dtk.

Finally, we can define the conditional density, the conditional expectation, the independence of
two random vectors similar to the univariate case.

1.2 Examples of Special Distributions

We list some commonly-used distributions in the following examples.

Example 1.1 Bernoulli Distribution and Binomial Distribution A random variable X
is said to be Bernoulli(p) if P (X = 1) = p = 1 − P (X = 0). If X1, ..., Xn are independent,
identically distributed (i.i.d) Bernoulli(p), then Sn = X1 + ...+Xn has a binomial distribution,
denoted by Sn ∼ Binomial(n, p), with

P (Sn = k) =

(
n

k

)
pk(1− p)n−k.

The mean of Sn is equal to np and the variance of Sn is equal to np(1− p). The characteristic
function for Sn is given by

E[eitSn ] = (1− p+ peit)n.

Clearly, if S1 ∼ Binomial(n1, p) and S2 ∼ Binomial(n2, p) and S1, S2 are independent, then
S1 + S2 ∼ Binomial(n1 + n2, p).

Example 1.2 Geometric Distribution and Negative Binomial Distribution LetX1, X2, ...
be i.i.d Bernoulli(p). Define W1 = min{n : X1 + ...+Xn = 1}. Then it is easy to see

P (W1 = k) = (1− p)k−1p, k = 1, 2, ...
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We say W1 has a geometric distribution: W1 ∼ Geometric(p). To be general, define Wm =
min{n : X1 + ...+Xn = m} to be the first time that m successes are obtained. Then

P (Wm = k) =

(
k − 1

m− 1

)
pm(1− p)k−m, k = m,m+ 1, ...

Wm is said to have negative binomial distribution: Wm ∼ Negative Binomial(m, p). The mean
of Wm is equal to m/p and the variance of Wm is m/p2−m/p. If Z1 ∼ Negative Binomial(m1, p)
and Z2 ∼ Negative Binomial(m2, p) and Z1, Z2 are independent, then

Z1 + Z2 ∼ Negative Binomial(m1 +m2, p).

Example 1.3 Hypergeometric Distribution A hypergeometric distribution can be obtained
using the following urn model: suppose that an urn contains N balls with M bearing the number
1 and N −M bearing the number 0. We randomly draw a ball and denote its number as X1.
Clearly, X1 ∼ Bernoulli(p) where p = M/N . Now replace the ball back in the urn and
randomly draw a second ball with number X2 and so forth. Let Sn = X1 + ...+Xn be the sum
of all the numbers in n draws. Clearly, Sn ∼ Binomial(n, p). However, if each time we draw a
ball but we do not replace back, then X1, ..., Xn are dependent random variable. It is known
that Sn has a hypergeometric distribution:

P (Sn = k) =

(
M
k

)(
N−M
n−k

)(
N
n

) , k = 0, 1, .., n.

Or, we write Sn ∼ Hypergeometric(N,M, n).

Example 1.4 Poisson Distribution A random variable X is said to have a Poisson distri-
bution with rate λ, denoted X ∼ Poisson(λ), if

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, ...

It is known that E[X] = V ar(X) = λ and the characteristic function for X is equal exp{−λ(1−
eit)}. Thus, if X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent, then X1 + X2 ∼
Poisson(λ1 + λ2). It is also straightforward to check that conditional on X1 + X2 = n, X1 is
Binomial(n, λ1/(λ1 + λ2)). In fact, a Poisson distribution can be considered as the summation
of a sequence of bernoulli trials each with small success probability: suppose that Xn1, ..., Xnn

are i.i.d Bernoulli(pn) and npn → λ. Then Sn = Xn1 + ...+Xnn has a Binomial(n, pn). We note
that for fixed k, when n is large,

P (Sn = k) =
n!

k!(n− k)!
pkn(1− pn)n−k → λk

k!
e−λ.

Example 1.5 Multinomial Distribution Suppose that {B1, ..., Bk} is a partition of R. Let
Y1, ..., Yn be i.i.d random variables. Let X i = (Xi1, ..., Xik) ≡ (IB1(Yi), ..., IBk(Yi)) for i = 1, ..., n
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and set N = (N1, ..., Nk) =
∑n

i=1Xi. That is, Nl, 1 ≤ l ≤ k counts the number of times that
{Y1, ..., Yn} fall into Bl. It is easy to calculate

P (N1 = n1, ..., Nk = nk) =

(
n

n1, ..., nk

)
pn1

1 · · · p
nk
k , n1 + ...+ nk = n,

where p1 = P (Y1 ∈ B1), ..., pk = P (Y1 ∈ Bk). Such a distribution is called the Multinomial
distribution, denoted Multinomial(n, (p1, .., pk)). We note that eachNl is a binomial distribution
with mean npl. Moreover, the covariance matrix for (N1, ..., Nk) is given by

n

p1(1− p1) . . . −p1pk
...

. . .
...

−p1pk . . . pk(1− pk)

 .

Example 1.6 Uniform Distribution A random variable X has a uniform distribution in an
interval [a, b] if X’s density function is given by I[a,b](x)/(b−a), denoted by X ∼ Uniform(a, b).
Moreover, E[X] = (a+ b)/2 and V ar(X) = (b− a)2/12.

Example 1.7 Normal Distribution The normal distribution is the most commonly used
distribution and a random variable X with N(µ, σ2) has a probability density function

1√
2πσ2

exp{−(x− µ)2

2σ2
}.

Moreover, E[X] = µ and var(X) = σ2. The characteristic function for X is given by exp{itµ−
σ2 t2/2}. We will discuss such distribution in detail later.

Example 1.8 Gamma Distribution A Gamma distribution has a probability density

1

βθΓ(θ)
xθ−1 exp{−x

β
}, x > 0

denoted by Γ(θ, β). It has mean θβ and variance θβ2. Specially, when θ = 1, the distribution
is called the exponential distribution, Exp(β). When θ = n/2 and β = 2, the distribution is
called the Chi-square distribution with degrees of freedom n, denoted by χ2

n.

Example 1.9 Cauchy Distribution The density for a random variable X ∼ Cauchy(a, b)
has the form

1

bπ {1 + (x− a)2/b2}
.

Note E[X] =∞. Such a distribution is often used as a counterexample in distribution theory.
Many other distributions can be constructed using some elementary algebra such as sum-

mation, product, quotient of the above special distributions. We will discuss them in next
section.
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1.3 Algebra and Transformation of Random Variables (Vec-

tors)

In many applications, one wishes to calculate the distribution of some algebraic expression
of independent random variables. For example, suppose that X and Y are two independent
random variables. We wish to find the distributions of X+Y , XY and X/Y (we assume Y > 0
for the last two cases).

The calculation of these algebraic distributions is often done using the conditional expec-
tation. To see how this works, we denote FZ(·) as the cumulative distribution function of any
random variable Z. Then for X + Y ,

FX+Y (z) = E[I(X+Y ≤ z)] = EY [EX [I(X ≤ z−Y )|Y ]] = EY [FX(z−Y )] =

∫
FX(z−y)dFY (y);

symmetrically,

FX+Y (z) =

∫
FY (z − x)dFX(x).

The above formula is called the convolution formula, sometimes denoted by FX ∗FY (z). If both
X and Y have densities functions fX and fY respectively, then the density function for X + Y
is equal to

fX ∗ fY (z) ≡
∫
fX(z − y)fY (y)dy =

∫
fY (z − x)fX(x)dx.

Similarly, we can obtain the formulae for XY and X/Y as follows:

FXY (z) = E[E[I(XY ≤ z)|Y ]] =

∫
FX(z/y)dFY (y), fXY (z) =

∫
fX(z/y)/yfY (y)dy,

FX/Y (z) = E[E[I(X/Y ≤ z)|Y ]] =

∫
FX(yz)dFY (y), fX/Y (z) =

∫
fX(yz)yfY (y)dy.

These formulae can be used to construct some familiar distributions from simple random
variables. We assume X and Y are independent in the following examples.

Example 1.10 (i) X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2). X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
(ii) X ∼ Cauchy(0, σ1) and Y ∼ Cauchy(0, σ2) implies X + Y ∼ Cauchy(0, σ1 + σ2).
(iii) X ∼ Gamma(r1, θ) and Y ∼ Gamma(r2, θ) implies that X + Y ∼ Gamma(r1 + r2, θ).
(iv) X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) implies X + Y ∼ Poisson(λ1 + λ2).
(v) X ∼ Negative Binomial(m1, p) and Y ∼ Negative Binomial(m2, p). Then X+Y ∼ Negative
Binomial(m1 +m2, p).

The results in Example 1.10 can be verified using the convolution formula. However, these
results can also be obtained using characteristic functions, as stated in the following theorem.

Theorem 1.2 Let φX(t) denote the characteristic function for X. Suppose X and Y are
independent. Then φX+Y (t) = φX(t)φY (t). †

The proof is direct. We can use Theorem 1.2 to find the distribution of X+Y . For example,
in (i) of Example 1.10, we know φX(t) = exp{µ1t − σ2

1t
2/2} and φY (t) = exp{µ2t − σ2

2t
2/2}.

Thus,
φX+Y (t) = exp{(µ1 + µ2)t− (σ2

1 + σ2
2)t2/};
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while the latter is the characteristic function of a normal distribution with mean (µ1 + µ2) and
variance (σ2

1 + σ2
2).

Example 1.11 Let X ∼ N(0, 1), Y ∼ χ2
m and Z ∼ χ2

n be independent. Then

X√
Y/m

∼ Student’s t(m),

Y/m

Z/n
∼ Snedecor’s Fm,n,

Y

Y + Z
∼ Beta(m/2, n/2),

where

ft(m)(x) =
Γ((m+ 1)/2)√
πmΓ(m/2)

1

(1 + x2/m)(m+1)/2
I(−∞,∞)(x),

fFm,n(x) =
Γ(m+ n)/2

Γ(m/2)Γ(n/2)

(m/n)m/2xm/2−1

(1 +mx/n)(m+n)/2
I(0,∞)(x),

fBeta(a,b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1I(0 < x < 1).

Example 1.12 If Y1, ..., Yn+1 are i.i.d Exp(θ), then

Zi =
Y1 + . . .+ Yi
Y1 + . . .+ Yn+1

∼ Beta(i, n− i+ 1).

Particularly, (Z1, . . . , Zn) has the same joint distribution as that of the order statistics (ξn:1, ..., ξn:n)
of n Uniform(0,1) random variables.

Both the results in Example 1.11 and 1.12 can be derived using the formulae at the beginning
of this section. We now start to examine the transformation of random variables (vectors).
Especially, the following theorem holds.

Theorem 1.3 Suppose thatX is k-dimension random vector with density function fX(x1, ..., xk).
Let g be a one-to-one and continuously differentiable map from Rk to Rk. Then Y = g(X) is
a random vector with density function

fX(g−1(y1, ..., yk))|Jg−1(y1, ..., yk)|,

where g−1 is the inverse of g and Jg−1 is the Jacobian of g−1. †

The proof is simply based on the variable-transformation in integration. One application of
this result is given in the following example.

Example 1.13 Let X and Y be two independent standard normal random variables. Consider
the polar coordinate of (X, Y ), i.e., X = R cos Θ and Y = R sin Θ. Then Theorem 1.3 gives
that R2 and Θ are independent and moreover, R2 ∼ Exp{2} and Θ ∼ Uniform(0, 2π). As an
application, if one can simulate variables from a uniform distribution (Θ) and an exponential
distribution (R2), then using X = R cos Θ and Y = R sin Θ produces variables from a standard
normal distribution. This is exactly the way of generating normally distributed numbers in
most of statistical packages.
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1.4 Multivariate Normal Distribution

One particular distribution we will encounter in larger-sample theory is the multivariate normal
distribution. A random vector Y = (Y1, ..., Yn)′ is said to have a multivariate normal distribution
with mean vector µ = (µ1, ..., µn)′ and non-degenerate covariance matrix Σn×n, denoted as
N(µ,Σ) or Nn(µ,Σ) to emphasize Y ’s dimension, if Y has a joint density as

fY (y1, ..., yn) =
1

(2π)n/2|Σ|1/2
exp{−1

2
(y − µ)′Σ−1(y − µ)}.

We can derive the characteristic function of Y using the following ad hoc way:

φY (t) = E[eit
′Y ]

=
1

(2π)n/2|Σ|1/2

∫
exp{it′y − 1

2
(y − µ)′Σ−1(y − µ)}dy

=
1

(2π)n/2|Σ|1/2

∫
exp{−1

2
y′Σ−1y + (it+ Σ−1µ)′y − µ′Σ−1µ

2
}dy

=
exp{−µ′Σ−1µ/2}

(2π)n/2|Σ|1/2

∫
exp

{
−1

2
(y − Σit− µ)′Σ−1(y − Σit− µ)

+
1

2
(Σit+ µ)′Σ−1(Σit+ µ)

}
dy

= exp{it′µ− 1

2
t′Σt}.

Particularly, if Y has standard multivariate normal distribution with mean zero and covariance
In×n, φY (t) = exp{−t′t/2}.

The following theorem describes the properties of a multivariate normal distribution.

Theorem 1.4 If Y = An×kXk×1 where X ∼ Nk(0, I) (standard multivariate normal distribu-
tion), then Y ’s characteristic function is given by

φY (t) = exp {−t′Σt/2} , t = (t1, ..., tn) ∈ Rk

and rank(Σ) = rank(A). Conversely, if φY (t) = exp{−t′Σt/2} with Σn×n ≥ 0 of rank k, then

Y = An×kXk×1 with rank(A) = k and X ∼ Nk(0, I).

†

Proof

φY (t) = E[exp{it′(AX)}] = E[exp{i(A′t)′X}] = exp{−(A′t)′(A′t)/2} = exp{−t′AA′t/2}.

Thus, Σ = AA′ and rank(Σ) = rank(A). Conversely, if φY (t) = exp{−t′Σt/2}, then from
matrix theory, there exist an orthogonal matrix O such that Σ = O′DO, where D is a diagonal
matrix with first k diagonal elements positive and the rest (n− k) elements being zero. Denote
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these positive diagonal elements as d1, ..., dk. Define Z = OY . Then the characteristic function
for Z is given by

φZ(t) = E[exp{it ′(OY )}] = E [exp{i(O ′t)′Y }] = exp{−(O ′t)′Σ (O ′t)/2}

= exp{−d1t
2
1/2− ...− dkt2k/2}.

This implies that Z1, ..., Zk are independent N(0, d1), ..., N(0, dk) and Zk+1 = ... = Zn = 0. Let
Xi = Zi/

√
di for i = 1, ..., k and write O′ = (Bn×k, Cn×(n−k)). Then

Y = O′Z = Bn×k

Z1
...
Zk

 = Bn×kdiag{(
√
d1, ...,

√
dk)}

X1
...
Xk

 ≡ AX.

Clearly, rank(A) = k. †

Theorem 1.5 Suppose that Y = (Y1, ..., Yk, Yk+1, ..., Yn)′ has a multivariate normal distribution

with mean µ = (µ(1)′, µ(2)′)′ and a non-degenerate covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then
(i) (Y1, ..., Yk)

′ ∼ Nk(µ
(1),Σ11).

(ii) (Y1, ..., Yk)
′ and (Yk+1, ..., Yn)′ are independent if and only if Σ12 = Σ21 = 0.

(iii) For any matrix Am×n, AY has a multivariate normal distribution with mean Aµ and co-
variance AΣA′.
(iv) The conditional distribution of Y (1) = (Y1, ..., Yk)

′ given Y (2) = (Yk+1, ..., Yn)′ is a multi-
variate normal distribution given as

Y (1)|Y (2) ∼ Nk(µ
(1) + Σ12Σ−1

22 (Y (2) − µ(2)),Σ11 − Σ12Σ−1
22 Σ21).

†

Proof (i) From Theorem 1.4, we obtain that the characteristic function for (Y1, ..., Yk) − µ(1)

is given by exp{−t′(DΣ)(DΣ)′t/2}, where D = (Ik×k 0k×(n−k)). Thus, the characteristic
function is equal to

exp {−(t1, ..., tk)Σ11(t1, ..., tk)
′/2} ,

which is the same as the characteristic function from Nk(0,Σ11).
(ii) The characteristics function for Y can be written as

exp

[
it(1)′µ(1) + it(2)′µ(2) − 1

2

{
t(1)′Σ11t

(1) + 2t(1)′Σ12t
(2) + t(2)′Σ22t

(2)
}]

.

If Σ12 = 0, the characteristics function can be factorized as the product of the separate functions
for t(1) and t(2). Thus, Y (1) and Y (2) are independent. The converse is obviously true.
(iii) The result follows from Theorem 1.4.
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(iv) Consider Z(1) = Y (1)−µ(1)−Σ12Σ−1
22 (Y (2)−µ(2)). From (iii), Z(1) has a multivariate normal

distribution with mean zero and covariance calculated by

Cov(Z(1), Z(1)) = Cov(Y (1), Y (1))− 2Σ12Σ−1
22 Cov(Y (2), Y (1)) + Σ12Σ−1

22 Cov(Y (2), Y (2))Σ−1
22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21.

On the other hand,

Cov(Z(1), Y (2)) = Cov(Y (1), Y (2))− Σ12Σ−1
22 Cov(Y (2), Y (2)) = 0.

From (ii), Z(1) is independent of Y (2). Then the conditional distribution Z(1) given Y (2) is the
same as the unconditional distribution of Z(1); i.e.,

Z(1)|Y (2) ∼ N(0,Σ11 − Σ12Σ−1
22 Σ21).

The result follows. †

With normal random variables, we can use algebra of random variables to construct a
number of useful distributions. The first one is Chi-square distribution. Suppose X ∼ Nn(0, I),
then ‖X‖2 =

∑n
i=1 X

2
i ∼ χ2

n, the chi-square distribution with n degrees of freedom. One can
use the convolution formula to obtain that the density function for χ2

n is equal to the density
for the Gamma(n/2, 2), denoted by g(y;n/2, 1/2).

Corollary 1.1 If Y ∼ Nn(0,Σ) with Σ > 0, then Y ′Σ−1Y ∼ χ2
n. †

Proof Since Σ > 0, there exists a positive definite matrix A such that AA′ = Σ. Then
X = A−1Y ∼ Nn(0, I). Thus

Y ′Σ−1Y = X ′X ∼ χ2
n.

†

Suppose X ∼ N(µ, 1). Define Y = X2, δ = µ2. Then Y has density

fY (y) =
∞∑
k=0

pk(δ/2)g(y; (2k + 1)/2, 1/2),

where pk(δ/2) = exp(−δ/2)(δ/2)k/k!. Another ways to obtain this is: Y |K = k ∼ χ2
2k+1

where K ∼ Poisson(δ/2). We call Y has the noncentral chi-square distribution with 1 degree
of freedom and noncentrality parameter δ and write Y ∼ χ2

1(δ). More generally, if X =
(X1, ..., Xn)′ ∼ Nn(µ, I) and let Y = X ′X, then Y has a density fY (y) =

∑∞
k=0 pk(δ/2)g(y; (2k+

n)/2, 1/2) where δ = µ′µ. We write Y ∼ χ2
n(δ) and call Y has the noncentral chi-square

distribution with n degrees of freedom and noncentrality parameters δ. It is then easy to show
that if X ∼ N(µ,Σ), then Y = X ′Σ−1X ∼ χ2

n(δ).
If X ∼ N(0, 1), Y ∼ χ2

n and they are independent, then X/
√
Y/n is called t-distribution

with n degrees of freedom. If Y1 ∼ χ2
m, Y2 ∼ χ2

n and Y1 and Y2 are independent, then
(Y1/m)/(Y2/m) is called F-distribution with degrees freedom of m and n. These distributions
have already been introduced in Example 1.11.
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1.5 Families of Distributions

In Examples 1.1-1.12, we have listed a number of different distributions. Interestingly, a number
of them can be unified into a family of general distribution form. One advantage of this
unification is that in order to study the properties of each distribution within the family, we
can examine this family as a whole.

The first family of distributions is called the location-scale family. Suppose that X has a
density function fX(x). Then the location-scale family based on X consists of all the distribu-
tions generated by aX + b where a is a positive constant (scale parameter) and b is a constant
called location parameter. We notice that the distributions such as N(µ, σ2), Uniform(a, b),
Cauchy(µ, σ) belong a location-scale family. For a location-scale family, we can easily see that
aX + b has a density fX((y − b)/a)/a and it has mean aE[X] + b and variance a2var(X).

The second important family, which we will discuss in more detail, is called the exponential
family. In fact, many examples of either univariate or multivariate distributions, including
binomial, poisson distributions for discrete variables and normal distribution, gamma distribu-
tion, beta distribution for continuous variables belong to some exponential family. Especially,
a family of distributions, {Pθ}, is said to form an s-parameter exponential family if the dis-
tributions Pθ have the densities (with respect to some common dominating measure µ) of the
form

pθ(x) = exp

{
s∑

k=1

ηk(θ)Tk(x)−B(θ)

}
h(x).

Here ηi and B are real-valued functions of θ and Ti are real-value function of x. When {ηk(θ)} =
θ, the above form is called the canonical form of the exponential family. Clearly, it stipulates
that

exp{B(θ)} =

∫
exp{

s∑
k=1

ηk(θ)Tk(x)}h(x)dµ(x) <∞.

Example 1.14 X1, ..., Xn are i.i.d according to N(µ, σ2). Then the joint density of (X1, ..., Xn)
is given by

exp

{
µ

σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2
i −

n

2σ2
µ2

}
1

(
√

2πσ)n
.

Then η1(θ) = µ/σ2, η2(θ) = −1/2σ2, T1(x1, ..., xn) =
∑n

i=1 xi, and T2(x1, ..., xn) =
∑n

i=1 x
2
i .

Example 1.15 X has binomial distribution Binomial(n, p). The distribution of X = x can
written as

exp{x log
p

1− p
+ n log(1− p)}

(
n

x

)
.

Clearly, η(θ) = log(p/(1− p)) and T (x) = x.

Example 1.16 X has poisson distribution with poisson rate λ. Then

P (X = x) = exp{x log λ− λ}/x!.

Thus, η(θ) = log λ and T (x) = x.



DISTRIBUTION THEORY 12

Since the exponential family covers a number of familiar distributions, one can study the
exponential family as a whole to obtain some general results applicable to all the members
within the family. One result is to derive the moment generation function for (T1, ..., Ts), which
is defined as

MT (t1, ..., ts) = E [exp{t1T1 + ...+ tsTs}] .
Note that the coefficients in the Taylor expansion ofMT correspond to the moments of (T1, ..., Ts).

Theorem 1.6 Suppose the densities of an exponential family can be written as the canonical
form

exp{
s∑

k=1

ηkTk(x)− A(η)}h(x),

where η = (η1, ..., ηs)
′. Then for t = (t1, ..., ts)

′,

MT (t) = exp{A(η + t)− A(η)}.

†

Proof It follows from that

MT (t) = E [exp{t1T1 + ...+ tsTs}] =

∫
exp{

s∑
k=1

(ηi + ti)Ti(x)− A(η)}h(x)dµ(x)

and

exp{A(η)} =

∫
exp{

s∑
k=1

ηiTi(x)}h(x)dµ(x).

†

Therefore, for an exponential family with canonical form, we can apply Theorem 1.6 to
calculate moments of some statistics. Another generating function is called the cumulant gen-
erating functions defined as

KT (t1, ..., ts) = logMT (t1, ..., ts) = A(η + t)− A(η).

Its coefficients in the Taylor expansion are called the cumulants for (T1, ..., Ts).

Example 1.17 In normal distribution of Example 1.14 with n = 1 and σ2 fixed, η = µ/σ2 and

A(η) =
1

2σ2
µ2 = η2σ2/2.

Thus, the moment generating function for T = X is equal to

MT (t) = exp{σ
2

2
((η + t)2 − η2)} = exp{µt+ t2σ2/2}.

From the Taylor expansion, we can obtain the moments of X whose mean is zero (µ = 0) is
given by

E[X2r+1] = 0, E[X2r] = 1 · 2 · · · (2r − 1)σ2r, r = 1, 2, ...
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Example 1.18 X has a gamma distribution with density

1

Γ(a)ba
xa−1e−x/b, x > 0.

For fixed a, it has a canonical form

exp{−x/b+ (a− 1) log x− log(Γ(a)ba)}I(x > 0).

Correspondingly, η = −1/b, T = X,A(η) = log(Γ(a)ba) = a log(−1/η) + log Γ(a). Then the
moment generating function for T = X is given by

MX(t) = exp{a log
η

η + t
} = (1− bt)−a.

After the Taylor expansion around zero, we obtain

E[X] = ab, E[X2] = ab2 + (ab)2, ...

As a further note, the exponential family has an important role in classical statistical infer-
ence since it possesses many nice statistical properties. We will revisit it in Chapter 4.

READING MATERIALS : You should read Lehmann and Casella, Sections 1.4 and 1.5.

PROBLEMS

1. Verify the densities of t(m) and Fm,n in Example 1.11.

2. Verify the two results in Example 1.12.

3. Suppose X ∼ N(ν, 1). Show that Y = X2 has a density

fY (y) =
∞∑
k=0

pk(µ
2/2)g(y; (2k + 1)/2, 1/2),

where pk(µ
2/2) = exp(−µ2/2)(µ2/2)k/k! and g(y;n/2, 1/2) is the density ofGamma(n/2, 2).

4. Suppose X = (X1, ..., Xn) ∼ N(µ, I) and let Y = X ′X. Show that Y has a density

fY (y) =
∞∑
k=0

pk(µ
′µ/2)g(y; (2k + n)/2, 1/2).

5. Let X ∼ Gamma(α1, β) and Y ∼ Gamma(α2, β) be independent random variables.
Derive the distribution of X/(X + Y ).
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6. Show that for any random variables X, Y and Z,

Cov(X, Y ) = E[Cov(X, Y |Z)] + Cov(E[X|Z], E[Y |Z]),

where Cov(X, Y |Z) is the conditional covariance of X and Y given Z.

7. LetX and Y be i.i.d Uniform(0,1) random variables. Define U = X−Y , V = max(X, Y ) =
X ∨ Y .

(a) What is the range of (U, V )?

(b) find the joint density function fU,V (u, v) of the pair (U, V ). Are U and V indepen-
dent?

8. Suppose that for θ ∈ R,

fθ(u, v) = {1 + θ(1− 2u)(1− 2v)} I(0 ≤ u ≤ 1, 0 ≤ v ≤ 1).

(a) For what values of θ is fθ a density function in [0, 1]2?

(b) For the set of θ’s identified in (a), find the corresponding distribution function Fθ
and show that it has Uniform(0,1) marginal distributions.

(c) If (U, V ) ∼ fθ, compute the correlation ρ(U, V ) ≡ ρ as a function of θ.

9. Suppose that F is the distribution function of random variables X and Y with X ∼
Uniform(0, 1) marginally and Y ∼ Uniform(0, 1) marginally. Thus, F (x, y) satisfies

F (x, 1) = x, 0 ≤ x ≤ 1, and F (1, y) = y, 0 ≤ y ≤ 1.

(a) Show that
F (x, y) ≤ x ∧ y

for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Here x ∧ y = min(x, y) and we denote it as FU(x, y).

(b) Show that
F (x, y) ≥ (x+ y − 1)+

for all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Here (x + y − 1)+ = max(x + y − 1, 0) and we denote
it as FL(x, y).

(c) Show that FU is the distribution function of (X,X) and FL is the distribution func-
tion of (X, 1−X).

10. (a) If W ∼ χ2
2 = Gamma(1, 2), find the density of W , the distribution function W and

the inverse distribution function explicitly.

(b) Suppose that (X, Y ) ∼ N(0, I2×2). In two-dimensional plane, let R be the distance
of (X, Y ) from (0, 0) and θ be the angle between the line from (0,0) to (X,Y) and
the right-half line of x-axis. Then X = R cos Θ and Y = R sin Θ. Show that R and
Θ are independent random variables with R2 ∼ χ2

2 and Θ ∼ Uniform(0, 2π).

(c) Use the above two results to show how to use two independent Uniform(0,1) random
variables U and V to generate two standard normal random variables. Hint: use one
result that if X has a distribution function F then F (X) has a uniform distribution
in [0, 1].
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11. Suppose that X ∼ F on [0,∞), Y ∼ G on [0,∞), and X and Y are independent random
variables. Let Z = min{X, Y } = X ∧ Y and ∆ = I(X ≤ Y ).

(a) Find the joint distribution of (Z,∆).

(b) If X ∼ Exponential(λ) and Y ∼ Exponential(µ), show that Z and ∆ are indepen-
dent.

12. Let X1, ..., Xn be i.i.d N(0, σ2). (w1, ..., wn) is a constant vector such that w1, ..., wn > 0
and w1 + ...+ wn = 1. Define X̄nw =

√
w1X1 + ...+

√
wnXn. Show that

(a) Yn = X̄nw/σ ∼ N(0, 1).

(b) (n− 1)S2
n/σ

2 = (
∑n

i=1X
2
i − X̄2

nw)/σ2 ∼ χ2
n−1.

(c) Yn and S2
n are independent so Tn = Yn/

√
S2
n ∼ tn−1/σ.

(d) when w1 = ... = wn = 1/n, show that Yn is the standardized sample mean and S2
n is

the sample variance.

Hint: Consider an orthogonal matrix Σ such that the first row is (
√
w1, ...,

√
wn). LetZ1

...
Zn

 = Σ

X1
...
Xn

 .

Then Yn = Z1/σ and (n− 1)S2
n/σ

2 = (Z2
2 + ...+ Z2

n)/σ2.

13. Let Xn×1 ∼ N(0, In×n). Suppose that A is a symmetric matrix with rank r. Then
X ′AX ∼ χ2

r if and only if A is a projection matrix (that is, A2 = A). Hint: use the
following result from linear algebra: for any symmetric matrix, there exits an orthogonal
matrix O such that A = O′ diag((d1, ..., dn))O; A is a projection matrix if and only if
d1, ..., dn take values of 0 or 1’s.

14. Let Wm ∼ Negative Binomial(m, p). Consider p as a parameter.

(a) Write the distribution as an exponential family.

(b) Use the result for the exponential family to derive the moment generating function
of Wm, denoted by M(t).

(c) Calculate the first and the second cumulants of Wm. By definition, in the expansion
of the cumulant generating function,

logM(t) =
∞∑
k=0

µk
k!
tk,

µk is the kth cumulant of Wm. Note that these two cumulants are exactly the mean
and the variance of Wm.

15. For the density C exp
{
−|x|1/2

}
,−∞ < x < ∞, where C is the normalized constant,

show that moments of all orders exist but the moment generating function exists only at
t = 0.
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16. Lehmann and Casella, page 64, problem 4.2.

17. Lehmann and Casella, page 66, problem 5.6.

18. Lehmann and Casella, page 66, problem 5.7.

19. Lehmann and Casella, page 66, problem 5.8.

20. Lehmann and Casella, page 66, problem 5.9.

21. Lehmann and Casella, page 66, problem 5.10.

22. Lehmann and Casella, page 67, problem 5.12.

23. Lehmann and Casella, page 67, problem 5.14.



CHAPTER 2 MEASURE,
INTEGRATION AND
PROBABILITY

This chapter is an introduction to (probability) measure theories, a foundation for all the
probabilistic and statistical framework. We first give the definition of a measure space. Then
we introduce measurable functions in a measure space and the integration and convergence of
measurable functions. Further generalization including the product of two measures and the
Radon-Nikodym derivatives of two measures is introduced. As a special case, we describe how
the concepts and the properties in measure space are used in parallel in a probability measure
space.

2.1 A Review of Set Theory and Topology in Real Space

We review some basic concepts in set theory. A set is a collection of elements, which can be a
collection of real numbers, a group of abstract subjects and etc. In most of cases, we consider
that these elements come from one largest set, called a whole space. By custom, a whole space
is denoted by Ω so any set is simply a subset of Ω. We can exhaust all possible subsets of Ω
then the collection of all these subsets is denoted as 2Ω, called the power set of Ω. We also
include the empty set, which has no element at all and is denoted by ∅, in this power set.

For any two subsets A and B of the whole space Ω, A is said to be a subset of B if B contains
all the elements of A, denoted as A ⊆ B. For arbitrary number of sets {Aα : α is some index},
where the index of α can be finite, countable or uncountable, we define the intersection of these
sets as the set which contains all the elements common to Aα for any α. The intersection of
these sets is denoted as ∩αAα. Aα’s are disjoint if any two sets have empty intersection. We
can also define the union of these sets as the set which contains all the elements belonging to
at least one of these sets, denoted as ∪αAα. Finally, we introduce the complement of a set A,
denoted by Ac, to be the set which contains all the elements not in A. Among the definitions
of set intersection, union and complement, the following relationships are clear: for any B and
{Aα},

B ∩ {∪αAα} = ∪α {B ∩ Aα} , B ∪ {∩αAα} = ∩α {B ∪ Aα} ,

{∪αAα}c = ∩αAcα, {∩αAα}
c = ∪αAcα. ( de Morgan law)

Sometimes, we use (A − B) to denote a subset of A excluding any elements in B. Thus
(A − B) = A ∩ Bc. Using this notation, we can always partition the union of any countable

17
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sets A1, A2, ... into a union of countable disjoint sets:

A1 ∪ A2 ∪ A3 ∪ ... = A1 ∪ (A2 − A1) ∪ (A3 − A1 ∪ A2) ∪ ...

For a sequence of sets A1, A2, A3, ..., we now define the limit sets of the sequence. The upper
limit set of the sequence is the set which contains the elements belonging to infinite number
of the sets in this sequence; the lower limit set of the sequence is the set which contains the
elements belonging to all the sets except a finite number of them in this sequence. The former
is denoted by limnAn or lim supnAn and the latter is written as limnAn or lim infnAn. We can
show

lim sup
n
An = ∩∞n=1 {∪∞m=nAm} , lim inf

n
An = ∪∞n=1 {∩∞m=nAm} .

When both limit sets agree, we say that the sequence has a limit set. In the calculus, we know
that for any sequence of real numbers x1, x2, ..., it has a upper limit, lim supn xn, and a lower
limit, lim infn xn, where the former refers to the upper bound of the limits for any convergent
subsequences and the latter is the lower bound. It should be cautious that such upper limit or
lower limit is different from the upper limit or lower limit of sets.

The second part of this section reviews some basic topology in a real line. Because the
distance between any two points is well defined in a real line, we can define a topology in a real
line. A set A of the real line is called an open set if for any point x ∈ A, there exists an open
interval (x−ε, x+ε) contained in A. Clearly, any open interval (a, b) where a could be −∞ and
b could be ∞, is an open set. Moreover, for any number of open sets Aα where α is an index,
it is easy to show that ∪αAα is open. A closed set is defined as the complement of an open set.
It can also be show that A is closed if and only if for any sequence {xn} in A such that xn → x,
x must belong to A. By the de Morgan law, we also see that the intersection of any number
of closed sets is still closed. Only ∅ and the whole real line are both open set and closed set;
there are many sets neither open or closed, for example, the set of all the rational numbers. If
a closed set A is bounded, A is also called a compact set. These basic topological concepts will
be used later. Note that the concepts of open set or closed set can be easily generalized to any
finite dimensional real space.

2.2 Measure Space

2.2.1 Introduction

Before we introduce a formal definition of measure space, let us examine the following examples.

Example 2.1 Suppose that a whole space Ω contains countable number of distinct points
{x1, x2, ...}. For any subset A of Ω, we define a set function µ#(A) as the number of points in
A. Therefore, if A has n distinct points, µ#(A) = n; if A has infinite many number of points,
then µ#(A) = ∞. We can easily show that (a) µ#(∅) = 0; (b) if A1, A2, ... are disjoint sets of
Ω, then µ#(∪nAn) =

∑
n µ

#(An). We will see later that µ# is a measure called the counting
measure in Ω.

Example 2.2 Suppose that the whole space Ω = R, the real line. We wish to measure the sizes
of any possible subsets in R. Equivalently, we wish to define a set function λ which assigns
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some non-negative values to the sets of R. Since λ measures the size of a set, it is clear that
λ should satisfy (a) λ(∅) = 0; (b) for any disjoint sets A1, A2, ... whose sizes are measurable,
λ(∪nAn) =

∑
n λ(An). Then the question is how to define such a λ. Intuitively, for any interval

(a, b], such a value can be given as the length of the interval, i.e., (b − a). We can further
define λ-value of any set in B0, which consists of ∅ together with all finite unions of disjoint
intervals with the form ∪ni=1(ai, bi], or ∪ni=1(ai, bi] ∪ (an+1,∞), (−∞, bn+1] ∪ ∪ni=1(ai, bi], with
ai, bi ∈ R, as the total length of the intervals. But can we go beyond it, as the real line has far
far many sets which are not intervals, for example, the set of rational numbers? In other words,
is it possible to extend the definition of λ to more sets beyond intervals while preserving the
values for intervals? The answer is yes and will be given shortly. Moreover, such an extension
is unique. Such set function λ is called the Lebesgue measure in the real line.

Example 2.3 This example simply asks the same question as in Example 2.2, but now on
k-dimensional real space. Still, we define a set function which assigns any hypercube its volume
and wish to extend its definition to more sets beyond hypercubes. Such a set function is called
the Lebesgue measure in Rk, denoted as λk.

From the above examples, we can see that three pivotal components are necessary in defining
a measure space:

(i) the whole space, Ω, for example, {x1, x2, ...} in Example 2.1, R and Rk in the last two
examples,

(ii) a collection of subsets whose sizes are measurable, for example, all the subsets in Example
2.1, the unknown collection of subsets including all the intervals in Example 2.2,

(iii) a set function which assigns negative values (sizes) to each set of (ii) and satisfies properties
(a) and (b) in the above examples.

For notation, we use (Ω,A, µ) to denote each of them; i.e., Ω denotes the whole space, A
denotes the collection of all the measurable sets, and µ denotes the set function which assigns
non-negative values to all the sets in A.

2.2.2 Definition of a measure space

Obviously, Ω should be a fixed non-void set. The main difficulty is the characterization of A.
However, let us understand intuitively what kinds of sets should be in A: as a reminder, A
contains the sets whose sizes are measurable. Now suppose that a set A in A is measurable
then we would think that its complement is also measurable, intuitively, the size of the whole
space minus the size of A. Additionally, if A1, A2, ... are in A so are measurable, then we should
be able to measure the total size of A1, A2, ..., i.e, the union of these sets. Hence, as expected,
A should include the complement of a set which is in A and the union of any countable number
of sets which are in A. This turns out that A must be a σ-field, whose definition is given below.

Definition 2.1 (fields, σ-fields) A non-void class A of subsets of Ω is called a:
(i) field or algebra if A,B ∈ A implies that A ∪ B ∈ A and Ac ∈ A; equivalently, A is closed
under complements and finite unions.
(ii) σ-field or σ-algebra if A is a field and A1, A2, ... ∈ A implies ∪∞i=1Ai ∈ A; equivalently, A is
closed under complements and countable unions. †
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In fact, a σ-field is not only closed under complement and countable union but also closed
under countable intersection, as shown in the following proposition.

Proposition 2.1. (i) For a field A, ∅,Ω ∈ A and if A1, ..., An ∈ A, ∩ni=1Ai ∈ A.
(ii) For a σ-field A, if A1, A2, ... ∈ A, then ∩∞i=1Ai ∈ A. †

Proof (i) For any A ∈ A, Ω = A ∪ Ac ∈ A. Thus, ∅ = Ωc ∈ A. If A1, ..., An ∈ A then
∩ni=1Ai = (∪ni=1A

c
i)
c ∈ A.

(ii) can be shown using the definition of a (σ-)field and the de Morgan law. †

We now give a few examples of σ-field or field.

Example 2.4 The class A = {∅,Ω} is the smallest σ-field and 2Ω = {A : A ⊂ Ω} is the largest
σ-field. Note that in Example 2.1, we choose A = 2Ω since each set of A is measurable.

Example 2.5 Recall B0 in Example 2.2. It can be checked that B0 is a field but not a σ-field,
since (a, b) = ∪∞n=1(a, b− 1

n
] does not belong to B0.

After defining a σ-field A on Ω, we can start to introduce the definition of a measure. As
implicated before, a measure can be understood as a set-function which assigns non-negative
value to each set in A. However, the values assigned to the sets of A are not arbitrary and they
should be compatible in the following sense.

Definition 2.2 (measure, probability measure) (i) A measure µ is a function from a σ-field
A to [0,∞) satisfying: µ(∅) = 0; µ(∪∞n=1An) =

∑∞
n=1 µ(An) for any countable (finite) disjoint

sets A1, A2, ... ∈ A. The latter is called the countable additivity.
(ii) Additionally, if µ(Ω) = 1, µ is a probability measure and we usually use P instead of µ to
indicate a probability measure. †

The following proposition gives some properties of a measure.

Proposition 2.2 (i) If {An} ⊂ A and An ⊂ An+1 for all n, then µ(∪∞n=1An) = limn→∞ µ(An).
(ii) If {An} ⊂ A, µ(A1) <∞ and An ⊃ An+1 for all n, then µ(∩∞n=1An) = limn→∞ µ(An).
(iii) For any {An} ⊂ A, µ(∪nAn) ≤

∑
n µ(An) (countable sub-additivity). †

Proof (i) It follows from

µ(∪∞n=1An) = µ(A1 ∪ (A2 − A1) ∪ ...) = µ(A1) + µ(A2 − A1) + ....

= lim
n
{µ(A1) + µ(A2 − A1) + ...+ µ(An − An−1)} = lim

n
µ(An).

(ii) First,

µ(∩∞n=1An) = µ(A1)− µ(A1 − ∩∞n=1An) = µ(A1)− µ(∪∞n=1(A1 ∩ Acn)).

Then since A1 ∩ Acn is increasing, from (i), the second term is equal to limn µ(A1 ∩ Acn) =
µ(A1)− limn µ(An). (ii) thus holds.
(iii) From (i), we have

µ(∪nAn) = lim
n
µ(A1 ∪ ... ∪ An) = lim

n

{
n∑
i=1

µ(Ai − ∪j<iAj)

}
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≤ lim
n

n∑
i=1

µ(Ai) =
∑
n

µ(An).

The result holds. † .

If a class of sets {An} is increasing or decreasing, we can treat ∪nAn or ∩nAn as its limit
set. Then Proportion 2.2 says that such a limit can be taken out of the measure for increasing
sets and it can be taken out of the measure for decreasing set if the measure of some An is
finite. For an arbitrary sequence of sets {An}, in fact, similar to Proposition 2.2, we can show

µ(lim inf
n
An) = lim

n
µ(∩∞k=nAn) ≤ lim inf

n
µ(An).

The triplet (Ω,A, µ) is called a measure space. Any set in A is called a measurable set.
Particularly, if µ = P is a probability measure, (Ω,A, P ) is called a probability measure space,
abbreviated as probability space; an element in Ω is called a probability sample and a set in A
is called a probability event. As an additional note, a measure µ is called σ-finite if there exists
a countable sets {Fn} ⊂ A such that Ω = ∪nFn and for each Fn, µ(Fn) <∞.

Example 2.6 (i) A measure µ on (Ω,A) is discrete if there are finitely or countably many
points ωi ∈ Ω and masses mi ∈ [0,∞) such that

µ(A) =
∑
ωi∈A

mi, A ∈ A.

Some examples include probability measures in discrete distributions.
(ii) in Example 2.1, we define a counting measure µ# in a countable space. This definition can
be generalized to any space. Especially, a counting measure in the space R is not σ-finite.

2.2.3 Construction of a measure space

Even though (Ω,A, µ) is well defined, a practical question is how to construct such a measure
space. In the specific Example 2.2, one asks whether we can find a σ-field including all the
intervals of B0 and on this σ-field, whether we can define a measure λ such that λ assigns any
interval its length. Even more general, suppose that we have a class of sets C and a set function
µ satisfying property (i) of Definition 2.2. Can we find a σ-field which contains all the sets
of C and moreover, can we obtain a measure defined for any set of this σ-field such that the
measure agrees with µ in C? The answer is positive for the first question and is positive for
the second question when C is a field. Indeed, such a σ-field is the smallest σ-field containing
all the sets of C, called σ-field generated by C, and such a measure can be obtained using the
measure extension result as given below.

First, we show that the σ-field generated by C exists and is unique.

Proposition 2.3 (i) Arbitrary intersections of fields (σ-fields) are fields (σ-fields).
(ii) For any class C of subsets of Ω, there exists a minimal σ-field containing C and we denote
it as σ(C). †

Proof (i) can be shown using the definitions of a (σ-)field. For (ii), we define

σ(C) = ∩C⊂A,A is σ-fieldA,
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i.e., the intersection of all the σ-fields containing C. From (i), this class is also σ-field. Obviously,
it is the minimal one among all the σ-fields containing C. †

Then the following result shows that an extension of µ to σ(C) is possible and unique if C
is a field.

Theorem 2.1 (Caratheodory Extension Theorem) A measure µ on a field C can be
extended to a measure on the minimal σ-field σ(C). If µ is σ-finite on C, then the extension is
unique and also σ-finite. †

Proof The proof is skipped. Essentially, we define an extension of µ using the following outer
measure definition: for any set A,

µ∗(A) = inf

{
∞∑
i=1

µ(Ai) : Ai ∈ C, A ⊂ ∪∞i=1Ai

}
.

This is also the way of calculating the measure of any set in σ(C). †

Using the above results, we can construct many measure spaces. In Example 2.2, we first
generate a σ-field containing all the intervals of B0. Such a σ-field is called the Borel σ-field,
denoted by B, and any set in B is called a Borel set. Then we can extend λ to B and the obtained
measure is called the Lebesgue measure. The triplet (R,B, λ) is named the Borel measure space.
Similarly, in Example 2.3, we can obtain the Borel measure space in Rk, denoted by (Rk,Bk, λk).

We can also obtain many different measures in the Borel σ-field. To do that, let F be a
fixed generalized distribution function: F is non-decreasing and right-continuous. Then starting
from any interval (a, b], we define a set function λF ((a, b]) = F (b)−F (a) thus λF can be easily
defined for any set of B0. Using the σ-field generation and measure extension, we thus obtain
a different measure λF in B. Such a measure is called the Lebesgue-Stieltjes measure generated
by F . Note that the Lebesuge measure is a special case with F (x) = x. Particularly, if F is a
distribution function, i.e., F (∞) = 1 and F (−∞) = 0, this measure is a probability measure
in R.

In a measure space (Ω,A, µ), it is intuitive to assume that any subsets of a set with measure
zero should be given measure zero. However, these subsets may not be included inA. Therefore,
a final stage of constructing a measure space is to perform the completion by including such
nuisance sets in the σ-field. Especially, a general definition of the completion of a measure is
given as follows: for a measure space (Ω,A, µ), a completion is another measure space (Ω, Ā, µ̄)
where

Ā = {A ∪N : A ∈ A, N ⊂ B for some B ∈ A such that µ(B) = 0}

and let µ̄(A∪N) = µ(A). Particularly, the completion of the Borel measure space is called the
Lebesgue measure space and the completed Borel σ-field is called the σ-field of Lebesgue sets.
From now on, we always assume that a measure space is completed.
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2.3 Measurable Function and Integration

2.3.1 Measurable function

In measure theory, functions defined on a measure space are more interesting and important,
as compared to measure space itself. Specially, only so-called measurable functions are useful.

Definition 2.3 (measurable function) Let X : Ω 7→ R be a function defined on Ω. X is
measurable if for x ∈ R, the set {ω ∈ Ω : X(ω) ≤ x} is measurable, equivalently, belongs to A.
Especially, if the measure space is a probability measure space, X is called a random variable.
†

Hence, for a measurable function, we can evaluate the size of the set such like X−1((−∞, x]).
In fact, the following proposition concludes that for any Borel set B ∈ B, X−1(B) is a measur-
able set in A.

Proposition 2.4 If X is measurable, then for any B ∈ B, X−1(B) = {ω : X(ω) ∈ B} is
measurable. †

Proof We defined a class as below:

B∗ =
{
B : B ⊂ R,X−1(B) is measurable in A

}
.

Clearly, (−∞, x] ∈ B∗. Furthermore, if B ∈ B∗, then X−1(B) ∈ A. Thus, X−1(Bc) =
Ω−X−1(B) ∈ A then Bc ∈ B∗. Moreover, if B1, B2, ... ∈ B∗, then X−1(B1), X−1(B2), ... ∈ A.
Thus, X−1(B1 ∪ B2 ∪ ...) = X−1(B1) ∪X−1(B2) ∪ ... ∈ A. So B1 ∪ B2 ∪ ... ∈ B∗. We conclude
that B∗ is a σ-field. However, the Borel set B is the minimal σ-filed containing all intervals of
the type (−∞, x]. So B ⊂ B∗. Then for any Borel set B, X−1(B) is measurable in A. †

One special example of a measurable function is a simple function defined as
∑n

i=1 xiIAi(ω),
where Ai, i = 1, ..., n are disjoint measurable sets in A. Here, IA(ω) is the indicator function
of A such that IA(ω) = 1 if ω ∈ A and 0 otherwise. Note that the summation and maximum
of a finite number of simple functions are still simple functions. More examples of measurable
functions can be constructed from elementary algebra.

Proposition 2.5 Suppose that {Xn} are measurable. Then so are X1 + X2, X1X2, X
2
1 and

supnXn, infnXn, lim supnXn and lim infnXn. †

Proof All can be verified using the following relationship:

{X1 +X2 ≤ x} = Ω− {X1 +X2 > x} = Ω− ∪r∈Q {X1 > r} ∩ {X2 > x− r} ,

where Q is the set of all rational numbers. {X2
1 ≤ x} is empty if x < 0 and is equal to

{X1 ≤
√
x} − {X1 < −

√
x}. X1X2 = {(X1 +X2)2 −X2

1 −X2
2} /2 so it is measurable. The

remaining proofs can be seen from the following:{
sup
n
Xn ≤ x

}
= ∩n {Xn ≤ x} .
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inf
n
Xn ≤ x

}
=

{
sup
n

(−Xn) ≥ −x
}
.{

lim sup
n
Xn ≤ x

}
= ∩r∈Q,r>0 ∪∞n=1 ∩k≥n {Xk < x+ r} .

lim inf
n
Xn = − lim sup

n
(−Xn).

†

One important and fundamental fact for measurable function is given in the following propo-
sition.

Proposition 2.6 For any measurable function X ≥ 0, there exists an increasing sequence of
simple functions {Xn} such that Xn(ω) increases to X(ω) as n goes to infinity. †

Proof Define

Xn(ω) =
n2n−1∑
k=0

k

2n
I{ k

2n
≤ X(ω) <

k + 1

2n
}+ nI {X(ω) ≥ n} .

That is, we simply partition the range of X and assign the smallest value within each partition.
Clearly, Xn is increasing over n. Moreover, if X(ω) < n, then |Xn(ω) − X(ω)| < 1

2n
. Thus,

Xn(ω) converges to X(ω). †

This fact can be used to verify the measurability of many functions, for example, if g is a
continuous function from R to R, then g(X) is also measurable.

2.3.2 Integration of measurable function

Now we are ready to define the integration of a measurable function.

Definition 2.4 (i) For any simple function X(ω) =
∑n

i=1 xiIAi(ω), we define
∑n

i=1 xiµ(Ai) as
the integral of X with respect to measure µ, denoted as

∫
Xdµ.

(ii) For any X ≥ 0, we define
∫
Xdµ as∫

Xdµ = sup
Y is simple function, 0 ≤ Y ≤ X

∫
Y dµ.

(iii) For general X, let X+ = max(X, 0) and X− = max(−X, 0). Then X = X+ −X−. If one
of
∫
X+dµ,

∫
X−dµ is finite, we define

∫
Xdµ =

∫
X+dµ−

∫
X−dµ. †

Particularly, we call X is integrable if
∫
|X|dµ =

∫
X+dµ +

∫
X−dµ is finite. Note the

definition (ii) is consistent with (i) when X itself is a simple function. When the measure space
is a probability measure space and X is a random variable,

∫
Xdµ is also called the expectation

of X, denoted by E[X].
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Proposition 2.7 (i) For two measurable functions X1 ≥ 0 and X2 ≥ 0, if X1 ≤ X2, then∫
X1dµ ≤

∫
X2dµ.

(ii) For X ≥ 0 and any sequence of simple functions Yn increasing to X,
∫
Yndµ→

∫
Xdµ. †

Proof (i) For any simple function 0 ≤ Y ≤ X1, Y ≤ X2. Thus,
∫
Y dµ ≤

∫
X2dµ by the

definition of
∫
X2dµ. We take the supreme over all the simple functions less than X1 and

obtain
∫
X1dµ ≤

∫
X2dµ.

(ii) From (i),
∫
Yndµ is increasing and bounded by

∫
Xdµ. It suffices to show that for any simple

function Z =
∑m

i=1 xiIAi(ω), where {Ai, 1 ≤ i ≤ m} are disjoint measurable sets and xi > 0,
such that 0 ≤ Z ≤ X, it holds

lim
n

∫
Yndµ ≥

m∑
i=1

xiµ(Ai).

We consider two cases. First, suppose
∫
Zdµ =

∑m
i=1 xiµ(Ai) is finite thus both xi and µ(Ai)

are finite. Fix an ε > 0, let Ain = Ai ∩ {ω : Yn(ω) > xi − ε} . Since Yn increases to X who
is larger than or equal to xi in Ai, Ain increases to Ai. Thus µ(Ain) increases to µ(Ai) by
Proposition 2.2. It yields that when n is large,∫

Yndµ ≥
m∑
i=1

(xi − ε)µ(Ai).

We conclude limn

∫
Yndµ ≥

∫
Zdµ − ε

∑m
i=1 µ(Ai). Then limn

∫
Yndµ ≥

∫
Zdµ by letting ε

approach 0. Second, suppose
∫
Zdµ = ∞ then there exists some i from {1, ...,m}, say 1, so

that µ(A1) = ∞ or x1 = ∞. Choose any 0 < x < x1 and 0 < y < µ(A1). Then the set
A1n = A1 ∩ {ω : Yn(ω) > x} increases to A1. Thus when n large enough, µ(A1n) > y. We thus
obtain limn

∫
Yndµ ≥ xy. By letting x → x1 and y → µ(A1), we conclude limn

∫
Yndµ = ∞.

Therefore, in either case, limn

∫
Yndµ ≥

∫
Zdµ. †

Proposition 2.7 implies that, to calculate the integral of a non-negative measurable function
X, we can choose any increasing sequence of simple functions {Yn} and the limit of

∫
Yndµ is

the same as
∫
Xdµ. Particularly, such a sequence can chosen as constructed as Proposition 2.6;

then ∫
Xdµ = lim

n

{
n2n−1∑
k=1

k

2n
µ(

k

2n
≤ X <

k + 1

2n
) + nµ(X ≥ n)

}
.

Proposition 2.8 (Elementary Properties) Suppose
∫
Xdµ,

∫
Y dµ and

∫
Xdµ+

∫
Y dµ exit.

Then
(i) ∫

(X + Y )dµ =

∫
Xdµ+

∫
Y dµ,

∫
cXdµ = c

∫
Xdµ;

(ii) X ≥ 0 implies
∫
Xdµ ≥ 0; X ≥ Y implies

∫
Xdµ ≥

∫
Y dµ; and X = Y a.e., that is,

µ({ω : X(ω) 6= Y (ω)}) = 0, implies that
∫
Xdµ =

∫
Y dµ;

(iii) |X| ≤ Y with Y integrable implies that X is integrable; X and Y are integrable implies
that X + Y is integrable.†
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Proposition 2.8 can be proved using the definition. Finally, we give a few facts of computing
integration without proof.

(a) Suppose µ# is a counting measure in Ω = {x1, x2, ...}. Then for any measurable function
g, ∫

gdµ# =
∑
i

g(xi).

(b) For any continuous function g(x), which is also measurable in the Lebsgue measure space
(R,B, λ),

∫
gdλ is equal to the usual Riemann integral

∫
g(x)dx, whenever g is integrable.

(c) In a Lebsgue-stieljes measure space (Ω,B, λF ), where F is differentiable except discontin-
uous points {x1, x2, ...}, the integration of a continuous function g(x) is given by∫

gdλF =
∑
i

g(xi) {F (xi)− F (xi−)}+

∫
g(x)f(x)dx,

where f(x) is the derivative of F (x).

2.3.3 Convergence of measurable functions

In this section, we provide some important theorems on how to take limits in the integration.

Theorem 2.2 (Monotone Convergence Theorem) If Xn ≥ 0 and Xn increases to X, then∫
Xndµ→

∫
Xdµ. †

Proof Choose non-negative simple function Xkm increasing to Xk as m → ∞. Define Yn =
maxk≤nXkn. {Yn} is an increasing series of simple functions and it satisfies

Xkn ≤ Yn ≤ Xn, so

∫
Xkndµ ≤

∫
Yndµ ≤

∫
Xndµ.

By letting n→∞, we obtain

Xk ≤ lim
n
Yn ≤ X,

∫
Xkdµ ≤

∫
lim
n
Yndµ = lim

n

∫
Yndµ ≤ lim

n

∫
Xndµ,

where the equality holds since Yn is simple function. By letting k →∞, we obtain

X ≤ lim
n
Yn ≤ X, lim

k

∫
Xkdµ ≤

∫
lim
n
Yndµ ≤ lim

n

∫
Xndµ.

The result holds. †

Example 2.7 This example shows that the non-negative condition in the above theorem is
necessary: let Xn(x) = −I(x > n)/n be measurable function in the Lebesgue measure space.
Clearly, Xn increases to zero but

∫
Xndλ = −∞.
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Theorem 2.3 (Fatou’s Lemma) If Xn ≥ 0 then∫
lim inf

n
Xndµ ≤ lim inf

n

∫
Xndµ.

†

Proof Note
lim inf

n
Xn =

∞
sup
n=1

inf
m≥n

Xm.

Thus, the sequence {infm≥nXm} increases to lim infnXn. By the Monotone Convergence The-
orem, ∫

lim inf
n
Xndµ = lim

n

∫
inf
m≥n

Xmdµ ≤
∫
Xndµ.

Take the lim inf on both sides and the theorem holds. †

The next theorem requires two more definitions.

Definition 2.5 A sequence Xn converges almost everywhere (a.e.) to X, denoted Xn →a.e. X,
if Xn(ω) → X(ω) for all ω ∈ Ω − N where µ(N) = 0. If µ is a probability, we write a.e. as
a.s. (almost surely). A sequence Xn converges in measure to a measurable function X, denoted
Xn →µ X, if µ(|Xn − X| ≥ ε) → 0 for all ε > 0. If µ is a probability measure, we say Xn

converges in probability to X. †

The following proposition further justifies the convergence almost everywhere.

Proposition 2.9 Let {Xn}, X be finite measurable functions. Then Xn →a.e. X if and only if
for any ε > 0,

µ(∩∞n=1 ∪m≥n {|Xm −X| ≥ ε}) = 0.

If µ(Ω) <∞, then Xn →a.e. X if and only if for any ε > 0,

µ(∪m≥n {|Xm −X| ≥ ε})→ 0.

†

Proof Note that

{ω : Xn(Ω)→ X(ω)}c = ∪∞k=1 ∩∞n=1 ∪m≥n
{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
.

Thus, if Xn →a.e X, the measure of the left-hand side is zero. However, the right-hand side
contains ∩∞n=1 ∪m≥n {|Xm −X| ≥ ε} for any ε > 0. The direction ⇒ is proved. For the other
direction, we choose ε = 1/k for any k, then by countable sub-additivity,

µ(∪∞k=1 ∩∞n=1 ∪m≥n
{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
)
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≤
∑
k

µ(∩∞n=1 ∪m≥n
{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
) = 0.

Thus, Xn →a.e. X. When µ(Ω) = 1, the latter holds by Proposition 2.2. †

The following proposition describes the relationship between the convergence almost every-
where and the convergence in measure.

Proposition 2.10 Let Xn be finite a.e.
(i) If Xn →µ X, then there exists a subsequence Xnk →a.e X.
(ii) If µ(Ω) <∞ and Xn →a.e. X, then Xn →µ X. †

Proof (i) For any k, there exists some nk such that

P (|Xnk −X| ≥ 2−k) < 2−k.

Then
µ(∪m≥k {|Xnm −X| ≥ ε}) ≤ µ(∪m≥k

{
|Xnm −X| ≥ 2−k

}
) ≤

∑
m≥k

2−m → 0.

Thus from the previous proposition, Xnk →a.e X.
(ii) is direct from the second part of Proposition 2.9. †

Example 2.8 Let X2n+k = I(x ∈ [k/2n, (k + 1)/2n)), 0 ≤ k < 2n be measurable functions in
the Lebesgue measure space. Then it is easy to see Xn →λ 0 but does not converge to zero
almost everywhere. While, there exists a subsequence converging to zero almost everywhere.

Example 2.9 In Example 2.7, n2Xn →a.e. 0 but λ(|Xn| > ε) → ∞. This example shows that
µ(Ω) <∞ in (ii) of Proposition 2.10 is necessary.

We now state the third important theorem.

Theorem 2.4 (Dominated Convergence Theorem) If |Xn| ≤ Y a.e. with Y integrable,
and if Xn →µ X (or Xn →a.e. X), then

∫
|Xn −X|dµ→ 0 and lim

∫
Xndµ =

∫
Xdµ. †

Proof First, assume Xn →a.e X. Define Zn = 2Y − |Xn −X|. Clearly, Zn ≥ 0 and Zn → 2Y .
By the Fatou’s lemma, we have∫

2Y dµ ≤ lim inf
n

∫
(2Y − |Xn −X|)dµ.

That is, lim supn
∫
|Xn − X|dµ ≤ 0 and the result holds. If Xn →µ X and the result does

not hold for some subsequence of Xn, by Proposition 2.10, there exits a further sub-sequence
converging to X almost surely. However, the result holds for this further subsequence. We
obtain the contradiction. †

The existence of the dominating function Y is necessary, as seen in the counter example in
Example 2.7. Finally, the following result describes the interchange between integral and limit
or derivative.
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Theorem 2.5 (Interchange of Integral and Limit or Derivatives) Suppose that X(ω, t)
is measurable for each t ∈ (a, b).
(i) If X(ω, t) is a.e. continuous in t at t0 and |X(ω, t)| ≤ Y (ω), a.e. for |t − t0| < δ with Y
integrable, then

lim
t→t0

∫
X(ω, t)dµ =

∫
X(ω, t0)dµ.

(ii) Suppose ∂
∂t
X(ω, t) exists for a.e. ω, all t ∈ (a, b) and | ∂

∂t
X(ω, t)| ≤ Y (ω), a.e. for all t ∈ (a, b)

with Y integrable. Then
∂

∂t

∫
X(ω, t)dµ =

∫
∂

∂t
X(ω, t)dµ.

†

Proof (i) follows from the Dominated Convergence Theorem and the subsequence argument.
(ii) can be seen from the following:

∂

∂t

∫
X(ω, t)dµ = lim

h→0

∫
X(ω, t+ h)−X(ω, t)

h
dµ.

Then from the conditions and (i), such a limit can be taken within the integration. †

2.4 Fubini Integration and Radon-Nikodym Derivative

2.4.1 Product of measures and Fubini-Tonelli theorem

Suppose that (Ω1,A1, µ1) and (Ω2,A2, µ2) are two measure spaces. Now we consider the product
set Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}. Correspondingly, we define a class

{A1 × A2 : A1 ∈ A1, A2 ∈ A2} .

A1×A2 is called a measurable rectangle set. However, the above class is not a σ-field. We thus
construct the σ-filed based on this class and denote

A1 ×A2 = σ({A1 × A2 : A1 ∈ A1, A2 ∈ A2}).

To define a measure on this σ-field, denoted µ1 × µ2, we can first define it on any rectangle set

(µ1 × µ2)(A1 × A2) = µ1(A1)µ2(A2).

Then µ1 × µ2 is extended to all sets in the A1 ×A2 by the Caratheodory Extension theorem.
One simple example is the Lebesgue measure in a multi-dimensional real space Rk. We let

(R,B, λ) be the Lebesgue measure in one-dimensional real space. Then we can use the above
procedure to define λ× ...× λ as a measure on Rk = R× ...×R. Clearly, for each cube in Rk,
this measure gives the same value as the volume of the cube. In fact, this measure agrees with
λk defined in Example 2.3.

With the product measure, we can start to discuss the integration with respect to this
measure. Let X(ω1, ω2) be the measurable function on the measurable space (Ω1 × Ω2,A1 ×
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A2, µ1 × µ2). The integration of X is denoted as
∫

Ω1×Ω2
X(ω1, ω2)d(µ1 × µ2). In the case when

the measurable space is real space, this integration is simply bivariate integration such like∫
R2 f(x, y)dxdy. As in the calculus, we are often concerned about whether we can integrate

over x first then y or we can integrate y first then x. The following theorem gives the condition
of changing the order of integration.

Theorem 2.6 (Fubini-Tonelli Theorem) Suppose that X : Ω1 × Ω2 → R is A1 × A2

measurable and X ≥ 0. Then∫
Ω1

X(ω1, ω2)dµ1 is A2 measurable,

∫
Ω2

X(ω1, ω2)dµ2 is A1 measurable,

and∫
Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫
Ω1

{∫
Ω2

X(ω1, ω2)dµ2

}
dµ1 =

∫
Ω2

{∫
Ω1

X(ω1, ω2)dµ1

}
dµ2.

†

As a corollary, suppose X is not necessarily non-negative but we can write X = X+ −X−.
Then the above results hold for X+ and X−. Thus, if

∫
Ω1×Ω2

|X(ω1, ω2)|d(µ1 × µ2) is finite,
then the above results hold.

Proof Suppose that we have shown the theorem holds for any indicator function IB(ω1, ω2),
where B ∈ A1 ×A2. We construct a sequence of simple functions, denoted as X̃n, increases to
X. Clearly,

∫
Ω1
X̃n(ω1, ω2)dµ1 is measurable and∫

Ω1×Ω2

X̃n(ω1, ω2)d(µ1 × µ2) =

∫
Ω2

∫
Ω1

{
X̃n(ω1, ω2)dµ1

}
dµ2.

By the monotone convergence theorem,
∫

Ω1
X̃n(ω1, ω2)dµ1 increases to

∫
Ω1
X(ω1, ω2)dµ1 almost

everywhere. Further applying the monotone convergence theorem to both sides of the above
equality, we obtain∫

Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫
Ω2

∫
Ω1

{X(ω1, ω2)dµ1} dµ2.

Similarly, ∫
Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =

∫
Ω1

∫
Ω2

{X(ω1, ω2)dµ2} dµ1.

It remains to show IB(ω1, ω2) satisfies the theorem’s results for B ∈ A1 ×A2.
To this end, we define what is called a monotone class: M is a monotone class if for any

increasing sequence of sets B1 ⊆ B2 ⊆ B3 . . . in the class, ∪iBi belongs toM. We then letM0

be the minimal monotone class in A1×A2 containing all the rectangles. The existence of such
minimal class can be proved using the same construction as Proposition 2.3 and noting that
A1 ×A2 itself is a monotone class. We show that M0 = A1 ×A2.
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(a)M0 is a field: for A,B ∈M0, it suffices to show that A ∩B,A ∩Bc, Ac ∩B ∈M0. We
consider

MA = {B ∈M0 : A ∩B,A ∩Bc, Ac ∩B ∈M0} .

It is straightforward to see that if A is a rectangle, then B ∈MA for any rectangle B and that
MA is a monotone class. Thus,MA =M0 for A being a rectangle. For general A, the previous
result implies that all the rectangles are in MA. Clearly, MA is a monotone class. Therefore,
MA =M0 for any A ∈M0. That is, for A,B ∈M0, A ∩B,A ∩Bc, Ac ∩B ∈M0.

(b) M0 is a σ-field. For any B1, B2, ... ∈ M0, we can write ∪iBi as the union of increasing
sets B1, B1 ∪ B2, .... Since each set in the sequence is in M0 and M0 is a monotone class,
∪iBi ∈M0. Thus, M0 is a σ-field so it must be equal to A1 ×A2.

Now we come back to show that for any B ∈ A1 ×A2, IB satisfies the equality in Theorem
2.6. To do this, we define a class

{B : B ∈ A1 ×A2 is measurable and IB satifies the equality in Theorem 2.6} .

Clearly, the class contains all the rectangles. Second, the class is a monotone class: suppose
B1, B2, ... is an increasing sequence of sets in the class, we apply the monotone convergence
theorem to ∫

Ω1×Ω2

IBid(µ1 × µ2) =

∫
Ω2

{∫
Ω1

IBidµ1

}
dµ2 =

∫
Ω1

{∫
Ω2

IBidµ2

}
dµ1

and note IBi → I∪iBi . We conclude that ∪iBi is also in the defined class. Therefore, from the
previous result about the relationship between the monotone class and the σ-field, we obtain
that the defined class should be the same as A1 ×A2. †

Example 2.10 Let (Ω, 2Ω, µ#) be a counting measure space where Ω = {1, 2, 3, ...} and (R,B, λ)
be the Lebesgue measure space. Define f(x, y) be a bivariate function in the product of these
two measure space as f(x, y) = I(0 ≤ x ≤ y) exp{−y}. To evaluate the integral f(x, y), we use
the Fubini-Tonelli theorem and obtain∫

Ω×R
f(x, y)d{µ# × λ} =

∫
Ω

{
∫
R

f(x, y)dλ(y)}dµ#(x) =

∫
Ω

exp{−x}dµ#(x)

=
∞∑
n=1

exp{−n} = 1/(e− 1).

2.4.2 Absolute continuity and Radon-Nikodym derivative

Let (Ω,A, µ) be a measurable space and let X be a non-negative measurable function on Ω.
We define a set function ν as

ν(A) =

∫
A

Xdµ =

∫
IAXdµ

for each A ∈ A. It is easy to see that ν is also a measure on (Ω,A). X can be regarded as
the derivative of the measure ν with respect µ (one can think about an example in real space).
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However, one question is the opposite direction: if both µ and ν are the measures on (Ω,A),
can we find a measurable function X such that the above equation holds? To answer this, we
need to introduce the definition of absolute continuity.

Definition 2.6 If for any A ∈ A, µ(A) = 0 implies that ν(A) = 0, then ν is said to be
absolutely continuous with respect to µ, and we write ν ≺≺ µ. Sometimes it is also said that
ν is dominated by µ. †

One equivalent condition to the above the condition is the following lemma.

Proposition 2.11 Suppose ν(Ω) <∞. Then ν ≺≺ µ if and only if for any ε > 0, there exists
a δ such that ν(A) < ε whenever µ(A) < δ. †

Proof “ ⇐′′ is clear. To prove “ ⇒′′, we use the contradiction. Suppose there exists ε and a
set An such that ν(An) > ε and µ(An) < n−2. Since

∑
n µ(An) <∞, we have

µ(lim sup
n

An) ≤
∑
m≥n

µ(An)→ 0.

Thus µ(lim supnAn) = 0. However, ν(lim supnAn) = limn ν(∪m≥nAm) ≥ lim supn ν(An) ≥ ε. It
is a contradiction. †

The following Radon-Nikodym theorem says that if ν is dominated by µ, then a measurable
function X satisfying the equation exists. Such X is called the Radon-Nikodym derivative of ν
with respect µ, denoted by dν/dµ.

Theorem 2.7 (Radon-Nikodym theorem) Let (Ω,A, µ) be a σ-finite measure space, and
let ν be a measurable on (Ω,A) with ν ≺≺ µ. Then there exists a measurable function X ≥ 0
such that ν(A) =

∫
A
Xdµ for all A ∈ A. X is unique in the sense that if another measurable

function Y also satisfies the equation, then X = Y , a.e. †

Before proving Theorem 2.7, we need the following Hahn decomposition theorem for any
additive set function with real values, φ(A), which is defined on a measurable space (Ω,A) such
that for countable disjoint sets A1, A2, ...,

φ(∪nAn) =
∑
n

φ(An).

The main difference from the usual measure definition is that φ(A) can be negative and must
be finite.

Proposition 2.12 (Hahn Decomposition) For any additive set function φ, there exist dis-
joint sets A+ and A− such that A+ ∪A− = Ω, φ(E) ≥ 0 for any E ⊂ A+ and φ(E) ≤ 0 for any
E ⊂ A−. A+ is called positive set and A− is called negative set of φ. †

Proof Let α = sup{φ(A) : A ∈ A}. Suppose there exists a set A+ such that φ(A+) = α <∞.
Let A− = Ω−A+. If E ⊂ A+ and φ(E) < 0, then φ(A+−E) ≥ α−φ(E) > α, an impossibility.
Thus, φ(E) ≥ 0. Similarly, for any E ⊂ A−, φ(E) ≤ 0.
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It remains to construct such A+. Choose An such that φ(An)→ α. Let A = ∪nAn. For each
n, we consider all possible intersection of A1, ..., An, denoted by Bn = {Bni : 1 ≤ i ≤ 2n}. Then
the collection of Bn is a partition of A. Let Cn be the union of those Bni in Bn such that φ(Bni) >
0. Then φ(An) ≤ φ(Cn). Moreover, for any m < n, φ(Cm ∪ ... ∪ Cn) ≥ φ(Cm ∪ ... ∪ Cn−1). Let
A+ = ∩∞m=1∪n≥mCn. Then α = limm φ(Am) ≤ limm φ(∪n≥mCn) = φ(A+). Then φ(A+) = α. †

We now start to prove Theorem 2.7.

Proof We first show that this holds if µ(Ω) <∞. Let Ξ be the class of non-negative functions
g such that

∫
E
gdµ ≤ ν(E). Clearly, 0 ∈ Ξ. If g and g′ are in Ξ, then∫

E

max(g, g′)dµ =

∫
E∩{g≥g′}

gdµ+

∫
E∩{g<g′}

g′dµ ≤
∫
E∩{g≥g′}

dν +

∫
E∩{g<g′}

dν = ν(E).

Thus, max(g, g′) ∈ Ξ. Moreover, if gn increases to g and gn ∈ Ξ, then by the monotone
convergence theorem, g ∈ Ξ.

Let α = supg∈Ξ

∫
gdµ then α ≤ ν(Ω). Choose gn in Ξ such that

∫
gndµ > α − n−1. Define

fn = max(g1, ..., gn) ∈ Ξ and fn increases to f ∈ Ξ. We have
∫
fdµ = α.

Define a measure 0 ≤ νs(E) = ν(E)−
∫
E
fdµ. We will show that there exists set Sµ and Sν

such that µ(Ω− Sµ) = 0, νs(Ω− Sν) = 0, and Sµ ∩ Sν = ∅. If this is true, then since ν ≺≺ µ,
νs(Ω− Sµ) ≤ ν(Ω− Sµ) = 0. Thus,

νs(E) ≤ νs(E ∩ (Ω− Sµ)) + νs(E ∩ (Ω− Sν)) = 0.

This gives that ν(E) =
∫
E
fdµ. We prove the previous statement by contradiction. Let A+

n ∪A−n
be a Hahn decomposition for the the set function νs−n−1µ and let M = ∪nA+

n so M c = ∩nA−n .
Since νs(M

c) − n−1µ(M c) ≤ νs(A
−
n ) − n−1µ(A−n ) ≤ 0, we have νs(M

c) ≤ n−1µ(M c) → 0.
Then µ(M) must be positive. Therefore, there exists some A = A+

n such that µ(A) > 0 and
νs(E) ≥ n−1µ(E) for any E ⊂ A. For such A, we have that for ε = 1/n,∫

E

(f + εIA)dµ =

∫
E

fdµ+ εµ(E ∩ A)

≤
∫
E

fdµ+ νs(E ∩ A)

≤
∫
E∩A

fdµ+ νs(E ∩ A) +

∫
E−A

fdµ

≤ ν(E ∩ A) +

∫
E−A

fdµ ≤ ν(E ∩ A) + ν(E − A) = ν(E).

In other words, f + εIA is in Ξ. However,
∫

(f + εIA)dµ = α + εµ(A) > α. We obtain the
contradiction.

We have proved the theorem for µ(Ω) <∞. If µ is countably finite, there exists countable
decomposition of Ω into {Bn} such that µ(Bn) <∞. For the measures µn(A) = µ(A∩Bn) and
νn(A) = ν(A ∩Bn), νn ≺≺ µn so we can find non-negative fn such that

ν(A ∩Bn) =

∫
A∩Bn

fndµ.
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Then ν(A) =
∑

n ν(A ∩Bn) =
∫
A

∑
n fnIBndµ.

The function f satisfying the result must be unique almost everywhere. If two f1 ad f2

satisfy that
∫
A
f1dµ =

∫
A
f2dµ then after choosing A = {f1 − f2 > 0} and A = {f1 − f2 < 0},

we obtain f1 = f2 almost everywhere. †

Using the Radon-Nikodym derivative, we can transform the integration with respect to the
measure µ to the integration with respect to the measure ν.

Proposition 2.13 Suppose ν and µ are σ-finite measure defined on a measure space (Ω,A)
with ν ≺≺ µ, and suppose Z is a measurable function such that

∫
Zdν is well defined. Then

for any A ∈ A, ∫
A

Zdν =

∫
A

Z
dν

dµ
dµ.

†

Proof (i) If Z = IB where B ∈ A, then∫
A

Zdν = ν(A ∩B) =

∫
A∩B

dν

dµ
dµ =

∫
A

IB
dν

dµ
dµ.

The result holds.
(ii) If Z ≥ 0, we can find a sequence of simple function Zn increasing to Z. Clearly, for Zn,∫

A

Zndν =

∫
A

Zn
dν

dµ
dµ.

Take limits on both sides and apply the monotone convergence theorem. We obtain the result.
(iii) For any Z, we write Z = Z+ − Z−. Then both Z+ and Z− are integrable. Thus,∫

Zdν =

∫
Z+dν −

∫
Z−dν =

∫
Z+ dν

dµ
dµ−

∫
Z−

dν

dµ
dµ =

∫
Z
dν

dµ
dµ.

†

2.4.3 X-induced measure

Let X be a measurable function defined on (Ω,A, µ). Then for any B ∈ B, since X−1(B) ∈ A,
we can define a set function on all the Borel sets as

µX(B) = µ(X−1(B)).

Such µX is called a measure induced by X. Hence, we obtain a measure in the Borel σ-field
(R,B, µX).

Suppose that (R,B, ν) is another measure space (often the counting measure or the Lebesgue
measure) and µX is dominated by ν with the derivative f . Then f is called the density of X
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with respect to the dominating measure ν. Furthermore, we obtain that for any measurable
function g from R to R,∫

Ω

g(X(ω))dµ(ω) =

∫
R

g(x)dµX(x) =

∫
R

g(x)f(x)dν(x).

That is, the integration of g(X) on the original measure space Ω can be transformed as the
integration of g(x) on R with respect to the induced-measure µX and can be further transformed
as the integration of g(x)f(x) with respect to the dominating measure ν.

When (Ω,A, µ) = (Ω,A, P ) is a probability space, the above interpretation has a special
meaning: X is now a random variable then the above equation becomes

E[g(X)] =

∫
R

g(x)f(x)dν(x).

We immediately recognize that f(x) is the density function of X with respect to the dominat-
ing measure ν. Particularly, if ν is the counting measure, f(x) is in fact the probability mass
function; if ν is the Lebesgue measure, f(x) is the probability density function in the usual
sense. This fact has an important implication: any expectations regarding random variable
X can be computed via its probability mass function or density function without referral to
whatever probability measure space X is defined on. This is the reason why in most of statis-
tical framework, we seldom mention the underlying measure space while only give either the
probability mass function or the probability density function.

2.5 Probability Measure

2.5.1 Parallel definitions

Already discussed before, a probability measure space (Ω,A, P ) satisfies that P (Ω) = 1 and
random variable (or random vector in multi-dimensional real space) X is a measurable function
on this space. The integration of X is equivalent to the expectation. The density or the mass
function of X is the Radon-Nikydom derivative of the X-induced measure with respect to the
Lebesgue measure or the counting measure in real space. By using the mass function or density
function, statisticians unconsciously ignore the underlying probability measure space (Ω,A, P ).
However, it is important for readers to keep in mind that whenever a density function or mass
function is referred, we assume that above procedure has been worked out for some probability
space.

Recall that F (x) = P (X ≤ x) is the cumulative distribution function of X. Clearly, F (x) is
a nondecreasing function with F (−∞) = 0 and F (∞) = 1. Moreover, F (x) is right-continuous,
meaning that F (xn) → F (x), if xn decreases to x. Interestingly, we can show that µF , the
Lebesgue-Stieljes measure generated by F , is exactly the same measure as the one induced by
X, i.e., PX .

Since a probability measure space is a special case of general measure space, all the properties
for the general measure space including the monotone convergence theorem, the Fatou’s lemma,
the dominating convergence theorem, and the Fubini-Tonelli theorem apply.
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2.5.2 Conditional expectation and independence

Nevertheless, there are some features only specific to probability measure, which distinguish
probability theory from general measure theory. Two of these important features are conditional
probability and independence. We describe them in the following text.

In a probability measure space (Ω,A, P ), we know the conditional probability of an event
A given another event B is defined as P (A|B) = P (A ∩ B)/P (B) and P (A|Bc) = P (A ∩
Bc)/P (Bc). This means: if B occurs, then the probability that A occurs is P (A|B); if B does
not occur, then the probability that A occurs if P (A|Bc). Thus, such a conditional distribution
can be thought as a measurable function assigned to the σ-field {∅, B,Bc,Ω}, which is equal

P (A|B)IB(ω) + P (A|Bc)IBc(ω).

Such a simple example in fact characterizes the essential definition of conditional probability.
Let ℵ be the sub-σ-filed of A. For any A ∈ A, the conditional probability of A given ℵ is a
measurable function on (Ω,ℵ), denoted P (A|ℵ), and satisfies that
(i) P (A|ℵ) is measurable in ℵ and integrable;
(ii) For any G ∈ ℵ, ∫

G

P (A|ℵ)dP = P (A ∩G).

Theorem 2.8 (Existence and Uniqueness of Conditional Probability Function) The
measurable function P (A|ℵ) exists and is unique in the sense that any two functions satisfying
(i) and (ii) are the same almost surely. †

Proof In the probability space (Ω,ℵ, P ), we define a set function ν on ℵ such that ν(G) =
P (A∩G) for any G ∈ ℵ. It can easily show ν is a measure and P (G) = 0 implies that ν(G) = 0.
Thus ν ≺≺ P . By the Radon-Nikodym theorem, there exits a ℵ-measurable function X such
that

ν(G) =

∫
G

XdP.

Thus X satisfies the properties (i) and (ii). Suppose X and Y both are measurable in ℵ and∫
G
XdP =

∫
G
Y dP for any G ∈ ℵ. That is,

∫
G

(X − Y )dP = 0. Particularly, we choose
G = {X−Y ≥ 0} and G = {X−Y < 0}. We then obtain

∫
|X−Y |dP = 0. So X = Y , a.s. †

Some properties of the conditional probability P (·|ℵ) are the following.

Theorem 2.9 P (∅|ℵ) = 0, P (Ω|ℵ) = 1 a.e. and

0 ≤ P (A|ℵ) ≤ 1

for each A ∈ A. if A1, A2, ... is finite or countable sequence of disjoint sets in A, then

P (∪nAn|ℵ) =
∑
n

P (An|ℵ).

†
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The properties can be verified directly from the definition. Now we define the conditional
expectation of a integrable random variable X given ℵ, denoted E[X|ℵ], as
(i) E[X|ℵ] is measurable in ℵ and integrable;
(ii) For any G ∈ ℵ, ∫

G

E[X|ℵ]dP =

∫
G

XdP,

equivalently; E [E[X|ℵ]IG] = E[XIG], a.e.
The existence and the uniqueness of E[X|ℵ] can be shown similar to Theorem 2.8. The

following properties are fundamental.

Theorem 2.10 Suppose X, Y,Xn are integrable.
(i) If X = a a.s., then E[X|ℵ] = a.
(ii) For constants a and b, E[aX + bY |ℵ] = aE[X|ℵ] + b[Y |ℵ].
(iii) If X ≤ Y a.s., then E[X|ℵ] ≤ E[Y |ℵ].
(iv) |E[X|ℵ]| ≤ E[|X||ℵ].
(v) If limnXn = X a.s., |Xn| ≤ Y and Y is integrable, then limnE[Xn|ℵ] = E[X|ℵ].
(vi) If X is measurable in ℵ, then

E[XY |ℵ] = XE[Y |ℵ].

(vii) For two sub-σ fields ℵ1 and ℵ2 such that ℵ1 ⊂ ℵ2,

E [E[X|ℵ2]|ℵ1] = E[X|ℵ1].

(viii) P (A|ℵ) = E[IA|ℵ]. †

Proof (i)-(iv) be shown directly using the definition. To prove (v), we consider Zn = supm≥n |Xm−
X|. Then Zn decreases to 0. From (iii), we have

|E[Xn|ℵ]− E[X|ℵ]| ≤ E[Zn|ℵ].

On the other hand, E[Zn|ℵ] decreases to a limit Z ≥ 0. The result holds if we can show Z = 0
a.s. Note E[Zn|ℵ] ≤ E[2Y |ℵ], by the dominated convergence theorem,

E[Z] =

∫
E[Z|ℵ]dP ≤

∫
E[Zn|ℵ]dP → 0.

Thus Z = 0 a.s.
To see (vi) holds, we first show it holds for a simple function X =

∑
i xiIBi where Bi are

disjoint set in ℵ. For any G ∈ ℵ,∫
G

E[XY |ℵ]dP =

∫
G

XY dP =
∑
i

xi

∫
G∩Bi

Y dP =
∑
i

xi

∫
G∩Bi

E[Y |ℵ]dP =

∫
G

XE[Y |ℵ]d.

Hence, E[XY |ℵ] = XE[Y |ℵ]. For any X, using the previous construction, we can find a
sequence of simple functions Xn converging to X and |Xn| ≤ |X|. Then we have∫

G

XnY dP =

∫
G

XnE[Y |ℵ]dP.
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Note that |XnE[Y |ℵ]| = |E[XnY |ℵ]| ≤ E[|XY ||ℵ]. Taking limits on both sides and from the
dominated convergence theorem, we obtain∫

G

XY dP =

∫
G

XE[Y |ℵ]dP.

Then E[XY |ℵ] = XE[Y |ℵ].
For (vii), for any G ∈ ℵ1 ⊂ ℵ2, it is clear form that∫

G

E[X|ℵ2]dP =

∫
G

XdP =

∫
G

E[X|ℵ1]dP.

(viii) is clear from the definition of the conditional probability. †

How can we relate the above conditional probability and conditional expectation given a
sub-σ field to the conditional distribution or density of X given Y ? In R2, suppose (X, Y )
has joint density function f(x, y) then it is known that the conditional density of X given
Y = y is equal to f(x, y)/

∫
x
f(x, y)dx and the conditional expectation of X given Y = y is

equal to
∫
x
xf(x, y)dx/

∫
x
f(x, y)dx. To recover these formulae using the current definition, we

define ℵ = σ(Y ), the σ-field generated by the class {{Y ≤ y} : y ∈ R}. Then we can define the
conditional probability P (X ∈ B|ℵ) for any B in (R,B). Since P (X ∈ B|ℵ) is measurable in
σ(Y ), P (X ∈ B|ℵ) = g(B, Y ) where g(B, ·) is a measurable function. For any {Y ≤ y} ∈ ℵ,∫

Y≤y0
P (X ∈ B|ℵ)dP =

∫
I(y ≤ y0)g(B, y)fY (y)dy = P (X ∈ B, Y ≤ y0)

=

∫
I(y ≤ y0)

∫
B

f(x, y)dxdy.

Differentiate with respect to y0, we have g(B, y)fY (y) =
∫
B
f(x, y)dx. Thus,

P (X ∈ B|ℵ) =

∫
B

f(x|y)dx.

Thus, we note that the conditional density of X|Y = y is in fact the density function of the
conditional probability P (X ∈ ·|ℵ) with respect to the Lebesgue measure.

On the other hand, E[X|ℵ] = g(Y ) for some measurable function g(·). Note that∫
I(Y ≤ y0)E[X|ℵ]dP =

∫
I(y ≤ y0)g(y)fY (y)dy = E[XI(Y ≤ y0)] =

∫
I(y ≤ y0)xf(x, y)dxdy.

We obtain g(y) =
∫
xf(x, y)dx/

∫
f(x, y)dx. Then E[X|ℵ] is the same as the conditional ex-

pectation of X given Y = y.
Finally, we give the definition of independence: Two measurable sets or events A1 and A2

in A are independent if P (A ∩ B) = P (A)P (B). For two random variables X and Y , X and
Y are said to independent if for any Borel sets B1 and B2, P (X ∈ B1, Y ∈ B2) = P (X ∈
B1)P (Y ∈ B2). In terms of conditional expectation, X is independent of Y implies that for
any measurable function g, E[g(X)|Y ] = E[g(X)].
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READING MATERIALS : You should read Lehmann and Casella, Sections 1.2 and 1.3. You
may read Lehmann Testing Statistical Hypotheses, Chapter 2.

PROBLEMS

1. Let O be the class of all open sets in R. Show that the Borel σ-field B is also a σ-field
generated by O, i.e., B = σ(O).

2. Suppose (Ω,A, µ) is a measure space. For any set C ∈ A, we defineA∩C as {A ∩ C : A ∈ A}.
Show that (Ω ∩ C,A ∩ C, µ) is a measure space (it is called the measure space restricted
to C).

3. Suppose (Ω,A, µ) is a measure space. We define a new class

Ã = {A ∪N : A ∈ A and N is contained in a set B ∈ A with µ(B) = 0} .

Furthermore, we define a set function µ̃ on Ã: for any A ∪ N ∈ Ã, µ̃(A ∪ N) = µ(A).
Show (Ω, Ã, µ̃) is a measure space (it is called the completion of (Ω,A, µ)).

4. Suppose (R,B, P ) is a probability measure space. Let F (x) = P ((−∞, x]). Show

(a) F (x) is an increasing and right-continuous function with F (−∞) = 0 and F (∞) = 1.
F is called a distribution function.

(b) if denote µF as the Lebesgue-Stieljes measure generated from F , then P (B) = µF (B)
for any B ∈ B. Hint: use the uniqueness of measure extension in the Caratheodory
extension theorem.

Remark: In other words, any probability measure in the Borel σ-field can be considered
as a Lebesgue-Stieljes measure generated from some distribution function. Obviously,
a Lebesgue-Stieljes measure generated from some distribution function is a probability
measure. This gives a one-to-one correspondence between probability measures and dis-
tribution functions.

5. Let (R,B, µF ) be a measure space, where B is the Borel σ-filed and µF is the Lebesgue-
Stieljes measure generated from F (x) = (1− e−x)I(x ≥ 0).

(a) Show that for any interval (a, b], µF ((a, b]) =
∫

(a,b]
e−xI(x ≥ 0)dµ(x), where µ is the

Lebesgue measure in R.

(b) Use the uniqueness of measure extension in the Carotheodory extension theorem to
show µF (B) =

∫
B
e−xI(x ≥ 0)dµ(x) for any B ∈ B.

(c) Show that for any measurable function X in (R,B) with X ≥ 0,
∫
X(x)dµF (x) =∫

X(x)e−xI(x ≥ 0)dµ(x). Hint: use a sequence of simple functions to approximate
X.

(d) Using the above result and the fact that for any Riemann integrable function, its
Riemann integral is the same as its Lebesgue integral, calculate the integration

∫
(1+

e−x)−1dµF (x).



BASIC MEASURE THEORY 40

6. If X ≥ 0 is a measurable function on a measure space (Ω,A, µ) and
∫
Xdµ = 0, then

µ({ω : X(ω) > 0}) = 0.

7. Suppose X is a measurable function and
∫
|X|dµ < ∞. Show that for each ε > 0, there

exists a δ > 0 such that
∫
A
|X|dµ < ε whenever µ(A) < δ.

8. Let µ be the Borel measure in R and ν be the counting measure in the space Ω =
{1, 2, 3, ...} such that ν({n}) = 2−n for n = 1, 2, 3, .... Define a function f(x, y) : R×Ω 7→
R as f(x, y) = I(y−1 ≤ x < y)x. Show f(x, y) is a measurable function with respect to the
product measure space (R×Ω, σ(B× 2Ω), µ× ν) and calculate

∫
R×Ω

f(x, y)d(µ× ν)(x, y).

9. F and G are two continuous generalized distribution functions. Use the Fubini-Tonelli
theorem to show that for any a ≤ b,

F (b)G(b)− F (a)G(a) =

∫
[a,b]

FdG+

∫
[a,b]

GdF (integration by parts).

Hint: consider the equality∫
[a,b]×[a,b]

d(µF × µG) =

∫
[a,b]×[a,b]

I(x ≥ y)d(µF × µG) +

∫
[a,b]×[a,b]

I(x < y)d(µF × µG),

where µF and µG are the measures generated by F and G respectively.

10. Let µ be the Borel measure in R. We list all rational numbers in R as r1, r2, .... Define ν
as another measure such that for any B ∈ B, ν(B) = µ(B∩ [0, 1])+

∑
ri∈B 2−i. Show that

neither ν ≺≺ µ nor µ ≺≺ ν is true; however, ν ≺≺ µ+ ν. Calculate the Radon-Nikodym
derivative dν/d(µ+ ν).

11. X is a random variable in a probability measure space (Ω,A, P ). Let PX be the probability
measure induced by X. Show that for any measurable function g : R→ R such that g(X)
is integrable, ∫

Ω

g(X(ω))dP (ω) =

∫
R

g(x)dPX(x).

Hint: first prove it for a simple function g.

12. X1, ..., Xn are i.i.d with Uniform(0,1). Let X(n) be max{X1, ..., Xn}. Calculate the con-
ditional expectation E[X1|σ(X(n))], or equivalently, E[X1|X(n)].

13. X and Y are two random variables with density functions f(x) and g(y) in R. Define
A = {x : f(x) > 0} and B = {y : g(y) > 0}. Show PX , the measure induced by X, is
dominated by PY , the measured induced by Y , if and only if λ(A ∩ Bc) = 0 (that is,
A is almost contained in B). Here, λ is the Lebesgue measure in R. Use this result to
show that the measure induced by Uniform(0, 1) random variable is dominated by the
measure induced by N(0, 1) random variable but the opposite is not true.

14. Continue Question 9, Chapter 1. The distribution functions FU and FL are called the
Fréchet bounds. Show that FL and FU are singular with respect to Lebesgue measure λ2

in [0, 1]2; i.e., show that the corresponding probability measure PL and PU satisfy

P ((X, Y ) ∈ A) = 1, λ2(A) = 0
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and
P ((X, Y ) ∈ Ac) = 0, λ2(Ac) = 1

for some set A (which will be different for PL and PU). This implies that FL and FU do
not have densities with respect to Lebesgue measure on [0, 1]2.

15. Lehmann and Casella, page 63, problem 2.6

16. Lehmann and Casella, page 64, problem 2.11

17. Lehmann and Casella, page 64, problem 3.1

18. Lehmann and Casella, page 64, problem 3.3

19. Lehmann and Casella, page 64, problem 3.7



CHAPTER 3 LARGE SAMPLE
THEORY

In many probabilistic and statistical problems, we are faced with a sequence of random variables
(vectors), say {Xn}, and wish to understand the limit properties of Xn. As one example, let Xn

be the number of heads appearing in n independent tossing coins. Interesting questions can be:
what is the limit of the proportion of observing heads, Xn/n, when n is large? How accurate
is Xn/n to estimate the probability of observing head in a flipping? Such theory studying the
limit properties of a sequence of random variables (vectors) {Xn} is called large sample theory.
In this chapter, we always assume the existence of a probability measure space (Ω,A, P ) and
suppose X,Xn, n ≥ 1 are random variables (vectors) defined in this probability space.

3.1 Modes of Convergence in Real Space

3.1.1 Definition

Definition 3.1 Xn is said to converge almost surely to X, denoted by Xn →a.s. X, if there
exists a set A ⊂ Ω such that P (Ac) = 0 and for each ω ∈ A, Xn(ω)→ X(ω). †

Remark 3.1. Note that

{ω : Xn(ω)→ X(ω)}c = ∪ε>0 ∩n {ω : sup
m≥n
|Xm(ω)−X(ω)| > ε}.

Then the above definition is equivalent to

P (sup
m≥n
|Xm −X| > ε)→ 0 as n→∞.

Such an equivalence is also implied in Proposition 2.9.

Definition 3.2 Xn is said to converge in probability to X, denoted by Xn →p X, if for every
ε > 0,

P (|Xn −X| > ε)→ 0.

†

Definition 3.3 Xn is said to converge in rth mean to X, denote by Xn →r X, if

E[|Xn −X|r]→ 0 as n→∞ for functions Xn, X ∈ Lr(P ),

42
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where X ∈ Lr(P ) means E[|X|r] =
∫
|X|rdP <∞. †

Definition 3.4 Xn is said to converge in distribution of X, denoted by Xn →d X or Fn →d F
(or L(Xn)→ L(X) with L referring to the “law” or “distribution”), if the distribution functions
Fn and F of Xn and X satisfy

Fn(x)→ F (x) as n→∞ for each continuity point x of F .

†

Definition 3.5 A sequence of random variables {Xn} is uniformly integrable if

lim
λ→∞

lim sup
n→∞

E [|Xn|I(|Xn| ≥ λ)] = 0.

†

3.1.2 Relationship among modes

The following theorem describes the relationship among all the convergence modes.

Theorem 3.1 (A) If Xn →a.s. X, then Xn →p X.
(B) If Xn →p X, then Xnk →a.s. X for some subsequence Xnk .
(C) If Xn →r X, then Xn →p X.
(D) If Xn →p X and |Xn|r is uniformly integrable, then Xn →r X.
(E) If Xn →p X and lim supnE|Xn|r ≤ E|X|r, then Xn →r X.
(F) If Xn →r X, then Xn →r′ X for any 0 < r′ ≤ r.
(G) If Xn →p X, then Xn →d X.
(H) Xn →p X if and only if for every subsequence {Xnk} there exists a further subsequence
{Xnk,l} such that Xnk,l →a.s. X.
(I) If Xn →d c for a constant c, then Xn →p c. †

Remark 3.2 The results of Theorem 3.1 appear to be complicated; however, they can be well
described in Figure 1 below.

Figure 1: Relationship among Modes of Convergence
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Proof (A) For any ε > 0,

P (|Xn −X| > ε) ≤ P (sup
m≥n
|Xm −X| > ε)→ 0.

(B) Since for any ε > 0, P (|Xn−X| > ε)→ 0, we choose ε = 2−m then there exists a Xnm such
that

P (|Xnm −X| > 2−m) < 2−m.

Particularly, we can choose nm to be increasing. For the sequence {Xnm}, we note that for any
ε > 0, when nm is large,

P (sup
k≥m
|Xnk −X| > ε) ≤

∑
k≥m

P (|Xnk −X| > 2−k) ≤
∑
k≥m

2−k → 0.

Thus, Xnm →a.s. X.
(C) We use the Markov inequality: for any positive and increasing function g(·) and random
variable Y ,

P (|Y | > ε) ≤ E[
g(|Y |)
g(ε)

].

In particular, we choose Y = |Xn −X| and g(y) = |y|r. It gives that

P (|Xn −X| > ε) ≤ E[
|Xn −X|r

εr
]→ 0.

(D) It is sufficient to show that for any subsequence of {Xn}, there exists a further subsequence
{Xnk} such that E|Xnk − X|r → 0. For any subsequence of {Xn}, from (B), there exists a
further subsequence {Xnk} such that Xnk →a.s. X. We will show the result holds for {Xnk}.
For any ε, there exists λ such that

lim sup
nk

E[|Xnk |rI(|Xnk |r ≥ λ)] < ε.

Particularly, we choose λ (only depending on ε) such that P (|X|r = λ) = 0. Then, it is clear
that |Xnk |rI(|Xnk |r ≥ λ)→a.s. |X|rI(|X|r ≥ λ). By the Fatou’s Lemma,

E[|X|rI(|X|r ≥ λ)] =

∫
lim
n
|Xnk |rI(|Xnk |r ≥ λ)dP ≤ lim inf

nk
E[|Xnk |rI(|Xnk |r ≥ λ)] < ε.

Therefore,

E[|Xnk −X|r]
≤ E[|Xnk −X|rI(|Xnk |r < 2λ, |X|r < 2λ)] + E[|Xnk −X|rI(|Xnk |r ≥ 2λ or |X|r ≥ 2λ)]

≤ E[|Xnk −X|rI(|Xnk |r < 2λ, |X|r < 2λ)]

+2rE[(|Xnk |r + |X|r)I(|Xnk |r ≥ 2λ or |X|r ≥ 2λ)],

where the last inequality follows from the inequality (x+y)r ≤ 2r(max(x, y))r ≤ 2r(xr+yr), x ≥
0, y ≥ 0. Note that the first term converges to zero from the dominated convergence theorem.
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Furthermore, when nk is large, I(|Xnk | ≥ 2λ) ≤ I(|X| ≥ λ) and I(|X| ≥ 2λ) ≤ I(|Xnk | ≥ λ)
almost surely. Then the second term is bounded by

2 ∗ 2r {E[|Xnk |rI(|Xnk | ≥ λ)] + E[|X|rI(|X| ≥ λ)]} ,

which is smaller than 2r+1ε. Thus,

lim sup
n

E[|Xnk −X|r] ≤ 2r+1ε.

Let ε tend to zero and the result holds.
(E) It is sufficient to show that for any subsequence of {Xn}, there exists a further subsequence
{Xnk} such that E[|Xnk − X|r] → 0. For any subsequence of {Xn}, from (B), there exists a
further subsequence {Xnk} such that Xnk →a.s. X. Define

Ynk = 2r(|Xnk |r + |X|r)− |Xnk −X|r ≥ 0.

We apply the Fatou’s Lemma to Yn and obtain that∫
lim inf

nk
YnkdP ≤ lim inf

nk

∫
YnkdP.

It is equivalent to

2r+1E[|X|r] ≤ lim inf
nk
{2rE[|Xnk |r] + 2rE[|X|r]− E[|Xnk −X|r]} .

Thus,

lim sup
nk

E[|Xnk −X|r] ≤ 2r
{

lim inf
nk

E[|Xnk |r]− E[|X|r]
}
≤ 0.

The result holds.
(F) We need to use the Hölder inequality as follows∫

|f(x)g(x)|dµ ≤
{∫
|f(x)|pdµ(x)

}1/p{∫
|g(x)|qdµ(x)

}1/q

,
1

p
+

1

q
= 1.

If we choose µ = P , f = |Xn−X|r
′
, g ≡ 1 and p = r/r′, q = r/(r− r′) in the Hölder inequality,

we obtain
E[|Xn −X|r

′
] ≤ E[|Xn −X|r]r

′/r → 0.

(G) Xn →p X. If x is a continuity point of X, i.e., P (X = x) = 0, then for any ε > 0,

P (|I(Xn ≤ x)− I(X ≤ x)| > ε)

= P (|I(Xn ≤ x)− I(X ≤ x)| > ε, |X − x| > δ)

+P (|I(Xn ≤ x)− I(X ≤ x)| > ε, |X − x| ≤ δ)

≤ P (Xn ≤ x,X > x+ δ) + P (Xn > x,X < x− δ) + P (|X − x| ≤ δ)

≤ P (|Xn −X| > δ) + P (|X − x| ≤ δ).

The first term converges to zero as n→∞ since Xn →p X. The second term can be arbitrarily
small if we choose δ is small, since limδ→0 P (|X − x| ≤ δ) = P (X = x) = 0. Thus, we have
shown that I(Xn ≤ x)→p I(X ≤ x). From the dominated convergence theorem,

Fn(x) = E[I(Xn ≤ x)]→ E[I(X ≤ x)] = FX(x).
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Thus, Xn →d X.
(H) One direction follows from (B). To prove the other direction, we use the contradiction.
Suppose there exists ε > 0 such that P (|Xn −X| > ε) does not converge to zero. Then we can
find a subsequence {Xn′} such hat P (|Xn′ − X| > ε) > δ for some δ > 0. However, by the
condition, we can choose a further subsequence Xn′′ such that Xn′′ →a.s. X then Xn′′ →p X
from A. This is a contradiction.
(I) Let X ≡ c. It is clear from the following:

P (|Xn − c| > ε) ≤ 1− Fn(c+ ε) + Fn(c− ε)→ 1− FX(c+ ε) + FX(c− ε) = 0.

†

Remark 3.3 Denote E[|X|r] as µr. Then as proving (F) in Theorem 3.1., we obtain µs−tr µr−st ≥
µr−ts where r ≥ s ≥ t ≥ 0. Thus, log µr is convex in r for r ≥ 0. Furthermore, the proof of (F )

says that µ
1/r
r is increasing in r.

Remark 3.4 For r ≥ 1, we denote E[|X|r]1/r as ‖X‖r (or ‖X‖Lr(P )). Clearly, ‖X‖r ≥ 0 and
the equality holds if and only if X = 0 a.s. For any constant λ, ‖λX‖r = |λ|‖X‖r. Furthermore,
we note that

E[|X+Y |r] ≤ E[(|X|+|Y |)|X+Y |r−1] ≤ E[|X|r]1/rE[|X+Y |r]1−1/r+E[|Y |r]1/rE[|X+Y |r]1−1/r.

Then we obtain a triangular inequality (called the Minkowski’s inequality)

‖X + Y ‖r ≤ ‖X‖r + ‖Y ‖r.

Therefore, ‖ · ‖r in fact is a norm in the linear space {X : ‖X‖r < ∞}. Such a normed space
is denoted as Lr(P ).

The following examples illustrate the results of Theorem 3.1.

Example 3.1 Suppose that Xn is degenerate at a point 1/n; i.e., P (Xn = 1/n) = 1. Then Xn

converges in distribution to zero. Indeed, Xn converges almost surely.

Example 3.2 X1, X2, ... are i.i.d with standard normal distribution. Then Xn →d X1 but Xn

does not converge in probability to X1.

Example 3.3 Let Z be a random variable with a uniform distribution in [0, 1]. Let Xn =
I(m2−k ≤ Z < (m + 1)2−k) when n = 2k + m where 0 ≤ m < 2k. Then Xn converges in
probability to zero but not almost surely. This example is already given in the second chapter.

Example 3.4 Let Z be Uniform(0, 1) and let Xn = 2nI(0 ≤ Z < 1/n). Then E[|Xn|r]]→∞
but Xn converges to zero almost surely.

The next theorem describes the necessary and sufficient conditions of convergence in mo-
ments from convergence in probability.

Theorem 3.2 (Vitali’s theorem) Suppose that Xn ∈ Lr(P ), i.e., ‖Xn‖r < ∞, where 0 <
r <∞ and Xn →p X. Then the following are equivalent:
(A) {|Xn|r} are uniformly integrable.
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(B) Xn →r X.
(C) E[|Xn|r]→ E[|X|r]. †

Proof (A) ⇒ (B) has been shown in proving (D) of Theorem 1.1. To prove (B) ⇒ (C), first
from the Fatou’s lemma, we have

lim inf
n

E[|Xn|r] ≥ E[|X|r].

Second, we apply the Fatou’s lemma to 2r(|Xn −X|r + |X|r)− |Xn|r ≥ 0 and obtain

E[2r|X|r − |X|r] ≤ 2r lim inf
n

E[|Xn −X|r] + 2rE[|X|r]− lim sup
n

E[|Xn|r].

Thus,
lim sup

n
E[|Xn|r] ≤ E[|X|r] + 2r lim inf

n
E[|Xn −X|r].

We conclude that E[|Xn|r]→ E[|X|r].
To prove (C)⇒ (A), we note that for any λ such that P (|X|r = λ) = 0, by the dominated

convergence theorem,

lim sup
n

E[|Xn|rI(|Xn|r ≥ λ)] = lim sup
n
{E[|Xn|r]− E[|Xn|rI(|Xn|r < λ)]} = E[|X|rI(|X|r ≥ λ)]

Thus,
lim
λ→∞

lim sup
n

E[|Xn|rI(|Xn|r ≥ λ)] = lim
λ→∞

lim sup
n

E[|X|rI(|X|r ≥ λ)] = 0.

†

From Theorem 3.2, we see that the uniform integrability plays an important role to ensure
the convergence in moments. One sufficient condition to check the uniform integrability of {Xn}
is the Liapunov condition: if there exists a positive constant ε0 such that lim supnE[|Xn|r+ε0 ] <
∞, then {|Xn|r} satisfies the uniform integrability condition. This is because

E[|Xn|rI(|Xn|r ≥ λ)] ≤ E[|Xn|r+ε0|]
λε0

.

3.1.3 Useful integral inequalities

We list some useful inequalities below, some of which have already been used. The first in-
equality is the Hölder inequality:∫

|f(x)g(x)|dµ ≤
{∫
|f(x)|pdµ(x)

}1/p{∫
|g(x)|qdµ(x)

}1/q

,
1

p
+

1

q
= 1.

We briefly describe how the Hölder inequality is derived. First, the following inequality holds
(Young’s inequality):

|ab| ≤ |a|
p

p
+
|b|q

q
, a, b > 0,
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where the equality holds if and only if a = b. This inequality is clear from its geometric meaning.
In this inequality, we choose a = f(x)/

∫
{|f(x)|pdµ(x)}1/p and b = g(x)/

∫
{|g(x)|qdµ(x)}1/q

and integrate over x on both side. It gives the Hölder inequality and the equality holds if and
only if f(x) is proportional to g(x) almost surely. When p = q = 2, the inequality becomes∫

|f(x)g(x)|dµ(x) ≤
{∫

f(x)2dµ(x)

}1/2{∫
g(x)2dµ(x)

}1/2

,

which is the Cauchy-Schwartz inequality. One implication is that for non-trivial X and Y ,
(E[|XY |])2 ≤ E[|X|2]E[|Y |2] and that the equality holds if and only if |X| = c0|Y | almost
surely for some constant c0.

A second important inequality is the Markov’s inequality, which was used in proving (C) of
Theorem 3.1:

P (|X| ≥ ε) ≤ E[g(|X|)]
g(ε)

,

where g ≥ 0 is a increasing function in [0,∞). We can choose different g to obtain many similar
inequalities. The proof of the Markov inequality is direct from the following:

P (|Y | > ε) = E[I(|Y | > ε)] ≤ E[
g(|Y |)
g(ε)

I(|Y | > ε)] ≤ E[
g(|Y |)
g(ε)

].

If we choose g(x) = x2 and X as X − E[X] in the Markov inequality, we obtain

P (|X − E[X]| ≥ ε) ≤ V ar(X)

ε2
.

This inequality is the Chebychev’s inequality and gives an upper bound for controlling the tail
probability of X using its variance.

In summary, we have introduced different modes of convergence for random variables and
obtained the relationship among these modes. The same definitions and relationship can be
generalized to random vectors. One additional remark is that since convergence almost surely
or in probability are special definitions of convergence almost everywhere or in measure as given
in the second chapter, all the theorems in Section 2.3.3 including the monotone convergence
theorem, the Fatou’s lemma and the dominated convergence theorem should apply. Conver-
gence in distribution is the only one specific to probability measure. In fact, this model will be
the main interest of the subsequent sections.

3.2 Convergence in Distribution

Among all the convergence modes of {Xn}, convergence in distribution is the weakest conver-
gence. However, this convergence plays an important and sufficient role in statistical inference,
especially when large sample behavior of random variables is of interest. We focus on such
particular convergence in this section.

3.2.1 Portmanteau theorem

The following theorem gives all equivalent conditions to the convergence in distribution for a
sequence of random variables {Xn}.
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Theorem 3.3 (Portmanteau Theorem) The following conditions are equivalent.
(a) Xn converges in distribution to X.
(b) For any bounded continuous function g(·), E[g(Xn)]→ E[g(X)].
(c) For any open set G in R, lim infn P (Xn ∈ G) ≥ P (X ∈ G).
(d) For any closed set F in R, lim supn P (Xn ∈ F ) ≤ P (X ∈ F ).
(e) For any Borel set O in R with P (X ∈ ∂O) = 0 where ∂O is the boundary of O, P (Xn ∈
O)→ P (X ∈ O). †

Proof (a) ⇒ (b). Without loss of generality, we assume |g(x)| ≤ 1. We choose [−M,M ] such
that P (|X| = M) = 0. Since g is continuous in [−M,M ], g is uniformly continuous in [−M,M ].
Thus for any ε, we can partition [−M,M ] into finite intervals I1 ∪ ... ∪ Im such that within
each interval Ik, maxIk g(x)−minIk g(x) ≤ ε and X has no mass at all the endpoints of Ik (this
is feasible since X has at most countable points with point masses). Therefore, if choose any
point xk ∈ Ik, k = 1, ...,m,

|E[g(Xn)]− E[g(X)]|
≤ E[|g(Xn)|I(|Xn| > M)] + E[|g(X)|I(|X| > M)]

+|E[g(Xn)I(|Xn| ≤M)]−
m∑
k=1

g(xk)P (Xn ∈ Ik)|

+|
m∑
k=1

g(xk)P (Xn ∈ Ik)−
m∑
k=1

g(xk)P (X ∈ Ik)|

+|E[g(X)I(|X| ≤M)]−
m∑
k=1

g(xk)P (X ∈ Ik)|

≤ P (|Xn| > M) + P (|X| > M) + 2ε+
m∑
k=1

|P (Xn ∈ Ik)− P (X ∈ Ik)|.

Thus, lim supn |E[g(Xn)]−E[g(X)]| ≤ 2P (|X| > M) + 2ε. Let M →∞ and ε→ 0. We obtain
(b).
(b)⇒ (c). For any open set G, we define a function

g(x) = 1− ε

ε+ d(x,Gc)
,

where d(x,Gc) is the minimal distance between x and Gc, defined as infy∈Gc |x− y|. Since for
any y ∈ Gc,

d(x1, G
c)− |x2 − y| ≤ |x1 − y| − |x2 − y| ≤ |x1 − x2|,

we have d(x1, G
c)− d(x2, G

c) ≤ |x1 − x2|. Then,

|g(x1)− g(x2)| ≤ ε−1|d(x1, G
c)− d(x2, G

c)| ≤ ε−1|x1 − x2|.

g(x) is continuous and bounded. From (a), E[g(Xn)]→ E[g(X)]. Note g(x) = 0 if x /∈ G and
|g(x)| ≤ 1. Thus,

lim inf
n

P (Xn ∈ G) ≥ lim inf
n

E[g(Xn)]→ E[g(X)].
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Let ε→ 0 and we obtain E[g(X)] converges to E[I(X ∈ G)] = P (X ∈ G).
(c)⇒ (d). This is clear by taking complement of F .
(d)⇒ (e). For any O with P (X ∈ ∂O) = 0, we have

lim sup
n

P (Xn ∈ O) ≤ lim sup
n

P (Xn ∈ Ō) ≤ P (X ∈ Ō) = P (X ∈ O),

and
lim inf

n
P (Xn ∈ O) ≥ lim inf

n
P (Xn ∈ Oo) ≥ P (X ∈ Oo) = P (X ∈ O).

Here, Ō and Oo are the closure and interior of O respectively.
(e)⇒ (a). It is clear by choosing O = (−∞, x] with P (X ∈ ∂O) = P (X = x) = 0. †

The conditions in Theorem 3.3 are necessary, as seen in the following examples.

Example 3.5 Let g(x) = x, a continuous but unbounded function. Let Xn be a random
variable taking value n with probability 1/n and value 0 with probability (1 − 1/n). Then
Xn →d 0. However, E[g(X)] = 1 9 0. This shows that the boundness of g in condition (b) is
necessary.

Example 3.6 The continuity at boundary in (e) is also necessary: let Xn be degenerate at 1/n
and consider O = {x : x > 0}. Then P (Xn ∈ O) = 1 but Xn →d 0.

3.2.2 Continuity theorem

Another way of verifying convergence in distribution of Xn is via the convergence of the char-
acteristic functions of Xn, as given in the following theorem. This result is very useful in many
applications.

Theorem 3.4 (Continuity Theorem) Let φn and φ denote the characteristic functions of
Xn and X respectively. Then Xn →d X is equivalent to φn(t)→ φ(t) for each t. †

Proof To prove ⇒ direction, from (b) in Theorem 3.1,

φn(t) = E[eitXn ]→ E[eitX ] = φ(t).

We thus need to prove ⇐ direction. This proof consists of the following steps.
Step 1. We show that for any ε, there exists a M such that supn P (|Xn| > M) < ε. This
property is called asymptotic tightness of {Xn}. To see that, we note that

1

δ

∫ δ

−δ
(1− φn(t))dt = E[

1

δ

∫ δ

−δ
(1− eitXn)dt]

= E[2(1− sin δXn

δXn

)]

≥ E[2(1− 1

|δXn|
)I(|Xn| >

2

δ
)]

≥ P (|Xn| >
2

δ
).
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However, the left-hand side of the inequality converges to

1

δ

∫ δ

−δ
(1− φ(t))dt.

Since φ(t) is continuous at t = 0, this limit can be smaller than ε if we choose δ small enough.
Let M = 2

δ
. We obtain that when n > N0, P (|Xn| > M) < ε. Choose M larger then we can

have P (|Xk| > M) < ε, for k = 1, ..., N0. Thus,

sup
n
P (|Xn| > M) < ε.

Step 2. We show for any subsequence of {Xn}, there exists a further sub-sequence {Xnk} and
the distribution function for Xnk , denoted by Fnk , converges to some distribution function.
First, we need the Helly’s Theorem.

Helly’s Selection Theorem For every sequence {Fn} of distribution functions, there exists a
subsequence {Fnk} and a nondecreasing, right-continuous function F such that Fnk(x)→ F (x)
at continuity points x of F . †

We defer the proof of the Helly’s Selection Theorem to the end of the proof. Thus, from
this theorem, for any subsequence of {Xn}, we can find a further subsequence {Xnk} such that
Fnk(x) → G(x) for some nondecreasing and right-continuous function G and the continuity
points x of G. However, the Helly’s Selection Theorem does not imply that G is a distribution
function since G(−∞) and G(∞) may not be 0 or 1. But from the tightness of {Xnk}, for any
ε, we can choose M such that Fnk(−M) +(1−Fnk(M)) = P (|Xn| > M) < ε and we can always
choose M such that −M and M are continuity points of G. Thus, G(−M) + (1−G(M)) < ε.
Let M → ∞ and since 0 ≤ G(−M) ≤ G(M) ≤ 1, we conclude that G must be a distribution
function.

Step 3. We conclude that the subsequence {Xnk} in Step 2 converges in distribution to X.
Since Fnk weakly converges to G(x) and G(x) is a distribution function and φnk(t) converges to
φ(t), φ(t) must be the characteristic function corresponding to the distribution G(x). From the
uniqueness of the characteristic function in Theorem 1.1 (see the proof below), G(x) is exactly
the distribution of X. Therefore, Xnk →d X. The theorem has been proved.

We need to prove the Helly’s Selection Theorem: let r1, r2, ... be all the rational numbers.
For r1, we choose a subsequence of {Fn}, denoted by F11, F12, ... such that F11(r1), F12(r1), ...
converges. Then for r2, we choose a further subsequence from the above sequence, denote
by F21, F22, ... such that F21(r2), F22(r2), ... converges. We continue this for all the rational
numbers. We obtain a matrix of functions as follows:F11 F12 . . .

F21 F22 . . .
...

...
. . .

 .

We finally select the diagonal functions, F11, F22, .... thus this subsequence converges for all the
rational numbers. We denote their limits as G(r1), G(r2), ... Define G(x) = infrk>xG(rk). It is
clear to see that G is nondecreasing. If xk decreases to x, for any ε > 0, we can find rs such that
rs ≥ x and G(x) > G(rs) − ε. Then when k is large, G(xk) − ε ≤ G(rs) − ε < G(x) ≤ G(xk).
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That is, limkG(xk) = G(x). Thus, G is right-continuous. If x is a continuity point of G, for
any ε, we can find two sequence of rational number {rk} and {rk′} such that rk decreases to x
and rk′ increases to x. Then after taking limits for the inequality Fll(rk′) ≤ Fll(x) ≤ Fll(rk), we
have

G(rk′) ≤ lim inf
l

Fll(x) ≤ lim sup
l

Fll(x) ≤ G(rk).

Let k →∞ then we obtain liml Fll(x) = G(x).
It remains to prove Theorem 1.1, whose proof is deferred here: after substituting φ(t) in to

the integration, we obtain

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt =

1

2π

∫ T

−T

∫ ∞
−∞

e−ita − e−itb

it
eitxdF (x)dt

=
1

2π

∫ ∞
−∞

∫ T

−T

eit(x−a) − eit(x−b)

it
dtdF (x).

The interchange of the integrations follows from the Fubini’s theorem. The last part is equal∫ ∞
−∞

{
sgn(x− a)

π

∫ T |x−a|

0

sin t

t
dt− sgn(x− b)

π

∫ T |x−b|

0

sin t

t
dt

}
dF (x).

The integrand is bounded by 2
π

∫∞
0

sin t
t
dt and as T → ∞, it converges to 0, if x < a or x > b;

1/2, if x = a or x = b; 1, if x ∈ (a, b). Therefore, by the dominated convergence theorem, the
integral converges to

F (b−)− F (a) +
1

2
{F (b)− F (b−)}+

1

2
{F (a)− F (a−)} .

Since F is continuous at b and a, the limit is the same as F (b)− F (a). Furthermore, suppose
that F has a density function f . Then

F (x)− F (0) =
1

2π

∫ ∞
−∞

1− e−itx

it
φ(t)dt.

Since | ∂
∂x

1−e−itx
it

φ(t)| ≤ φ(t), according to the interchange between derivative and integration,
we obtain

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t)dt.

†

The above theorem indicates that to prove the weak convergence of a sequence of random
variables, it is sufficient to check the convergence of their characteristic functions. For example,
if X1, ..., Xn are i.i.d Bernoulli(p), then the characteristic function of X̄n = (X1 + ...+Xn)/n is
given by (1−p+peit/n)n converges to a function φ(t) = eitp, which is the characteristic function
for a degenerate random variable X ≡ p. Thus X̄n converges in distribution to p. Then from
Theorem 3.1, X̄n converges in probability to p.

Theorem 3.4 also has a multivariate version when Xn and X are k-dimensional random
vectors: Xn →d X if and only if E[exp{it ′Xn}]→ E [exp{it ′X }], where t is any k-dimensional
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constant. Since the latter is equivalent to the weak convergence of t′Xn to t′X, we conclude
that the weak convergence of Xn to X is equivalent to the weak convergence of t′Xn to t′X
for any t. That is, to study the weak convergence of random vectors, we can reduce to study
the weak convergence of one-dimensional linear combination of the random vectors. This is the
well-known Cramér-Wold’s device:

Theorem 3.5 (The Cramér-Wold device) Random vector Xn in Rk satisfy Xn →d X if
and only t′Xn →d t

′X in R for all t ∈ Rk. †

3.2.3 Properties of convergence in distribution

Some additional results from convergence in distribution are the following theorems.

Theorem 3.6 (Continuous mapping theorem) Suppose Xn →a.s. X, or Xn →p X, or
Xn →d X. Then for any continuous function g(·), g(Xn) converges to g(X) almost surely, or
in probability, or in distribution. †

Proof If Xn →a.s. X, then clearly, g(Xn) →a.s g(X). If Xn →p X, then for any subsequence,
there exists a further subsequence Xnk →a.s. X. Thus, g(Xnk) →a.s. g(X). Then g(Xn) →p

g(X) from (H) in Theorem 3.1. To prove that g(Xn) →d g(X) when Xn →d X, we apply (b)
of Theorem 3.3. †

Remark 3.5 Theorem 3.6 concludes that g(Xn)→d g(X) if Xn →d X and g is continuous. In
fact, this result still holds if P (X ∈ C(g)) = 1 where C(g) contains all the continuity points
of g. That is, if g’s discontinuity points take zero probability of X, the continuous mapping
theorem holds.

Theorem 3.7 (Slutsky theorem) Suppose Xn →d X, Yn →p y and Zn →p z for some
constant y and z. Then ZnXn + Tn →d zX + y. †

Proof We first show that Xn + Yn →d X + y. For any ε > 0,

P (Xn + Yn ≤ x) ≤ P (Xn + Yn ≤ x, |Yn − y| ≤ ε) + P (|Yn − y| > ε)

≤ P (Xn ≤ x− y + ε) + P (|Yn − y| > ε).

Thus,
lim sup

n
FXn+Yn(x) ≤ lim sup

n
FXn(x− y + ε) ≤ FX(x− y + ε).

On the other hand,

P (Xn + Yn > x) = P (Xn + Yn > x, |Yn − y| ≤ ε) + P (|Yn − y| > ε)

≤ P (Xn > x− y − ε) + P (|Yn − y| > ε).
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Thus,

lim sup
n

(1− FXn+Yn(x)) ≤ lim sup
n

P (Xn > x− y − ε) ≤ lim sup
n

P (Xn ≥ x− y − 2ε)

≤ (1− FX(x− y − 2ε)).

We obtain

FX(x− y − 2ε) ≤ lim inf
n

FXn+Yn(x) ≤ lim sup
n

FXn+Yn(x) ≤ FX(x+ y + ε).

Let ε→ 0 then it holds

FX+y(x−) ≤ lim inf
n

FXn+Yn(x) ≤ lim sup
n

FXn+Yn(x) ≤ FX+y(x).

Thus, Xn + Yn →d X + y.
On the other hand, we have

P (|(Zn − z)Xn| > ε) ≤ P (|Zn − z| > ε2) + P (|Zn − z| ≤ ε2, |Xn| >
1

ε
).

Thus,

lim sup
n
P (|(Zn− z)Xn| > ε) ≤ lim sup

n
P (|Zn− z| > ε2) + lim sup

n
P (|Xn| ≥

1

2ε
)→ P (|X| ≥ 1

2ε
).

Since ε is arbitrary, we conclude that (Zn− z)Xn →p 0. Clearly zXn →d zX. Hence, ZnXn →d

zX from the proof in the first half. Again, using the first half’s proof, we obtain ZnXn+Yn →d

zX + y. †

Remark 3.6 In the proof of Theorem 3.7, if we replace Xn + Yn by aXn + bYn, we can show
that aXn+ bYn →d aX+ by by considering different cases of either a or b or both are non-zeros.
Then from Theorem 3.5, (Xn, Yn) →d (X, y) in R2. By the continuity theorem, we obtain
Xn + Yn →d X + y and XnYn →d Xy. This immediately gives Theorem 3.7.

Both Theorems 3.6 and 3.7 are useful in deriving the convergence of some transformed
random variables, as shown in the following examples.

Example 3.7 Suppose Xn →d N(0, 1). Then by continuous mapping theorem, X2
n →d χ

2
1.

Example 3.8 This example shows that g can be discontinuous in Theorem 3.6. Let Xn →d X
with X ∼ N(0, 1) and g(x) = 1/x. Although g(x) is discontinuous at origin, we can still show
that 1/Xn →d 1/X, the reciprocal of the normal distribution. This is because P (X = 0) = 0.
However, in Example 3.6 where g(x) = I(x > 0), it shows that Theorem 3.6 may not be true
if P (X ∈ C(g)) < 1.

Example 3.9 The condition Yn →p y, where y is a constant, is necessary. For example, let
Xn = X ∼ Uniform(0, 1). Let Yn = −X so Yn →d −X̃, where X̃ is an independent random
variable with the same distribution as X. However Xn+Yn = 0 does not converge in distribution
to the non-zero random variable X − X̃.
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Example 3.10 Let X1, X2, ... be a random sample from a normal distribution with mean µ
and variance σ2 > 0, then from the central limit theorem and the law of large number, which
will be given later, we have

√
n(X̄n − µ)→d N(0, σ2), s2

n =
1

n− 1

n∑
i=1

(Xi − X̄n)2 →a.s σ
2.

Thus, from Theorem 3.7, it gives

√
n(X̄n − µ)

sn
→d

1

σ
N(0, σ2) ∼= N(0, 1).

From the distribution theory, we know the left-hand side has a t-distribution with degrees of
freedom (n − 1). Then this result says that in large sample, tn−1 can be approximated by a
standard normal distribution.

3.2.4 Representation of convergence in distribution

As already seen before, working with convergence in distribution may not be easy, as compared
with convergence almost surely. However, if we can represent convergence in distribution as
convergence almost surely, many arguments can be simplified. The following famous theorem
shows that such a representation does exist.

Theorem 3.8 (Skorohod’s Representation Theorem) Let {Xn} and X be random vari-
ables in a probability space (Ω,A, P ) and Xn →d X. Then there exists another probability
space (Ω̃, Ã, P̃ ) and a sequence of random variables X̃n and X̃ defined on this space such that
X̃n and Xn have the same distributions, X̃ and X have the same distributions, and moreover,
X̃n →a.s. X̃. †

Before proving Theorem 3.8, we define the quantile function corresponding to a distribution
function F (x), denoted by F−1(p), for p ∈ [0, 1],

F−1(p) = inf{x : F (x) ≥ p}.

Some properties regarding the quantile function are given in the following proposition.

Proposition 3.1 (a) F−1 is left-continuous.
(b) If X has continuous distribution function F , then F (X) ∼ Uniform(0, 1).
(c) Let ξ ∼ Uniform(0, 1) and let X = F−1(ξ). Then for all x, {X ≤ x} = {ξ ≤ F (x)}. Thus,
X has distribution function F . †

Proof (a) Clearly, F−1 is nondecreasing. Suppose pn increases to p then F−1(pn) increases to
some y ≤ F−1(p). Then F (y) ≥ pn so F (y) ≥ p. Therefore F−1(p) ≤ y by the definition of
F−1(p). Thus y = F−1(p). F−1 is left-continuous.
(b) {X ≤ x} ⊂ {F (X) ≤ F (x)}. Thus, F (x) ≤ P (F (X) ≤ F (x)). On the other hand,
{F (X) ≤ F (x)− ε} ⊂ {X ≤ x}. Thus, P (F (X) ≤ F (x)− ε) ≤ F (x). Let ε→ 0 and we obtain
P (F (X) ≤ F (x)−) ≤ F (x). Then if X is continuous, we have P (F (X) ≤ F (x)) = F (x) so
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F (X) ∼ Uniform(0, 1).
(c) P (X ≤ x) = P (F−1(ξ) ≤ x) = P (ξ ≤ F (x)) = F (x). †

Proof Using the quantile function, we can construct the proof of Theorem 3.8. Let (Ω̃, Ã, P̃ )
be ([0, 1],B ∩ [0, 1], λ), where λ is the Borel measure. Define X̃n = F−1

n (ξ), X̃ = F−1(ξ), where
ξ is uniform random variable on (Ω̃, Ã, P̃ ). From (c) in the previous proposition, X̃n has a
distribution Fn which is the same as Xn. It remains to show X̃n →a.s. X.

For any t ∈ (0, 1) such that there is at most one value x such that F (x) = t (it is easy to
see t is the continuous point of F−1), we have that for any z < x, F (z) < t. Thus, when n is
large, Fn(z) < t so F−1

n (t) ≥ z. We obtain lim infn F
−1
n (t) ≥ z. Since z is any number less than

x, we have lim infn F
−1
n (t) ≥ x = F−1(t). On the other hand, from F (x + ε) > t, we obtain

when n is large enough, Fn(x+ ε) > t so F−1
n (t) ≤ x+ ε. Thus, lim supn F

−1
n (t) ≤ x+ ε. Since

ε is arbitrary, we obtain lim supn F
−1
n (t) ≤ x.

We conclude F−1
n (t)→ F−1(t) for any t which is continuous point of F−1. Thus F−1

n (t)→
F−1(t) for almost every t ∈ (0, 1). That is, X̃n →a.s. X̃. †

This theorem can be useful in a lot of arguments. For example, if Xn →d X and one
wishes to show some function of Xn, denote by g(Xn), converges in distribution to g(X), then
by the representation theorem, we obtain X̃n and X̃ and X̃n →a.s. X̃. Thus, if we can show
g(X̃n) →a.s. g(X̃), which is often easy to show, then of course, g(X̃n) →d g(X̃). Since g(X̃n)
has the same distribution as g(Xn) and so are g(X̃) and g(X), g(Xn) →d g(X). Using this
technique, readers should easily prove the continuous mapping theorem. Also see the diagram
in Figure 2.

Figure 2: Representation of Convergence in Distribution

Our final remark of this section is that all the results such as the continuous mapping
theorem, the Slutsky theorem and the representation theorem can be in parallel given for the
convergence of random vectors. The proofs for random vectors are based on the Cramé-Wold’s
device.

3.3 Summation of Independent Random Variables

The summation of independent random variables are commonly seen in statistical inference.
Specially, many statistics can be expressed as the summation of i.i.d random variables. Thus,
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this section gives some classical large sample results for this type of statistics, which include
the weak/strong law of large numbers, the central limit theorem, and the Delta method etc.

3.3.1 Preliminary lemma

Proposition 3.2 (Borel-Cantelli Lemma) For any events An,

∞∑
i=1

P (An) <∞

implies P (An, i.o.) = P ({An} occurs infinitely often) = 0; or equivalently, P (∩∞n=1 ∪m≥n Am) =
0. †

Proof
P (An, i.o) ≤ P (∪m≥nAm) ≤

∑
m≥n

P (Am)→ 0, as n→∞.

†

As a result of the proposition, if for a sequence of random variables, {Zn}, and for any ε > 0,∑
n P (|Zn| > ε) < ∞. Then with probability one, |Zn| > ε only occurs finite times. That is,

Zn →a.s. 0.

Proposition 3.3 (Second Borel-Cantelli Lemma) For a sequence of independent events
A1, A2, ...,

∑∞
n=1 P (An) =∞ implies P (An, i.o.) = 1. †

Proof Consider the complement of {An, i.o}. Note

P (∪∞n=1 ∩m≥n Acm) = lim
n
P (∩m≥nAcm) = lim

n

∏
m≥n

(1− P (Am)) ≤ lim sup
n

exp{−
∑
m≥n

P (Am)} = 0.

†

Proposition 3.4 X,X1, ..., Xn are i.i.d with finite mean. Define Yn = XnI(|Xn| ≤ n). Then∑∞
n=1 P (Xn 6= Yn) <∞. †

Proof Since E[|X|] <∞,

∞∑
n=1

P (Xn 6= Yn) ≤
∞∑
n=1

P (|X| ≥ n) =
∞∑
n=1

nP (n ≤ |X| < (n+ 1)) ≤
∞∑
n=1

E[|X|] <∞.

From the Borel-Cantelli Lemma, P (Xn 6= Yn, i.o) = 0. That is, for almost every ω ∈ Ω, when
n is large enough, Xn(ω) = Yn(ω). †
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3.3.2 Law of large numbers

We start to prove the weak and strong law of large numbers.

Theorem 3.9 (Weak Law of Large Number) If X,X1, ..., Xn are i.i.d with mean µ (so
E[|X|] <∞ and µ = E[X]), then X̄n →p µ. †

Proof Define Yn = XnI(−n ≤ Xn ≤ n). Let µ̄n =
∑n

k=1E[Yk]/n. Then by the Chebyshev’s
inequality,

P (|Ȳn − µ̄n| ≥ ε) ≤ V ar(Ȳn)

ε2
≤
∑n

k=1 V ar(XkI(|Xk| ≤ k))

n2ε2
.

Since

V ar(XkI(|Xk| ≤ k)) ≤ E[X2
kI(|Xk| ≤ k)]

= E[X2
kI(|Xk| ≤ k, |Xk| ≥

√
kε2)] + E[X2

kI(|Xk| ≤ k, |X| ≤
√
kε2)]

≤ kE[|Xk|I(|Xk| ≥
√
kε2)] + kε4,

P (|Ȳn − µ̄n| ≥ ε) ≤
∑n

k=1 E[|X|I(|X| ≥
√
kε2)]

nε2
+ ε2

n(n+ 1)

2n2
.

Thus, lim supn P (|Ȳn − µ̄n| ≥ ε) ≤ ε2. We conclude that Ȳn − µ̄n →p 0. On the other hand,
µ̄n → µ. We obtain Ȳn →p µ. This implies that for any subsequence, there is a further
subsequence Ȳnk →a.s. µ. Since Xn is eventually the same as Yn for almost every ω from
Proposition 3.4, we conclude X̄nk →a.s. µ. This implies Xn →p µ. †

Theorem 3.10 (Strong Law of Large Number) If X1, ..., Xn are i.i.d with mean µ then
X̄n →a.s. µ. †

Proof Without loss of generality, we assume Xn ≥ 0 since if this is true, the result also holds
for any Xn by Xn = X+

n −X−n .
Similar to Theorem 3.9, it is sufficient to show Ȳn →a.s. µ, where Yn = XnI(Xn ≤ n). Note

E[Yn] = E[X1I(X1 ≤ n)]→ µ so
n∑
k=1

E[Yk]/n→ µ.

Thus, if we denote S̃n =
∑n

k=1(Yk−E[Yk]) and we can show S̃n/n→a.s. 0, then the result holds.
Note

V ar(S̃n) =
n∑
k=1

V ar(Yk) ≤
n∑
k=1

E[Y 2
k ] ≤ nE[X2

1I(X1 ≤ n)].

Then by the Chebyshev’s inequality,

P (| S̃n
n
| > ε) ≤ 1

n2ε2
V ar(S̃n) ≤ E[X2

1I(X1 ≤ n)]

nε2
.
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For any α > 1, let un = [αn]. Then

∞∑
n=1

P (| S̃un
un
| > ε) ≤

∞∑
n=1

1

unε2
E[X2

1I(X1 ≤ un)] ≤ 1

ε2
E[X2

1

∑
un≥X1

1

un
].

Since for any x > 0,
∑

un≥x{µn}
−1 < 2

∑
n≥log x/ logα α

−n ≤ Kx−1 for some constant K, we
have

∞∑
n=1

P (| S̃un
un
| > ε) ≤ K

ε2
E[X1] <∞,

From the Borel-Cantelli Lemma in Proposition 3.2, S̃un/un →a.s. 0.
For any k, we can find un < k ≤ un+1. Thus, since X1, X2, ... ≥ 0,

S̃un
un

un
un+1

≤ S̃k
k
≤
S̃un+1

un+1

un+1

un
.

After taking limits in the above, we have

µ/α ≤ lim inf
k

S̃k
k
≤ lim sup

k

S̃k
k
≤ µα.

Since α is arbitrary number larger than 1, let α → 1 and we obtain limk S̃k/k = µ. The proof
is completed. †

3.3.3 Central limit theorem

We now consider the central limit theorem. All the proofs can be based on the convergence of
the corresponding characteristic function. The following lemma describes the approximation of
a characteristic function.

Proposition 3.5 Suppose E[|X|m] <∞ for some integer m ≥ 0. Then

|φX(t)−
m∑
k=0

(it)k

k!
E[Xk]|/|t|m → 0, as t→ 0.

†

Proof We note the following expansion for eitx,

eitx =
m∑
k=1

(itx)k

k!
+

(itx)m

m!
[eitθx − 1],

where θ ∈ [0, 1]. Thus,

|φX(t)−
m∑
k=0

(it)k

k!
E[Xk]|/|t|m ≤ E[|X|m|eitθX − 1|]/m!→ 0,
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as t→ 0. †

Theorem 3.11 (Central Limit Theorem) If X1, ..., Xn are i.i.d with mean µ and variance
σ2 then

√
n(X̄n − µ)→d N(0, σ2). †

Proof Denote Yn =
√
n(X̄n − µ). We consider the characteristic function of Yn.

φYn(t) =
{
φX1−µ(t/

√
n)
}n
.

Using Proposition 3.5, we have φX1−µ(t/
√
n) = 1− σ2t2/2n+ o(1/n). Thus,

φYn(t)→ exp{−σ
2t2

2
}.

The result holds. †

Theorem 3.12 (Multivariate Central Limit Theorem) If X1, ..., Xn are i.i.d random
vectors in Rk with mean µ and covariance Σ = E[(X−µ)(X−µ)′], then

√
n(X̄n−µ)→d N(0,Σ).

†

Proof Similar to Theorem 3.11, but this time, we consider a multivariate characteristic function
E[exp{i

√
nt′(X̄n − µ)}]. Note the result of Proposition 3.5 holds for this multivariate case. †

Theorem 3.13 (Liapunov Central Limit Theorem) Let Xn1, ..., Xnn be independent ran-
dom variables with µni = E[Xni] and σ2

ni = V ar(Xni). Let µn =
∑n

i=1 µni, σ
2
n =

∑n
i=1 σ

2
ni.

If
n∑
i=1

E[|Xni − µni|3]

σ3
n

→ 0,

then
∑n

i=1(Xni − µni)/σn →d N(0, 1). †

We skip the proof of Theorem 3.13 but try to give a proof for the following Theorem 3.14,
for which Theorem 3.13 is a special case.

Theorem 3.14 (Lindeberg-Fell Central Limit Theorem) Let Xn1, ..., Xnn be independent
random variables with µni = E[Xni] and σ2

ni = V ar(Xni). Let σ2
n =

∑n
i=1 σ

2
ni. Then both∑n

i=1(Xni−µni)/σn →d N(0, 1) and max {σ2
ni/σ

2
n : 1 ≤ i ≤ n} → 0 if and only if the Lindeberg

condition
1

σ2
n

n∑
i=1

E[|Xni − µni|2I(|Xni − µni| ≥ εσn)]→ 0, for all ε > 0

holds. †
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Proof “⇐′′: We first show that max{σ2
nk/σ

2
n : 1 ≤ k ≤ n} → 0.

σ2
nk/σ

2
n ≤ E[|(Xnk − µk)/σn|2]

≤ 1

σ2
n

{
E[I(|Xnk − µnk| ≥ εσn)(Xnk − µnk)2] + E[I(|Xnk − µnk| < εσn)(Xnk − µnk)2]

}
≤ 1

σ2
n

E[I(|Xnk − µnk| ≥ εσn)(Xnk − µnk)2] + ε2.

Thus,

max
k
{σ2

nk/σ
2
n} ≤

1

σ2
n

n∑
k=1

E[|Xnk − µnk|2I(|Xnk − µnk| ≥ εσn)] + ε2.

From the Lindeberg condition, we immediately obtain

max
k
{σ2

nk/σ
2
n} → 0.

To prove the central limit theorem, we let φnk(t) be the characteristic function of (Xnk −
µnk)/σn. We note

|φnk(t)− (1− σ2
nk

σ2
n

t2

2
)|

≤E

[∣∣∣eit(Xnk−µnk)/σn −
2∑
j=0

(it)j

j!

(
Xnk − µnk

σn

)j ∣∣∣]

≤E

[
I(|Xnk − µnk| ≥ εσn)

∣∣∣eit(Xnk−µnk)/σn −
2∑
j=0

(it)j

j!

(
Xnk − µnk

σn

)j ∣∣∣]

+ E

[
I(|Xnk − µnk| < εσn)

∣∣∣eit(Xnk−µnk)/σn −
2∑
j=0

(it)j

j!

(
Xnk − µnk

σn

)j ∣∣∣] .
From the expansion in proving Proposition 3.5, the inequality |eitx − (1 + itx− t2x2/2)| ≤ t2x2

so we apply it to the first half on the right-hand side. Additionally, from the Taylor expansion,
|eitx − (1 + itx− t2x2/2)| ≤ |t|3|x|3/6 so we apply it to the second half of the right-hand side.
Then, we obtain

|φnk(t)− (1− σ2
nk

σ2
n

t2

2
)|

≤E

[
I(|Xnk − µnk| ≥ εσn)t2

(
Xnk − µnk

σn

)2
]

+ E

[
I(|Xnk − µnk| < εσn)|t|3 |Xnk − µnk|3

6σ3
n

∣∣∣]
≤ t

2

σ2
n

E[(Xnk − µnk)2I(|Xnk − µnk| ≥ εσn)] +
ε|t|3

6

σ2
nk

σ2
n

.

Therefore,

n∑
k=1

|φnk(t)− (1− t2

2

σ2
nk

σ2
n

)| ≤ t2

σ2
n

n∑
k=1

E[I(|Xnk − µnk| ≥ εσn)(Xnk − µnk)2] +
ε|t|3

6
.
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This summation goes to zero as n→∞ then ε→ 0.
Since for any complex numbers Z1, ..., Zm,W1, ...,Wm with norm at most 1,

|Z1 · · ·Zm −W1 · · ·Wm| ≤
m∑
k=1

|Zk −Wk|,

we have

|
n∏
k=1

φnk(t)−
n∏
k=1

(1− t2

2

σ2
nk

σ2
n

))| ≤
n∑
k=1

|φnk(t)− (1− t2

2

σ2
nk

σ2
n

)| → 0.

On the other hand, from |ez − 1− z| ≤ |z|2e|z|,

|
n∏
k=1

e−t
2σ2
nk/2σ

2
n −

n∏
k=1

(1− t2

2

σ2
nk

σ2
n

))| ≤
n∑
k=1

|e−t2σ2
nk/2σ

2
n − 1 + t2σ2

nk/2σ
2
n|

≤
n∑
k=1

et
2σ2
nk/2σ

2
nt4σ4

nk/4σ
4
n ≤ (max

k
{σnk/σn})2et

2/2t4/4→ 0.

We have

|
n∏
k=1

φnk(t)−
n∏
k=1

e−t
2σ2
nk/2σ

2
n| → 0.

The result thus follows by noticing

n∏
k=1

e−t
2σ2
nk/2σ

2
n → e−t

2/2.

“⇒′′: First, we note that from 1− cosx ≤ x2/2,

t2

2σ2
n

n∑
k=1

E[|Xnk − µnk|2I(|Xnk − µnk| > εσn)] ≤ t2

2
−

n∑
k=1

∫
|Xnk−µnk|≤εσn

t2y2

2σ2
n

dFnk(y)

≤ t2

2
−

n∑
k=1

∫
|Xnk−µnk|≤εσn

[1− cos(ty/σn)]dFnk(y),

where Fnk is the distribution for Xnk − µnk. On the other hand, since max{σnk/σn} → 0,
maxk |φnk(t)− 1| → 0 uniformly on any finite interval of t. Then

|
n∑
k=1

log φnk(t)−
n∑
k=1

(φnk(t)− 1)| ≤
n∑
k=1

|φnk(t)− 1|2 ≤ max
k
{|φnk(t)− 1|}

n∑
k=1

|φnk(t)− 1|

≤ max
k
{|φnk(t)− 1|}

n∑
k=1

t2σ2
nk/σ

2
n.

Thus,
n∑
k=1

log φnk(t) =
n∑
k=1

(φnk(t)− 1) + o(1).
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Since
∑n

k=1 log φnk(t)→ −t2/2 uniformly in any finite interval of t, we obtain

n∑
k=1

(1− φnk(t)) = t2/2 + o(1)

uniformly in finite interval of t. That is,

n∑
k=1

∫
(1− cos(ty/σn))dFnk(y) = t2/2 + o(1).

Therefore, for any ε and for any |t| ≤M , when n is large,

t2

2σ2
n

n∑
k=1

E[|Xnk − µnk|2I(|Xnk − µnk| > εσn)] ≤
n∑
k=1

∫
|Xnk−µnk|>εσn

[1− cos(ty/σn)]dFnk(y) + ε

≤ 2
n∑
k=1

∫
|Xnk−µnk|>εσn

dFnk(y) + ε ≤ 2

ε2

n∑
k=1

E[|Xnk − µnk|2]

σ2
n

+ ε ≤ 2/ε2 + ε.

Let t = M = 1/ε3 and we obtain the Lindeberg condition. †

Remark 3.7 To see how Theorem 3.14 implies the result in Theorem 3.13, we note that

1

σ2
n

n∑
i=1

E[|Xnk − µnk|2I(|Xnk − µnk| > εσn)] ≤ 1

ε3σ3
n

n∑
k=1

E[|Xnk − µnk|3].

We give some examples to show the application of the central limit theorems in statistics.

Example 3.11 This is one example from a simple linear regression. Suppose Xj = α+βzj + εj
for j = 1, 2, ... where zj are known numbers not all equal and the εj are i.i.d with mean zero
and variance σ2. We know that the least square estimate for β is given by

β̂n =
n∑
j=1

Xj(zj − z̄n)/
n∑
j=1

(zj − z̄n)2

= β +
n∑
j=1

εj(zj − z̄n)/
n∑
j=1

(zj − z̄n)2.

Assume

max
j≤n

(zj − z̄n)2/
n∑
j=1

(zj − z̄n)2 → 0.

we can show that the Lindeberg condition is satisfied. Thus, we conclude that

√
n

√∑n
j=1(zj − z̄n)2

n
(β̂n − β)→d N(0, σ2).
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Example 3.12 The example is taken from the randomization test for paired comparison. In a
paired study comparing treatment vs control, 2n subjects are grouped into n pairs. For pair, it
is decided at random that one subject receives treatment but not the other. Let (Xj, Yj) denote
the values of jth pairs with Xj being the result of the treatment. The usual paired t-test is
based on the normality of Zj = Xj − Yj which may be invalid in practice. The randomization
test (sometimes called permutation test) avoids this normality assumption, solely based on
the virtue of the randomization that the assignments of the treatment and the control are
independent in the pair, i.e., conditional on |Zj| = zj, Zj = |Zj|sgn(Zj) is independent taking
values ±|Zj| with probability 1/2, when treatment and control have no difference. Therefore,
conditional on z1, z2, ..., the randomization t-test, based on the t-statistic

√
n− 1Z̄n/sz where s2

z

is 1/n
∑n

j=1(Zj − Z̄n)2, has a discrete distribution on 2n equally likely values. We can simulate
this distribution by the Monte Carlo method easily. Then if this statistic is large, there is strong
evidence that treatment has large value. When n is large, such computation can be intimate,
a better solution is to find an approximation. The Lindeberg-Feller central limit theorem can
be applied if we assume

max
j≤n

z2
j /

n∑
j=1

z2
j → 0.

It can be shown that this statistic has an asymptotic normal distribution N(0, 1). The details
can be found in Ferguson, page 29.

Example 3.13 In Ferguson, page 30, an example of applying the central limit theorem is given
for the signed-rank test for paired comparisons. Interested readers can find more details there.

3.3.4 Delta method

In many situation, the statistics are not simply the summation of independent random variables
but a transformation of the latter. In this case, the Delta method can be used to obtain a similar
result to the central limit theorem.

Theorem 3.15 (Delta method) For random vector X and Xn in Rk , if there exists two
constant an and µ such that an(Xn−µ)→d X and an →∞, then for any function g : Rk 7→ Rl

such that g has a derivative at µ, denoted by ∇g(µ)

an(g(Xn)− g(µ))→d ∇g(µ)X.

†

Proof By the Skorohod representation, we can construct X̃n and X̃ such that X̃n ∼d Xn and
X̃ ∼d X (∼d means the same distribution) and an(X̃n−µ)→a.s. X̃. Then an(g(X̃n)−g(µ))→a.s.

∇g(µ)X̃. We obtain the result. †

As a corollary of Theorem 3.15, if
√
n(X̄n − µ) →d N(0, σ2), then for any differentiable

function g(·),
√
n(g(X̄n)− g(µ))→d N(0, g′(µ)2σ2).
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Example 3.14 Let X1, X2, ... be i.i.d with fourth moment. An estimate of the sample vari-
ance is s2

n = (1/n)
∑n

i=1(Xi − X̄n)2. We can use the Delta method in deriving the asymp-
totic distribution of s2

n. Denote mk as the kth moment of X1 for k ≤ 4. Note that s2
n =

(1/n)
∑n

i=1 X
2
i − (

∑n
i=1Xi/n)2 and

√
n

[(
X̄n

(1/n)
∑n

i=1 X
2
i

)
−
(
m1

m2

)]
→d N

(
0,

(
m2 −m1 m3 −m1m2

m3 −m1m2 m4 −m2
2

))
,

we can apply the Delta method with g(x, y) = y − x2 to obtain

√
n(s2

n − V ar(X1))→d N(0,m4 − (m2 −m2
1)2).

Example 3.15 Let (X1, Y1), (X2, Y2), ... be i.i.d bivariate samples with finite fourth moment.
One estimate of the correlation among X and Y is

ρ̂n =
sxy√
s2
xs

2
y

,

where sxy = (1/n)
∑n

i=1(Xi−X̄n)(Yi−Ȳn), s2
x = (1/n)

∑n
i=1(Xi−X̄n)2 and s2

y = (1/n)
∑n

i=1(Yi−
Ȳn)2. To derive the large sample distribution of ρ̂n, we can first obtain the large sample
distribution of (sxy, s

2
x, s

2
y) using the Delta method as in Example 3.14 then further apply the

Delta method with g(x, y, z) = x/
√
yz. We skip the details.

Example 3.16 The example is taken from the Pearson’s Chi-square statistic. Suppose that
one subject falls into K categories with probabilities p1, ..., pK , where p1 + ... + pK = 1. We
actually observe n1, ..., nk subjects in these categories from n = n1 + ...+nK i.i.d subjects. The
Pearson’s statistic is defined as

χ2 = n
K∑
k=1

(
nk
n
− pk)2/pk,

which can be treated as
∑

(observed count− expected count)2/expected count. To obtain the
asymptotic distribution of χ2, we note that

√
n(n1/n − p1, ..., nK/n − pK) has an asymptotic

multivariate normal distribution. Then we can apply the Delta method to g(x1, ..., xK) =∑K
i=1 x

2
k.

3.4 Summation of Non-independent Random Variables

In statistical inference, one will also encounter the summation of non-independent random
variables. Theoretical results of the large sample theory for general non-independent random
variables do not exist but for some summations with special structure, we have the similar
results to the central limit theorem. These special cases include the U-statistics, the rank
statistics, and the martingales.
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3.4.1 U-statistics

We suppose X1, ..., Xn are i.i.d. random variables.

Definition 3.6 A U-statistics associated with h̃(x1, ..., xr) is defined as

Un =
1

r!
(
n
r

)∑
β

h̃(Xβ1 , ..., Xβr),

where the sum is taken over the set of all unordered subsets β of r different integers chosen
from {1, ..., n}. †

One simple example is h̃(x, y) = xy. Then Un = (n(n − 1))−1
∑

i 6=j XiXj. Many examples
of U statistics arise from rank-based statistical inference. If let X(1), ..., X(n) be the ordered
random variables of X1, ..., Xn, one can see

Un = E[h̃(X1, ..., Xr)|X(1), ..., X(n)].

Clearly, Un is the summation of non-independent random variables.
If define h(x1, ..., xr) as (r!)−1

∑
(x̃1,...,x̃r) is permutation of (x1, ..., xr)

h̃(x̃1, ..., x̃r), then h(x1, ..., xr)
is permutation-symmetric and moreover,

Un =
1(
n
r

) ∑
β1<...<βr

h(β1, ..., βr).

In the last expression, h is called the kernel of the U-statistic Un.
The following theorem says that the limit distribution of U is the same as the limit distri-

bution of a sum of i.i.d random variables. Thus, the central limit theorem can be applied to
U .

Theorem 3.16 Let µ = E[h(X1, ..., Xr)]. If E[h(X1, ..., Xr)
2] <∞, then

√
n(Un − µ)−

√
n

n∑
i=1

E[Un − µ|Xi]→p 0.

Consequently,
√
n(Un − µ) is asymptotically normal with mean zero and variance r2σ2, where,

with X1, ..., Xr, X̃1, ..., X̃r i.i.d variables,

σ2 = Cov(h(X1, X2, ..., Xr), h(X1, X̃2, ..., X̃r)).

†

To prove Theorem 3.16, we need the following lemmas. Let S be a linear space of random
variables with finite second moments that contain the constants; i.e., 1 ∈ S and for any X, Y ∈
S, aX + bY ∈ Sn where a and b are constants. For random variable T , a random variable S is
called the projection of T on S if E[(T − S)2] minimizes E[(T − S̃)2], S̃ ∈ S.

Proposition 3.6 Let S be a linear space of random variables with finite second moments.
Then S is the projection of T on S if and only if S ∈ S and for any S̃ ∈ S, E[(T − S)S̃] = 0.
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Every two projections of T onto S are almost surely equal. If the linear space S contains the
constant variable, then E[T ] = E[S] and Cov(T − S, S̃) = 0 for every S̃ ∈ S. †

Proof For any S and S̃ in S,

E[(T − S̃)2] = E[(T − S)2] + 2E[(T − S)S̃] + E[(S − S̃)2].

Thus, if S satisfies that E[(T − S)S̃] = 0, then E[(T − S̃)2] ≥ E[(T − S)2]. Thus, S is
the projection of T on S. On the other hand, if S is the projection, for any constant α,
E[(T − S − αS̃)2] is minimized at α = 0. Calculate the derivative at α = 0 and we obtain
E[(T − S)S̃] = 0.

If T has two projections S1 and S2, then from the above argument, we have E[(S1−S2)2] = 0.
Thus, S1 = S2, a.s. If the linear space S contains the constant variable, we choose S̃ = 1. Then
0 = E[(T − S)S̃] = E[T ]− E[S]. Clearly, Cov(T − S, S̃) = E[(T − S)S̃] = 0. †

Proposition 3.7 Let Sn be linear space of random variables with finite second moments
that contain the constants. Let Tn be random variables with projections Sn on to Sn. If
V ar(Tn)/V ar(Sn)→ 1 then

Zn ≡
Tn − E[Tn]√
V ar(Tn)

− Sn − E[Sn]√
V ar(Sn)

→p 0.

†

Proof E[Zn] = 0. Note that

V ar(Zn) = 2− 2
Cov(Tn, Sn)√
V ar(Tn)V ar(Sn)

.

Since Sn is the projection of Tn, Cov(Tn, Sn) = Cov(Tn − Sn, Sn) + V ar(Sn) = V ar(Sn). We
have

V ar(Zn) = 2(1−

√
V ar(Sn)

V ar(Tn)
)→ 0.

By the Markov’s inequality, we conclude that Zn →p 0. †

The above lemma implies that if Sn is the summation of i.i.d random variables such that
(Sn −E[Sn])/

√
V ar(Sn)→d N(0, σ2), so is (Tn −E[Tn])/

√
V ar(Tn). The limit distribution of

U-statistics is derived using this lemma.
We now start to prove Theorem 3.16.

Proof Let X̃1, ..., X̃r be random variables with the same distribution as X1 and they are
independent of X1, ..., Xn. Denote Ũn by

∑n
i=1 E[U −µ|Xi]. We show that Ũn is the projection

of Un on the linear space Sn = {g1(X1) + ...+ gn(Xn) : E[gk(Xk)
2] <∞, k = 1, ..., n}, which

contains the constant variables. Clearly, Ũn ∈ Sn. For any gk(Xk) ∈ Sn,

E[(Un − Ũn)gk(Xk)] = E[E[Un − Ũn|Xk]gk(Xk)] = 0.
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In fact, we can easily see that

Ũn =
n∑
i=1

(
n−1
r−1

)(
n
r

) E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi] =
r

n

n∑
i=1

E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi].

Thus,

V ar(Ũn) =
r2

n2

n∑
i=1

E[(E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi])
2]

=
r2

n
Cov(E[h(X̃1, ..., X̃r−1, X1)|X1], E[h(X̃1, ..., X̃r−1, X1)|X1])

=
r2

n
Cov(h(X1, X̃2, ..., X̃r), h(X1, X2..., Xr)) =

r2σ2

n
,

where we use the equation

Cov(X, Y ) = Cov(E[X|Z], E[Y |Z]) + E[Cov(X, Y |Z)].

Furthermore,

V ar(Un) =

(
n

r

)−2∑
β

∑
β′

Cov(h(Xβ1 , ..., Xβr), h(Xβ′1
, ..., Xβ′r))

=

(
n

r

)−2 r∑
k=1

∑
β and β′ share k components

Cov(h(X1, X2, .., Xk, Xk+1, ..., Xr), h(X1, X2, ..., Xk, X̃k+1, ..., X̃r)).

Since the number of β and β′ sharing k components is equal to
(
n
r

)(
r
k

)(
n−r
r−k

)
, we obtain

V ar(Un) =
r∑

k=1

r!

k!(r − k)!

(n− r)(n− r + 1) · · · (n− 2r + k + 1)

n(n− 1) · · · (n− r + 1)

×Cov(h(X1, X2, .., Xk, Xk+1, ..., Xr), h(X1, X2, ..., Xk, X̃k+1, ..., X̃r)).

The dominating term in Un is the first term of order 1/n while the other terms are of order
1/n2. That is,

V ar(Un) =
r2

n
Cov(h(X1, X2, ..., Xr), h(X1, X̃2, ..., X̃r)) +O(

1

n2
).

We conclude that V ar(Un)/V ar(Ũn)→ 1. From Proposition 3.7, it holds that

Un − µ√
V ar(Un)

− Ũn√
V ar(Ũn)

→p 0.

Theorem 3.16 thus holds. †
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Example 3.17 In a bivariate i.i.d sample (X1, Y1), (X2, Y2), ..., one statistic of measuring the
agreement is called Kendall’s τ -statistic given as

τ̂ =
4

n(n− 1)

∑∑
i<j

I {(Yj − Yi)(Xj −Xi) > 0} − 1.

It can be seen that τ̂ + 1 is a U-statistic of order 2 with the kernel

2I {(y2 − y1)(x2 − x1) > 0} .

Hence, by the above central limit theorem,
√
n(τ̂n + 1 − 2P ((Y2 − Y1)(X2 −X1) > 0)) has an

asymptotic normal distribution with mean zero. The asymptotic variance can be computed as
in Theorem 3.16.

3.4.2 Rank statistics

For a sequence of i.i.d random variables X1, ..., Xn, we can order them from the smallest to
the largest and denote by X(1) ≤ X(2) ≤ ... ≤ X(n). The latter is called order statistics of the
original sample. The rank statistics, denoted by R1, ..., Rn are the ranks of Xi among X1, ..., Xn.
Thus, if all the X’s are different, Xi = X(Ri). When there are ties, Ri is defined as the average
of all indices such that Xi = X(j) (sometimes called midrank). To avoid possible ties, we only
consider the case that X’s have continuous densities.

By name, a rank statistic is any function of the ranks. A linear rank statistic is a rank
statistic of the special form

∑n
i=1 a(i, Ri) for a given matrix (a(i, j))n×n. If a(i, j) = ciaj, then

such statistic with form
∑n

i=1 ciaRi is called simple linear rank statistic, which will be our
concern in this section. Here, c and a’s are called the coefficients and scores.

Example 3.18 In two independent sample X1, ..., Xn and Y1, ..., Ym, a Wilcoxon statistic is
defined as the summation of all the ranks of the second sample in the pooled data X1, ..., Xn,
Y1, ..., Ym, i.e.,

Wn =
n+m∑
i=n+1

Ri.

This is a simple linear rank statistic with c’s are 0 and 1 for the first sample and the second
sample respectively and the vector a is (1, ..., n+m). There are other choices for rank statistics,
for instance, the van der Waerden statistic

∑n+m
i=n+1 Φ−1(Ri).

For order statistics and rank statistics, there are some useful properties.

Proposition 3.8 Let X1, ..., Xn be a random sample from continuous distribution function F
with density f . Then

1. the vectors (X(1), ..., X(n)) and (R1, ..., Rn) are independent;

2. the vector (X(1), ..., X(n)) has density n!
∏n

i=1 f(xi) on the set x1 < ... < xn;

3. the variableX(i) has density
(
n−1
i−1

)
F (x)i−1(1−F (x))n−if(x); for F the uniform distribution

on [0, 1], it has mean i/(n+ 1) and variance i(n− i+ 1)/[(n+ 1)2(n+ 2)];
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4. the vector (R1, ..., Rn) is uniformly distributed on the set of all n! permutations of
1, 2, ..., n;

5. for any statistic T and permutation r = (r1, ..., rn) of 1, 2, ..., n,

E[T (X1, ..., Xn)|(R1, .., Rn) = r] = E[T (X(r1), .., X(rn))];

6. for any simple linear rank statistic T =
∑n

i=1 ciaRi ,

E[T ] = nc̄nān, V ar(T ) =
1

n− 1

n∑
i=1

(ci − c̄n)2

n∑
i=1

(ai − ān)2.

†

The proof of Proposition 3.8 is elementary so we skip. For simple linear rank statistic, a
central limit theorem also exists:

Theorem 3.17 Let Tn =
∑n

i=1 ciaRi such that

max
i≤n
|ai − ān|/

√√√√ n∑
i=1

(ai − ān)2 → 0, max
i≤n
|ci − c̄n|/

√√√√ n∑
i=1

(ci − c̄n)2 → 0.

Then (Tn − E[Tn])/
√
V ar(Tn)→d N(0, 1) if and only if for every ε > 0,

∑
(i,j)

I

{
√
n

|ai − ān||ci − c̄n|√∑n
i=1(ai − ān)2

∑n
i=1(ci − c̄n)2

> ε

}
|ai − ān|2|ci − c̄n|2∑n

i=1(ai − ān)2
∑n

i=1(ci − c̄n)2
→ 0.

We can immediately recognize that the last condition is similar to the Lindeberg condition.
The proof can be found in Ferguson, Chapter 12.

Besides of rank statistics, there are other statistics based on ranks. For example, a simple
linear signed rank statistic has the form

n∑
i=1

aR+
i

sign(Xi),

where R+
1 , ..., R

+
n , called absolute rank, are the ranks of |X1|, ..., |Xn|. In a bivariate sample

(X1, Y1), ..., (Xn, Yn), one can define a statistic of the form

n∑
i=1

aRibSi

for two constant vector (a1, ..., an) and (b1, ..., bn), where (R1, ..., Rn) and (S1, ..., Sn) are respec-
tive ranks of (X1, ..., Xn) and (Y1, ..., Yn). Such a statistic is useful for testing independence of
X and Y . Another statistic is based on permutation test, as exemplified in Example 3.12. For
all these statistics, some conditions ensure that the central limit theorem holds.
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3.4.3 Martingales

In this section, we consider the central limit theorem for another type of the sum of non-
independent random variables. These random variables are called martingale.

Definition 3.7 Let {Yn} be a sequence of random variables and Fn be sequence of σ-fields such
that F1 ⊂ F2 ⊂ .... Suppose E[|Yn|] <∞. Then the pairs {(Yn,Fn)} is called a martingale if

E[Yn|Fn−1] = Yn−1, a.s.

{(Yn,Fn)} is a submartingale if

E[Yn|Fn−1] ≥ Yn−1, a.s.

{(Yn,Fn)} is a supmartingale if

E[Yn|Fn−1] ≤ Yn−1, a.s.

†

The definition implies that Y1, ..., Yn are measurable in Fn. Sometimes, we say Yn is adapted
to Fn. One simple example of martingale is that Yn = X1 + ...+Xn, where X1, X2, ... are i.i.d
with mean zero, and Fn is the σ-filed generated by X1, ..., Xn. This is because

E[Yn|Fn−1] = E[X1 + ...+Xn|X1, ..., Xn−1] = Yn−1.

For Yn = X2
1 + ... + X2

n, one can verify that {(Yn,Fn)} is a submartingale. In fact, from one
submartingale, one can construct many submartingales as shown in the following lemma.

Proposition 3.9 Let {(Yn,Fn)} be a martingale. For any measurable and convex function φ,
{(φ(Yn),Fn)} is a submartingale. †

Proof Clearly, φ(Yn) is adapted to Fn. It is sufficient to show

E[φ(Yn)|Fn−1] ≥ φ(Yn−1).

This follows from the well-known Jensen’s inequality: for any convex function φ,

E[φ(Yn)|Fn−1] ≥ φ(E[Yn|Fn−1]) = φ(Yn−1).

†

Particularly, the Jensen’s inequality is given in the following lemma.

Proposition 3.10 For any random variable X and any convex measurable function φ,

E[φ(X)] ≥ φ(E[X]).

†
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Proof We first claim that for any x0, there exists a constant k0 such that for any x,

φ(x) ≥ φ(x0) + k0(x− x0).

The line φ(x0) + k0(x − x0) is called the supporting line for φ(x) at x0. By the convexity, we
have that for any x′ < y′ < x0 < y < x,

φ(x0)− φ(x′)

x0 − x′
≤ φ(y)− φ(x0)

y − x0

≤ φ(x)− φ(x0)

x− x0

.

Thus, φ(x)−φ(x0)
x−x0 is bounded and decreasing as x decreases to x0. Let the limit be k+

0 then

φ(x)− φ(x0)

x− x0

≥ k+
0 .

I.e.,
φ(x) ≥ k+

0 (x− x0) + φ(x0).

Similarly,
φ(x′)− φ(x0)

x′ − x0

≤ φ(y′)− φ(x0)

y′ − x0

≤ φ(x)− φ(x0)

x− x0

.

Then φ(x′)−φ(x0)
x′−x0 is increasing and bounded as x′ increases to x0. Let the limit be k−0 then

φ(x′) ≥ k−0 (x′ − x0) + φ(x0).

Clearly, k+
0 ≥ k−0 . Combining those two inequalities, we obtain

φ(x) ≥ φ(x0) + k0(x− x0)

for k0 = (k+
0 + k−0 )/2. We choose x0 = E[X] then

φ(X) ≥ φ(E[X]) + k0(X − E[X]).

The Jensen’s inequality holds by taking the expectation on both sides. †

If {(Yn,Fn)} is a submartingale, we can write Yn = (Yn − E[Yn|Fn−1]) + E[Yn|Fn−1]. Note
that {(Yn−E[Yn|Fn−1],Fn)} is a martingale and that E[Yn|Fn−1] is measurable in Fn−1. Thus
any submartingale can be written as the summation of a martingale and a random variable
predictable in Fn−1. We now state the limit theorems for the martingales.

Theorem 3.18 (Martingale Convergence Theorem) Let {(Xn,Fn)} be submartingale. If
K = supnE[|Xn|] <∞, then Xn →a.s. X where X is a random variable satisfying E[|X|] ≤ K.
†

The proof needs the maximal inequality for a submartingale and the up-crossing inequality.

Proof We first prove the following maximal inequality: for α > 0,

P (max
i≤n

Xi ≥ α) ≤ 1

α
E[|Xn|].
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To see that, we note that

P (max
i≤n

Xi ≥ α)

=
n∑
i=1

P (X1 < α, ..., Xi−1 < α,Xi ≥ α)

≤
n∑
i=1

E[I(X1 < α, ..., Xi−1 < α,Xi ≥ α)
Xi

α
]

=
1

α

n∑
i=1

E[I(X1 < α, ..., Xi−1 < α,Xi ≥ α)Xi].

Since E[Xn|X1, ..., Xn−1] ≥ Xn−1, E[Xn|X1, ..., Xn−2] ≥ E[Xn−1|X1, ..., Xn−2] and so on. We
obtain E[Xn|X1, ..., Xi] ≥ E[Xi+1|X1, ..., Xi] ≥ Xi for i = 1, ..., n− 1. Thus,

P (max
i≤n

Xi ≥ α) ≤ 1

α

n∑
i=1

E[I(X1 < α, ..., Xi−1 < α,Xi ≥ α)E[Xn|X1, ..., Xi]]

≤ 1

α
E[Xn

n∑
i=1

I(X1 < α, ..., Xi−1 < α,Xi ≥ α)] ≤ 1

α
E[Xn] ≤ 1

α
E[|Xn|].

For any interval [α, β] (α < β), we define a sequence of numbers τ1, τ2, ... as follows:
τ1 is the smallest j such that 1 ≤ j ≤ n and Xj ≤ α and is n if there is not such j;
τ2k is the smallest j such that τ2k−1 < j ≤ n and Xj ≥ β, and is n if there is not such j;
τ2k+1 is the smallest j such τ2k < j ≤ n and Xj ≤ α, and is n if there is not such j.
A random variable U , called upcrossings of [α, β] by X1, ..., Xn, is the largest i such that
Xτ2i−1

≤ α < β ≤ Xτ2i . We then show that

E[U ] ≤ E[|Xn|] + |α|
β − α

.

Let Yk = max{0, Xk − α} and θ = β − α. It is easy to see Y1, ..., Yn is a submartingale. The τk
are unchanged if the definitions Xj ≤ α is replaced by Yj = 0 and Xj ≥ β by Yj ≥ θ, and so U
is also the number of upcrossings of [0, θ] by Y1, .., Yn. We also obtain

E[Yτ2k+1
− Yτ2k ] =

∑
1≤k1<k2≤n

E[(Yk2 − Yk1)I(τ2k+1 = k2, τ2k = k1)]

=
n−1∑
k1=1

n∑
k′=2

E[I(τ2k = k1, k1 < k′ ≤ τ2k+1)(Yk′ − Yk′−1)]

=
n−1∑
k1=1

n∑
k′=2

E[I(τ2k = k1, k1 < k′)(1− I(τ2k+1 < k′))(Yk′ − Yk′−1)].

By the definition, if {τ2k−1 = i} is measurable in Fi for i = 1, ..., n, where Fi is the σ-field
generated by Y1, ..., Yi, then

{τ2k = j} = ∪j−1
i=1 {τ2k−1 = i, Yi+1 < θ, ..., Yj−1 ≤ θ, Yj ≥ θ}
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belongs to the σ-field Fj and {τ2k = n} = {τ2k ≤ n− 1}c lies in Fn. Similarly, if {τ2k = i} ∈ Fi
for any i = 1, ..., n, so is {τ2k+1 = i} ∈ Fi for any i = 1, ..., n. Thus, by the deduction, we
obtain that for any i = 1, ..., n, {τk = i} is in Fi. Then,

E[I(τ2k = k1, k1 < k′)(1− I(τ2k+1 < k′))(Yk′ − Yk′−1)]

= E[I(τ2k = k1, k1 < k′)(1− I(τ2k+1 < k′))(E[Yk′ |Fk′−1]− Yk′−1)] ≥ 0.

We conclude that E[Yτ2k+1
− Yτ2k ] ≥ 0.

Since τk is strictly increasing and τn = n,

Yn = Yτn ≥ Yτn − Yτ1 =
n∑
k=2

(Yτk − Yτk−1
) =

∑
2≤k≤n,k even

(Yτk − Yτk−1
) +

∑
2≤k≤n,k odd

(Yτk − Yτk−1
).

When k is even, Yτk − Yτk−1 ≥ θ and the total number of such k is U . The expectation of the
second half is non-negative. We obtain

E[Yn] ≥ θE[U ].

Thus,

E[U ] ≤ θ

E
[Yn] ≤ E[|X|+ |α|

β − α
.

With the maximal inequality, we can start to prove the martingale convergence theorem.
Let Un be the number of upcrossings of [α, β] by X1, ..., Xn. Then

E[Un] ≤ K + |α|
β − α

.

Let X∗ = lim supnXn and X∗ = lim infnXn. If X∗ < α < β < X∗, then Un must go to infinity.
Since Un is bounded with probability 1, P (X∗ < α < β < X∗) = 0. Now

{X∗ < X∗} = ∪α<β,α,β are rational numbers{X∗ < α < β < X∗}.

We obtain P (X∗ = X∗) = 1. That is, Xn converges to their common values X. By the Fatou’s
lemma, E[|X|] ≤ lim infnE[|Xn|] ≤ K. X is integrable and finite with probability 1. † .

As a corollary of the martingale convergence theorem, we obtain

Corollary 3.1 If Fn is increasing σ-field and denote F∞ as the σ-field generated by ∪∞n=1Fn,
then for any random variable Z with E[|Z|] <∞, it holds

E[Z|Fn]→a.s. E[Z|F∞].

†

Proof Denote Yn = E[Zn|Fn]. Clearly, Yn is a martingale adapted to Fn. Moreover, E[|Yn|] ≤
E[|Z|]. By the martingale convergence theorem, Yn converges to some random variable Y almost
surely. Clearly, Y is measurable in F∞. We then show Yn is uniformly integrable. Since
Yn ≤ E[|Zn||Fn], we may assume Z is non-negative. For any ε > 0, there exists a δ such
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that E[ZIA] < ε whenever P (A) < δ (since the measure E[ZIA] is absolutely continuous with
respect to the measure P ). Note that for a large α, consider the set A = {P (E[Z|Fn] ≥ α)}.
Since

P (A) = E[I(E[Z|Fn] ≥ α)] ≤ 1

α
E[Z],

we can choose α large enough (independent of n) such that P (A) < δ. Thus, E[ZI(E[Z|Fn] ≥
α)] < ε for any n. We conclude E[Z|Fn] is uniformly integrable. With the uniform integrability,
we have that for any A ∈ Fk, limn

∫
A
YndP =

∫
A
Y dP. Note that

∫
A
YndP =

∫
A
ZdP for n > k.

Thus,
∫
A
Y dP =

∫
A
ZdP =

∫
A
E[Z|F∞]dP . This is true for any A ∈ ∪∞n=1F∞ so it is also true

for any A ∈ F∞. Since Y is measurable in F∞, Y = E[Z|F∞], a.s. †

Finally, a similar theorem to the Lindeberg-Feller central limit theorem also exists for the
martingales.

Theorem 3.19 (Martingale Central Limit Theorem) Let (Yn1,Fn1), (Yn2,Fn2), ... be a
martingale. Define Xnk = Ynk − Yn,k−1 with Yn0 = 0 thus Ynk = Xn1 + ...+Xnk. Suppose that∑

k

E[X2
nk|Fn,k−1]→p σ

2

where σ is a positive constant and that∑
k

E[X2
nkI(|Xnk| ≥ ε)|Fn,k−1]→p 0

for each ε > 0. Then ∑
k

Xnk →d N(0, σ2).

†

The proof is based on the approximation of the characteristic function and we skip the
details here.

3.5 Some Notation

In a probability space (Ω,A, P ), let {Xn} be random variables (random vectors). We introduce
the following notation: Xn = op(1) denotes thatXn converges in probability to zero, Xn = Op(1)
denotes that Xn is bounded in probability; i.e.,

lim
M→∞

lim sup
n

P (|Xn| ≥M) = 0.

It is easy to see Xn = Op(1) is equivalent to saying Xn is uniformly tight. Furthermore, for
a sequence of random variable {rn}, Xn = op(rn) means that |Xn|/rn →p 0 and Xn = Op(rn)
means that |Xn|/rn is bounded in probability.

There are many rules of calculus with o and O symbols. For instance, some commonly used
formulae are (Rn is a deterministic sequence)

op(1) + op(1) = op(1), Op(1) +Op(1) = Op(1), Op(1)op(1) = op(1),
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(1 + op(1))−1 = 1 + op(1), op(Rn) = Rnop(1), Op(Rn) = RnOp(1),

op(Op(1)) = op(1).

Furthermore, if a real function R(·) satisfies that R(h) = o(|h|p) as h → 0, then R(Xn) =
op(|Xn|p); if R(h) = O(|h|p) as h → 0, then R(Xn) = Op(|Xn|p). Readers should be able to
prove these results without difficulty.

READING MATERIALS : You should read Lehmann and Casella, Section 1.8, Ferguson, Part
1, Part 2, Part 3 12-15

PROBLEMS

1. (a) If X1, X2, ... are i.i.d N(0, 1), then X(n)/
√

2 log n →p 1 where X(n) is the maximum
of X1, ..., Xn. Hint: use the following inequality: for any δ > 0,

δ√
2π
e−(1+δ)y2/2y ≤

∫ ∞
y

1√
2π
e−x

2/2dx ≤ e−y
2(1−δ)/2
√
δ

.

(b) If X1, X2, ... are i.i.d Uniform(0, 1), derive the limit distribution of n(1−X(n)).

2. Suppose that U ∼ Uniform(0, 1), α > 0, and

Xn = (nα/ log(n+ 1))I[0,n−α](U).

(a) Show that Xn →a.s. 0 and E[Xn]→ 0.

(b) Can you find a random variable Y with |Xn| ≤ Y for all n with E[Y ] <∞?

(c) For what values of α does the uniform integrability condition

lim sup
n→∞

E[|Xn|I|Xn|≥M ]→ 0, as M →∞

hold?

3. (a) Show by example that distribution functions having densities can converge in distri-
bution even if the densities do not converge. Hint: Consider fn(x) = 1 + cos 2πnx
in [0, 1].

(b) Show by example that distributions with densities can converge in distribution to a
limit that has no density.

(c) Show by example that discrete distributions can converge in distribution to a limit
that has a density.

4. Stirling’s formula. Let Sn = X1 + ...+Xn, where the X1, ..., Xn are independent and each
has the Poisson distribution with parameters 1. Calculate or prove successively:
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(a) Calculate the expectation of {(Sn − n)/
√
n}−, the negative part of (Sn − n)/

√
n.

(b) Show {(Sn − n)/
√
n}− →d Z

−, where Z has a standard normal distribution.

(c) Show

E

[{
Sn − n√

n

}−]
→ E[Z−].

(d) Use the above results to derive the Stirling’s formula:

n! ∼
√

2πnn+1/2e−n.

5. This problem gives an alternative way of proving the Slutsky theorem. Let Xn →d X
and Yn →p y for some constant y. Assume Xn and Yn are both measurable functions
on the same probability measure space (Ω,A, P ). Then (Xn, Yn)′ can be considered as a
bivariate random variable into R2.

(a) Show (Xn, Yn)′ →d (X, y)′. Hint: show the characteristic function of (Xn, Yn)′ con-
verges using the dominated convergence theorem.

(b) Use the continuous mapping theorem to prove the Slutsky theorem. Hint: first show
ZnXn →d zX using the function g(x, z) = xz; then show ZnXn + Yn →d zX + y
using the function g̃(x, y) = x+ y.

6. Suppose that {Xn} is a sequence of random variables in a probability measure space.
Show that, if E[g(Xn)] → E[g(X)] for all continuous g with bounded support (that is,
g(x) is zero when x is outside a bounded interval), then Xn →d X. Hint: verify (c) of the
Portmanteau Theorem. Follow the proof for (c) by considering g(x) = 1− ε/[ε+d(x,Gc∪
(−M,M)c)] for any M .

7. Suppose thatX1, ..., Xn are i.i.d with distribution functionG(x). LetMn = max{X1, .., Xn}.

(a) If G(x) = (1− exp{−αx})I(x > 0), what is the limit distribution of Mn−α−1 log n?

(b) If

G(x) =

{
0 if x ≤ 1,
1− x−α if x ≥ 1,

where α > 0, what is the limit distribution of n−1/αMn?

(c) If

G(x) =


0 if x ≤ 0,
1− (1− x)α if 0 ≤ x ≤ 1,
1 if x ≥ 1,

where α > 0, what is the limit distribution of n1/α(Mn − 1)?

8. (a) Suppose that X1, X2, ... are i.i.d in R2 with distribution giving probability θ1 to (1, 0),
probability θ2 to (0, 1), θ3 to (0, 0) and θ4 to (−1,−1) where θj ≥ 0 for j = 1, 2, 3, 4
and θ1 + ...+ θ4 = 1. Find the limiting distribution of

√
n(X̄n−E[X1]) and describe

the resulting approximation to the distribution of X̄n.
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(b) Suppose that X1, ..., Xn is a sample from the Poisson distribution with parameter
λ > 0: P (X1 = k) = exp{−λ}λk/k!, k = 0, 1, ... Let Zn = [

∑n
i=1 I(Xi = 1)]/n.

What is the joint asymptotic distribution of
√
n((X̄n, Zn)′− (λ, λe−λ))? Let p1(λ) =

P (X1 = 1). What is the asymptotic distribution of p̂1 = p1(X̄n)? What is the joint
asymptotic distribution of (Zn, p̂1) (after centering and rescaling)?

(c) If Xn possesses a t-distribution with n degrees of freedom, then Xn →d N(0, 1) as
n→∞. Show this.

9. Suppose that Xn converges in distribution to X. Let φn(t) and φ(t) be the characteristic
functions of Xn and X respectively. We know that φn(t)→ φ(t) for each t. The following
procedure shows that if supnE[|Xn|] < C0 for some constant C0, the convergence point-
wise of the characteristic functions can be strengthened to the convergence uniformly in
any bounded interval,

sup
|t|<M

|φn(t)− φ(t)| → 0

for any constant M . Verify each of the following steps.

(a) Show that E[|Xn|] =
∫∞

0
P (|Xn| ≥ t)dt and E[|X|] =

∫∞
0
P (|X| ≥ t)dt. Hint: write

P (|Xn| ≥ t) = E[I(|Xn| ≥ t)] then apply the Fubini-Tonelli theorem.

(b) Show that P (|Xn| ≥ t) → P (|X| ≥ t) almost everywhere (with respect to the
Lebsgue measure). Then apply the Fatou’s lemma to show that E[|X|] ≤ C0.

(c) Show that both φn(t) and φ(t) satisfy: for any t1, t2,

|φn(t1)− φn(t2)| ≤ C0|t1 − t2|,

|φ(t1)− φ(t2)| ≤ C0|t1 − t2|.
That is, φn and φ are uniformly continuous.

(d) Show that supt∈[−M,M ] |φn(t)− φ(t)| → 0. Hint: first partition [−M,M ] into equally
spaced −M = t0 < t1 < ... < tm = M ; then for t in one of these intervals, say
[tk, tk+1], use the inequality

|φn(t)− φ(t)| ≤ |φn(t)− φn(tk)|+ |φn(tk)− φ(tk)|+ |φ(tk)− φ(t)|.

10. Suppose that X1, ..., Xn are i.i.d from the uniform distribution in [0, 1]. Derive the asymp-

totic distribution of Gini’s mean difference, which is defined as
(
n
2

)−1∑∑
i<j |Xi −Xj|.

11. Suppose that (X1, Y1), ..., (Xn, Yn) are i.i.d from a bivariate distribution with bounded

fourth moments. Derive the limit distribution of U =
(
n
2

)−1∑∑
i<j(Yj − Yi)(Xj − Xi).

Write the expression in terms of the moments of (X1, Y1).

12. Let Y1, Y2, ... be independent random variables with mean 0 and variance σ2. Let Xn =
(
∑n

k=1 Yk)
2 − nσ2 and show that {Xn} is a martingale.

13. Suppose that X1, ..., Xn are independent N(0, 1) random variables, and let Yi = X2
i for

i = 1, ..., n. Thus
∑n

i=1 Y
2
i ∼ χ2

n.

(a) Show that
√
n(Ȳn − 1)→d N(0, σ2) and find σ2.
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(b) Show that for each r > 0,
√
n(Ȳ r

n − 1)→d N(0, V (r)2) and find V (r)2 as a function
of r.

(c) Show that √
n{Ȳ 1/3

n − (1− 2/(9n))}√
2/9

→d N(0, 1).

Does this agree with your result in (b).

(d) Make normal probability plots to compare the approximations in (a) and (c) (the
transformation in (c) is called the “Wilson-Hilferty” transformation of a χ2-random
variable.

14. Suppose that X1, X2, ... are i.i.d positive random variables, and define X̄n =
∑n

i=1Xi/n,

Hn = 1/ {n−1
∑n

i=1(1/Xi)}, and Gn = {
∏n

i=1Xi}1/n
to be the arithmetic, harmonic and

geometric means respectively. We know that X̄n →a.s. E[X1] = µ if and only if E[|Xi|] is
finite.

(a) Use the strong law of large numbers together with appropriate additional hypotheses
to show that Hn →a.s. 1/ {E[1/X1]} ≡ h and Gn →a.s. exp{E[logX1]} ≡ g.

(b) Find the joint limiting distribution of
√
n(X̄n − µ,Hn − h,Gn − g). You will need

to impose or assume additional moment conditions to be able to prove this. Specify
these additional assumptions carefully.

(c) Suppose that Xi ∼ Gamma(r, λ) with r > 0. Find what values of r are the hypothe-
ses you impose in (c) satisfied? Compute the covariance of the limiting distribution
in (c) as explicitly as you can in this case.

(d) Show that
√
n(Gn/X̄n − g/µ) →d N(0, V 2). Compute V explicitly when Xi ∼

Gamma(r, λ) with r satisfying the conditions you found in (d).

15. Suppose that (N11, N12, N21, N22) has multinomial distribution with (n, p) where p =
(p11, p12, p21, p22) and

∑2
i=1

∑2
j=1 pij = 1. Thus, N ’s can be treated as counts in a 2×

table. The log-odds ratio is defined by

ψ = log
p12p21

p11p22

.

(a) Suggest an estimator of ψ, say ψ̂n.

(b) Show that the estimator you proposed in (a) is asymptotically normal and compute
the asymptotic variance of your estimator. Hint: The vectors of N ’s is the sum of n
independent Multinomial(1, p) random vectors {Yi, i = 1, ..., n}.

16. Suppose that Xi ∼ Bernoulli(pi), i = 1, .., n are independent. Show that if

n∑
i=1

pi(1− pi)→∞,

then √
n(X̄n − p̄n)√

n−1
∑n

i=1 pi(1− pi)
→d N(0, 1).
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Give one example {pi} for which the above convergence in distribution holds and another
example for which it fails.

17. Suppose thatX1, ..., Xn are independent with common mean µ but with variances σ2
1, ..., σ

2
n

respectively.

(a) Show that X̄n →p µ if
∑n

i=1 σ
2
i = o(n2).

(b) Now suppose that Xi = µ + σiεi where ε1, ..., εn are i.i.d with distribution function
F with E[ε1] = 0 and var(ε1) = 1. Show that if

max
i≤n

σ2
i /

n∑
i=1

σ2
i → 0

then with σ̄2
n = n−1

∑n
i=1 σ

2
i ,

√
n(X̄n − µ)

σ̄n
→d N(0, 1).

Hence show that if furthermore σ̄2 → σ2
0, then

√
n(X̄n − µ)→d N(0, σ2

0).

(c) If σ2
i = Air for some constant A, show that maxi≤n σ

2
i /
∑n

i=1 σ
2
i → 0 but σ̄2

n has not
limit. In this case, n(1−r)/2(X̄n − µ) = Op(1).

18. Suppose thatX1, ..., Xn are independent with common mean µ but with variances σ2
1, ..., σ

2
n

respectively, the same as the previous question. Consider the estimator of µ: Tn =∑n
i=1 ωniXi, where ω = (ωn1, ..., ωnn)) is a vector of weights with

∑n
i=1 ωni = 1.

(a) Show that all the estimators Tn have the mean µ and the choice of weights minimizing
var(Tn) is

ωoptni =
1/σ2

i∑n
j=1(1/σ2

j )
, i = 1, ..., n.

(b) Compute var(Tn) when ω = ωopt and show Tn →p µ if
∑n

i=1(1/σ2
i )→∞.

(c) Suppose Xi = µ + σiεi where ε1, ..., εn are i.i.d with distribution function F with
E[ε1] = 0 and var(ε1) = 1. Show that√√√√ n∑

i=1

(1/σ2
i )(Tn − µ)→d N(0, 1)

if maxi≤n(1/σ2
i )/
∑n

j=1(1/σ2
j )→ 0, where ω chosen as ωopt.

(d) Compute var(Tn)/var(X̄n) when ω = ωopt in the case σ2
i = Ari for r = 0.25, 0.5, 0.75

and n = 5, 10, 20, 50, 100,∞.

19. Ferguson, page 6 and page 7, problems 1-7

20. Ferguson, page 11 and page 12, problems 1-8

21. Ferguson, page 18, problems 1-5
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22. Ferguson, page 23, page 24 and page 25, problems 1-8

23. Ferguson, page 34 and page 35, problems 1-10

24. Ferguson, page 42 and page 43, problems 1-6

25. Ferguson, page 49 and page 50, problems 1-6

26. Ferguson, page 54 and page 55, problems 1-4

27. Ferguson, page 60, problems 1-4

28. Ferguson, page 65 and page 66, problems 1-3

29. Read Ferguson, pages 87-92 and do problems 3-6

30. Ferguson, page 100, problems 1-2

31. Lehmann and Casella, page 75, problems 8.2, 8.3

32. Lehmann and Casella, page 76, problems 8.8, 8.10, 8.11, 8.12, 8.14, 8.15, 8.16, 8.17 8.18

33. Lehmann and Casella, page 77, problems 8.19, 8.20, 8.21, 8.22, 8.23, 8.24, 8.25, 8.26
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CHAPTER 4 POINT ESTIMATION AND EFFICIENCY

The objective of science is to make general conclusions based on observed empirical data or
phenomenon. The differences among different scientific areas are scientific tools implemented
and scientific approaches to derive the decisions. However, they follow a similar procedure as
follows:
(A) a class of mathematical models is proposed to model scientific phenomena or processes;
(B) an estimated model is derived using the empirical data;
(C) the obtained model is validated using more and new observations; if wrong, go back to (A).
Usually, in (A), the class of mathematical models is proposed based on either past experience
or some physical laws. (B) is the step where all different scientific tools can play by using math-
ematical methods to determine the model. (C) is the step of model validation. Undoubtedly
eac step is important.

In statistical science, (A) corresponds to proposing a class of distribution functions, denoted
by P , to describe the probabilistic mechanisms of data generation. (B) consists of all kinds of
statistical methods to decide which distribution in the class of (A) fits the data best. (C) is
how one can validate or test the goodness of the distribution obtained in (B). Our goal of this
course is mainly on (B), which is called statistical inference step.

One good estimation approach should be able to estimate model parameters with reasonable
accuracy. Such accuracy is characterized by either unbiasedness in finite sample performance or
consistency in large sample performance. Furthermore, by accounting for randomness in data
generation, we also want the estimation to be somewhat robust to intrinsic random mechanism.
This robustness is characterized by the variance of the estimates. Thus, an ideally best estimator
should have no bias and have the smallest variance in any finite sample. Unfortunately, although
such estimators may exist for some models, most of models do not. One compromise is to seek
an estimator which has no bias and has the smallest variance in large sample, i.e., an estimate
which is asymptotically unbiased and efficient. Fortunately, such an estimator exists for most
of models.

In this chapter, we review some commonly-used estimation approaches, with particular
attention to the estimation providing the unbiased and smallest variance estimators if they exist.
The smallest variance for finite sample is characterized by the Cramér-Rao bound (efficiency
bound in finite sample). Such a bound also turns out to be the efficiency bound in large sample,
where we show that the asymptotic variance of any regular estimators in regular models can
not be smaller than this bound.

4.1 Introductory Examples

A model P is a collection of probability distributions for the data we observe. Parameters of
interest are simply some functionals on P , denoted by ν(P ) for P ∈ P .

Example 4.1 Suppose X is a non-negative random variable.
Case A. Suppose that X ∼ Exponential(θ), θ > 0; thus pθ(x) = θe−θxI(x ≥ 0). P consists of
distribution function which are indexed by a finite-dimensional parameter θ. P is a parametric
model. ν(pθ) = θ is parameter of interest.
Case B. Suppose P consists of the distribution functions with density pλ,G =

∫∞
0
λ exp{−λx}dG(λ),

where λ ∈ R and G is any distribution function. Then P consists of the distribution functions
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which are indexed by both real parameter λ and functional parameter G. P is a semiparametric
model. ν(pλ,G) = λ or G or both can be parameters of interest.
Case C. P consists of all distribution functions in [0,∞). P is a nonparametric model.
ν(P ) =

∫
xdP (x), the mean of the distribution function, can be parameter of interest.

Example 4.2 Suppose that X = (Y, Z) is a random vector on R+ ×Rd.
Case A. Suppose X ∼ Pθ with Y |Z = z ∼ exponential(λeθ

′z) for y ≥ 0. This is a parametric
model with parameter space Θ = R+ ×Rd.
Case B. Suppose X ∼ Pθ,λ with Y |Z = z ∼ λ(y)eθ

′z exp{−Λ(y)eθ
′z} where Λ(y) =

∫ y
0
λ(y)dy.

This is a semiparametric model, the Cox proportional hazards model for survival analysis, with
parameter space (θ, λ) ∈ R× {λ(y) : λ(y) ≥ 0,

∫∞
0
λ(y)dy =∞}.

Case C. Suppose X ∼ P on R+×Rd where P is completely arbitrary. This is a nonparametric
model.

Example 4.3 Suppose X = (Y, Z) is a random vector in R×Rd.
Case A. Suppose that X = (Y, Z) ∼ Pθ with Y = θ′Z + ε where θ ∈ Rd and ε ∼ N(0, σ2). This
is a parametric model with parameter space (θ, σ) ∈ Rd ×R+.
Case B. Suppose X = (Y, Z) ∼ Pθ with Y = θ′Z + ε where θ ∈ Rd and ε ∼ G with density g is
independent of Z. This is a semiparametric model with parameters (θ, g).
Case C. Suppose X = (Y, Z) ∼ P where P is an arbitrary probability distribution on R × Rd.
This is a nonparametric model.

For a given data, there are many reasonable models which can be used to describe data. A
good model is usually preferred if it is compatible with underlying mechanism of data genera-
tion, has as few model assumption as possible, can be presented in simple ways, and inference
is feasible. In other words, a good model should make sense, be flexible and parsimonious, and
be easy for inference.

4.2 Methods of Point Estimation: A Review

There have been a number of estimation methods proposed for many statistical models. How-
ever, some methods may work well from some statistical models but may not work well for
others. In the following sections, we list a few of these methods, along with examples.

4.2.1 Least square estimation

The least square estimation is the most classical estimation method. This method estimates
the parameters by minimizing the summed square distance between the observed quantities
and the expected quantities.

Example 4.4 Suppose n i.i.d observations (Yi, Zi), i = 1, ..., n, are generated from the distri-
bution in Example 4.3. To estimate θ, one method is to minimize the least square function

n∑
i=1

(Yi − θ′Zi)2.
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This gives the least square estimate for θ as

θ̂ = (
n∑
i=1

ZiZ
′
i)
−1(

n∑
i=1

ZiYi).

It can show that E[θ̂] = θ. Note that this estimation does not use any distribution function in
ε so applies to all three cases.

4.2.2 Uniformly minimal variance and unbiased estimation

Sometimes, one seeks an estimate which is unbiased for parameters of interest. Furthermore,
one wants such an estimate to have the least variation. If such an estimator exists, we call it
the uniformly minimal variance and unbiased estimator (UMVUE) (an estimator T is unbiased
for the parameter θ if E[T ] = θ). It should be noted that such an estimator may not exist.

The UMVUE often exists for distributions in the exponential family, whose probability
density functions are of form

pθ(x) = h(x)c(θ) exp{η1(θ)T1(x) + ...ηs(θ)Ts(x)},

where θ ∈ Rd and T (x) = (T1(x), ..., Ts(x)) is the s-dimensional statistics. The following lemma
describes how one can find a UMVUE for θ from an unbiased estimator.

Definition 4.1 T (X) is called a sufficient statistic forX ∼ pθ with respect to θ if the conditional
distribution of X given T (X) is independent of θ. T (X) is a complete statistic with respect to
θ if for any measurable function g, Eθ[g(T (X))] = 0 for any θ implies g = 0, where Eθ denotes
the expectation under the density function with parameter θ. †

It is easy to check that T (X) is sufficient if and only if pθ(x) can be factorized into
gθ(T (x))h(x). Thus, in the exponential family, T (X) = (T1(X), ..., Ts(X)) is sufficient. Ad-
ditionally, if the exponential family is of full-rank (i.e., {(η1(θ), ..., ηs(θ)) : θ ∈ Θ} contains a
cube in s-dimensional space), T (X) is also a complete statistic. The proof can be referred to
Theorem 6.22 in Lehmann and Casella (1998).

Proposition 4.1 Suppose θ̂(X) is an unbiased estimator for θ; i.e., E[θ̂(X)] = θ. If T (X) is a
sufficient statistics of X, then E[θ̂(X)|T (X)] is unbiased and moreover,

V ar(E[θ̂(X)|T (X)]) ≤ V ar(θ̂(X)),

with the equality if and only if with probability 1, θ̂(X) = E[θ̂(X)|T (X)]. †

Proof E[θ̂(X)|T ] is clearly unbiased and moreover, by the Jensen’s inequality,

V ar(E[θ̂(X)|T ]) = E[(E[θ̂(X)|T ])2]− E[θ̂(X)]2 ≤ E[θ̂(X)2]− θ2 = V ar(θ̂(X)).

The equality holds if and only if E[θ̂(X)|T ] = θ̂(X) with probability 1. †

Proposition 4.2 If T (X) is complete sufficient and θ̂(X) is unbiased, then E[θ̂(X)|T (X)] is
the unique UMVUE for θ. †
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Proof For any unbiased estimator for θ, denoted by T̃ (X), we obtain from Proposition 4.1 that
E[T̃ (X)|T (X)] is unbiased and

V ar(E[T̃ (X)|T (X)]) ≤ V ar(T̃ (X)).

Since E[E[T̃ (X)|T (X)]− E[θ̂(X)|T (X)]] = 0 and E[T̃ (X)|T (X)] and E[θ̂(X)|T (X)] are inde-
pendent of θ, the completeness of T (X) gives that

E[T̃ (X)|T (X)] = E[θ̂(X)|T (X)].

That is, V ar(E[θ̂(X)|T (X)]) ≤ V ar(T̃ (X)). Thus, E[θ̂(X)|T (X)] is the UMVUE. The above
arguments also show that such a UMVUE is unique. †

Proposition 4.2 suggests two ways to derive the UMVUE in the presence of a complete
sufficient statistic T (X): one way is to find an unbiased estimator of θ then calculate the
conditional expectation of this unbiased estimator given T (X); another way is to directly find
a function g(T (X)) such that E[g(T (X))] = θ. The following example describes these two
methods.

Example 4.5 Suppose X1, ..., Xn are i.i.d according to the uniform distribution U(0, θ) and we
wish to obtain a UMVUE of θ/2. From the joint density of X1, ..., Xn given by

1

θn
I(X(n) < θ)I(X(1) > 0),

one can easily show X(n) is complete and sufficient for θ. Note E[X1] = θ/2. Thus, a UMVUE
for θ/2 is given by

E[X1|X(n)] =
n+ 1

n

X(n)

2
.

The other way is to directly find a function g(X(n)) = θ/2 by noting

E[g(X(n))] =
1

θn

∫ θ

0

g(x)nxn−1dx = θ/2.

Thus, we have ∫ θ

0

g(x)xn−1dx =
θn+1

2n
.

We differentiate both sides with respect to θ and obtain g(x) = n+1
n

x
2
. Hence, we again obtain

the UMVUE for θ/2 is equal to (n+ 1)X(n)/2n.
Many more examples of the UMVUE can be found in Chapter 2 of Lehmann and Casella

(1998).

4.2.3 Robust estimation

In some regression problems, one may be concerned about outliers. For example, in a simple
linear regression, an extreme outlier may affect the fitted line greatly. One estimation approach
called robust estimation approach is to propose an estimator which is little influenced by extreme
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observations. Often, for n i.i.d observations X1, ..., Xn, the robust estimation approach is to
minimize an objective function with the form

∑n
i=1 φ(Xi; θ).

Example 4.6 In linear regression, a model for (Y,X) is given by

Y = θ′X + ε,

where ε has mean zero. One robust estimator is to minimize

n∑
i=1

|Yi − θ′Xi|

and the obtained estimator is called the least absolute deviation estimator. A more general
objective function is to minimize

n∑
i=1

φ(Yi − θ′Xi),

where φ(x) = |x|k, |x| ≤ C and φ(x) = Ck when |x| > C.

4.2.4 Estimating functions

In recent statistical inference, more and more estimators are based on estimating functions. The
use of estimating functions has been extensively seen in semiparametric model. An estimating
function for θ is a measurable function f(X; θ) with E[f(X; θ)] = 0 or approximating zero.
Then an estimator for θ using n i.i.d observations can be constructed by solving the estimating
equation

n∑
i=1

f(Xi; θ) = 0.

The estimating function is useful, especially when there are other parameters in the model but
only θ is parameters of interest.

Example 4.7 We still consider the linear regression example. We can see that for any function
W (X), E[XW (X)(Y − θ′X)] = 0. Thus an estimating equation for θ can be constructed as

n∑
i=1

XiW (Xi)(Yi − θ′Xi) = 0.

Example 4.8 Still in the regression example but we now assume the median of ε is zero. It
is easy to see that E[XW (X)sgn(Y − θ′X)] = 0. Then an estimating equation for θ can be
constructed as

n∑
i=1

XiW (Xi)sgn(Yi − θ′Xi) = 0.
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4.2.5 Maximum likelihood estimation

The most commonly used method, at least in parametric models, is the maximum likelihood
estimation method: If n i.i.d observations X1, ..., Xn are generated from a distribution function
with densities pθ(x), then it is reasonable to believe that the best value for θ should be the one
maximizing the observed likelihood function, which is defined as

Ln(θ) =
n∏
i=1

pθ(Xi).

The obtained estimator θ̂ is called the maximum likelihood estimator for θ. Many nice properties
are possessed by the maximum likelihood estimators and we will particularly investigate this
issue in next chapter. Recent development has also seen the implementation of the maximum
likelihood estimation in semiparametric models and nonparametric models.

Example 4.9 Suppose X1, ..., Xn are i.i.d. observations from exp(θ). Then the likelihood
function for θ is equal to

Ln(θ) = θn exp{−θ(X1 + ...+Xn)}.

The maximum likelihood estimator for θ is given by θ̂ = X̄n.

Example 4.10 The setting is Case B of Example 1.2. Suppose (Y1, Z1), ..., (Yn, Zn) are i.i.d
with the density function λ(y)eθ

′z exp{−Λ(y)eθ
′z}g(z), where g(z) is the known density function

of Z = z. Then the likelihood function for the parameters (θ, λ) is given by

Ln(θ, λ) =
n∏
i=1

{
λ(Yi)e

θ′Zi exp{−Λ(Yi)e
θ′Zi}g(Zi)

}
.

It turns out that the maximum likelihood estimators for (θ, λ) do not exist. One way is to let Λ
be a step function with jumps at Y1, ..., Yn and let λ(Yi) be the jump size, denoted as pi. Then
the likelihood function becomes

Ln(θ, p1, ..., pn) =
n∏
i=1

pieθ′Zi exp{−
∑
Yj≤Yi

pje
θ′Zi}g(Zi)

 .

The maximum likelihood estimators for (θ, p1, ..., pn) are given as: θ̂ solves the equation

n∑
i=1

Zi

[
1−

∑
Yj≥Yi Zje

θ′Zj∑
Yj≥Yi e

θ′Zj

]
= 0

and

pi =
1∑

Yj≥Yi e
θ′Zj

.
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4.2.6 Bayesian estimation

In this estimation approach, the parameter θ in the model distributions {pθ(x)} is treated as
a random variable with some prior distribution π(θ). The estimator for θ is defined as a value
depending on the data and minimizing the expected loss function or the maximal loss function,
where the loss function is denoted as l(θ, θ̂(X)). The usual loss function includes the quadratic
loss (θ− θ̂(X))2, the absolute loss |θ− θ̂(X)| etc. It often turns out that θ̂(X) can be determined
from the posterior distribution of P (θ|X) = P (X|θ)P (θ)/P (X).

Example 4.11 Suppose X ∼ N(θ, 1), where θ has an improper prior distribution of being
uniform in (−∞,∞). It is clear that the estimator θ̂(X), minimizing the quadratic loss E[(θ−
θ̂(X))2], is the posterior mean E[θ|X] = X.

4.2.7 Concluding remarks

We have reviewed a few methods which are seen in many statistical problems. However we have
not exhausted all estimation approaches. Other estimation methods include the conditional
likelihood estimation, the profile likelihood estimation, the partial likelihood estimation, the
empirical Bayesian estimation, the minimax estimation, the rank estimation, L-estimation and
etc.

With a number of estimators, one natural question is to decide which estimator is the best
choice. The first criteria is that the estimator must be unbiased or at least consistent with the
true parameter. Such a property is called the first order efficiency. In order to make a precise
estimation, we may also want the estimator to have as small variance as possible. The issue
then becomes the second order efficiency, which we will discuss in the next section.

4.3 Cramér-Rao Bounds for Parametric Models

4.3.1 Information bound in one-dimensional model

First, we assume the model is one-dimensional parametric model P = {Pθ : θ ∈ Θ} with Θ ⊂ R.
We assume:
A. X ∼ Pθ on (Ω,A) with θ ∈ Θ.
B. pθ = dPθ/dµ exists where µ is a σ-finite dominating measure.
C. T (X) ≡ T estimates q(θ) has Eθ[|T (X)|] <∞; set b(θ) = Eθ[T ]− q(θ).
D. q′(θ) ≡ q̇(θ) exists.

Theorem 4.1 (Information bound or Cramér-Rao Inequality) Suppose:
(C1) Θ is an open subset of the real line.
(C2) There exists a set B with µ(B) = 0 such that for x ∈ Bc, ∂pθ(x)/∂θ exists for all θ.
Moreover, A = {x : pθ(x) = 0} does not depend on θ.
(C3) I(θ) = Eθ[l̇θ(X)2] > 0 where l̇θ(x) = ∂ log pθ(x)/∂θ. Here, I(θ) is the called the Fisher
information for θ and l̇θ is called the score function for θ.
(C4)

∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under the

integral sign.
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(C5)
∫
pθ(x)dµ(x) can be differentiated twice under the integral sign.

If (C1)-(C4) hold, then

V arθ(T (X)) ≥ {q̇(θ) + ḃ(θ)}2

I(θ)
,

and the lower bound is equal to q̇(θ)2/I(θ) if T is unbiased. Equality holds for all θ if and only
if for some function A(θ), we have

l̇θ(x) = A(θ){T (x)− Eθ[T (X)]}, a.e.µ.

If, in addition, (C5) holds, then

I(θ) = −Eθ
{
∂2

∂θ2
log pθ(X)

}
= −Eθ[l̈θ(X)].

†

Proof Note

q(θ) + b(θ) =

∫
T (x)pθ(x)dµ(x) =

∫
Ac∩Bc

T (x)pθ(x)dµ(x).

Thus from (C2) can (C4),

q̇(θ) + ḃ(θ) =

∫
Ac∩Bc

T (x)l̇θ(x)pθ(x)dµ(x) = Eθ[T (X)l̇θ(X)].

On the other hand, since
∫
Ac∩Bc pθ(x)dµ(x) = 1,

0 =

∫
Ac∩Bc

l̇θ(x)pθ(x)dµ(x) = Eθ[l̇θ(X)].

Then
q̇(θ) + ḃ(θ) = Cov(T (X), l̇θ(X)).

By the Cauchy-Schwartz inequality, we obtain

|q̇(θ) + ḃ(θ)| ≤ V ar(T (X))V ar(l̇θ(X)).

The equality holds if and only if

l̇θ(X) = A(θ) {T (X)− Eθ[T (X)]} , a.s.

Finally, if (C5) holds, we further differentiate

0 =

∫
l̇θ(x)pθ(x)dµ(x)

and obtain

0 =

∫
l̈θ(x)pθ(x)dµ(x) +

∫
l̇θ(x)2pθ(x)dµ(x).

Thus, we obtain the equality I(θ) = −Eθ[l̈θ(X)]. †
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Theorem 4.1 implies that the variance of any unbiased estimator has a lower bound q̇(θ)2/I(θ),
which is intrinsic to the parametric model. Especially, if q(θ) = θ, then the lower bound for the
variance of unbiased estimator for θ is the inverse of the information. The following examples
calculate this bound for some parametric models.

Example 4.12 Suppose X1, ..., Xn are i.i.d Poisson(θ). The density function for (X1, ..., Xn)
is given by

pθ(X1, ..., Xn) = −nθ + nX̄n log θ −
n∑
i=1

log(Xi!).

Thus,

lθ(X1, ..., Xn) =
n

θ
(X̄n − θ).

It is direct to check all the regularity conditions of Theorem 3.1 are satisfied. Then In(θ) =
n2/θ2V ar(X̄n) = n/θ. The Carmér-Rao bound for θ is equal to θ/n. On the other hand, we
note X̄n is an unbiased estimator of θ. Moreover, since X̄n is the complete statistic for θ. X̄n

is indeed the UMVUE of θ. Note V ar(X̄n) = θ/n. We conclude that X̄n attains the lower
bound. However, although Tn = X̄2

n − n−1X̄n is unbiased for θ2 and it is UMVUE of θ2, we
find V ar(Tn) = 4θ3/n + 2θ2/n2 > the Cramér-Rao lower bound for θ2. In other words, some
UMVUE attains the lower bound but some do not.

Example 4.13 Suppose X1, ..., Xn are i.i.d with density pθ(x) = g(x − θ) where g is known
density. This family is the one-dimensional location model. Assume g′ exists and the regularity
conditions in Theorem 4.1 are satisfied. Then

In(θ) = nEθ[
g′(X − θ)
g(X − θ)

2

] = n

∫
g′(x)2

g(x)
dx.

Note the information does not depend on θ.

Example 4.14 Suppose X1, ..., Xn are i.i.d with density pθ(x) = g(x/θ)/θ where g is a known
density function. This model is one-dimensional scale model with the common shape g. It is
direct to calculate

In(θ) =
n

θ2

∫
(1 + y

g′(y)

g(y)
)2g(y)dy.

4.3.2 Information bound in multi-dimensional model

We can extend Theorem 4.1 to the case in which the model is k-dimensional parametric family:
P = {Pθ : θ ∈ Θ ⊂ Rk}. Similar to Assumptions A-C, we assume Pθ has density function
pθ with respect to some σ-finite dominating measure µ; T (X) is an estimator for q(θ) with
Eθ[|T (X)|] <∞ and b(θ) = Eθ[T (X)]− q(θ is the bias of T (X); q̇(θ) = ∇q(θ) exists.

Theorem 4.2 (Information inequality) Suppose that
(M1) Θ an open subset in Rk.
(M2) There exists a set B with µ(B) = 0 such that for x ∈ Bc, ∂pθ(x)/∂θi exists for all θ and
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i = 1, ..., k. The set A = {x : pθ(x) = 0} does no depend on θ.
(M3) The k × k matrix I(θ) = (Iij(θ)) = Eθ[l̇θ(X)l̇θ(X)′] > 0 is a positive definite where

l̇θi(x) =
∂

∂θi
log pθ(x).

Here, I(θ) is called the Fisher information matrix for θ and l̇θ is called the score for θ.
(M4)

∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under

the integral sign.
(M5)

∫
pθ(x)dµ(x) can be differentiated twice with respect to θ under the integral sign.

If (M1)-(M4) holds, than

V arθ(T (X)) ≥ (q̇(θ) + ḃ(θ))′I−1(θ)(q̇(θ) + ḃ(θ))

and this lower bound is equal q̇(θ)′I(θ)−1q̇(θ) if T (X) is unbiased. If, in addition, (M5) holds,
then

I(θ) = −Eθ[l̈θθ(X)] = −
(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.

†

Proof Under (M1)-(M4), we have

q̇(θ) + ḃ(θ) =

∫
T (x)l̇θ(x)pθ(x)dµ(x) = Eθ[T (x)l̇θ(X)].

On the other hand, from
∫
pθ(x)dµ(x) = 1, 0 = Eθ[l̇θ(X)]. Thus,

|
{
q̇(θ) + ḃ(θ)

}′
I(θ)−1

{
q̇(θ) + ḃ(θ)

}
|

= |Eθ[T (X)(q̇(θ) + ḃ(θ))′I(θ)−1l̇θ(X)]|
= |Covθ(T (X), (q̇(θ) + ḃ(θ))′I(θ)−1l̇θ(X))|

≤
√
V arθ(T (X))(q̇(θ) + ḃ(θ))′I(θ)−1(q̇(θ) + ḃ(θ)).

We obtain the information inequality. In addition, if (M5) holds, we further differentiate∫
l̇θ(x)pθ(x)dµ(x) = 0 and obtain the then

I(θ) = −Eθ[l̈θθ(X)] = −
(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.

†

Example 4.15 The Weibull family P is the parametric model with densities

pθ(x) =
β

α
(
x

α
)β−1 exp

{
−(

x

α
)β
}
I(x ≥ 0)
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with respect to the Lebesgue measure where θ = (α, β) ∈ (0,∞) × (0,∞). We can easily
calculate that

l̇α(x) =
β

α

{
(
x

α
)β − 1

}
,

l̇β(x) =
1

β
− 1

β
log
{

(
x

α
)β
}{

(
x

α
)β − 1

}
.

Thus, the Fisher information matrix is

I(θ) =

(
β2/α2 −(1− γ)/α

−(1− γ)/α {π2/6 + (1− γ)2} /β2

)
,

where γ is the Euler’s constant (γ ≈ 0.5777...). The computation of I(θ) is simplified by noting
that Y ≡ (X/α)β ∼ Exponential(x).

4.3.3 Efficient influence function and efficient score function

From the above proof, we also note that the lower bound is attained for an unbiased estimator
T (X) if and only if T (X) = q̇(θ)′I−1(θ)l̇θ(X), the latter is called the efficient influence function
for estimating q(θ) and its variance, which is equal to q̇(θ)′I(θ)−1q̇(θ), is called the information
bound for q(θ). If we regard q(θ) as a function on all the distributions of P and denote ν(Pθ) =
q(θ), then in some literature, the efficient influence function and the information bound for q(θ)
can be represented as l̃(X,Pθ|ν,P) and I−1(Pθ|ν,P), both implying that the efficient influence
function and the information matrix are meant for a fixed model P , for a parameter of interest
ν(Pθ) = q(θ), and at a fixed distribution Pθ.

Proposition 4.3 The information bound I−1(P |ν,P) and the efficient influence function
l̃(·, P |ν,P) are invariant under smooth changes of parameterization. †

Proof Suppose γ 7→ θ(γ) is a one-to-one continuously differentiable mapping of an open subset
Γ of Rk onto Θ with nonsingular differential θ̇. The model of distribution can be represented
as {Pθ(γ) : γ ∈ Γ}. Thus, the score for γ is θ̇(γ)l̇θ(X) so the information matrix for γ is equal
to

θ̇(γ)′I(θ(γ))θ̇(γ),

which is the same as the information matrix for θ = θ(γ). The efficient influence function for
γ is equal to

(θ̇(γ)q̇(θ(γ)))′I(γ)−1l̇γ = q̇(θ(γ))′I(θ(γ))−1l̇θ

and it is the same as the efficient influence function for θ. †

The proposition implies that the information bound and the efficient influence function for
some ν in a family of distribution are independent of the parameterization used in the model.
However, with some natural and simple parameterization, the calculation of the information
bound and the efficient influence function can be directly done along the definition. Especially,
we look into a specific parameterization where θ′ = (ν ′, η′) and ν ∈ N ⊂ Rm, η ∈ H ⊂ Rk−m.
ν can be regarded as a map mapping Pθ to one of component of θ, ν, and it is the parameter
of interest while η is a nuisance parameter. We want to assess the cost of not knowing η by
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comparing the information bounds and the efficient influence functions for ν in the model P (η
is unknown parameter) and Pη (η is known and fixed).

In the model P , we can decompose

l̇θ =

(
l̇1
l̇2

)
, l̃θ =

(
l̃1
l̃2

)
,

where l̇1 is the score for ν and l̇2 is the score for η, l̃1 is the efficient influence function for ν and
l̃2 is the efficient influence function for η. Correspondingly, we can decompose the information
matrix I(θ) into

I(θ) =

(
I11 I12

I21 I22

)
,

where I11 = Eθ[l̇1l̇
′
1], I12 = Eθ[l̇1l̇

′
2], I21 = Eθ[l̇2l̇

′
1], and I22 = Eθ[l̇2l̇

′
2]. Thus,

I−1(θ) =

(
I−1

11·2 −I−1
11·2I12I

−1
22

−I−1
22·1I21I

−1
11 I−1

22·1

)
≡
(
I11 I12

I21 I22

)
,

where
I11·2 = I11 − I12I

−1
22 I21, I22·1 = I22 − I21I

−1
11 I12.

Since the information bound for estimating ν is equal to

I−1(Pθ|ν,P) = q̇(θ)′I−1(θ)q̇(θ),

where q(θ) = ν, and
q̇(θ) =

(
Im×m 0m×(k−m)

)
,

we obtain the information bound for ν is given by

I−1(Pθ|ν,P) = I−1
11·2 = (I11 − I12I

−1
22 I21)−1.

The efficient influence function for ν is given by

l̃1 = q̇(θ)′I−1(θ)l̇θ = I−1
11·2l̇

∗
1,

where l̇∗1 = l̇1 − I12I
−1
22 l̇2. It is easy to check

I11·2 = E[l̇∗1(l̇∗1)′].

Thus, l∗1 is called the efficient score function for ν in P .
Now we consider the model Pη with η known and fixed. It is clear the information bound

for ν is just I−1
11 and the efficient influence function for ν is equal to I−1

11 l̇1.
Since I11 > I11·2 = I11 − I12I

−1
22 I21, we conclude that knowing η increases the Fisher infor-

mation for ν and decreases the information bound for ν. Moreover, knowledge of η does not
increase information about ν if and only if I12 = 0. In this case, l̃1 = I−1

11 l̇1 and l∗1 = l1.

Example 4.16 Suppose

P = {Pθ : pθ = φ((x− ν)/η)/η, ν ∈ R, η > 0} .
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Note that

l̇ν(x) =
x− ν
η2

, l̇η(x) =
1

η

{
(x− ν)2

η2
− 1

}
.

Then the information matrix I(θ) is given by by

I(θ) =

(
η−2 0
0 2η−2

)
.

Then we can estimate the ν equally well whether we know the variance or not.

Example 4.17 If we reparameterize the above model as

Pθ = N(ν, η2 − ν2), η2 > ν2.

The easy calculation shows that I12(θ) = νη/(η2 − ν2)2. Thus lack of knowledge of η in this
parameterization does change the information bound for estimation of ν.

We provide a nice geometric way of calculating the efficient score function and the efficient
influence function for ν. For any θ, the linear space L2(Pθ) = {g(X) : Eθ[g(X)2] < ∞} is a
Hilbert space with the inner product defined as

< g1, g2 >= E[g1(X)g2(X)].

On this Hilbert space, we can define the concept of the projection. For any closed linear space
S ⊂ L2(Pθ) and any g ∈ L2(Pθ), the projection of g on S is g̃ ∈ S such that g− g̃ is orthogonal
to any g∗ in S in the sense that

E[(g(X)− g̃(X))g∗(X)] = 0, ∀g∗ ∈ S.

The orthocomplement of S is a linear space with all the g ∈ L2(P ) such that g is orthogonal
to any g∗ ∈ S. The above concepts agree with the usual definition in the Euclidean space.
The following theorem describes the calculation of the efficient score function and the efficient
influence function.

Theorem 4.3 A. The efficient score function l̇∗1(·, Pθ|ν,P) is the projection of the score function
l̇1 on the orthocomplement of [l̇2] in L2(Pθ), where [l̇2] is the linear span of the components of
l̇2.
B. The efficient influence function l̃(·, Pθ|ν,Pη) is the projection of the efficient influence function
l̃1 on [l̇1] in L2(Pθ). †

Proof A. Suppose the projection of l̇1 on [l̇2] is equal to Σl̇2 for some matrix Σ. Since E[(l̇1 −
Σl̇2)l̇′2] = 0, we obtain Σ = I12I

−1
22 then the projection on the orthocomplement of [l̇2] is equal

to l̇1 − I12I
−1
22 l̇2, which is the same as l̇∗1.

B. After the algebra, we note

l̃1 = I−1
11·2(l̇1 − I12I

−1
22 l̇2) = (I−1

11 + I−1
11 I12I

−1
22·1I21I

−1
11 )(l̇1 − I12I

−1
22 l̇2) = I−1

11 l̇1 − I−1
11 I12l̃2.

Since from A, l̃2 is orthogonal to l̇1, the projection of l̃1 on [l̇1] is equal I−1
11 l̇1, which is the

efficient influence function l̃(·, Pθ|ν,Pη). †
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The following table describes the relationship among all these terminologies.
Term Notation P (η unknown) Pη (η known)

efficient score l̇∗1(, P |ν, ·) l̇∗1 = l̇1 − I12I
−1
22 l̇2 l̇1

information I(P |ν, ·) E[l̇∗1(l̇∗1)′] = I11 − I12I
−1
22 I22 I11

efficient l̃1(·, P |ν, ·) l̃1 = I11l̇1 + I12l̇2 = I−1
11·2l̇

∗
1 I−1

11 l̇1
influence information = I−1

11 l̇1 − I−1
11 I12l̃2

information bound I−1(P |ν, ·) I11 = I−1
11·2 = I−1

11 + I−1
11 I12I

−1
22·1I21I

−1
11 I−1

11

4.4 Asymptotic Efficiency Bound

4.4.1 Regularity conditions and asymptotic efficiency theorems

The Cramér-Rao bound can be considered as the lower bound for any unbiased estimator in
finite sample. One may ask whether such a bound still holds in large sample. To be specific,
we suppose X1, ..., Xn are i.i.d Pθ (θ ∈ R) and an estimator Tn for θ satisfies that

√
n(Tn − θ)→d N(0, V (θ)2).

Then the question is whether V (θ)2 ≥ 1/I(θ). Unfortunately, this may not be true as the
following example due to Hodges gives one counterexample.

Example 4.18 Let X1, ..., Xn be i.i.d N(θ, 1) so that I(θ) = 1. Let |a| < 1 and define

Tn =

{
X̄n if|X̄n| > n−1/4

aX̄n if|X̄n| ≤ n−1/4.

Then

√
n(Tn − θ) =

√
n(X̄n − θ)I(|X̄n| > n−1/4) +

√
n(aX̄n − θ)I(|X̄n| ≤ n−1/4)

=d ZI(|Z +
√
nθ| > n1/4) +

{
aZ +

√
n(a− 1)θ

}
I(|Z +

√
nθ| ≤ n1/4)

→a.s. ZI(θ 6= 0) + aZI(θ = 0).

Thus, the asymptotic variance of
√
nTn is equal 1 for θ 6= 0 and a2 for θ = 0. The latter is

smaller than the Cramér-Rao bound. In other words, Tn is a superefficient estimator.
To avoid the Hodge’s superefficient estimator, we need impose some conditions to Tn in

addition to the weak convergence of
√
n(Tn − θ). One such condition is called locally regular

condition in the following sense.

Definition 4.2 {Tn} is a locally regular estimator of θ at θ = θ0 if, for every sequence {θn} ⊂ Θ
with

√
n(θn − θ)→ t ∈ Rk, under Pθn ,

(local regularity)
√
n(Tn − θn)→d Z, as n→∞

where the distribution of Z depend on θ0 but not on t. Thus the limit distribution of
√
n(Tn−θn)

does not depend on the direction of approach t of θn to θ0. {Tn} is a locally Gaussian regular
if Z has normal distribution. †
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In the above definition,
√
n(Tn − θn) →d Z under Pθn is equivalent to saying that for any

bounded and continuous function g, Eθn [g(
√
n(Tn−θn))]→ E[g(Z)]. One can consider a locally

regular estimator as the one whose limit distribution is locally stable: if data are generated under
a model not far from a given model, the limit distribution of centralized estimator remains the
same.

Furthermore, the locally regular condition, combining with the following two additional
conditions, gives the results that the Cramér-Rao bound is also the asymptotic lower bound:

(C1) (Hellinger differentiability) A model P = {Pθ : θ ∈ Rk} is a parametric model dominated
by a σ-finite measure µ. It is called a Hellinger-differentiable parametric model if

‖√pθ+h −
√
pθ −

1

2
h′l̇θ
√
pθ‖L2(µ) = o(|h|),

where pθ = dPθ/dµ.

(C2) (Local Asymptotic Normality (LAN)) In a model P = {Pθ : θ ∈ Rk} dominated by a
σ-finite measure µ, suppose pθ = dPθ/dµ. Let l(x; θ) = log p(x, θ) and let

ln(θ) =
n∑
i=1

l(Xi; θ)

be the log-likelihood function of X1, ..., Xn. The local asymptotic normality condition at θ0 is

ln(θ0 + n−1/2t)− ln(θ0)→d N(−1

2
t′I(θ0)t, t′I(θ0)t)

under Pθ0 .
Both conditions (C1) and (C2) are the smooth conditions imposed on the parametric models.

In other words, we do not allow a model whose parameterization is irregular. An irregular model
is seldom encountered in practical use.

The following theorem gives the main results.

Theorem 4.4 (Hájek’s convolution theorem) Under conditions (C1)-(C2) with I(θ0) non-
singular. For any locally regular estimator of θ, {Tn}, the limit distribution of

√
n(Tn − θ0)

under Pθ0 satisfies
Z =d Z0 + ∆0,

where Z0 ∼ N(0, I−1(θ0)) is independent of ∆0. †

As a corollary, if V (θ0)2 is the asymptotic variance of
√
n(Tn − θ0), then V (θ0)2 ≥ I−1(θ0).

Thus, the Cramér-Rao bound is a lower bound for the asymptotic variances of any locally
regular estimators. Furthermore, we obtain the following corollary from Theorem 4.4.

Corollary 4.1 Suppose that {Tn} is a locally regular estimator of θ at θ0 and that U : Rk → R+

is bowl-shaped loss function; i.e., U(x) = U(−x) and {x : U(x) ≤ c} is convex for any c ≥ 0.
Then

lim inf
n

Eθ0 [U(
√
n(Tn − θ0))] ≥ E[U(Z0)],

where Z0 ∼ N(0, I(θ0)−1). †
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Corollary 4.2 (Hájek-Le Cam asymptotic minmax theorem) Suppose that (C2) holds,
that Tn is any estimator of θ, and U is bowl-shaped. Than

lim
δ→0

lim inf
n

sup
θ:
√
n|θ−θ0|≤δ

Eθ[U(
√
n(Tn − θ))] ≥ E[U(Z0)],

where Z0 ∼ N(0, I(θ0)−1). †

In summary, the two corollaries conclude that the asymptotic loss of any regular estimators
is at least the loss given by the distribution Z0. Thus, from this point of view, Z0 is also the
distribution of most efficiency. The proofs of the two corollaries are beyond this book so are
skipped.

4.4.2 Le Cam’s lemmas

Before proving Theorem 4.4, we introduce the contiguity definition and the Le Cam’s lemmas.
Consider a sequence of measure spaces (Ωn,An, µn) and on each measure space, we have two
probability measure Pn and Qn with Pn ≺≺ µn and Qn ≺≺ µn. Let pn = dPn/dµn and
qn = dQn/dµn be the corresponding densities of Pn and Qn. We define the likelihood ratios

Ln =


qn/pn if pn > 0
1 if qn = pn = 0
n if qn > 0 = pn.

Definition 4.3 (Contiguity) The sequence {Qn} is contiguous to {Pn} if for every sequence
Bn ∈ An for which Pn(Bn)→ 0 it follows that Qn(Bn)→ 0. †

Thus contiguity of {Qn} to {Pn} means that Qn is “asymptotically absolutely continuous”
with respect to Pn. We denote {Qn} / {Pn}. Two sequences are contiguous to each other if
{Qn} / {Pn} and {Pn} / {Qn} and we write {Pn} / .{Qn}.

Definition 4.4 (Asymptotic orthogonality) The sequence {Qn} is asymptotically orthogonal to
{Pn} if there exists a sequence Bn ∈ An such that Qn(Bn)→ 1 and Pn(Bn)→ 0. †

Proposition 4.4 (Le Cam’s first lemma) Suppose under Pn, Ln →d L with E[L] = 1. Then
{Qn} / {Pn}. On the contrary, if {Qn} / {Pn} and under Pn, Ln →d L, then E[L] = 1. †

Proof We fist prove the first half of the lemma. Let Bn ∈ An with Pn(Bn) → 0. Then
IΩn−Bn converges to 1 in probability under Pn. Since Ln is asymptotically tight, (Ln, IΩn−Bn) is
asymptotically tight under Pn. Thus, by the Helly’s lemma, for every subsequence of {n}, there
exists a further subsequence such that (Ln, IΩn−Bn) →d (L, 1). By the Protmanteau Lemma,
since (v, t) 7→ vt is continuous and nonnegative,

lim inf
n

Qn(Ωn −Bn) ≥ lim inf
n

∫
IΩn−Bn

dQn

dPn
dPn ≥ E[L] = 1.

We obtain Qn(Bn)→ 0. Thus {Qn} / {Pn}.
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We then prove the second half of the lemma. The probability measure Rn = (Pn + Qn)/2
dominate both Pn and Qn. Note that {dPn/dQn}, {Ln} and Wn = dPn/dRn are tight with
respect to {Qn}, {Pn} and {Rn}. By the Prohov’s theorem, for any subsequence, there exists
a further subsequence such that

dPn
dQn

→d U, under Qn,

Ln =
dQn

dPn
→d L, under Pn,

Wn =
dPn
dRn

→d W, under Rn

for certain random variables U , V , and W . Since ERn [Wn] = 1 and 0 ≤ Wn ≤ 2, we obtain
E[W ] = 1. For a given bounded, continuous function f , define g(ω) = f(ω/(2− ω))(2− ω) for
0 ≤ ω < 2 and g(2) = 0. Then g is continuous. Thus,

EQn [f(
dPn
dQn

)] = ERn [f(
dPn
dQn

)
dQn

dRn

] = ERn [g(Wn)]→ E[f(
W

2−W
)(2−W )].

Since EQn [f(dPn/dQn)]→ E[f(U)], we have

E[f(U)] = E[f(
W

2−W
)(2−W )].

Choose fm in the above expression such that fm ≤ 1 and fm decreases to I{0}. From the
dominated convergence theorem, we have

P (U = 0) = E[I{0}(
W

2−W
)(2−W )] = 2P (W = 0).

However, since

Pn({ dPn
dQn

≤ εn} ∩ {qn > 0}) ≤
∫
dPn/dQn≤εn

dPn
dQn

dQn ≤ εn → 0

and {Qn} / {Pn},

P (U = 0) = lim
n
P (U ≤ εn) ≤ lim inf

n
Qn(

dPn
dQn

≤ εn) = lim inf
n

Qn({ dPn
dQn

≤ εn} ∩ {qn > 0}) = 0.

That is, P (W = 0) = 0. Similar to the above deduction, we obtain that

E[f(L)] = E[f(
2−W
W

)W ].

Choose fm in the expression such that fm(x) increase to x. By the monotone convergence
theorem, we have

E[L] = E[(2−W )I(W > 0)] = 2P (W > 0)− 1 = 1.

†
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As a corollary, we have

Corollary 4.3 If logLn →d N(−σ2/2, σ2) under Pn, then {Qn} / {Pn}. †

Proof Under Pn, Ln →d exp{−σ2/2+σZ} where the limit has mean 1. The result thus follows
from Proposition 4.4. †

Proposition 4.5 (Le Cam’s third lemma) Let Pn and Qn be sequence of probability mea-
sures on measurable spaces (Ωn,An), and let Xn : Ωn → Rk be a sequence of random vectors.
Suppose that Qn / Pn and under Pn,

(Xn, Ln)→d (X,L).

Then G(B) = E[IB(X)L] defines a probability measure, and under Qn, Xn →d G. †

Proof Because V ≥ 0, for countable disjoint sets B1, B2, ..., by the monotone convergence
theorem,

G(∪Bi) = E[lim
n

(IB1 + ...+ IBn)L] = lim
n

n∑
i=1

E[IBiL] =
∞∑
i=1

G(Bi).

From Proposition 4.4, E[L] = 1. Then G(Ω) = 1. G is a probability measure. Moreover, for
any measurable simple function f , it is easy to see∫

fdG = E[f(X)L].

Thus, this equality holds for any measurable function f . In particular, for continuous and
nonnegative function f , (x, v) 7→ f(x)v is continuous and nonnegative. Thus,

lim inf EQn [f(Xn)] ≥ lim inf

∫
f(Xn)

dQn

dPn
dPn ≥ E[f(X)L].

Thus, under Qn, Xn →d G. †

Remark 4.1 In fact, the name Le Cam’s third lemma is often reserved for the following result.
If under Pn,

(Xn, logLn)→d Nk+1

(( µ
−σ2/2

)
,

(
Σ τ
τ σ2

))
,

then under Qn, Xn →d Nk(µ+ τ,Σ). This result follows from Proposition 4.5 by noticing that
the characteristic function of the limit distribution G is equal to E[eitXeY ], where (X, Y ) has
the joint distribution

Nk+1

(( µ
−σ2/2

)
,

(
Σ τ
τ σ2

))
.

Such a characteristic function is equal exp{it′(µ + τ) − t′Σt/2}, which is the characteristic
function for Nk(µ+ τ,Σ).
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4.4.3 Proof of the convolution theorem

Equipped with the Le Cam’s two lemmas, we start to prove the convolution result in Theorem
4.4.

Proof of Theorem 4.4 We divide the proof into the following steps.
Step I. We first prove that the Hellinger differentiability condition (C1) implies that Pθ0 [l̇θ0 ] = 0,
the Fisher information I(θ0) = Eθ0 [l̇θ0l

′
θ0

] exists, and moreover, for every convergent sequence
hn → h, as n→∞,

log
n∏
i=1

pθ0+hn/
√
n

pθ0
(Xi) =

1√
n

n∑
i=1

h′l̇θ0(Xi)−
1

2
h′Iθ0h+ rn,

where rn →p 0. To see that , we abbreviate pn, p, g as pθ0+h/
√
n, pθ0 , h

′l̇θ0 . Since
√
n(
√
pn−

√
p)

converges in L2(µ) to g
√
p/2,

√
pn converges to

√
p in L2(µ). Then

E[g] =

∫
1

2
g
√
p2
√
pdµ = lim

n→∞

∫ √
n(
√
pn −

√
p)(
√
pn +

√
p)dµ = 0.

Thus, Eθ0 [l̇θ0 ] = 0. Let Wni = 2(
√
pn(Xi)/p(Xi)− 1). We have

V ar(
n∑
i=1

Wni −
1√
n

n∑
i=1

g(Xi)) ≤ E[(
√
nWni − g(Xi))

2]→ 0,

E[
n∑
i=1

Wni] = 2n(

∫
√
pn
√
pdµ− 1) = −n

∫
[
√
pn −

√
p]2dµ→ −1

4
E[g2].

Here, E[g2] = h′I(θ0)h. By the Chebyshev’s inequality, we obtain

n∑
i=1

Wni =
1√
n

n∑
i=1

g(Xi)−
1

4
E[g2] + an,

where an →p 0.
Next, by the Taylor expansion,

log
n∏
i=1

pn
p

(Xi) = 2
n∑
i=1

log(1 +
1

2
Wni) =

n∑
i=1

Wni −
1

4

n∑
i=1

W 2
ni +

1

2

n∑
i=1

W 2
niR(Wni),

where R(x) → 0 as x → 0. Since E[(
√
nWni − g(Xi))

2] → 0, nW 2
ni = g(Xi)

2 + Ani where
E[|Ani|]→ 0. Then

∑n
i=1 W

2
ni →p E[g2]. Moreover,

nP (|Wni| > ε
√

2) ≤ nP (g(Xi)
2 > nε2)+nP (|Ani| > nε2) ≤ ε−2E[g2I(g2 > nε2)]+ε−2E[|Ani|]→ 0.

The left-hand side is the upper bound for P (max1≤i≤n |Wni| > ε). Thus, max1≤i≤n |Wni| con-
verges to zero in probability; so is max1≤i≤n |R(Wni)|. Therefore,

log
n∏
i=1

pn
p

(Xi) =
n∑
i=1

Wni −
1

4
E[g2] + bn,
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where bn →p 0. Combining all the results, we obtain

log
n∏
i=1

pθ0+hn/
√
n

pθ0
(Xi) =

1√
n

n∑
i=1

h′l̇θ0(Xi)−
1

2
h′Iθ0h+ rn,

where rn →pn 0.

Step II. Let Qn be the probability measure with density
∏n

i=1 pθ0+h/
√
n(xi) and Pn be the

probability measure with
∏n

i=1 pθ0(xi). Define

Sn =
√
n(Tn − θ0), ∆n =

1√
n

n∑
i=1

l̇θ0(Xi).

By the assumptions, Sn weakly converges to some distribution and so is ∆n under Pn; thus,
(Sn,∆n) is tight under Pn. By the Prohorov’s theorem, for any subsequence, there exists a
further subsequence such that (Sn,∆n) →d (S,∆) under Pn. From Step I, we immediately
obtain that under Pn,

(Sn, log
dQn

dPn
)→d (S, h′∆− 1

2
h′I(θ0)h).

Since under Pn, dQn/dPn weakly converges to N(−h′I(θ0)h/2, h′I(θ0)h), Corollary 4.3 gives
that {Qn}/{Pn}. Then from the Le Cam’s third lemma, under Qn, Sn =

√
n(Tn−θ0) converges

in distribution to a distribution Gh. Clearly, Gh is the same as distribution with Z + h.

Step III. We show Z = Z0 + ∆0 where Z0 ∼ N(0, I(θ0)−1) is independent of ∆0. From Step II,
we have

Eθ0+h/
√
n[exp{it′Sn}]→ exp{it′h}E[exp{it′Z}].

On the other hand,

Eθ0+h/
√
n[exp{it′Sn}] = Eθ0 [exp{it′Sn + log

dQn

dPn
}] + o(1)→ Eθ0 [exp{it′Z + h′∆− 1

2
h′I(θ0)h}].

We have

Eθ0 [exp{it′Z + h′∆− 1

2
h′I(θ0)h}] = exp{it′h}Eθ0 [exp{it′Z}]

and it should hold for any complex number t and h. We let h = −i(t′ − s′)I(θ0)−1 and obtain

Eθ0 [exp{it′(Z − I(θ0)−1∆) + is′I(θ0)−1∆}] = Eθ0 [exp{it′Z +
1

2
t′I(θ0)−1t}] exp{−1

2
s′I(θ0)−1s}.

This implies that ∆0 = (Z − I(θ0)−1∆) is independent of Z0 = I(θ0)−1∆ and Z0 has the
characteristics function exp{−s′I(θ0)−1s/2}, meaning Z0 ∼ N(0, I(θ0)−1). Then Z = Z0 + ∆0.
†

The convolution theorem indicates that if {Tn} is locally regular and the model P is the
Hellinger differentiable and LAN, then the Cramér-Rao bound is also the asymptotic lower
bound. We have shown that the result holds for estimating θ. In fact, the same procedure
applies to estimating q(θ) where q is differentiable at θ0. Then the local regularity condition is
that under Pθ0+h/

√
n, √

n(Tn − q(θ0 + h/
√
n))→d Z,

where Z is independent of h. The result in Theorem 4.4 then becomes that Z = Z0 + ∆0 where
Z0 ∼ N(0, q̇(θ0)′I(θ0)−1q(θ0)) is independent of ∆0.
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4.4 Sufficient conditions for Hellinger-differentiability and local reg-
ularity

Checking the conditions of the local regularity and the Hellinger-differentiability and may be
easy in practice. The following propositions give some sufficient conditions for the Hellinger
differentiability and the local regularity.

Proposition 4.6. For every θ in an open subset of Rk let pθ be a µ-probability density. Assume
that the map θ 7→ sθ(x) =

√
pθ(x) is continuously differentiable for every x. If the elements

of the matrix I(θ) = E[(ṗθ/pθ)(ṗθ/pθ)
′] are well defined and continuous at θ. Then the map

θ → √pθ is Hellinger differentiable with l̇θ given by ṗθ/pθ. †

Proof The map θ 7→ pθ = s2
θ is differentiable. We have ṗθ = 2sθṡθ so conclude ṡθ is zero

whenever ṗθ = 0. We can write ṡθ = (ṗθ/pθ)
√
pθ/2.

On the other hand,∫ {
sθ+tht − sθ

t

}2

dµ =

∫ {∫ 1

0

(ht)
′ṡθ+uthtdu

}2

dµ

≤
∫ ∫ 1

0

((ht)
′ṡθ+utht)

2dudµ =
1

2

∫ 1

0

h′tI(θ + utht)htdu.

As ht → h, the right side converges to
∫

(h′ṡθ)
2dµ by the continuity of Iθ. Since

sθ+tht − sθ
t

− h′ṡθ

converges to zero almost surely, following the same proof as Theorem 3.1 (E) of Chapter 3, we
obtain ∫ [

sθ+tht − sθ
t

− h′ṡθ
]2

dµ→ 0.

†

Proposition 4.7 If {Tn} is an estimator sequence of q(θ) such that

√
n(Tn − q(θ))−

1√
n

n∑
i=1

q̇θI(θ)−1l̇θ(Xi)→p 0,

where q is differentiable at θ, then Tn is the efficient and regular estimator for q(θ). †

Proof “⇒′′ Let ∆n,θ = n−1/2
∑n

i=1 l̇θ(Xi). Then ∆n,θ converges in distribution to a vector ∆θ ∼
N(0, I(θ)). From Step I in proving Theorem 4.4, log dQn/dPn is equivalent to h′∆n,θ−h′I(θ)h/2
asymptotically. Thus, the Slutsky’s theorem gives that under Pθ(√

n(Tn − q(θ)), log
dQn

dPn

)
→d (q̇θI(θ)−1∆θ, h

′∆θ − h′I(θ)h/2)
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∼ N

((
0

−h′I(θ)h/2

)
,

(
q̇′θI(θ)−1q̇θ q̇′θh

q̇θh
′ h′I(θ)h

))
.

Then from the Le Cam’s third lemma, under Pθ+h/√n,
√
n(Tn − q(θ)) converges in distribution

to a normal distribution with mean q̇θh and covariance matrix q̇′θI(θ)−1q̇θ. Thus, under Pθ+h/√n,√
n(Tn−q(θ+h/

√
n)) converges in distribution to N(0, q̇θI(θ)′q̇′θ). We obtain that Tn is regular.

†

Definition 4.5 If a sequence of estimator {Tn} has the expansion

√
n(Tn − q(θ)) = n−1/2

n∑
i=1

Γ(Xi) + rn,

where rn converges to zero in probability, then Tn is called an asymptotically linear estimator
for q(θ) with influence function Γ. Note that Γ depends on θ. †

For asymptotically linear estimator, the following result holds.

Proposition 4.8 Suppose Tn is an asymptotically linear estimator of ν = q(θ) with influence
function Γ. Then
A. Tn is Gaussian regular at θ0 if and only if q(θ) is differentiable at θ0 with derivative q̇θ and,
with l̃ν = l̃(·, Pθ0|q(θ),P) being the efficient influence function for q(θ), Eθ0 [(Γ − l̃ν)l̇] = 0 for
any score l̇ of P .
B. Suppose q(θ) is differentiable and Tn is regular. Then Γ ∈ [l̇] if and only if Γ = l̃ν . †

Proof A. By asymptotic linearity of Tn, it follows that( √
n(Tn − q(θ0))

Ln(θ0 + tn/
√
n)− Ln(θ0)

)
→d N

{(
0

−t′I(θ0)t

)
,

(
Eθ0 [ΓΓ′] Eθ0 [Γl̇

′]t

Eθ0 [l̇Γ
′]t t′I(θ0)t

)}
.

From the Le Cam’s third lemma, we obtain that under Pθ0+tn/
√
n,

√
n(Tn − q(θ0))→d N(Eθ0 [Γ

′l̇]t, Eθ0 [ΓΓ′]).

If Tn is regular, we have that under Pθ0+tn/
√
n,

√
n(Tn − q(θ0 + tn/

√
n))→d N(0, Eθ0 [ΓΓ′]).

Comparing with the above convergence, we obtain

√
n(q(θ0 + tn/

√
n)− q(θ0))→ Eθ0 [Γ

′l̇]t.

This implies q is differentiable with q̇θ = Eθ[Γ
′l̇]. Since Eθ0 [l̃

′
ν l̇] = q̇θ, the direction “⇒′′ holds.

To prove the other direction, since q(θ) is differentiable and under Pθ0+tn/
√
n,

√
n(Tn − q(θ0))→d N(Eθ0 [Γ

′l̇]t, E[ΓΓ′])
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from the Le Cam’s third lemma, we obtain under Pθ0+tn/
√
n,

√
n(Tn − q(θ0 + tn/

√
n))→d N(0, E[ΓΓ′]).

Thus, Tn is Gaussian regular.
B. If Tn is regular, from A, we obtain Γ− l̃ν is orthogonal to any score in P . Thus, Γ ∈ [l̇]

implies that Γ = l̃ν . The converse is obvious. †

Remark 4.2 We have discussed the efficiency bound for real parameters. In fact, these results
can be generalized (though non-trivial) to the situation where θ contains infinite dimensional
parameter in semiparametric model. This generalization includes semiparametric efficiency
bound, efficient score function, efficient influence function, locally regular estimator, Hellinger
differentiability, LAN and the Hájek convolution result.

READING MATERIALS : You should read Lehmann and Casella, Sections 1.6, 2.1, 2.2, 2.3,
2.5, 2.6, 6.1, 6.2, Ferguson, Chapter 19 and Chapter 20

PROBLEMS

1. Let X1, ..., Xn be i.i.d according to Poisson(λ). Find the UMVU estimator of λk for any
positive integer k.

2. Let Xi, i = 1, ..., n, be independently distributed as N(α+ βti, σ
2) where α, β and σ2 are

unknown, and the t’s are known constants that are not all equal. Find the least square
estimators of α and β and show that they are also the UMVU estimators of α and β.

3. If X has the distribution Poisson(θ), show that 1/θ does not have an unbiased estimator.

4. Suppose that we want to model the survival of twins with a common genetic defect, but
with one of the two twins receiving some treatment. Let X represent the survival time
of the untreated twin and let Y represent the survival time of the treated twin. One
(overly simple) preliminary model might be to assume that X and Y are independent
with Exponential(η) and Exponential(θη) distributions, respectively:

fθ,η(x, y) = ηe−ηxηθe−ηθyI(x > 0, y > 0).

(a) On crude approach to estimation in this problem is to reduce the data to W = X/Y .
Find the distribution of W and compute the Cramér-Rao lower bound for unbiased
estimators of θ based on W .

(b) Find the information bound for estimating θ based on observation of (X, Y ) pairs
when η is known and unknown.

(c) Compare the bounds you computed in (a) and (b) and discuss the pros and cons of
reducing to estimation based on the W .
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5. This is a continuation of the preceding problem. A more realistic model involves assuming
that the common parameter η for the two wins varies across sets of twins. There are several
different ways of modeling this: one approach involves supposing that each pair of twins
observed (Xi, Yi) has its own fixed parameters ηi, i = 1, .., n. In this model we observe
(Xi, Yi) with density fθ,ηi for i = 1, ..., n; i.e.,

fθ,ηi(x, y) = ηie
−ηixiηiθe

−ηiθyiI(xi > 0, yi > 0).

This is sometimes called a functional model (or model with incidental nuisance parame-
ters).
Another approach is to assume that η ≡ Z has a distribution, and that our obser-
vations are from the mixture distribution. Assuming (for simplicity) that Z = η ∼
Gamma(a, 1/b) (a and b are known) with density

ga,b(η) =
baηa−1

Γ(a)
exp{−bη}I(η > 0),

it follows that the (marginal) distribution of (X, Y ) is

pθ,a,b(x, y) =

∫ ∞
0

fθ,z(x, y)ga,b(z)dz.

This is sometimes called a “structural model” (or mixture model).

(a) Find the information bound for θ in the functional model based on (Xi, Yi), i =
1, ..., n.

(b) Find the information bound for θ in the structural model based on (Xi, Yi), i =
1, ..., n.

(c) Compare the information bounds you computed in (a) and (b). When is the informa-
tion for θ in the functional model larger than the information for θ in the structural
model?

6. Suppose that X ∼ Gamma(α, 1/β); i.e., X has density pθ given by

pθ(x) =
βα

Γ(α)
xα−1 exp{−βx}I(x > 0), θ = (α, β) ∈ (0,∞)× (0,∞).

Consider estimation of q(θ) = Eθ[X].

(a) Compute the Fisher information matrix I(θ).

(b) Derive the efficient score function, the efficient influence function and the efficient
information bound for α.

(c) Compute q̇(θ) and find the efficient influence functions for estimation of q(θ). Com-
pare the efficient influence functions you find in (c) with the influence function of
the natural estimator X̄n.

7. Compute the score for location, −(f ′/f)(x), and the Fisher information when:
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(a) f(x) = φ(x) = (2π)−1/2 exp{−x2/2}, (normal or Gaussian);

(b) f(x) = exp{−x}/(1 + exp{−x})2, (logistic);

(c) f(x) = exp{−|x|}/2, (double exponential);

(d) f(x) = tk, the t-distribution with k degrees of freedom;

(e) f(x) = exp{−x} exp{− exp(−x)}, (Gumbel or extreme value).

8. Suppose that P = {Pθ : θ ∈ Θ} ,Θ ⊂ Rk is a parametric model satisfying the hypotheses
of the multiparameter Craméer-Rao inequality. Partition θ as θ = (ν, η), where ν ∈ Rm

and η ∈ Rk−m and 1 ≤ m < k. Let l̇ = l̇θ = (l̇1, l̇2) be the corresponding partition of the
scores and with l̃ = I−1(θ)l̇, the efficient influence function for θ, let l̃ = (l̃1, l̃2) be the
corresponding partition of l̃. In both cases, l̇1, l̃1 are m-vectors of functions and l̇2, l̃2 are
k −m vectors. Partition I(θ) and I−1(θ) correspondingly as

I(θ) =

(
I11 I12

I21 I22

)
,

where I11 is m×m, I12 is m× (k−m), I21 is (k−m)×m, I22 is (k−m)× (k−m). also
write

I−1(θ) = [I ij]i,j=1,2.

Verify that

(a) I11 = I−1
11·2 where I11·2 = I11 − I12I

−1
22 I21, I

22 = I−1
22·1 where I22·1 = I22 − I21I

−1
11 I12,

I12 = −I−1
11·2I12I

−1
22 , I21 = −I22 · 1−1I21I

−1
11 ..

(b) Verify that l̃1 = I11l̇1 + I12l̇2 = I−1
11·2(l̇1 − I12I

−1
22 l̇2), and l̃2 = I21l̇1 + I22l̇2 = I−1

22·1(l̇2 −
I21I

−1
11 l̇1).

9. Let Tn be the Hodges superefficient estimator of θ.

(a) Show that Tn is not a regular estimator of θ at θ = 0, but that it is regular at every
θ 6= 0. If θn = t/

√
n, find the limiting distribution of

√
n(Tn − θn) under Pθn .

(b) For θn = t/
√
n show that

Rn(θn) = nEθn [(Tn − θn)2]→ a2 + t2(1− a)2.

This is larger than 1 if t2 > (1 + a)/(1− a), and hence supper efficiency also entails
worse risks in a local neighborhood of the points where the asymptotic variance is
smaller.

10. Suppose that (Y |Z) ∼ Weibull(λ−1 exp{−γZ}, β) and Z ∼ Gη on R with density gη with
respect to some dominating measure µ. Thus the conditional cumulative hazards function
Λ(t|z) is given by

Λγ,λ,β(t|z) = (λeγzt)β = λβeβγztβ

and hence
λγ,λ,β(t|z) = λβeβγzβtβ−1.



POINT ESTIMATION AND EFFICIENCY 107

(Recall that λ(t) = f(t)/(1− F (t)) and Λ(t) = − log(1− F (t)) if F is continuous). Thus
it makes sense to reparameterize by defining θ1 = βγ (this the parameter of interest since
it reflects the effect of the covariate Z), θ2 = λβ and θ2 = β. This yields

λθ(t|z) = θ2θ3 exp{θ1z}tθ3−1.

You may assume that a(z) = (∂/∂z) log gη(z) exists and E[a(Z)2] < ∞. Thus Z is
a “covariate” or “predictor variable”, θ1 is a “regression parameter” which affects the
intensity the (conditionally) Exponential variable Y , and θ = (θ1, θ2, θ3, θ4) where θ4 = η.

(a) Derive the joint density pθ(y, z) of (Y, Z) for the reparameterized model.

(b) Find the information matrix for θ. What does the structure of this matrix say about
the effect of η = θ4 being known or unknown about the estimation of θ1, θ2, θ3?

(c) Find the information and information bound for θ1 if the parameter θ2 and θ3 are
known.

(d) What is the information for θ1 if just θ3 is known to be equal to 1?

(e) Find the efficient score function and the efficient influence function for estimation of
θ1 when θ3 is known.

(f) Find the information I11·(2,3) and information bound for θ1 if the parameters θ2 and
θ3 are unknown.

(g) Find the efficient score function and the efficient influence function for estimation of
θ1 when θ2 and θ3 are unknown.

(h) Specialize the calculation in (d)-(g) to the case when Z ∼ Bernoulli(θ4) and compare
the information bounds.

11. Lehmann and Casella, page 72, problems 6.33, 6.34, 6.35

12. Lehmann and Casella, pages 129-137, problems 1.1-3.30

13. Lehamann and Casella, pages 138-143, problems 5.1-6.12

14. Lehmann and Casella, pages 496-501, problems 1.1-2.14

15. Ferguson, pages 131-132, problems 2-5

16. Ferguson, page 139, problems 1-4
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CHAPTER 5 EFFICIENT ESTIMATION: MAXIMUM

LIKELIHOOD APPROACH

In the previous chapter, we have discussed the asymptotic lower bound (efficiency bound) for
all the regular estimators. Then a natural question is what estimator can achieve this bound;
equivalently, what estimator can be asymptotically efficient. In this chapter, we will focus on
the most commonly-used estimator, maximum likelihood estimator. We will show that under
some regularity conditions, the maximum likelihood estimator is asymptotically efficient.

Suppose X1, ..., Xn are i.i.d from Pθ0 in the model P = {Pθ : θ ∈ Θ}. We assume

(A0). θ 6= θ∗ implies Pθ 6= Pθ∗ (identifiability).
(A1). Pθ has a density function pθ with respect to a dominating σ-finite measure µ.
(A2). The set {x : pθ(x) > 0} does not depend on θ.

Furthermore, we denote

Ln(θ) =
n∏
i=1

pθ(Xi), ln(θ) =
n∑
i=1

log pθ(Xi).

Ln(θ) and ln(θ) are called the likelihood function and the log-likelihood function of θ, respectively.
An estimator θ̂n of θ0 is the maximum likelihood estimator (MLE) of θ0 if it maximizes the
likelihood function Ln(θ), equivalently, ln(θ).

Some cautions should be taken in the maximization: first, the maximum likelihood estimator
may not exist; second, even if the maximum likelihood estimator exists, it may not be unique;
third, the definition of the maximum likelihood estimator depends on the parameterization of
pθ so different parameterization may lead to the different estimators.

5.1 Ad Hoc Arguments of MLE Efficiency

In the following, we explain the intuition why the maximum likelihood estimator is the efficient
estimator; while we leave rigorous conditions and arguments to the subsequent sections. First,
to see the consistency of the maximum likelihood estimator, we introduce the definition of the
Kullback-Leibler information as follows.

Definition 5.1 Let P be a probability measure and let Q be another measure on (Ω,A) with
densities p and q with respect to a σ-finite measure µ (µ = P + Q always works). P (Ω) = 1
and Q(Ω) ≤ 1. Then the Kullback-Leibler information K(P,Q) is

K(P,Q) = EP [log
p(X)

q(X)
].

†

Immediately, we obtain the following result.

Proposition 5.1 K(P,Q) is well-defined, and K(P,Q) ≥ 0. K(P,Q) = 0 if and only if P = Q.
†
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Proof By the Jensen’s inequality,

K(P,Q) = EP [− log
q(X)

p(X)
] ≥ − logEP [

q(X)

p(X)
] = − logQ(Ω) ≥ 0.

The equality holds if and only if p(x) = Mq(x) almost surely with respect P and Q(Ω) = 1.
Thus, M = 1 and P = Q. †

Now that θ̂n maximizes ln(θ),

1

n

n∑
i=1

pθ̂n(Xi) ≥
1

n

n∑
i=1

pθ0(Xi).

Suppose θ̂n → θ∗. Then we would expect to the both sides converge to

Eθ0 [pθ∗(X)] ≥ Eθ0 [pθ0(X)],

which implies K(Pθ0 , Pθ∗) ≤ 0. From Proposition 5.1, Pθ0 = Pθ∗ . From (A0), θ∗ = θ0 (the model
identifiability condition is used here). That is, θ̂n converges to θ0. Note in this argument, three
conditions are essential: (i) θ̂n → θ∗ (compactness of θ̂n); (ii) the convergence of n−1ln(θ̂n)
(locally uniform convergence); (iii) Pθ0 = Pθ∗ implies θ0 = θ∗ (identifiability).

Next, we give an ad hoc discussion on the efficiency of the maximum likelihood estimator.
Suppose θ̂n → θ0. If θ̂n is in the interior of Θ, θ̂n solves the following likelihood (or score)
equations

l̇n(θ̂n) =
n∑
i=1

l̇θ̂n(Xi) = 0.

Suppose l̇θ(X) is twice-differentiable with respect to θ. We apply the Taylor expansion to
l̇θ̂n(Xi) at θ0 and obtain

−
n∑
i=1

l̇θ0(Xi) =
n∑
i=1

l̈θ∗(Xi)(θ̂ − θ0),

where θ∗ is between θ0 and θ̂. This gives that

√
n(θ̂ − θ0) = − 1√

n

{
n−1

n∑
i=1

l̈θ∗(Xi)

}−1{ n∑
i=1

l̇θ0(Xi)

}
.

By the law of large number, we can see
√
n(θ̂n − θ0) is asymptotically equivalent to

1√
n

n∑
i=1

I(θ0)−1l̇θ0(Xi).

Then θ̂n is an asymptotically linear estimator of θ0 with the influence function I(θ0)−1l̇θ0 =
l̃(·, Pθ0|θ,P). This shows that θ̂n is the efficient estimator of θ0 and the asymptotic variance of√
n(θ̂n − θ0) attains the efficiency bound, which was defined in the previous chapter. Again,

the above arguments require a few conditions to go through.
As mentioned before, in the following sections we will rigorously prove the consistency and

the asymptotic efficiency of the maximum likelihood estimator. Moreover, we will discuss the
computation of the maximum likelihood estimators and some alternative efficient estimation
approaches.
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5.2 Consistency of Maximum Likelihood Estimator

We provide some sufficient conditions for obtaining the consistency of maximum likelihood
estimator.

Theorem 5.1 Suppose that
(a) Θ is compact.
(b) log pθ(x) is continuous in θ for all x.
(c) There exists a function F (x) such that Eθ0 [F (X)] <∞ and | log pθ(x)| ≤ F (x) for all x and
θ.
Then θ̂n →a.s. θ0. †

Proof For any sample ω ∈ Ω, θ̂n is compact. Thus, be choosing a subsequence, we assume
θ̂n → θ∗. Suppose we can show that

1

n

n∑
i=1

lθ̂n(Xi)→ Eθ0 [lθ∗(X)].

Then since
1

n

n∑
i=1

lθ̂n(Xi) ≥
1

n

n∑
i=1

lθ0(Xi),

we have
Eθ0 [lθ∗(X)] ≥ Eθ0 [lθ0(X)].

Thus Proposition 5.1 plus the identifiability gives θ∗ = θ0. That is, any subsequence of θ̂n
converges to θ0. We conclude that θ̂n →a.s. θ0.

It remains to show

Pn[lθ̂n(X)] ≡ 1

n

n∑
i=1

lθ̂n(Xi)→ Eθ0 [lθ∗(X)].

Since
Eθ0 [lθ̂n(X)]→ Eθ0 [lθ∗(X)]

by the dominated convergence theorem, it suffices to show

|Pn[lθ̂n(X)]− Eθ0 [lθ̂n(X)]| → 0.

We can even prove the following uniform convergence result

sup
θ∈Θ
|Pn[lθ(X)]− Eθ0 [lθ(X)]| → 0.

To see this, we define
ψ(x, θ, ρ) = sup

|θ′−θ|<ρ
(lθ′(x)− Eθ0 [lθ′(X)]).

Since lθ is continuous, ψ(x, θ, ρ) is measurable and by the dominance convergence theorem,
Eθ0 [ψ(X, θ, ρ)] decreases to Eθ0 [lθ(x) − Eθ0 [lθ(X)]] = 0. Thus, for ε > 0, for any θ ∈ Θ, there
exists a ρθ such that

Eθ0 [ψ(X, θ, ρθ)] < ε.
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The union of {θ′ : |θ′−θ| < ρθ} covers Θ. By the compactness of Θ, there exists a finite number
of θ1, ..., θm such that

Θ ⊂ ∪mi=1{θ′ : |θ′ − θi| < ρθi}.

Therefore,

sup
θ∈Θ
{Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ sup

1≤i≤m
Pn[ψ(X, θi, ρθi)].

We obtain

lim sup
n

sup
θ∈Θ
{Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ sup

1≤i≤m
Pθ[ψ(X, θi, ρθi)] ≤ ε.

Thus, lim supn supθ∈Θ {Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ 0.We apply the similar arguments to {−l(X, θ)}
and obtain lim supn supθ∈Θ {−Pn[lθ(X)] + Eθ0 [lθ(X)]} ≤ 0. Thus,

lim
n

sup
θ∈Θ
|Pn[lθ(X)]− Eθ0 [lθ(X)]| → 0.

†

As a note, condition (c) in Theorem 5.1 is necessary. Ferguson (2002) page 116 gives an
interesting counterexample showing that if (c) is invalid, the maximum likelihood estimator
converges to a fixed constant whatever true parameter is.

Another type of consistency result is the classical Wald’s consistency result.

Theorem 5.2 (Wald’s Consistency) Θ is compact. Suppose θ 7→ lθ(x) = log pθ(x) is upper-
semicontinuous for all x, in the sense

lim sup
θ′→θ

lθ′(x) ≤ lθ(x).

Suppose for every sufficient small ball U ⊂ Θ,

Eθ0 [sup
θ′∈U

lθ′(X)] <∞.

Then θ̂n →p θ0. †

Proof Since Eθ0 [lθ0(X)] > Eθ0 [lθ′(X)] for any θ′ 6= θ0, there exists a ball Uθ′ containing θ′ such
that

Eθ0 [lθ0(X)] > Eθ0 [ sup
θ∗∈Uθ′

lθ∗(X)].

Otherwise, there exists a sequence θ∗m → θ′ but Eθ0 [lθ0(X)] ≤ Eθ0 [lθ∗m(X)]. Since lθ∗m(x) ≤
supU ′ lθ′(X) where U ′ is the ball satisfying the condition, we obtain

lim sup
m

Eθ0 [lθ∗m(X)] ≤ Eθ0 [lim sup
m

lθ∗m(X)] ≤ Eθ0 [lθ′(X)].

We then obtain Eθ0 [lθ0(X)] ≤ Eθ0 [lθ′(X)] and this is a contradiction.
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For any ε, the balls ∪θ′Uθ′ covers the compact set Θ∩ {|θ′ − θ0| > ε} so there exists a finite
covering balls, U1, ..., Um. Then

P (|θ̂n− θ0| > ε) ≤ P ( sup
|θ′−θ0|>ε

Pn[lθ′(X)] ≥ Pn[lθ0(X)]) ≤ P ( max
1≤i≤m

Pn[ sup
θ′∈Ui

lθ′(X)] ≥ Pn[lθ0(X)])

≤
m∑
i=1

P (Pn[ sup
θ′∈Ui

lθ′(X)] ≥ Pn[lθ0(X)]).

Since
Pn[ sup

θ′∈Ui
lθ′(X)]→a.s. Eθ0 [ sup

θ′∈Ui
lθ′(X)] < Eθ0 [lθ0(X)],

the right-hand side converges to zero. Thus, θ̂n →p θ0. †

5.3. Asymptotic Efficiency of Maximum Likelihood Esti-

mator

The following theorem gives some regular conditions so that the maximum likelihood estimator
attains asymptotic efficiency bound.

Theorem 5.3 Suppose that the model P = {Pθ : θ ∈ Θ} is Hellinger differentiable at an inner
point θ0 of Θ ⊂ Rk. Furthermore, suppose that there exists a measurable function F (X) with
Eθ0 [F (X)2] <∞ such that for every θ1 and θ2 in a neighborhood of θ0,

| log pθ1(x)− log pθ2(x)| ≤ F (x)|θ1 − θ2|.

If the Fisher information matrix I(θ0) is nonsingular and θ̂n is consistent, then

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

I(θ0)−1l̇θ0(Xi) + op(1).

In particular,
√
n(θ̂n − θ0) is asymptotically normal with mean zero and covariance matrix

I(θ0)−1.†

Proof For any hn → h, by the Hellinger differentiability,

Wn = 2

(√
pθ0+hn/

√
n

pθ0
− 1

)
→ h′l̇θ0 , in L2(Pθ0).

We obtain √
n(log pθ0+hn/

√
n − log pθ0) = 2

√
n log(1 +Wn/2)→p h

′l̇θ0 .

Using the Lipschitz continuity of log pθ and the dominate convergence theorem, we can show

Eθ0

[√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− h′l̇θ0 ]

]
→ 0
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and
V arθ0

[√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− h′l̇θ0 ]

]
→ 0.

Thus, √
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− h′l̇θ0 ]→p 0,

where
√
n(Pn − P )[g(X)] is defined as

n−1/2

[
n∑
i=1

{g(Xi)− Eθ0 [g(X)]}

]
.

From Step I in proving Theorem 4.4, we know

log
n∏
i=1

log pθ0+hn/
√
n

log pθ0
=

1√
n

n∑
i=1

h′l̇θ0(Xi)−
1

2
h′I(θ0)h+ op(1).

We obtain
nEθ0 [log pθ0+hn/

√
n − log pθ0 ]→ −h′I(θ0)h/2.

Hence the map θ 7→ Eθ0 [log pθ] is twice-differentiable with second derivative matrix −I(θ0).
Furthermore, we obtain

nPn[log pθ0+hn/
√
n − log pθ0 ] = −1

2
h′nI(θ0)hn + h′n

√
n(Pn − P )[l̇θ0 ] + op(1).

We choose hn =
√
n(θ̂n − θ0) and hn = I(θ0)−1

√
n(Pn − P )[l̇θ0 ]. It gives that

nPn[log pθ̂n − log pθ0 ] = −n
2

(θ̂n − θ0)′I(θ0)(θ̂ − θ0) +
√
n(θ̂n − θ0)

√
n(Pn − P )[l̇θ0 ] + op(1),

nPn[log pθ0+I(θ0)−1
√
n(Pn−P )[l̇θ0 ]/

√
n − log pθ0 ]

=
1

2
{
√
n(Pn − P )[l̇θ0 ]}′I(θ0)−1{

√
n(Pn − P )[l̇θ0 ]}+ op(1).

Since the left-hand side of the fist equation is larger than the left-hand side of the second
equation, after simple algebra, we obtain

−1

2

{√
n(θ̂n − θ0)− I(θ0)−1

√
n(Pn − P )[l̇θ0 ]

}′
I(θ0)

{√
n(θ̂n − θ0)− I(θ0)−1

√
n(Pn − P )[l̇θ0 ]

}
+op(1) ≥ 0.

Thus, √
n(θ̂n − θ0) = I(θ0)−1

√
n(Pn − P )[l̇θ0 ] + op(1).

†

A classical condition for the asymptotic normality for
√
n(θ̂n− θ0) is the following theorem.

Theorem 5.4 For each θ in an open subset of Euclidean space. Let θ 7→ l̇θ(x) = log pθ(x)
be twice continuously differentiable for every x. Suppose Eθ0 [l̇θ0 l̇

′
θ0

] < ∞ and E[l̈θ0 ] exists and
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is nonsingular. Assume that the second partial derivative of l̇θ(x) is dominated by a fixed
integrable function F (x) for every θ in a neighborhood of θ0. Suppose θ̂n →p θ0. Then

√
n(θ̂n − θ0) = −(Eθ0 [l̈θ0 ])

−1 1√
n

n∑
i=1

l̇θ0(Xi) + op(1).

†

Proof θ̂n solves the equation

0 =
n∑
i=1

l̇θ̂(Xi).

After the Taylor expansion, we obtain

0 =
n∑
i=1

l̇θ0(Xi) +
n∑
i=1

l̈θ0(Xi)(θ̂n − θ0) +
1

2
(θ̂n − θ0)′

{
n∑
i=1

l
(3)

θ̃n
(Xi)

}
(θ̂n − θ0),

where θ̃n is between θ̂n and θ0. Thus,

|

{
1

n

n∑
i=1

l̈θ0(Xi)

}
(θ̂n − θ0) +

1

n

n∑
i=1

l̇θ0(Xi)| ≤
1

n

n∑
i=1

|F (Xi)||θ̂n − θ0|2.

We obtain (θ̂n − θ0) = op(1/
√
n). Then it holds

√
n(θ̂n − θ0)

{
1

n

n∑
i=1

l̈θ0(Xi) + op(1)

}
= − 1√

n

n∑
i=1

lθ0(Xi).

The result holds. † .

5.4 Computation of Maximum Likelihood Estimate

A variety of methods can be used to compute the maximum likelihood estimate. Since the
maximum likelihood estimate, θ̂n, solves the likelihood equation

n∑
i=1

l̇θ(Xi) = 0,

one numerical method for the calculation is via the Newton-Raphson iteration: at kth iteration,

θ(k+1) = θ(k) −

{
1

n

n∑
i=1

l̈θ(k)(Xi)

}−1{
1

n

n∑
i=1

l̇θ(k)(Xi)

}
.

Sometimes, calculating l̈θ may be complicated. Note the

− 1

n

n∑
i=1

l̈θ(k)(Xi) ≈ I(θ(k)).
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Then a Fisher scoring algorithm is via the following iteration

θ(k+1) = θ(k) + I(θ(k))−1

{
1

n

n∑
i=1

l̇θ(k)(Xi)

}
.

An alternative method to find the maximum likelihood estimate is by optimum search algo-
rithm. Note that the objective function is Ln(θ). Then a simple search method is grid search
by evaluating the Ln(θ) along a number of θ’s in the parameter space. Clearly, such a method
is only feasible with very low-dimensional θ. Other efficient methods include quasi-Newton
search (gradient-decent search) where at each θ, we search along the direction of L̇n(θ). Re-
cent development has seen many Bayesian computation methods, including MCMC, simulation
annealing etc.

In this section, we particularly focus on the calculation of the maximum likelihood estimate
when part of data are missing or some mis-measured data are observed. In such calculation,
a useful algorithm is called the expectation-maximization (EM) algorithm. We will describe
this algorithm in detail and explain why the EM algorithm may give the maximum likelihood
estimate. A few examples are given for illustration.

5.4.1 EM framework

Suppose Y denotes the vector of statistics from n subjects. In many practical problems, Y
can not be fully observed due to data missingness; instead, partial data or a function of Y is
observed. For simplicity, suppose Y = (Ymis, Yobs), where Yobs is the part of Y which is observed
and Ymis is the part of Y which is not observed. Furthermore, we introduce R as a vector of 0/1
indicating which subjects are missing/not missing. Then the observed data include (Yobs, R).

Assume Y has a density function f(Y ; θ) where θ ∈ Θ. Then the density function for the
observed data (Yobs, R) ∫

Ymis

f(Y ; θ)P (R|Y )dYmis,

where P (R|Y ) denotes the conditional probability of R given Y . One additional assumption
is that P (R|Y ) = P (R|Yobs) and P (R|Y ) does not depend on θ; i.e., the missing probability
only depends on the observed data and it is non-informative about θ. Such an assumption is
called the missing at random (MAR) and is often assumed for missing data problem. Under
the MAR, the density function for the observed data is equal∫

Ymis

f(Y ; θ)dYmisP (R|Y ).

Hence, if we wish to calculate the maximum likelihood estimator for θ, we can ignore the part
of P (R|Y ) but simply maximize the part of

∫
Ymis

f(Y ; θ)dYmis. Note the latter is exactly the
marginal density of Yobs, denoted by f(Yobs; θ).

The way of the EM algorithm is as follows: we start from any initial value of θ(1) and use
the following iterations. The kth iteration consists both E-step and M-step:

E-step. We evaluate the conditional expectation

E
[
log f(Y ; θ)|Yobs, θ(k)

]
.
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Here, E[·|Yobs, θk] is the conditional expectation given the observed data and the current value
of θ. That is,

E
[
log f(Y ; θ)|Yobs, θ(k)

]
=

∫
Ymis

[log f(Y ; θ)]f(Y ; θ(k))dYmis∫
Ymis

f(Y ; θ(k))dYmis
.

Such an expectation can often be evaluated using simple numerical calculation, as will be seen
in the later examples.

M-step. We obtain θ(k+1) by maximizing

E
[
log f(Y ; θ)|Yobs, θ(k)

]
.

We then iterate till the convergence of θ; i.e., the difference between θ(k+1) and θ(k) is less than
a given criteria.

The reason why the EM algorithm may give the maximum likelihood estimator is the fol-
lowing result.

Theorem 5.5 At each iteration of the EM algorithm, log f(Yobs; θ
(k+1)) > log f(Yobs; θ

(k)) and
the equality holds if and only if θ(k+1) = θ(k). †

Proof From the EM algorithm, we see

E
[
log f(Y ; θ(k+1))|Yobs, θ(k)

]
≥ E

[
log f(Y ; θ(k))|Yobs, θ(k)

]
.

Sine
log f(Y ; θ) = log f(Yobs; θ) + log f(Ymis|Yobs, θ),

we obtain
E
[
log f(Ymis|Yobs, θ(k+1))|Yobs, θ(k)

]
+ log f(Yobs; θ

(k+1))

≥ E
[
log f(Ymis|Yobs, θ(k))|Yobs, θ(k)

]
+ log f(Yobs; θ

(k)).

On the other hand, since

E
[
log f(Ymis|Yobs, θ(k+1))|Yobs, θ(k)

]
≤ E

[
log f(Ymis|Yobs, θ(k))|Yobs, θ(k)

]
by the non-negativity of the Kullback-Leibler information, we conclude that log f(Yobs; θ

(k+1)) ≥
log f(Yobs, θ

(k)). The equality holds if and only if

log f(Ymis|Yobs, θ(k+1)) = log f(Ymis|Yobs, θ(k)),

equivalently, log f(Y ; θ(k+1)) = log f(Y ; θ(k)) thus θ(k+1) = θ(k). †

From Theorem 5.5, we conclude that each iteration of the EM algorithm increases the
observed likelihood function. Thus, it is expected that θ(k) will eventually converge to the
maximum likelihood estimate. If the initial value of the EM algorithm is chosen close to the
maximum likelihood estimate (though we never know) and the objective function is concave in
the neighborhood of the maximum likelihood estimate, then the maximization in the M-step
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can be replaced by the Newton-Raphson iteration. Correspondingly, an alternative way to the
EM algorithm is given by:

E-step. We evaluate the conditional expectation

E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ(k)

]
and

E

[
∂2

∂θ2
log f(Y ; θ)|Yobs, θ(k)

]

M-step. We obtain θ(k+1) by solving

0 = E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ(k)

]
using one-step Newton-Raphson iteration:

θ(k+1) = θ(k) −
{
E

[
∂2

∂θ2
log f(Y ; θ)|Yobs, θ(k)

]}−1

E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ(k)

]∣∣∣∣∣
θ=θ(k)

.

We note that in the second form of the EM algorithm, only one-step Newton-Raphson iteration
is used in the M-step since it still ensures that the iteration will increase the likelihood function.

5.4.2 Examples of using EM algorithm

Example 5.1 Suppose a random vector Y has a multinomial distribution with n = 197 and

p = (
1

2
+
θ

4
,
1− θ

4
,
1− θ

4
,
θ

4
).

Then the probability for Y = (y1, y2, y3, y4) is given by

n!

y1!y2!y3!y4!
(
1

2
+
θ

4
)y1(

1− θ
4

)y2(
1− θ

4
)y3(

θ

4
)y4 .

If we use the Newton-Raphson iteration to calculate the maximum likelihood estimator for
θ, then after calculating the first and the second derivative of the log-likelihood function, we
iterate using

θ(k+1) = θ(k) +

{
Y1

1/16

(1/2 + θ(k)/4)2
+ (Y2 + Y3)

1

(1− θ(k))2
+ Y4

1

θ(k)2

}−1

×
{
Y1

1/4

1/2 + θ(k)/4
− (Y2 + Y3)

1

1− θ(k)
+ Y4

1

θ(k)

}
.

Suppose we observe Y = (125, 18, 20, 34). If we start with θ(1) = 0.5, after the convergence, we
obtain θ(k) = 0.6268215. We can use the EM algorithm to calculate the maximum likelihood
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estimator. Suppose the full data is X which has a multivariate normal distribution with n and
the p = (1/2, θ/4, (1 − θ)/4, (1 − θ)/4, θ/4). Then Y can be treated as an incomplete data of
X by Y = (X1 +X2, X3, X4, X5). The score equation for the complete data X is simple

0 =
X2 +X5

θ
− X3 +X4

1− θ
.

Thus we note the M-step of the EM algorithm needs to solve the equation

0 = E

[
X2 +X5

θ
− X3 +X4

1− θ
|Y, θ(k)

]
;

while the E-step evaluates the above expectation. By simple calculation,

E[X|Y, θ(k)] = (Y1
1/2

1/2 + θ(k)/4
, Y1

θ(k)/4

1/2 + θ(k)/4
, Y2, Y3, Y4).

Then we obtain

θ(k+1) =
E[X2 +X5|Y, θ(k)]

E[X2 +X5 +X3 +X4|Y, θ(k)]
=

Y1
θ(k)/4

1/2+θ(k)/4
+ Y4

Y1
θ(k)/4

1/2+θ(k)/4
+ Y2 + Y3 + Y4

.

We start form θ(1) = 0.5. The following table gives the results from iterations:

k θ(k+1) θ(k+1) − θ(k) θ(k+1)−θ̂n
θ(k)−θ̂n

0 .500000000 .126821498 .1465
1 .608247423 .018574075 .1346
2 .624321051 .002500447 .1330
3 .626488879 .000332619 .1328
4 .626777323 .000044176 .1328
5 .626815632 .000005866 .1328
6 .626820719 .000000779
7 .626821395 .000000104
8 .626821484 .000000014

From the table, we find the EM converges and the result agrees with what is obtained form the
Newton-Raphson iteration. We also note the the convergence is linear as (θ(k+1) − θ̂n)/(θ(k) − θ̂n)
becomes a constant when convergence; comparatively, the convergence in the Newton-Raphson
iteration is quadratic in the sense (θ(k+1) − θ̂n)/(θ(k) − θ̂n)2 becomes a constant when conver-
gence. Thus, the Newton-Raphon iteration converges much faster than the EM algorithm;
however, we have already seen the calculation of the EM is much less complex than the Newton-
Raphson iteration and this is the advantage of using the EM algorithm.

Example 5.2 We consider the example of exponential mixture model. Suppose Y ∼ Pθ where
Pθ has density

pθ(y) =
{
pλe−λy + (1− p)µe−µy

}
I(y > 0)

and θ = (p, λ, µ) ∈ (0, 1) × (0,∞) × (0,∞). Consider estimation of θ based on Y1, ..., Yn
i.i.d pθ(y). Solving the likelihood equation using the Newton-Raphson is much computation
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involved. We take an approach based on the EM algorithm. We introduce the complete data
X = (Y,∆) ∼ pθ(x) where

pθ(x) = pθ(y, δ) = (pye−λy)δ((1− p)µe−µy)1−δ.

This is natural from the following mechanism: ∆ is a bernoulli variable with P (∆ = 1) = p
and we generate Y from Exp(λ) if ∆ = 1 and from Exp(µ) if ∆ = 0. Thus, ∆ is missing. The
score equation for θ based on X is equal to

0 = l̇p(X1, ..., Xn) =
n∑
i=1

{
∆i

p
− 1−∆i

1− p

}
,

0 = l̇λ(X1, ..., Xn) =
n∑
i=1

∆i(
1

λ
− Yi),

0 = l̇µ(X1, ..., Xn) =
n∑
i=1

(1−∆i)(
1

µ
− Yi).

Thus, the M-step of the EM algorithm is to solve the following equations

0 =
n∑
i=1

E

[{
∆i

p
− 1−∆i

1− p

}
|Y1, ..., Yn, p

(k), λ(k), µ(k)

]
=

n∑
i=1

E

[{
∆i

p
− 1−∆i

1− p

}
|Yi, p(k), λ(k), µ(k)

]
,

0 =
n∑
i=1

E

[
∆i(

1

λ
− Yi)|Y1, ..., Yn, p

(k), λ(k), µ(k)

]
=

n∑
i=1

E

[
∆i(

1

λ
− Yi)|Yi, p(k), λ(k), µ(k)

]
,

0 =
n∑
i=1

E

[
1−∆i)(

1

µ
− Yi)|Y1, ..., Yn, p

(k), λ(k), µ(k)

]
=

n∑
i=1

E

[
1−∆i)(

1

µ
− Yi)|Yi, p(k), λ(k), µ(k)

]
.

This immediately gives

p(k+1) =
1

n

n∑
i=1

E[∆i|Yi, p(k), λ(k), µ(k)],

λ(k+1) =

∑n
i=1E[∆i|Yi, p(k), λ(k), µ(k)]∑n
i=1 YiE[∆i|Yi, p(k), λ(k), µ(k)]

,

µ(k+1) =

∑n
i=1 E[(1−∆i)|Yi, p(k), λ(k), µ(k)]∑n
i=1 YiE[(1−∆i)|Yi, p(k), λ(k), µ(k)]

.

The conditional expectation

E[∆|Y, θ] =
pλe−λY

pλe−λY + (1− p)µe−µY
.

As seen above, the EM algorithm facilitates the computation.
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5.4.3 Information calculation in EM algorithm

We now consider the information of θ in the missing data. Denote l̇c as the score function
for θ in the full data and denote l̇mis|obs as the score for θ in the conditional distribution of

Ymis given Yobs and l̇obs as the the score for θ in the distribution of Yobs. Then it is clear that
l̇c = l̇mis|obs + l̇obs. Using the formula

V ar(U) = V ar(E[U |V ]) + E[V ar(U |V )],

we obtain
V ar(l̇c) = V ar(E[l̇c|Yobs]) + E[V ar(l̇c|Yobs)].

Since
E[l̇c|Yobs] = l̇obs + E[l̇mis|obs|Yobs] = l̇obs

and
V ar(l̇c|Yobs) = V ar(l̇mis|obs|Yobs),

we obtain
V ar(l̇c) = V ar(l̇obs) + E[V ar(l̇mis|obs|Yobs)].

Note that V ar(l̇c) is the information for θ based the complete data Y , denote by Ic(θ),
V ar(l̇obs) is the information for θ based on the observed data Yobs, denote by Iobs(θ), and
the V ar(l̇mis|obs|Yobs) is the conditional information for θ based on Ymis given Yobs, denoted by
Imis|obs(θ;Yobs). We obtain the following Louis formula

Ic(θ) = Iobs(θ) + E[Imis|obs(θ, Yobs)].

Thus, the complete information is the summation of the observed information and the missing
information. One can even show when the EM converges, the convergence linear rate, denote
as (θ(k+1) − θ̂n)/(θ(k) − θ̂n) approximates the 1− Iobs(θ̂n)/Ic(θ̂n).

The EM algorithms can be applied to not only missing data but also data with measurement
error. Recently, the algorithms have been extended to the estimation in missing data in many
semiparametric models.

5.5 Nonparametric Maximum Likelihood Estimation

In the previous section, we have studied the maximum likelihood estimation for parametric
models. The maximum likelihood estimation can also be applied to many semiparametric or
nonparametric models and this approach has been received more and more attention in recent
years. We illustrate through some examples how such an estimation approach is used in the
semiparametric or nonparametric model. Since obtaining the consistency and the asymptotic
properties of the maximum likelihood estimators require both advanced probability theory in
metric space and semiparametric efficiency theory, we would rather not get into details of these
theories.

Example 5.3 Let X1, ..., Xn be i.i.d random variables with common distribution F , where F
is any unknown distribution function. One may be interested in estimating F . This model is
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a nonparametric model. We consider maximizing the likelihood function to estimate F . The
likelihood function for F is given by

Ln(F ) =
n∏
i=1

f(Xi),

where f(Xi) is the density function of F with respect to some dominating measure. However,
the maximum of Ln(F ) does not exists since one can always choose a continuous f such that
f(X1)→∞. To avoid this problem, instead, we maximize an alternative function

L̃n(F ) =
n∏
i=1

F{Xi},

where F{Xi} denotes the value F (Xi)−F (Xi−). It is clear that L̃n(F ) ≤ 1 and if F̂n maximizes
L̃n(F ), F̂n must be a distribution function with point masses only at X1, ..., Xn. We denote
qi = F{Xi} and qi = qj if Xi = Xj. Then maximizing L̃n(F ) is equivalent to maximizing

n∏
i=1

qi subject to
∑

distinct qi

qi = 1.

The maximization with the Lagrange-Multiplier gives that

qi =
1

n

n∑
j=1

I(Xj = Xi).

Then

F̂ (x) =
1

n

n∑
i=1

I(Xn ≤ x) = Fn(x).

In other words, the maximum likelihood estimator for F is the empirical distribution function
Fn. It can be shown that Fn converges to F almost surely uniformly in x and

√
n(Fn − F )

converges in distribution to a Brownian bridge process. Fn is called the nonparametric maximum
likelihood estimator of F .

Example 5.4 Suppose X1, ..., Xn are i.i.d F and Y1, ..., Yn are i.i.d G. We observe i.i.d pairs
(Z1,∆1), ..., (Zn,∆n), where Zi = min(Xi, Yi) and ∆i = I(Xi ≤ Yi). We consider Xi as survival
time and Yi as censoring time. Then it is easy to calculate the joint distributions for (Zi,∆i),
i = 1, ..., n, is equal to

Ln(F,G) =
n∏
i=1

{f(Zi)(1−G(Zi))}∆i {(1− F (Zi))g(Zi)}1−∆i .

Similarly, Ln(F,G) does not have the maximum so we consider an alternative function

L̃n(F,G) =
n∏
i=1

{F{Zi}(1−G(Zi))}∆i {(1− F (Zi))G{Zi}}1−∆i .
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L̃n(F,G) ≤ 1 and maximizing L̃n(F,G) is equivalent to maximizing

n∏
i=1

{pi(1−Qi)}∆i {qi(1− Pi)}1−∆i ,

subject to the constraint
∑

i pi =
∑

j qj = 1, where pi = F{Zi}, qi = G{Zi}, and Pi =∑
Yj≤Yi pj, Qi =

∑
Yj≤Yi qj. However, this maximization may not be easy. Instead, we will take

a different approach by considering a new parameterization. Define the hazard functions λX(t)
and λY (t) as

λX(t) = f(t)/(1− F (t−)), λY (t) = g(t)/(1−G(t−))

and the cumulative hazard functions ΛX(t) and ΛY (t) as

ΛX(t) =

∫ t

0

λX(s)ds, ΛY (t) =

∫ t

0

λY (s)ds.

The derivation of F and G from ΛX and ΛY is based on the following product-limit form:

1− F (t) =
∏
s≤t

(1− dΛX) ≡ lim
maxmi=1 |ti−ti−1|→0

∏
0=t0<t1<...<tm=t

{1− (ΛX(ti)− ΛX(ti−1))},

1−G(t) =
∏
s≤t

(1− dΛY ) ≡ lim
maxmi=1 |ti−ti−1|→0

∏
0=t0<t1<...<tm=t

{1− (ΛY (ti)− ΛY (ti−1))}.

Under the new parameterization, the likelihood function for (Zi,∆i), i = 1, ..., n, is given by

n∏
i=1

[
λX(Zi)

∆i exp{−ΛX(Zi)}λY (Zi)
1−∆i exp{−ΛY (Zi)}

]
.

Again, we maximize a modified function

n∏
i=1

[
ΛX{Zi}∆i exp{−ΛX(Zi)}ΛY {Zi}1−∆i exp{−ΛY (Zi)}

]
,

where ΛX{Zi} and ΛY {Zi} are the jump sizes of ΛX and ΛY at Zi. The maximization becomes
maximizing

n∏
i=1

[
a∆i
i exp{−Ai}b1−∆i

i exp{−Bi}
]
,

where Ai =
∑

Zj≤Zi aj and Bi =
∑

Zj≤Zi bj. Simple calculation gives that

ai =
∆i

Ri

, bi =
(1−∆i)

Ri

, Ri =
∑
Yj≥Yi

1.

Thus, the NPMLE’s for ΛX and ΛY are given by

Λ̂X(t) =
∑
Yi≤t

∆i

Ri

, Λ̂Y (t) =
∑
Yi≤t

1−∆i

Ri

.
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As a result of the product-limit formula, we obtain the NPMLE’s for F and G are

F̂n = 1−
∏
Yi≤t

{
1− ∆i

Ri

}
, Ĝn = 1−

∏
Yi≤t

{
1− 1−∆i

Ri

}
.

Both 1 − F̂n and 1 − Ĝn are called the Kaplan-Meier estimates of the survival functions for
the survival time and the censoring time respectively. The results based on counting process
theory show that F̂n and Ĝn are uniformly consistent and both

√
n(F̂n − F ) and

√
n(Ĝn −G)

are asymptotically Gaussian.

Example 5.5 Suppose T is survival time and Z is covariate. Assume that the conditional
distribution of T given Z has a conditional hazard function

λ(t|Z) = λ(t)eθ
′Z .

Then the likelihood function from n i.i.d (Ti, Zi), i = 1, ..., n is given by

Ln(θ,Λ) =
n∏
i=1

{
λ(Ti) exp{−Λ(Ti)e

θ′Zi}f(Zi)
}
.

Note f(Zi) is not informative about θ and λ so we can discard it from the likelihood function.
Again, we replace λ{Ti} by Λ{Ti} and obtain a modified function

L̃n(θ,Λ) =
n∏
i=1

{
Λ{Ti} exp{−Λ(Ti)e

θ′Zi}
}
.

Let pi = Λ{Ti} we maximize

n∏
i=1

pi exp{−(
∑
Yj≤Yi

pj)e
θ′Zi}


or its logarithm as

n∑
i=1

θ′Zi − exp{θ′Zi}
∑
Yj≤Yi

pj + log pj

 .

We obtain

p̂i =
1∑

Yj≥Yi exp{θ′Zj}

by differentiating with respect to pi. After substituting it back into the log L̃n(θ,Λ), we find θ̂n
maximizes the function

log

{
n∏
i=1

exp{θ′Zi}∑
Yj≥Yi exp{θ′Zj}

}
.

The function inside the logarithm is called the Cox’s partial likelihood for θ. The consistency
and the asymptotic efficiency for θ̂n have been well studied since the Cox (1972) proposed this
estimation, with help from the martingale process theory.
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Example 5.6 We consider X1, ..., Xn are i.i.d F and Y1, ..., Yn are i.i.d G. We only observe
(Yi,∆i) where ∆i = I(Xi ≤ Yi) for i = 1, ..., n. This data is one type of interval censored data
(or current status data). The likelihood for the observations is

n∏
i=1

{
F (Yi)

∆i(1− F (Yi))
1−∆ig(Yi)

}
.

To derive the NPMLE for F and G, we instead maximize

n∏
i=1

{
P∆i
i (1− Pi)1−∆iqi

}
,

subject to the constraint that
∑
qi = 1 and 0 ≤ Pi ≤ 1 increases with Yi. Clearly, q̂i = 1/n

(suppose Yi are all different). This constrained maximization turns out to be solved by the
following steps:
(i) Plot the points (i,

∑
Yj≤Yi ∆j), i = 1, ..., n. This is called the cumulative sum diagram.

(ii) Form the H∗(t), the greatest the convex minorant of the cumulative sum diagram.
(iii) Let P̂i be the left derivative of H∗ at i.
Then (P̂1, ..., P̂n) maximizes the object function. Groeneboom and Wellner (1992) shows that
if f(t), g(t) > 0,

n1/3(F̂n(t)− F (t))→d

(
F (t)(1− F (t))f(t)

2g(t)

)1/3

(2Z),

where Z is the location the maximum of the process {B(t)− t2 : t ∈ R} where B(t) is standard
Brownian motion starting from 0.

In summary, the NPMLE is a generalization of the maximum likelihood estimation to the
semiparametric or nonparametric models. We have seen that in such a generalization, we often
replace the functional parameter by an empirical function with jumps only at observed data
and maximize a modified likelihood function. However, both computation of the NPMLE and
the asymptotic property of the NPMLE can be difficult and vary for different specific problems.

5.6 Alternative Efficient Estimation

Although the maximum likelihood estimation is the most popular way of obtaining an asymp-
totically efficient estimator, there are alternative ways of deriving efficient estimation. Among
them, one-step efficient estimation is the simplest.

In one-step efficient estimation, we assume that a strongly consistent estimator for parameter
θ, denoted by θ̃n, is given. Moreover |θ̃n − θ0| = Op(n

−1/2). One-step procedure is essentially a
one-step Newton-Raphson iteration in solving the likelihood score equation; that is, we define

θ̂n = θ̃n −
{
l̈n(θ̃n)

}−1

l̇n(θ̃n),

where l̇n(θ) is the sore function of the observed log-likelihood function and l̈n(θ) is the derivative
of l̇n(θ). The next theorem shows that θ̂n is an asymptotically efficient estimator.
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Theorem 5.6 Let lθ(X) be the log-likelihood function of θ. Assume that there exists a neigh-

borhood of θ0 such that in this neighborhood, |l(3)
θ (X)| ≤ F (X) with E[F (X)] <∞. Then

√
n(θ̂n − θ0)→d N(0, I(θ0)−1),

where I(θ0) is the Fisher information. †

Proof Since θ̃n →a.s. θ0, we perform the Taylor expansion on the right-hand side of the one-step
equation and obtain

θ̂n = θ̃n −
{
l̈n(θ̃n)

}{
l̇n(θ0) + l̈n(θ∗)(θ̃n − θ0)

}
where θ∗ is between θ̃n and θ0. Therefore,

θ̂n − θ0 =

[
I −

{
l̈n(θ̃n)

}−1

l̈n(θ∗)

]
(θ̃n − θ0)−

{
l̈n(θ̃n)

}
l̇n(θ0).

On the other hand, by the condition that |l(3)
θ (X)| ≤ F (X) with E[F (X)] <∞, we know

1

n
l̈n(θ∗)→a.s. E[l̈θ0(X)],

1

n
l̈n(θ̃n)→a.s. E[l̈θ0(X)].

Thus,

θ̂n − θ0 = op(|θ̃n − θ0|)−
{
E[l̈θ0(X)] + op(1)

}−1 1

n
l̇n(θ0)

so √
n(θ̂n − θ0) = op(1)−

{
E[l̈θ0(X)] + op(1)

}−1 1√
n
l̇n(θ0)→d N(0, I(θ0)−1).

We have proved that θ̂n is asymptotically efficient. †

Remark 5.1 Many different conditions from Theorem 5.6 can be used to ensure the asymp-
totic efficiency of θ̂n and here we have presented a simple one. Additionally, in the one-step
estimation, since l̈n(θ̃n) approximates −I(θ0) and the latter can be estimated by −I(θ̃n), we
sometimes use a slightly different one-step update:

θ̂n = θ̃n + I(θ̃n)−1l̇(θ̃n).

One can recognize that this estimation is in fact one-step iteration in the Fisher scoring algo-
rithm. Another efficient estimation arises from the Bayesian estimation method, where it can
be shown that under regular condition of prior distribution, the posterior mode is equivalent
to the maximum likelihood estimator. We will not pursue this method here.

In summary, efficient estimation is one of the most important goals in statistical inference.
The maximum likelihood approach provides a natural and simple way of deriving an efficient
estimator. However, when the maximum likelihood approach is not feasible, for example, the
maximum likelihood estimator does not exist or the computation is difficult, other estimation
approaches may be considered such as one-step estimation, Bayesian estimation etc. So far,
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we only focus on parametric models. When model is given semiparametrically or nonpara-
metrically, the maximum likelihood estimator or the Bayesian estimator usually does not exist
because of the presence of some infinite dimensional parameters. In this case, some approxi-
mated likelihood approaches have been developed, one of which is the nonparametric maximum
likelihood approach (sometimes called empirical likelihood approach) as given in Section 5.5.
Other approaches include partial likelihood approach, sieve likelihood approach, and penalized
likelihood approach etc. These topics need another full text to describe and will be deferred to
some future course.

READING MATERIALS: You should read Ferguson, Sections 16-20, Lehmann and Casella,
Sections 6.2-6.7

PROBLEMS

We need the following definitions to answer the given problems.

Definition 5.2. {Tn} and {T̃n} are two sequences of estimators for θ. Suppose
√
n(Tn − θ)→d N(0, σ2),

√
n(T̃n − θ)→d N(0, σ̃2).

The asymptotic relative efficiency (ARE) of {Tn} with respect to {T̃n} is defined as r = σ̃2/σ2.
Intuitively, r can be understood as: to achieve the same accuracy in estimating θ, using the
estimator Tn needs approximately 1/r times as many observations as using the estimator T̃n.
Thus, if r > 1, Tn is more efficient than T̃n; vice versa.

Definition 5.3. If δ0 and δ1 are statistics, then the random interval (δ0, δ1) is called a (1−α)-
confidence interval for g(θ) if

Pθ(g(θ) ∈ (δ0, δ1)) ≥ 1− α.
Intuitively, the above inequality says: however data are generated, there is at least (1 − α)
probability that the interval contains the true value g(θ). Also, a random set S constructed
from data is called a (1− α)-confidence region for g(θ) if

Pθ(g(θ) ∈ S) ≥ 1− α.

If (δ0, δ1) and S change with sample size n and the above inequalities hold at the limit, then
(δ0, δ1) and S are approximately (1−α)-confidence interval and confidence region respectively.

1. Suppose that (X1, Y1),...,(Xn, Yn) are i.i.d. with bivariate normal distribution N2(µ,Σ)
where µ = (µ1, µ2)′ ∈ R2 and

Σ =

(
σ2 στρ
στρ τ 2

)
where σ2 > 0, τ 2 > 0, and ρ ∈ (−1, 1).
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(a) If we assume that µ1 = µ2 = θ and Σ is known, what is the maximum likelihood
estimator of θ?

(b) If we assume that µ is known and σ2 = τ 2 = θ, what is the maximum likelihood
estimator of (θ, ρ)?

(c) What is the asymptotic distribution of the estimator you found in (b)?

2. Let X1, ..., Xn be i.i.d. with common density

fθ(x) =
θ

(1 + x)θ+1
I(x > 0), θ > 0.

(a) Find the maximum likelihood estimator of θ, denoted as θ̂n. Give the limit distribu-
tion of

√
n(θ̂n − θ).

(b) Find a function g such that, regardless the value of θ,
√
n(g(θ̂n)− g(θ))→d N(0, 1).

(c) Construct an approximately 1− α confidence interval based on (b).

3. Suppose X has a standard exponential distribution with density f(x) = e−xI(x > 0).
Given X = x, Y has a Poisson distribution with mean λx.

(a) Determine the marginal mass function of Y . Find E[Y ] and V ar(Y ) without using
the mass function of Y .

(b) Give a lower bound for the variance of an unbiased estimator of λ based on X and
Y .

(c) Suppose (X1, Y1), ..., (Xn, Yn) are i.i.d., with each pair having the same joint distri-
bution as X and Y . Let λ̂n be the maximum likelihood estimator based on these
data, and let λ̃n be the maximum likelihood estimator based on Y1, ..., Yn. Determine
the asymptotic relative efficiency of λ̃n with respect to λ̂n.

4. Suppose that X1, ..., Xn are i.i.d. with density function pθ(x), θ ∈ Θ ⊂ Rk. Denote
lθ(x) = log pθ(x). Assume lθ(x) is three times differentiable with respect to θ and its third
derivatives are bounded by M(x), where supθ Eθ[M(X)] < ∞. Let θ̂n be the maximum
likelihood estimator of θ and assume

√
n(θ̂n − θ) →d N(0, I−1

θ ), where Iθ denotes the
Fisher information at θ and is assumed to be non-singular.

(a) To estimate the asymptotic variance of
√
n(θ̂n − θ), one proposes an estimator Î−1

n ,
where

În = − 1

n

n∑
i=1

l̈θ̂n(Xi).

Prove that Î−1
n is a consistent estimator of I−1

θ .

(b) Show √
nÎ1/2

n (θ̂n − θ)→d N(0, Ik×k),

where Î
1/2
n is the square root matrix of În and Ik×k is k-by-k identity matrix. From

this approximation, construct an approximate (1− α)-confidence region for θ.
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(c) Let ln(θ) =
∑n

i=1 lθ(Xi). Perform Taylor expansion on −2(ln(θ) − ln(θ̂n)) (called

likelihood ratio statistic) at θ̂n and show

−2(ln(θ)− ln(θ̂n))→d χ
2
k.

From this result, construct an approximate 1− α confidence region for θ.

5. Human beings can be classified into one of four blood groups (phenotypes) O,A,B,AB. The
inheritance of blood groups is controlled by three genes, O, A, B, of which O is recessive
to A and B. If r, p, q are the gene probabilities in the population of O,A,B respectively
(r + p+ q = 1), the probabilities of the six possible combinations (genotypes) in random
mating (where two individuals draw at random from the population contribute one gene
each) are shown in the following tables:

Phenotype Genotype probability
O OO r2

A AA p2

A AO 2rp
B BB q2

B BO 2rq
AB AB 2pq

We observe among N individuals that the phenotype frequencies NO, NA, NB, NAB and
wish to estimate the gene probabilities from such data. A simple approach is to regard the
observations as incomplete, the complete data set being the genotype frequencies NOO,
NAA, NAO, NBB, NBO, NAB.

(a) Derive the EM algorithm for estimation of (p, q, r).

(b) Suppose that we observe NO = 176, NA = 182, NB = 60, NAB = 17. Use the EM
algorithm to calculate the maximum likelihood estimator of (p, q, r), with starting
value p = q = r = 1/3 and stopping iteration once the maximal difference between
the new estimates and the previous one is less than 10−4.

6. Suppose that X has a density function f(x) and given X = x, Y ∼ N(βx, σ2). Let
(X1, Y1), ..., (Xn, Yn) be i.i.d. observations with the same distribution as (X, Y ). However,
in many applications, not all X’s are observable and we assume that Xm+1, ..., Xn are
missing for some 1 < m < n and that the missingness satisfies MAR assumption. Then
the observed likelihood function is

m∏
i=1

[
f(Xi)

1√
2πσ2

exp{−(Yi − βXi)
2

2σ2
}
]
×

n∏
i=m+1

∫
x

[
f(x)

1√
2πσ2

exp{−(Yi − βx)2

2σ2
}
]
dx.

Suppose that the observed values for X’s are distinct. We want to calculate the NPMLE
for β and σ2. To do that, we “assume” that X only has point mass pi > 0 at the observed
data Xi = xi for i = 1, ...,m.

(a) Rewrite the likelihood function using β, σ2 and p1, ..., pm.
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(b) Write out the score equations for all the parameters.

(c) A simple approach to calculate the NPMLE is to use the EM algorithm, where
Xm+1, ..., Xn are missing data. Derive the EM algorithm. Hint: Xi, i = m+ 1, ..., n,
can only have values x1, ..., xm with probabilities p1, ..., pm.

7. Ferguson, pages 117-118, problems 1-3

8. Ferguson, pages 124-125, problems 1-7

9. Ferguson, page 131, problem 1

10. Ferguson, page 139, problems 1-4

11. Lehmann and Casella, pages 501-514, problems 3.1-7.34
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CHAPTER 6 BEYOND PARAMETRIC MODELS AND

BEYOND ESTIMATION

In the previous chapters, estimation and inference focus on parametric models, in which a
finite number of parameters are sufficient to characterize the underlying distribution for data
generation. Although parametric models enjoy the simplicity and convenience of interpretation,
they are prone to model misspecification, leading to incorrect inference. For example, in a linear
model, when the error distribution is no longer a normal distribution, default testing based on
student t-test or F-est is questionable. To be less susceptible to model misspecification, better
modelling approaches are so-called semiparametric models which impose minimal structures on
data distribution. The most extreme approach is called nonparametric models which assume
the full distribution of data to be completely unknown. In this chapter, we will provide a brief
introduction to nonparametric/semiparametric models.

6.1 Nonparametric Estimation

Nonparametric estimation is usually discussed for two contexts: nonparametric density estima-
tion and nonparametric regression. Nonparametric density estimation refers to using empirical
observations to estimate the underlying density of the data, without any parametric density
assumptions; while nonparametric regression focuses on estimating the conditional mean of one
random variable given another set of variables, similar to usual parametric regression models,
but assumes no structural form for this conditional mean.

6.1.1 Nonparametric density estimation

We consider the univariate density estimation. Assume X1, ..., Xn to be i.i.d from an underlying
distribution with a bounded and continuous density function f(x). The goal of the density
estimation is to estimate f(x) using the observed data.
6.1.1.1 Local Approaches

Local approaches refer to pooling observations locally around x in order to estimate f(x).
Since f(x) reflects the proportion of the data locally around x, one general estimator for f(x) is
to assign weights to each observation and more weights are given to Xi near x than Xi further
from x:

f̂(x) = n−1

n∑
i=1

wni(x),

where wni(x) = a−1
n K(a−1

n (Xi − x)) for some non-increasing and nonnegative function of K(·)
and an is a pre-specified constant depending on n. The function, K(·), is called kernel function
determining the scale of weights and also satisfies

∫
K(y)dy = 1. The constant, an, is called

the bandwidth which decides the closeness of Xi to x.
To see why this estimator is a good estimator for f(x), we evaluate its expectation as

E[f̂(x)] = E[a−1
n K(a−1

n (X1 − x))] =

∫
y

K(y)f(x+ any)dy →
∫
y

K(y)dyf(x) = f(x)

when an is chosen to satisfy an → 0 and f(x) is continuous. Therefore, f̂(x) is an asymptotically
unbiased estimator for f(x). There are many choices of the kernel functions satisfying this
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property, for example, let K(y) be any density function in R. We give two examples below.
In the first example, K(y) is chosen as K(y) = I(−1 < y ≤ 1)/2 then the estimator becomes

f̂(x) =
1

2nan

n∑
i=1

I(x− an < Xi ≤ x+ an),

which is the local proportion of the observations in the interval (x− an, x+ an) with respect to

the length interval 2an. In fact, we can also rewrite f̂(x) as

f̂(x) =
F̂ (x+ an)− F̂ (x− an)

2an
,

where F̂ (x) is the empirical distribution function based on n observations.
The previous example results in a non-smooth density estimator due to the choice of a

discontinuous kernel function. Alternatively, we can choose K(y) to be a more smooth func-
tion, including commonly used Gaussian kernel (K(y) = (2π)−1/2 exp{−y2/2}) and Epanech-
nikov kernel (K(y) = 0.75(1 − y2)I(−1 < y < 1)). The advantage of using a smooth and
symmetric kernel is to yield less biased estimator, assuming that the true density function is
twice-continuously differentiable, since by Taylor expansion,

E[f̂(x)] =

∫
y

K(y)f(x+ any)dy = f(x) + a2
nf
′′(x)

∫
K(y)y2dy/2 + o(a2

n).

Furthermore, we can obtain the pointwise asymptotic distribution of f̂(x) as follows. First,
we notice

V ar(f̂(x)) = (na2
n)−1V ar(K(a−1

n (X1 − x)))

= (nan)−1

[∫
K(y)2f(x+ any)dy − an

(∫
K(y)f(x+ any)dy

)2
]

= (nan)−1f(x)

∫
K(y)2dy + o((nan)−1)

so it has an order of (nan)−1. Thus, we consider the normalized estimator

f̂(x)− E[f̂(x)]√
var(f̂(x))

=

{
f(x)

∫
K(y)2dy

}−1/2

(nan)−1/2

n∑
i=1

[
K(a−1

n (Xi − x))− E[K(a−1
n (Xi − x))]

]
(1 + o(1)).

Since

(nan)−3/2

n∑
i=1

E

{∣∣∣ [K(a−1
n (Xi − x))− E[K(a−1

n (Xi − x))]
] ∣∣∣3} ≤ 2C(na3

n)−1/2,
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where C is the the upper bound for the kernel function, if we choose (na3
n)→ 0, then we apply

Liaponov central limit theorem to conclude

f̂(x)− E[f̂(x)]√
var(f̂(x))

→d N(0, 1).

Equivalently,

(nan)−1/2

{
f̂(x)− f(x) + a2

nf
′′(x)

∫
K(y)y2dy/2 + o(a2

n)

}
→d N(0, f(x)

∫
K(y)2dy).

Furthermore, if we choose na5
n → 0, then it gives

(nan)−1/2
{
f̂(x)− f(x)

}
→d N(0, f(x)

∫
K(y)2dy).

Clearly, the convergence rate for f̂(x) is (nan)−1/2, much slower than the parametric rate,

n−1/2. This is because the estimator f̂(x) essentially uses the local observations (around nan
by considering the first example above) for estimation.

From the above derivations, we observe that the the asymptotic bias of f̂(x) is

a2
nf
′′(x)

∫
K(y)y2dy/2 + o(a2

n)

and its variance is f(x)
∫
K(y)2dy/(nan). Thus, the optimal bandwidth for minimizing the

asymptotic mean square error should entail[
a2
nf
′′(x)

∫
K(y)y2dy/2

]2

= (nan)−1f(x)

∫
K(y)2dy,

resulting in

aoptimaln =

[
4f(x)

∫
K(y)2dy

(f ′′(x)
∫
K(y)y2dy)2

]1/5

n−1/5.

In practice, since f(x) is unknown, one may use the normal density or an initial estimator for
f(x) when computing this optimal bandwidth.
6.1.1.2 Global Approaches

A global approach in nonparametric density estimation is to view f(x) as one element from
a sufficiently rich class of functions and then identify one function in this class to satisfy certain
criterion. In this section, we briefly review a few such approaches.

The first approach is called nonparametric maximum likelihood estimation which was al-
ready discussed in Chapter 5. Instead of estimating f(x), we estimate the cumulative distribu-
tion function, F (x), by maximizing the following empirical likelihood

n∑
i=1

logF{Xi},
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where we replace f(Xi) is the standard log-likelihood function by the jump sizes of F (x) at
x = Xi to allow the discrete distribution function. Since

∑n
i=1 F{Xi} ≤ 1, the nonparametric

maximum likelihood estimator, denoted by F̂ (x), is given by

F̂ (x) = n−1

n∑
i=1

I(Xi ≤ x).

It can be shown that F̂ (x) converges uniformly to F (x) with probability one and moreover,√
n(F̂ (x) − F (x)) converges in distribution to a Brown bridge process. We are not going to

pursue this derivation here. Using F̂ (x), we can produce a smooth density estimator by applying

kernel smoothing to F̂ (x) as

f̂(x) =

∫
a−1
n K(a−1

n (y − x))dF̂ (y),

which results in the same kernel estimator discussed in the previous section.
The nonparametric maximum likelihood estimator does not directly give a smooth density

estimator. One way to obtain a smooth density estimator is to consider a rich class of smooth
functions for estimation, for example, using polynomial, wavelets and splines as approximation.
In general, we consider a class of functions

Sn =

{
Kn∑
k=1

βkBk(x)

}
,

where B1, B2, ..., BKn are basis functions, for instance, I(x ∈ I1), ..., I(x ∈ IKn) with I1, ..., IKn
are disjoint bins in the support of X, or 1, x, x2, x3, ... in polynomials, or 1, cosx, sinx, cos2x,
sin2x... in trigonometric functions. We assume log f(x) from this class (the reason of using
log f(x) is to ensure that the resulting estimator to be positive) then maximize the log-likelihood
function

n∑
i=1

log f(Xi)

subject to constraint
∫
f(x)dx = 1. This maximization becomes a nonlinear optimization prob-

lem over β1, ..., βKn . Such an estimation approach is often called sieve estimation (sometimes,
NPMLE is also treated as one of sieve estimation). There are two theoretical questions needed
to be considered: since the true density f(x) may not be in Sn, there is inevitable bias in this
approximation. Therefore, to ensure the bias vanish, we need to increase the number of basis
functions in Sn when n increases so that the approximation bias decreases. However, when the
number of basis functions increases, the number of parameters in the optimization increases
so result in increasing variability in the estimation. This implies that there is also a trade-off
between bias and variance in the sieve estimation. Finally, it is important to recognize that
although the estimation becomes estimating a finite number of parameters, the standard theory
for parametric models is not applicable due to the fact that the number of the parameters is
not fixed when n increases and that the parameters may not mean the same thing from n to
n+1. It is largely misleading and wrong when some reference books treat the inference in sieve
estimation the same as used in parametric models.
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Another global approach to estimate f(x) is called penalized estimation, which minimizes
some object function while imposing penalty for non-smooth function. Typically, we use the
negative log-likelihood function as the objective function so such a penalization estimation
becomes

min−
n∑
i=1

log f(Xi) + λnP (f), subject to

∫
f(x)dx = 1,

where λn is the penalization parameter to be specified at the beginning and P (f) is a function
quantifying the non-smoothness of f . A common choice of P (f) is

P (f) =

∫
|f ′′(x)|2dx

so a very variable f(x) yields a large curvature, therein, P (f) is large. Using the penalization,
the resulting estimator for f(x) should be smooth but also yields a large likelihood function.
The parameter λn regularizes the degree of penalization. For example, if λn = 0, i.e., there is
no penalization, then the resulting estimator for f(x) is highly variable with f(Xi) =∞; while
if λn = ∞, f ′′(x) = 0 gives that the estimator should be linear. This shows that a large λn
results in less variable of the estimator but the bias (difference from the truth) can be large,
implying another trade-off between bias and variance. We will see the same phenomena in the
following regression context.

6.1.2 Regression Estimation

We consider estimating the conditional mean of Y given X (X is univariate) using n i.i.d
observations (Xi, Yi), i = 1, ..., n. Without any parametric assumptions relating Y to X, this
is a nonparametric regression problem. The same approaches as the density estimation can
be applied, including local and global approaches, but with some modification to estimate the
conditional mean.
6.1.2.1 Local Approaches

Intuitively, m(x) = E[Y |X = x] is the average of Y ’s value for those X around x. Thus,
a local approach is to pool data whose X’s are close x and calculate the average of Y ’s. This
gives an estimator

m̂(x) =
n∑
i=1

wni(x)Yi,

where wni(x) is a weight to quantify how close Xi to x and satisfies
∑n

i=1wni(x) = 1. Similar
to the kernel density estimation, we can use a kernel function K(·) to define

wni(x) =
K(a−1

n (Xi − x))∑n
j=1 a

−1
n K(a−1

n (Xj − x))
.

The denominator is to ensure that the summation of the weights adds up to 1. When K(y) =
0.5I(−1 ≤ y ≤ 1), m̂(x) is the local average of Yi’s for observations with Xi within a distance of
an from x. This estimator is called a histogram estimator. When K(y) is chosen to be smoother
such as Gaussian kernel or Epanechnikov kernel, m̂(x) becomes smoother. To see why m̂(x) is
asymptotically unbiased, we note

n−1

n∑
j=1

Yja
−1
n K(a−1

n (Xj − x)) = E[a−1
n Y1K(a−1

n (X1 − x)] + op(1) = m(x)f(x) + op(1)
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and

n−1

n∑
j=1

a−1
n K(a−1

n (Xj − x)) = E[a−1
n K(a−1

n (X1 − x)] + op(1) = f(x) + op(1).

Thus, m̂(x)→p m(x) if f(x) > 0. We can establish the asymptotic normality for
√
nan(m̂(x)−

m(x)) using the same derivation as the density estimation. Again, its convergence rate is
(nan)−1/2, due to the estimation essentially using the data locally around x.

The above kernel estimator can also be viewed from maximizing a local likelihood function.
The idea is to construct a likelihood of the data locally around x then maximize it for estimation.
Assuming that Y = m(X) + N(0, σ2), we obtain that the log-likelihood function from all
observations, up to some constant, is

−
n∑
i=1

(Yi −m(Xi))
2/(2σ2).

Thus, in order to estimate m(x) at a fixed point x, we introduce the following local likelihood
function which weighs each component of the full log-likelihood differently depending on the
closeness of Xi to x and replace m(Xi) by m(x):

−
n∑
i=1

wni(x)(Yi −m(x))2/(2σ2),

where wni is the kernel weight define before. The reason that we can replace m(Xi) by m(x)
is that we essentially make use of Xi close to x for estimation for which m(Xi) can be ap-
proximated by m(x). The resulting estimator is the same as m̂(x) defined before. In the local
likelihood approach, we can consider a more general approximation by approximating m(Xi) by
some linear function m(x) + a(x)(Xi− x) or even polynomials m(x) +

∑p
k=1 ak(x)(Xi− x)p/p!,

resulting in the so-called local linear or local polynomial estimators. These estimators have
better approximation properties especially near the boundary of X’s domain.
6.1.2.2 Global Approaches

Similarly, a global approach is to view m(x) as from a rich class of functions so the esti-
mation is to identify the function optimizing a criterion. Global approaches usually consist of
sieve estimation and penalization estimation. In the sieve estimation, we approximate m(x)
by
∑Kn

k=1 βkBk(x), where B1, ..., BKn are the basis functions. Then the conditional mean is
estimated by minimizing

n∑
i=1

(Yi −
Kn∑
k=1

βkBk(Xi))
2.

The choices of Bk’s can be I(x ∈ Ik), yielding the histogram type of estimator, or splines,
yielding regression spline estimators.

The penalization estimation for the regression problem is to minimize the following penalized
function

n∑
i=1

(Yi −m(Xi))
2 + λnP (m),

where P (m) is a penalty, for example,
∫
|m′′(x)|2dx, and λn is the penalty parameter. The

choice of λn governs the smoothness of m̂(x) and also regulates the bias and variance trade-off
as discussed before. The choice of the penalty function

∫
|m′′(x)|2dx gives the usual cubic spline

estimators.
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6.2 Introduction to Semiparametric Estimation

In health science, due to complicate experiment design, a large amount of uncontrolled fac-
tors in experiment subjects, and ethnic issues in dealing with human/animmal subjects, data
are presented with many different types: repeated measurement, measurement error, missing
data, time-dependent covariates, high-dimensional variables, complex link relationship, varied
sampling scheme etc. Parametric models usually do not fit the data very well since they are
too restrictive about model structures: only a few real parameters are used to explain the
complex data structure and variable relationships; thus, parametric models are very likely to
mis-represent the true relationship among the variables under study. Nonparametric estima-
tion, which does not specify any model structure for the data, on the other hand, is too broad
and less useful in health science for the reason that nonparametric estimation does a bad job
in presence of large number of variables; moreover, it is seldom informative in answering the
questions of interest, and it is inconvenient for interpretation and implementation. Recently, a
statistical modeling approach between parametric and nonparametric models has been studied
intensively and received more and more attentions in many problems arising from health sci-
ence. This approach is called “semiparametric model”. In other words, semiparametric models
can be viewed as intermediate models between parametric models and nonparametric models.
Their model parameters consist of both parametric components and nonparametric components
so enjoy both flexibility of interpretability as in parametric models and robustness to model
misspecification as in nonparametric models.

We provide a more rigorous definition of semiparametric model in the following. A statistical
model is a distribution function which describes the probability distribution of the variables
under study, denoted by X. In general, such a probability distribution is unknown to us but
it is known to belong to a family of distribution which indicates by parameter ψ. We denote
this family by F = {Fψ(x) : Fψ is a distribution function for X}. Based on the property
of ψ, we can categorize the statistical models into three categories: F is called parametric
family if ψ belongs to a finite dimensional real space; F is called nonparametric family if
ψ has no finite dimensional component; F is called semiparametric family if ψ consists of
both finite dimensional component and infinite dimensional component. Semiparametric family
is a category between parametric and nonparametric families and it is not as restrictive as
parametric family or as over-broad as nonparametric family.

Why is a semiparametric model useful? There are often the following reasons in addition to
its advantage over parametric and nonparametric models: in many real problems, people are
interested in some specific variable relationships, for example, the effectiveness of treatment on
smoking behavior, the influence of fat intake on the risk of developing breast cancer etc., and
such relationships are preferred to be represented by a finite-dimensional quantity θ (though,
there are also some cases in which θ can also contain infinite dimensional component); on the
other hand, only using θ is not enough to model the probability distribution of the variables
under study so it is necessary to introduce other parameters η to describe the probability
distribution; while since η is less interesting compared to θ, η is unnecessary to be specified
delicately and is usually infinite-dimensional. Therefore, a statistical model is derived from a
family of probability distributions indexed by both θ and η so it is a semiparametric model.
The less interesting parameter η is called nuisance parameter.

To specify a semiparametric model, some key questions should be addressed first:

• What are the random variables under study?



BEYOND PARAMETRIC MODELS 137

• What is the probability distribution of the random variables?

• What relationship is of interest and how to represent it using quantitative parameters?

• What are the additional components to the aforementioned parameters of interest in order
to fully specify the probability distribution?

We can follow the above steps to obtain a semiparametric model. However, in many statistical
modeling, specifying a semiparametric model is a process of constantly updating; for example,
when one semiparametric model is difficult to be analyzed or its parameters can not be iden-
tified, some simplification or modification should be done to the original models. Moreover,
whenever a new semiparametric model is proposed, it should be kept in mind that the parame-
ters of interest must be reasonable to represent the relationship of interest and the assumptions
on the nuisance parameters should be as few as possible (though, the latter is hard to justify
in reality). The last and the most important, parameter identifiability needs to be guaranteed
in the final model.

In the remaining part of this section, we will look into some concrete examples to see how
to specify a semiparametric model for each problem.

Example 1 (Right-censored Data). In survival analysis, interest is on the relationship be-
tween some risk factors and survival time. However, patients may drop out of study occasionally
during the study. Then for whoever drop out, his/her survival time is unknown but it is at least
known that his/her survival time is longer than the time till dropout. Such a data is called
right-censored data in survival analysis.

The variables under study include: X–risk factors, T ,survival time, C dropout or censoring
time. An observation is (X, T ∧ C, I(T ≤ C)). Interest is on the relationship between X
and T . Such a relationship can be represented via modeling the distribution of T given X. In
survival analysis context, modeling the distribution of T given X = x is equivalent to modeling
the hazard rate function of T given X = x, which is defined by

h(t|x) = lim
δ→0+

P (T < t+ δ|T ≥ t,X = x)

δ
.

Cox (1972) proposed the proportional hazard regression model as follows:

h(t|x) = λ(t)ex
′β,

where λ(t) is call the baseline hazard rate function. β represents the effect of X on the risk
of death. Furthermore, to capture the full distribution of (X,T,C), we also need to model
additional distributions for X, denoted by g(x), and the distribution of C given X = x and
T = s, denoted by f(t|x, s). To make parameters identifiable, it is assumed that T and C are
independent given X, so f(t|x, s) = f(t|x). Therefore, the parameters of interest θ = (β, λ(t))
and the nuisance parameters include g(x) and f(t|x). The probability distribution for the
observed statistics (X = x, I ∧ C = y, I(T ≤ C) = r) is

λ(y)rerx
′βe−Λ(y)ex

′β
f(y|x)1−r(1− F (y|x))rg(x).

Example 2 (Current-status Data). Mice are often used in cancer study in determining
the effectiveness of some potential treatment. They are monitored in the study and later are
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sacrificed in order to see whether the tumor sizes in the mice have reached a given size. Interest
focuses on the effect of treatment on the time to the tumor reaching the given size. However,
this time to event is not available at all but at the time of the sacrifice, it is observed whether
this time to event is before or after the time at sacrifice. Such a data is named current-status
data, or Type I interval censoring.

The variables under study include: X–risk factors, T–survival time, C–dropout or censoring
time. An observation is (X,C, I(T ≤ C)). We use the same parameters as in Example 1. I.e.,
θ = (β, λ(t)), η = (g(x), f(t|x)). Thus, the probability distribution from the observed statistics
(X = x,C = y, I(T ≤ C) = r) is given by

(1− e−Λ(y)ex
′β

)re−(1−r)Λ(y)ex
′β
f(y|x)g(x).

Example 3 (Smoking Prevention Project (Pepe, Biometrika 1992)). In school-based smoking
prevention projects aiming to study the effectiveness of the smoking prevention programs on
the smoking behavior, current smoking behavior is generally assessed through self-report using
questionnaires. Self-report data are relatively inexpensive but may be subject to error. Chem-
ical analysis of saliva samples from the presence of cotinine yields a more accurate measure of
current smoking behavior but it is expensive. So chemical analysis can be only performed for
a very small subset of subjects in these large scale projects. Therefore, in the collected data,
we have everyone’s self-reported smoking behavior but only a subset of chemically analyzed
smoking behavior.

The variables under study include: X–treatment and other factors, Y –true smoking be-
havior, S–self-reported smoking behavior, R–whether subject is chosen for chemical analysis
(R = 1 indicates that he/she is chosen; otherwise, R = 0). An observation is (X,RY, S,R).
The relationship of interest is between X and Y so it is modelled by a density function hθ(y|x)
indexed by the parameter θ. To fully model the probability distribution, we need to model the
distribution of (R, S) given (Y,X) and the distribution for X. For convenience, we assume R is
independent of (Y,X, S); that is, the choice into chemical analysis is random. Then additional
parameters to fully specify the probability distribution include P (R = 1) = p, the distribution
of X, denoted by g(x), and the distribution of S given (Y = y,X = x), denoted by f(s|y, x).
Therefore, the nuisance parameter is η = (p, f(s|y, x)) and the probability distribution from
one single observation is

g(x)[

∫
f(s|y, x)hθ(y|x)dy]f(s|y, x)rhθ(y|x)r.

Example 4 (Medical Cost (Lin, 2001)). In SEER (Surveillance, Epidemiology and End
Results)-Medicare database, it contains extensive information on 1,264,345 Medicare enrollees
over 65 years old who were diagnosed with cancer from 1973 to 1989. The data on survival
time and monthly medical expenditures were collected during the period of 1984-1990. Detailed
clinical, demographic and geographic information was also recorded. A major objective was
to determine how the cost of care over time for these subjects were affected by the type of
cancer diagnosed, the clinical stage of the disease, as well as the demographic and geographic
characteristics. There are several complications with database: first, subjects may not survive
beyond the time period of interest, and survival time is related to cost accumulation. Secondly,
both survival time and cost accumulation process are subject to right censoring due to the loss
of follow up.



BEYOND PARAMETRIC MODELS 139

The variables under study include: X–covariates, Yk–cumulative medical cost at t-th month
with time interval (tk−1, tk), T–survival time, C–dropout time. We only observe (X, Y1, ..., Yk, tk ≤
T ∧ C < tk+1, R = I(T ≤ C)). The relationship of interest is the average effect of X on Yk so
it can be represented in the following equation

E[Yk|T ≥ tk, X = x] = g(x′β)

where g is a known link function. To full specify the probability distribution of the observation,
we need the parameters of the distribution for (T,X) and C given ((Yk, k = 1, 2, ...), T,X).
However, these nuisance parameters are very complicated and we leave the assumptions and
details of specification to subsequent analysis.

Example 5 (Error in Variables). Errors in variables have been the subjects of an enormous
literature. Example 3 is one example of this topic. Another example is from the controversy
relationship between breast cancer and fat intake (Carroll et al 1995), where fat intake is
impossible to be measured accurately.

When error exist in covariates, the variables under study include: X–error prone covariate,
Z–precisely measured covariate, U–measurement error variable, Y –response. The relationship
of interest is the effect of X and Z on Y so it is represented by the parameters in the regression
model for Y given X and Z

Y = Xβ + Z ′α + ε, ε ∼ N(0, σ2).

Assume U is independent of (Z,X, Y ) and has a standard normal distribution. So the additional
parameter for fully specifying the distribution of (Y,X,Z, U) is the distribution of (X,Z) and we
denote it by G(x, z). The probability distribution for an observation (X+U = w,Z = z, Y = y)
is given by ∫

1

2πσ
e−(y−xβ−z′α)2/2σ2−(w−x)2/2dxG(x, z),

where (β, α, σ2) is the parameter of interest and G(·, ·) is the nuisance parameter.
More examples can be founded in health science, which cover the topics of survival data,

longitudinal data, categorical data, at the same time, complicated by missingness, measurement
error, sampling scheme etc. We can not list each of them. The selection of the above examples
aims to demonstrate most of semiparametric theories.

6.3 Estimation in Semiparametric Models

We start to discuss some approaches to estimate parameter θ in a semiparametric model which
are indexed by θ and nuisance parameters η. We always assume that n i.i.d observations are
available for estimation.

6.3.1 Direction Estimation of Nuisance Parameters

One intuitive idea is to find an estimate of η via data then replace the nuisance parameters
with this estimate in subsequent estimation for θ. Most of time, the estimation of the nuisance
parameters η depends on the unknown parameter θ but sometimes we may estimate η directly
from the data.
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In Example 3, suppose n i.i.d observations are (Xi, RiYi, Si, Ri). The two nuisance param-
eters are g(x), which is the density of X, and p(s|y, x), which is the conditional density of S
given Y and X. Since R is independent of the other random variables, there exist a subset of
subjects in which Ri = 1 such that (Xi, Yi, Si) are all available. Hence, an intuitive estimate for
p(s|y, x) is the nonparametric estimate of the conditional density of S given Y and X, using this
subset of the observations. For convenience, suppose (X, Y, S) are discrete then the simplest
estimate for p(s|y, x) is the probability function and we denote it by

p̂(s|y, x) =

∑n
i=1RiI(Si = s, Yi = y,Xi = x)∑n

i=1RiI(Yi = y,Xi = x)
.

For other situation where (Y,X) are discrete and S is continuous, we can estimate the con-
ditional density p(s|y, x) using smooth nonparametric estimation. One example is to use the
kernel density estimation:

p̂(s|y, x) =
(nan)−1

∑n
i=1 RiK(Si−s

an
)I(Yi = y,Xi = x)

n−1
∑n

i=1RiI(Yi = y,Xi = x)
,

where K(x) is a smooth function. The estimation for the density of X can be done similarly–
we either use the empirical density or the kernel density estimation. However, the latter is
an unnecessary step since it turns out the estimation for the density of X is useless for our
estimation of θ due to the factorization of the likelihood (this is called the likelihood principle
in likelihood theory).

Therefore, after replacing p(s|y, x) by its estimate p̂(s|y, x), the likelihood function part
concerning θ is

n∏
i=1

hθ(Yi|Xi)
Ri [

∫
y

hθ(y|Xi)p̂(Si|y,Xi)dy]1−Ri .

Specially, if all the variables are discrete and we use the empirical estimate p̂(s|y, x), it then
becomes

n∏
i=1

{hθ(Yi|Xi)
Ri [

m∑
j=1

hθ(yj|Xi)

∑n
k=1 RkI(Sk = Si, Yk = Yj, Xk = Xi)∑n

k=1RkI(Yk = yj, Xk = Xi)
]1−Ri},

where y1, ..., ym are distinct levels of Y . The above function thus only depends on θ so a natural
estimate for θ is to maximize the above pseudo-likelihood function.

In summary, the fundamental idea of this approach is to estimate the nuisance parameter
using extra data or alternative way and replace it with the estimate. This direct eliminating the
nuisance parameter only works in some special data structure. For example, in measurement
error problem, when the true covariate’s distribution is unknown and is the nuisance parameter,
its distribution can be directly estimated using the validation data (Carroll and Wand (1991)).
Sometimes, we plug the estimate of the nuisance parameter into the estimating equation instead
of the likelihood function to estimate θ.

6.3.2 Construction of Estimating Equation

Using estimating equation has been and remains popular in semiparametric estimation. The
important reasons are that the solutions to estimating equations are consistent and it is often
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intuitive and convenient to construct an estimating equation for some problems. The basic idea
of estimating equation approach is to find a function, denoted by U(X; θ, η) (X denotes the
observed statistics), such that at the true parameters (θ0, η0),

E[U(X; θ0, η0)] = 0.

So if we further find an estimate for η depending on θ, denoted by η̂(θ), and η̂(θ0) is close to
η0 in some sense as n becomes large, then we would expect the solution to the equation

n∑
i=1

U(Xi; θ, η̂(θ)) = 0

is consistent with θ0 (by the Weak/Strong Law of Large Numbers). Certainly, there are some
assumptions implicated in the above arguments and we will delay the rigorous arguments to
later sections. Therefore, the key to this approach is to find an unbiased function U(X; θ, η)
and obtain a consistent estimate of η if U(X; θ, η) depends on η. However, the latter may be
unnecessary since U(X; θ, η) sometimes does not depend on η.

Estimating equation approach is usually adopted in regression problems. One simple exam-
ple of linear regression is as follows: We want to estimate the regression coefficient of Y on X,
i.e., Y = X ′β+ ε but ε is an unknown random variable expect that it is known that E[ε|X] = 0.
Clearly, one estimate for β is the least square estimate which minimizes

∑n
i=1(Yi − X ′iβ)2–

equivalently, it solves the following estimating equation

n∑
i=1

Xi(Yi −X ′iβ) = 0.

The above equation is an estimating equation since at the true parameter β0, E[X(Y −X ′β0)] =
E[Xε] = 0. Furthermore, for any invertible matrix D(X) which may depend on X, the following
equation

n∑
i=1

XiD(Xi)
−1(Yi −X ′iβ) = 0 (1)

is an estimating equation for θ. The equation (1) is one type of the so-called the generalized
estimating equation.

A further example can be seen in repeated measurement of generalized outcomes, where
multiple measurements are taken from the same subject so they are correlated. Suppose for
the subject i, the observations are (Xi1, Yi1), ..., (Xini , Yini). We are interested in estimating the
regression coefficients β, which is defined in the equality

E[Yij|Xij] = g(X ′ijβ), j = 1, ..., ni

where g(x) is a known strictly monotone link function. Without any further assumptions, the
joint distribution of (Yij, j = 1, ..., ni) given (Xij, j = 1, ..., ni) is one of the nuisance parameters.
It is almost impossible to write down the observed likelihood function in a neat way. However,
a generalized estimating equation for β similar to (1) exists

n∑
i=1

ni∑
j=1

X ′ijDi(Xij)
−1(Yij − g(X ′ijβ)) = 0.
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Di(X) is often called working matrix and whatever choice it has, the solution to the above
equation is consistent. Moreover, using an appropriate choice of Di(X) (Di(X) is the covariance
matrix of (Yi1, ..., Yini) when Yij has a distribution from the exponential family), the solution
to the above equation may be efficient (efficiency will be discussed in the later sections).

The above example of repeated measurements shows that even if many nuisance parameters
exist, an estimating equation may be constructed to provide a consistent estimate for the pa-
rameters of interest. However, constructing an estimating equation may sometimes be indirect
and manipulation has to be taken. One such example is estimation in an accelerate time model
without censoring. In this model, T is lifetime and lnT = X ′β + ε where ε is assumed to be
independent of X. We observe n i.i.d observations (Xi, Ti), i = 1, ..., n. After some calculation,
Tsiatis (1981) constructed an estimating equation for β

1

n

n∑
i=1

(Xi −
∑n

j=1XjI(lnTj −X ′jβ ≥ lnTi −X ′iβ)∑n
j=1 I(lnTj −X ′jβ ≥ lnTi −X ′iβ)

) = 0,

since at true β0, the expectation of the left hand side approximates

E[Xi −
E[XI(ε̃ > εi)|εi]
E[I(ε̃ > εi)|εi]

] = 0.

Another estimating equation was constructed by Buckley and James (1979).
It is of no doubt that many estimating equations can be constructed. The best choice of

an estimating equation, in our opinion, should have the following properties: the estimating
equation is in a simple form; the estimating equation is solvable and the solution is unique
and numerically stable; if possible, the estimator solving the equation should be the most
efficient one among all the estimators solving estimating equations. The last point relates to
the asymptotic efficiency theory.

6.3.3 Inverse Probability Weighted Estimating Equation for Missing Data

We start to discuss another special type of estimating equations which are mostly used in
missing data. Such equations have been used for survival analysis, missing covariates problem,
causal inference etc.

In general, interest focuses on the parameters, denoted by θ, which describes the distribution
of a random vector Z. Suppose that if there were no missing data, we would expect to observed
n i.i.d. observations Zi and θ could be consistently estimated by solving the following estimating
equation

0 =
n∑
i=1

U(Zi; θ).

However, in reality, some observations or part of some observations may be missing. So we
introduce the following missing data mapping: we denote the support of Z as D and we
introduce another variables C which can be missing index or censoring variable. Then a map
F is defined from D ×R to 2D − ∅, which consists all the subsets of D except the empty set.
Moreover, there exists a function g(z, c) evaluating in a discrete set G (1 ∈ G) such that

F(z, c) =

{
{z}, g(z, c) = 1,
strictly includes z, O.W.
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and for z′ ∈ F(z, c) then F(z′, c) = F(z, c) (i.e., for the same type of missingness, the observed
set are the same for any possible potential observations). Hence, for a general missing data, for
each subject i, we observe (Ci, g(Zi, Ci),F(Zi, Ci)). Clearly, Zi is completely observed only if
g(Zi, Ci) = 1.

The basic idea of using the inverse probability weighted estimating equation is to use all the
completely observed Zi but weight each of them by the chance that such Zi is observed. The
general form for such an estimating equation is

0 =
n∑
i=1

I(g(Zi, Ci) = 1)

P (g(Zi, Ci) = 1|Zi)
U(Zi; θ).

Obviously, the above equation is an estimating equation for θ. However, P (g(Z,C) = 1|Z) is
unknown and should be estimated using the available observations. Thus, a key assumption is
assumed:

For any s ∈ G and any y′ ∈ F(y, c), P (C = c|Z = y) = P (C = c|Z = y′).

That is, the assumption assumes that the chance of Z is missing only depends the observation
and is independent of whatever the true Z is. Such an assumption is named either missing at
random or coarsening at random. From the assumption, we immediately know that P (g(Z,C) =
s|Z = y) = P (g(y, C) = s|Z ∈ F(y, c)) where g(y, c) = s. So it would be expected to estimate
P (g(Z,C) = 1|Z = y) using the available observations.

We examine some simple examples. The first example is a linear regression Y = V ′β +
ε, E[ε|V ] = 0. If the observations from n subjects are completely observed including (Yi, Vi, Xi)
where Xi contains any confounders, an estimating equation is given by

0 =
n∑
i=1

Vi(Yi − V ′i β).

When some responses are missing, we introduce a missingness index variable Ri with Ri = 0
denoting the missing. The available observations are (RiYi, Ri, Xi, Vi). Then the mapping F is
obtained as

F((y, v, x), 1) = {(y, v, x)},F((y, v, x), 0) = Ω× {(v, x)},

where Ω is the support of Y . Clearly, g(y, r) = r so the missing at random assumption is that
for any y, y′,

P (R = 0|Y = y,X = x, V = v) = P (R = 0|Y = y′, X = x, V = v);

that is, R is independent of Y given (X, V ) (in causal inference, this assumption is also called
no unobserved confounder assumption). Therefore, P (R = 0|Y = y,X = x, V = v) = P (R =
0|X = x, V = v) can be estimated from the observations by assuming a logistic regression

model for R given (X, V ). If denote the estimate by P̂ (R = 0|X = x, V = v), then the inverse
probability weighted estimating equation for β becomes

0 =
n∑
i=1

Ri

1− P̂ (R = 0|Xi, Vi)
Vi(Yi − V ′i β).
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The second example is to estimating the survival function of T using right censored observations.
The complete observations from n subjects should be (Ti, Xi) where X denotes covariates and
C is the censoring variable. With the complete observations, a simple estimating equation to
estimate the survival function for T , denoted by S(t) = P (T > t), is given by

0 =
n∑
i=1

(I(Ti > t)− S(t)).

Due to the right censoring, we only observed (Yi = Ti ∧ Ci, Xi,∆i = I(Ti ≤ Ci). Therefore, we
let g((t, x), c) = I(c ≥ t). The map F is given by

F((t, x), c) = {(t, x)}, if c ≥ t,

and
F((t, x), c) = [c,∞)× {x}, if c < t.

The missing at random assumption becomes that for any t′, t,

P (C ≤ T |T = t,X = x) = P (C ≤ t|T = t′, X = x);

that is, T and C are independent given X. We thus can estimate P (C > t|X) by assuming

a proportional hazard model and we denote the estimate by P̂ (C > t|X). So the inverse
probability weighted estimating equation becomes

0 =
n∑
i=1

∆i

P̂ (C > t′|Xi)|t′=Yi
(I(Yi > t)− S(t)).

The inverse probability weighted estimating equation can be similarly applied to medical
cost example. Let Yki denote the medical cost spent on subject i in k-th time period [tk−1, tk).
We assumed

E[Yki|Ti ≥ tk, Xki] = X ′kiβ,

where Ti is the survival time of subject i and Xki is the covariate of interest. We want to
estimate β. Clearly, if there were no censoring, an estimating equation similar to a generalized
estimating equation could be easily constructed by

0 =
n∑
i=1

K∑
k=1

I(Ti ≥ tk)XikD(Xik, β)(Yik −X ′ikβ),

where D(Xik, β) is a known scalar function. In reality, patients may drop out or die within
some interval, so the observations are

(Xik, Yik, k = 1, ..., ni), Zi = Ti ∧ Ci ∈ [tni, tni+1),∆i = I(Ti ≤ Ci), i = 1, ..., n.

We assume Ci is independent of Ti and Yi· given Xi· and other auxiliary information Lik. Then
as in the previous example, an inverse probability weighted estimating equation is obtained as

0 =
n∑
i=1

K∑
k=1

I(Ti ≥ tk, Ci ≥ tk)

P̂ (Ci ≥ tk|Xik, Lik)
XikD(Xik, β)(Yik −X ′ikβ),

where P̂ (Ci ≥ tk|Xik, Lik) is an estimate via a proportional hazard regression.
The inverse probability weighting technique is reminiscent of the Horvitz-Thompson esti-

mator and was previously used by Koul, Susarla and van Ryzin (1981), Robins and Rotnitzky
(1992), Lin and Ying (1993), and Zhao and Tsiatis (1997) in different context.
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6.3.4 Maximum Likelihood Estimation

In parametric model, it is well known that the maximum likelihood estimators are consistent
and asymptotically efficient under certain conditions. So we will also expect that in semipara-
metric estimation, the approach of maximizing the observed likelihood function would provide
an estimator with similar asymptotic properties. However, this maximization is much more
complicated than in parametric models due to the presence of nonparametric component in the
parameters in a semiparametric model.

Denote the parameter of interest by θ and the nuisance parameter by η in a semiparametric
model. Let f(X; θ, η) be the density of a single statistics X indexed by θ and η (with respect
to certain dominating measure). The maximum likelihood estimates for θ and η are the values
which maximize the observed likelihood function

∏n
i=1 f(Xi; θ, η). However, to be able to

proceed maximization, we need to consider the following two problems first.
1). On what set of (θ, η) is the maximization realized?
2). Does such a maximum exist in the given set and is its maxima a unique?
Of these two questions, the answer to the second one more relies on the property of the density
function f(X; θ, η). For example, if f(X; θ, η) is strictly concave in the parameters and the
set on which the maximization is performed in a compact set, then the maximum exists and
its maxima is unique (we will see some examples below). The answer to the first question,
on the other hand, requires more thoughts: Our goal is to obtain consistent estimators for
the parameters and the estimators should have good asymptotic properties, as the sample size
tends to infinity; so the set chosen for performing maximization should be large enough to
contain the true parameters but can not be too large so that the estimators obtained have bad
performance. We look at three examples in the following.

(Empirical Likelihood Example). Let X1, ..., Xn be n i.i.d observation from a distribution
F . µ denotes the mean of X. We would like to estimate µ. In this semiparametric setting, µ is
the parameter of interest and the nuisance parameter is F (x). The observed likelihood function
is

n∏
i=1

f(Xi)

where f(x) = d
dx
F (x) satisfying ∫

xdF (x) = µ.

We want to maximize the observed likelihood function to estimate µ. Then the question is what
set should be used for F (x). Suppose that the true density function for f(x) is continuous.
Then a natural choice of the set for f(x) consists all the continuous density functions. However,
we show that the maximum does not exist by contradiction: suppose (µ∗, f ∗(x)) maximize the
likelihood function and f ∗(x) is a continuous density function. Then if define

f̃(x) =
1

3
(f ∗(x) +

1√
2πε

e−(x−X1)2/2ε +
1√
2πε

e−(x+X1−2µ∗)2/2ε).

Then
∫
xf̃(x)dx = µ∗ but f̃(X1) goes to the infinity as ε tends to zero. The example implies that

a different set from the set consisting of all the continuous densities should be used to obtain
the maximum likelihood estimates. One choice is to treat (µ, F (x)) as the parameters and in
the maximization, F (x) includes all the right continuous monotone function and F (−∞) =
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0, F (∞) = 1. Under this choice, it can be easily shown that the function F (x) maximizing the
observed likelihood function is a monotone function only with jumps at X1, ..., Xn; i.e., there
exist n numbers p1, ..., pn, each denoting the jump of F (x) at Xi, such that

F (x) =
n∑
i=1

piI(Xi ≤ x).

Therefore, maximizing the likelihood function over the parameters (µ, F (x)) over the set

R× {F (x) : F (x) is a right-continous monote function, F (−∞) = 0, F (∞) = 1}

is equivalent to maximizing
∏n

i=1 pi under the constraint

n∑
i=1

pi = 1,
n∑
i=1

Xipi = µ.

Clearly, the maximum to the above problem exists. The likelihood function is usually called
empirical likelihood function since the distribution function in the likelihood function is an
empirical distribution.

(Cox’s PHM Example). For n right censored observations (Yi = Ti ∧ Ci, Ri = I(Ti ≤
Ci), Xi), i = 1, ..., n, the Cox’s proportional hazard model is assumed as follows:

h(t|x) = λ(t)ex
′β

where λ(t) is the baseline hazard rate function. Under this model assumption, the observed
likelihood function concerning β and λ(t) can be written as

n∏
i=1

[λ(Yi)
RieRiX

′
iβe−

∫ Yi
0 λ(t)dteX

′
iβ ].

The parameters of interest are both β and Λ(t), in which the latter is the baseline cumulative
hazard function. Λ(t) is a monotone function and Λ(0) = 0. Although the true parameter
Λ(t) is continuous, in maximizing the likelihood function, we allow Λ(t) to have jumps at
some discrete t. Similar to the previous example, the function Λ(t) maximizing the likelihood
function only have jumps at each Yi and the jump size is denote as pi. Therefore, maximizing
the observed likelihood function is equivalent to maximizing the following function

n∏
i=1

[pRii e
RiX

′
iβe−e

X′iβ
∑n
j=1 I(Yj≤Yi)pj ].

The maximization is performed over a finite parameters so is feasible. Easily, we can find the
maximum likelihood estimates as

p̂i =
Ri∑n

j=1 I(Yj ≥ Yi)e
X′jβ

.

Substituting it back to the function, we obtain that the maximum likelihood estimate for β
maximizes

n∏
i=1

eRiX
′
iβ

(
∑n

j=1 I(Yj ≥ Yi)e
X′jβ)Ri

,



BEYOND PARAMETRIC MODELS 147

which is exactly the Cox’s partial likelihood function.
(Current Status Data Example). In the current status data, we observe (Xi, Ci, Ri = I(Ti ≤

Ci)), i = 1, ..., n. Again, we assume the Cox’s proportional hazard model for modeling the
hazard risk of T given X:

h(t|x) = λ(t)ex
′β.

Then the observed likelihood function concerning the parameters (β,Λ(t)) is given by

n∏
i=1

[(1− e−Λ(Ci)e
X′iβ)Rie−(1−Ri)Λ(Ci)e

X′iβ ].

Then maximizing the above function is equivalent to solve the following maximization problem:

n∏
i=1

[(1− e−ξ(i)e
X′

(i)
β

)R(i)e
−(1−R(i))ξ(i)e

X′
(i)
β

],

0 ≤ ξ(1) ≤ ... ≤ ξ(n),

where {(i)} is the permuted set of {1, ..., n} such that C(1) < ... < C(n). Computationally,
this is a maximization problem subject to linear constraints and can be solved by a number of
constraint optimization softwares.

(Partial Linear Regression Example). A more general model than a linear regression model
is partial linear regression. In such a model, the relationship between one covariate Z and the
response Y is unknown but the other covariates X influences the response Y linearly. We can
express it as

Y = X ′β + f(Z) + ε.

For convenience, we assume ε is normally distributed with mean zero and it is independent of
X and Z. We are interested in estimating the parameter β. The maximum likelihood estimates
for (β, f(z)) are derived from minimizing

n∑
i=1

(Yi −X ′iβ − f(Zi))
2

based on n i.i.d observations. Clearly, only assuming f has some smoothness does not help
in maximizing. We have to restrict f to some extent so that at least the maximization is
performed on a finite parameter space. One idea is based on the function approximation theory
that any smooth function can be approximated by a series of finite sums; i.e., there exists a
series of bases functions B1(z), B2(z), ... such that f(z) can be approximated by

∑Nn
i=1 ξiBi(z)–

the approximation is under suitable metric distance. Therefore, we can replace f(z) in the
minimization by this finite sum and obtain that the maximum likelihood estimates are derived
by minimizing

n∑
i=1

(Yi −X ′iβ −
Nn∑
j=1

ξjBj(Zi))
2.

Yet, we need to decide what bases functions Bj(z) should be used and how large Nn is selected.
Such an approach by using a series sum of finite bases functions is named sieve likelihood
approach. The Bj(z) has many choices, including polynomials, triangular functions, B-splines,
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wavelet functions, etc. In real problem, the choice of Bj(z) and Nn depend on the smoothness
of f(z) and the converge rate of the estimators, which will be discussed in detail later.

(Partial Linear Regression (cont.)). Another approach to minimize
∑n

i=1(Yi−X ′iβ−f(Zi))
2

is to instead, minimize the following function

n∑
i=1

(Yi −X ′iβ − f(Zi))
2 + λn

∫
f ′′(z)2dz.

The added term λn
∫
f ′′(z)2dz is called the penalty term and this approach is called penalized

likelihood approach. The use of penalty term restricts f(z) to be twice differentiable (in some
sense) so in other words, it penalizes the zigzag shape of the function. It can be shown that f(z)
which minimizes the above penalized likelihood function is a linear combination of (z−Zi)3

+ and
it is one of the so-called cubic functions. Therefore, the minimization once again is performed
over a finite number of parameters including β. Certainly, the choice of λn depends on the
asymptotic results of the estimators.

(Partial Linear Regression (cont.)) The third way of estimating the nuisance parameter f(z)
is via local polynomial. Since any smooth function f(z) can be approximated by a polynomial
around a fixed z, we can minimize the following function to obtain the estimated f(z) at a fixed
z

n∑
i=1

(Yi −X ′iβ − (a(z) + b(z)(Zi − z)))K(
Zi − z
an

),

where K(.) is a kernel function and an is the bandwidth to be chosen. In other words, around
z, f(z) is approximated by a linear function. Weighted linear regression can be used to derive
f(z) for fixed β. We then obtain the estimate β by substituting the estimator of f(z) back into
the minimization. Such a way of approximating a nonparametric function locally sometimes is
called local likelihood approach.

6.3.5 Alternative Likelihood-based Estimation

In the previous section, we discussed the ways to maximize the observed likelihood function by
considering the nuisance parameters and other nonparametric components in a finite dimen-
sional space. As a result, we would obtain both the estimators for the parameters of interest and
the estimators for the nuisance parameters. Therefore, in studying the asymptotic properties of
the estimators for the parameters of interest, it would be contingent to obtain the asymptotic
properties of the estimators for the nuisance parameters.

There exist other approaches, which are also based on the observed likelihood function but
are able to estimate the parameters of interest without little effort in estimating the nuisance
parameters. Hence, these approaches are relatively more convenient for use. However, these
approaches only apply to some special structure of the likelihood functions. In the following,
we will discuss them in turn.

The first approach is the profile likelihood approach. Using the previous notations, we
denote f(X; θ, η) as the density of a single observed statistics X, indexed by the parameters
θ and the nuisance parameter η. Then the profile likelihood function from n i.i.d observation
X1, ..., Xn is defined as

pfn(θ) = max
η∈Sn

n∏
i=1

f(Xi; θ, η),
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where Sn is a set on which η takes value. The final estimator for θ is the value of θ maximizing
the profile likelihood function pfn(θ). At first glance, the profile likelihood appears to be the
result of one intermediate step in calculating the maximum likelihood estimates: treating θ
as known constant, we maximize the observed likelihood function over η. However, whenever
the profile likelihood function can be explicitly calculated or approximated, the asymptotic
property for the estimator of θ, which maximizes the profile likelihood function pfn(θ), can be
derived from the performance of pfn(θ). The procedure imitates the situation that pfn(θ) were
a parametric likelihood function of θ. Clearly, in this process we have not studies any large-
sample property of the estimator for η. Parallel to the definition of the profile likelihood, we
can define the profile log-likelihood function by maximizing the observed log-likelihood function
over the nuisance parameter and we denote it as pln(θ). One example is to study the Cox’s
proportional hazard model using the right censored data. Suppose the observations include

(Yi = Ti ∧ Ci, Ri = I(Ti ≤ Ci), Xi), i = 1, ..., n

and T is independent of C given X. We want to estimate the parameter β in the following
Cox’s proportional hazard model

h(t|x) = λ(t)ex
′β,

where λ(t) is treated as the nuisance parameters (i.e., we are only interested in the effect of X
on T ). The logarithm of the observed likelihood function concerning θ is

n∑
i=1

[Ri lnλ(Yi) +X ′iβ − eX
′
iβΛ(Yi)].

We profile the above function by treating β as a constant and Λ is a step function only with
jumps λ(Yi) at each Yi. It is easy to calculate that in order to maximize the above function,
the jump λ(Yi) = Λ(Yi)− Λ(Yi−) is equal to Ri∑n

j=1 I(Yj≥Yi)e
X′
j
β
. Hence, the profile log-likelihood

function is obtained as

pln(β) =
n∑
i=1

[RiX
′
iβ −Ri ln(

n∑
j=1

I(Yj ≥ Yi)e
X′jβ)].

We then introduce another likelihood-based approach: partial likelihood approach. In this
approach, we only use the part of the observed likelihood function, which does not contain
the information of the nuisance parameters. Therefore, estimation from maximizing this par-
tial likelihood function does not include estimation of the nuisance parameters. Generally, in
order to make the estimator maximizing the partial likelihood function consistent, the partial
likelihood function must have a particular structure. Especially, its definition satisfies the fol-
lowing requirement: the whole vector of the observations can be transformed into the sequence
(Z1, S1, Z2, S2, ..., Zm, Sm) and the full likelihood function of this sequence is

m∏
j=1

fZj |Z(j−1),S(j−1)(zj|z(j−1), s(j−1); θ, η)
m∏
j=1

fSj |Z(j),S(j−1)(sj|z(j), s(j−1); θ), (2)

where z(j) = (z1, ..., zj), s
(j) = (s1, ..., sj). The second part only concerns θ and is the called the

partial likelihood function based on S. One typical example of the partial likelihood function
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is the Cox’s partial likelihood function for the right censored data. To obtain that, we order
the distinct failure times by Y(1) = t(1) < .... < Y(m) = t(m). Define R(t) = {i : Yi ≥ t} and
R(t+) = {i : Yi > t}. Let

Zj = { all the history up to tj− and there is a failure at t(j)}, Sj = { Y(j) fails at t(j)}.

Then

f(Sj|Z(j), S(j)) =
eX
′
(j)
β∑n

k=1 I(Yk ≥ t(j))e
X′kβ

.

The partial likelihood function for β based on Sj is the product of the above function over
the failure times and it does not depend on λ(t). Indeed, we again see the partial likelihood
function is equivalent to the profile likelihood function given in the previous paragraph. In the
decomposition (2), if fZj |Z(j−1),S(j−1)(zj|z(j−1), s(j−1); θ, η) does not depend on η or S(j−1), then
clearly, we can also maximize the

m∏
i=1

fZj |Z(j−1)(zj|z(j−1); θ)

to estimate θ. Such a likelihood is called marginal likelihood and is often treated as one type
of the partial likelihood.

Another different type of likelihood approach is called the conditional likelihood approach.
Sometimes, it is treated as one of the partial likelihood since it also uses the part of the likelihood
function. The definition of a conditional likelihood is as follows: suppose the density for X is
indexed by (θ, η); furthermore, there exists a function of X, denoted by V (X; θ), such that the
support of V (X; θ) is a strictly sub-manifold of the support of X and V (X; θ) is a sufficient
statistics for η; then the function given by

n∏
i=1

fX|V (Xi|V (Xi; θ); θ)

is called the conditional likelihood function for θ based on V (X; θ). Such a conditional likelihood
function is independent of η due to the sufficiency of V (X; θ); so it can be used for inference of
θ. For example, one consistent estimator for θ can be derived by solving the following equation

n∑
i=1

∂

∂θ
ln fX|V (Xi|Vi; θ)|Vi=V (Xi;θ) = 0.

One application is the measurement error problem in linear regression problem which was given
before. In that problem, we assume

Y = Xβ + Z ′α + ε,W = X + U,

where ε ∼ N(0, σ2), U ∼ N(0, 1), and U is independent of Y,X. The n i.i.d. observations are
(Yi,Wi), i = 1, ..., n. The trick thing here is to treat the missing observation X1, ..., Xn as the
nuisance parameters (functional modeling in measurement error). Then the observed likelihood
function is proportional to

n∏
i=1

[e−
(Yi−Xiβ−Z

′
iα)

2

2σ2
− (Wi−Xi)

2

2 ].
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Clearly, 1
σ2Yiβ +Wi is the sufficient statistics for Xi in this exponential family indexed param-

eterized by (X1, ..., Xn). Therefore, the distribution of Yi given Vi = 1
σ2Yiβ+Wi is independent

of Xi. Hence, an estimating equation can be constructed for β and α based on the conditional
density of Yi given Vi.

Statistician are “good at” inventing new terminologies. There are a few more likelihood-
based approaches in estimation. One is called the quasi-likelihood function in the generalized
estimating equations: when only mean and variance structures are specified for a random
variable, we can imitate a likelihood function to construct a function which has the same mean
and variance structures. Other approaches include random sieve likelihood function, pseudo-
likelihood function, Bayesian likelihood function etc. We tend not to describe their details.

6.3.6 Some Remarks

We have described a number of approaches in estimation for semiparametric models. The
estimators for the parameters of interest either solve an estimating equation or maximize an
object function: we call the first type of estimators Z-estimators while call the second type of
estimators M-estimators. In fact, it is not easy (or maybe unnecessary) to distinguish these two
categories, since most of times, M-estimators can be also obtained by solving some estimating
equation (for example, score equations in the maximum likelihood estimation, conditional score
equation in conditional likelihood estimation, GEE in quasi-likelihood function). Whatever
approach one takes, the estimation approach should require:

• the true parameters of interest solve the estimating equation used or maximize the object
function over the limit space of the parameters;

• the consistency of the estimators holds;

• the statistical inference is feasible.

If we use these conditions to examine all the estimating equation or likelihood approaches listed
before, the first condition usually holds. However, the consistency and the statistical inference
require the delicate work for specific problem and powerful tools are needed for semiparametric
inference. These tools often rely on modern theory of empirical processes.

Which of the estimating approach or the likelihood-based approach should be used in real-
ity? The answer is “it depends”. Our experience is: First, try to see whether an estimating
equation can be constructed to estimate the parameters of interest. This step often works for
semiparametric regression problem. The advantages of this step include: it does not need many
model assumptions; it is able to find a consistent estimator conveniently; the computation is
simple and the inference is easy; it does not need the estimation of the nuisance parameters.
The disadvantages of this step include: estimating equation in many problems are hard to be
constructed or even constructed, it is complicated; it may have too many choices or it may
miss the most efficient estimators; it does not provide the estimation of the nuisance param-
eters. Second, consider the likelihood-based approach, especially the approach of maximizing
the likelihood function. The advantages are: it is an optimization problem and does not need
extra effort to understand something such like efficient score function; it often gives the most
efficient estimators; most of work is mathematically elegant. The disadvantages are: it needs
more functional form assumptions on the distribution of random variables; dealing with the
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nonparametric components in the maximization is difficult; asymptotic results are very techni-
cal and often ask for advanced mathematical tools. In summary, the choice of either estimating
equation or likelihood-based estimation may vary from problem to problem and from person
to person. However, the eventual goal is to find well-performed estimators for semiparametric
model.

There exist many other approaches in semiparametric estimation which have not been cov-
ered, such as least square estimate, least deviation estimate, nonparametric estimate for density
estimation or regression function, semiparametric/nonparametric Bayesian estimate etc. More-
over, many hypothesis testing issues also arise in semiparametric inference and recent work
have induced the test such as likelihood ratio test, score test etc.

6.4 Beyond Estimation: Introduction to Loss-Based Prediction

Most of the methods we have discussed so far are related to data likelihood function. This is
natural as our goal was to identify the best parameters which yield the largest likelihood or
certain likelihood-related objective function as observed data present. However, in many other
applications, the goal is not to identify such parameters, but instead, to find the best model or
decision to minimize user-defined loss function, for example, the loss due to inaccurate predic-
tion for future subjects. For this situation, parameter estimation is no longer that important
but some decision rule (not necessary the unique one) is more relevant. This is what we wish
to discuss in the following section.

In this set of lecture notes, we concentrate on “statistical learning”, which is about deriving
the best prediction rules from empirical data. Sometimes statistical learning is also mixed with
machine learning or data mining; but we more likely use statistical learning when data are
believed to be from some underlying distributions and we wish our decision rules to possess
certain statistical properties and generalizability.

Statistical learning usually consists of “supervised learning” and “unsupervised learning”
(as you guess, there also exists some methods called “semi-supervised learning” but we will
not study them in this book). By saying “supervised learning”, we aim to learn an outcome
measurement (either quantitative or qualitative and sometimes called labels if it is categorical)
based on a set of features. To perform supervised learning, we should have a training set of
data, which contains a set of feature variables and a column of outcome variable. Based on this
training data set, we then develop a learning method/decision rule which enable us to use given
feature variables to predict the outcome. A good learning method is the one that accurately
predicts the outcome for any future observation. On the other hand, by saying “unsupervised
learning”, we only observe the features but not outcomes. In this framework, the goal is to
extract most important structures within observed feature data.

Compared to traditional statistical modelling, supervised learning is most similar to fitting
a regression model, where one is interested in finding the relationship between an outcome
variable and a number of regressors; while unsupervised learning is most close to density es-
timation, where the focus is to find out how data present themselves in distributional sense.
However, the key difference between traditional statistical modelling and statistical learning
lies in their goals. The former aims to find the best model explaining the probabilistic behavior
of data; thus, the maximum likelihood principle is usually adopted for estimation. Moreover,
the former is specially concerned about the inference of model parameters so the efficiency of
estimation method is often an important issue. Comparatively, statistical learning concentrates
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on prediction accuracy so developed learning methods are not necessary to maximize likelihood
function but may minimize prediction errors as defined by certain loss functions. The inference
itself is not of main interest in statistical learning (partially due to its own difficulty). Thus,
because of the important role of loss functions in statistical learning, the theoretical foundation
for statistical learning is based on statistical decision theory and the primary theoretical interest
is often on estimation of prediction inaccuracy (sometimes called risk).

6.5 Statistical Decision Theory

In this section, we formalize supervised learning based on statistical decision theory. Through-
out, we use X to denote the p-dimensional feature variables and use Y to denote the outcome
variable. We assume (X, Y ) from a joint distribution in some measure space. In supervised
learning, one aims to find a map f from the feature space to the space of the outcome such
that the expectation of some loss function L(Y, f(X)) is minimized. That is, the target map
f = argminE[L(Y, f(X))].

One important issue is the choice of the loss function, L(y, x). Usually such a choice depends
on data attributes and prediction purposes. For example, when Y is continuous, a natural choice
is the square loss with L(y, x) = (y−x)2; when Y is categorical, the most useful choice is called
the zero-one loss by letting L(y, x) = I(y 6= x). Of course, other choices of loss functions can
be useful in some specific context, such as the L1 loss function with L(y, x) = |y − x| or the
preference loss L(y1, y2, x1, x2) = I(y1 < y2, x1 < x2) when Y is ordinal. The plots of some loss
functions are given in Figure 1.

For some loss functions, the target map f(X) can be explicitly obtained in terms of (Y,X)’s
distribution. For example, in the square loss, f(X) = E[Y |X] and in the L1 loss, f(X) =
med(Y |X). For the zero-one loss with categorical Y , since

E[I(Y 6= f(X))] =

∫ K∑
k=1

P (Y = yk|X = x)I(f(x) 6= yk)dP (x)

where {y1, ..., yK} are the distinct nominal values of Y and P (x) is the marginal distribution,
we can obtain that the best f(x) should be the one minimizing the integrand

K∑
k=1

P (Y = yk|X = x)I(f(x) 6= yk) = 1− P (Y = f(x)|X = x)

so f(x) = argmaxkP (Y = yk|X = x). The best f is called the Bayes classifier and the minimal
error is called the Bayes error. Particularly, if Y is binary with value 0 or 1, then f(x) chooses
the category which has the conditional probability larger than 1/2 and the Bayesian error is
given by

E [min(η(X), 1− η(X))] =
1

2
− 1

2
E [|2η(X)− 1|] = 1−

1∑
k=0

I(f(x) = k)P (Y = k|X = x),

where η(X) = E[Y = 1|X]. We remark that for many loss functions, f(x) does not have an
explicit solution.
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Figure 1: Plot of loss functions: square loss, absolute loss, zero-one loss and Huber loss
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Another important issue is how to estimate the best f(x) using training data (Xi, Yi), i =
1, ..., n. There are two commonly used methods for obtaining f(x). The first approach is to
directly estimate f(x) if we know its explicit solution. We call this approach “direct learning”.
For example, in the square loss, since f(x) = E[Y |X = x], we can fit regression models to
estimate this conditional mean; in the zero-one loss with dichotomous outcome, since f(x) =
E[Y = 1|X = x], a logistic regression model can be used to estimate f(x). Most of the
learning methods we will discuss in these lectures take this direct learning approach. The
second approach, which we call “indirect learning”, is based on minimizing an empirical version
of the expected loss given as

Ln(f) =
n∑
i=1

L(Yi, f(Xi)).

Some literature call these methods as “empirical risk minimization” or “M-estimation”. Obvi-
ously, the indirect learning is universally applicable to any loss functions and it does not depend
on whether or not the best f(X) has an explicit solution.

In either direct learning or indirect learning, the choices of the candidates for f(x) are
often restricted to some functional spaces. There are two main reasons why this is needed.
First, the dimension of the feature space X is often high in practice. This high dimensionality
makes the observed data a very sparse sample. For example, suppose we have N data points
uniformly distributed in a p-dimensional unit ball centered around the origin. It can be shown
that the median distance from the origin to the closest data point is (1 − 2−1/N)1/p. Thus,
for N = 5000 and p = 10, such median distance is about 0.52, more than half way to the
boundary. This implies that most data points are closer to the boundary, which makes an
accurate estimation at the origin almost impossible. Such a phenomenon is well known as the
curse of dimensionality. To read more, see page 22-27 of HTF book. Since the data are sparse,
more extrapolation is needed for prediction but that requires that the candidates for f(x) cannot
be fully nonparametric so they must possess some restrictive structures. The second reason for
restricting the choices for f(x) is to avoid overfitting. For example, in indirect learning, if
L(y, x) is the square loss, one best solution is obtained by setting f(Xi) = Yi and it gives a
perfect fit in the training data. However, such an f ignores the randomness in generating Yi
and thus will inevitably cause large bias in future prediction. This is called overfitting which
should be avoided in practice.

There are two common ways to determine candidates for f(x) in learning literature. One
way is to restrict f to some candidate function space Fn, for instance, linear functions, the
spaces of splines or wavelets, additive functional spaces and etc. Such a function space Fn
often increases with n and is called sieve space. Moreover, although the best f(x) may not
lie in Fn, we expect that the limit space of Fn will eventually contain f(x). The other way
is that in estimating f(x) or minimizing the empirical risk, we impose some penalty term to
prevent those candidates from overfitting. The example of penalties include roughness penalty
in smoothing splines, the number of leaves in classification trees and etc. Penalties can also be
constructed for assessing learning methods using different function spaces for f .

6.6 Direct Learning: Parametric Approaches

In this section, we focus on parametric learning methods where f(x) is assumed to be a linear
function of feature variables. The results can be generalized to more flexible cases when f(x) is
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assumed to be a linear combination of given basis functions, i.e., f(x) =
∑K

k=1 βkhk(x), where
hk(x) is the kth basis function such as mono-polynomials, B-splines, trigonometric functions
and etc.

6.6.1 Linear regression and shrinkage methods

We assume that the outcome variable Y is a continuous quantity and the loss function is
the square loss function. From the previous decision theory, we know that the target map is
f(x) = E[Y |X = x]. Further, we assume f(x) = xTβ (we include in x the intercept term).
Then f(x) can be easily estimated by the usual linear regression so obtain

f̂(x) = xT (XTX)−1XTY,

where X is the matrix of all feature observations and Y is the column of all outcome ob-
servations. The theoretical properties of such an estimator are well known under Gaussian
assumptions. See Section 3.2 and 3.3 in HTF book.

What we really want to discuss here is a variety of shrinkage methods in such a simple
regression problem. There are two reasons why shrinkage is useful. The first one is that via
shrinking some coefficients to zeros, we sacrifice a bit bias in prediction but gain in reducing
the variability of the predicted values. The second reason is more for high-dimensional feature
space, in which one often believes only a small subset of the features really present strong
effects. Thus, shrinkage methods can help to determine those important features. There exist
many shrinkage methods in the linear regression problem, among which most of them are via
penalty terms in terms of the model complexity. We only list the commonly used ones in the
following sections.
6.6.1.1 Subset selection

This method aims to determine the best subset of given k feature variables which gives
the smallest residual sum of squares (RSS). In other words, one goes through all possible k
feature variables by fitting linear regression models, from which the best subset is selected if
it yields the smallest RSS. An efficient algorithm–the leaps and bounds procedure (Furnival
and Wilson, 1974)–is feasible for carrying out this process when the dimension of the whole
feature space is below 40 but the procedure becomes infeasible if the dimension is much larger
than 40. Once we determine the subsets for all k’s, the best k will be further chosen based
on some model assessment criteria. One particular criterion is based on the prediction error
E[(Y − f̂k(x0))2|X = x0], where f̂k is the estimated function from the k best feature variables.
Under the assumption that V ar(Y − f(X)) = σ2, this prediction error is equivalent to

σ2 + (f(x0)− E[f̂k(x0)])2 + V ar(f̂k(x0)),

which thus consists of the irreducible noise error, the square of the bias, and the variance of
f̂k(x0). Plugging f̂k(x0) into the above expression and taking the average over the feature points
in the training data, we have that prediction error is

σ2 +
1

n

n∑
i=1

(f(Xi)− E[f̂k(Xi)])
2 +

σ2

n
Trace(XT

k (XT
kXk)

−1Xk),
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where Xk is the feature matrix for the best subset of size k. On the other hand, we observe
that the in-sample error, which is given by

1

n

n∑
i=1

(Yi − f̂k(Xi))
2 =

1

n

n∑
i=1

Y 2
i −

1

n

n∑
i=1

f̂k(Xi)
2,

has an expectation equal to

σ2 +
1

n

n∑
i=1

{
f(Xi)

2 − E[f̂k(Xi)]
2
}
− 1

n

n∑
i=1

V ar(f̂k(Xi)).

Additionally, note that

1

n

n∑
i=1

{
f(Xi)

2 − E[f̂k(Xi)]
2
}

=
1

n

n∑
i=1

(f(Xi)− E[f̂k(Xi)])
2.

We thus conclude that the expectation of the prediction error is equal to the expectation of
the in-sample error plus 2σ2n−1Trace(XT

k (XT
kXk)

−1Xk) = 2σ2k/n. Therefore, the best k can
be chosen as the one minimizing

1

n

n∑
i=1

(Yi − f̂k(Xi))
2 + 2σ̂2k/n,

where k = 1, ..., p and σ̂2 is an estimator for σ2 using the whole feature space. This turns out to
be the Mallow’s CP criterion function for model selection. There are other methods of finding
the best, such as the AIC, BIC, and we will discuss them in later sections.

Alternatively, instead of searching through all possible combinations, we can search through
a good path using either the forward, backward or stepwise selection strategy, where at each
step, one either adds or deletes one feature variable and tests for its significance via F-statistic.
One remark is that these strategies only control the best selection conditional on existing subsets
so they may not find the best model at the end.
6.6.1.2 Ridge regression

Ridge regression is a method of obtaining the estimator for β while shrinking the regression
coefficients by imposing a penalty on their sizes. Specifically, the estimator for β minimizes the
following penalized summed residual squares:

n∑
i=1

(Yi −XT
i β)2 + λ

p∑
j=1

β2
j ,

where λ is a positive penalty parameter that controls the shrinkages, and the intercept term,
β0, is left out from the second term. Clearly, the larger λ is, the more shrinkage the estimator
will be. Numerically, such a minimization problem is equivalent to the following optimization
problem:

min
n∑
i=1

(Yi −XT
i β)2 subject to

p∑
j=1

β2
j ≤ s,

where there exists a one-to-one map between λ and s (in fact, we can set s =
∑p

j=1 β
2
λ,j, where

(βλ,0, ..., βλ,p) is the optimal solution to the first minimization problem). The ridge regression
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can also be understood as deriving the mean or mode of the posterior distribution for β when
assuming that β has a prior distribution N(0, τ 2) where τ 2 = σ2/λ. Thus, it is clear when λ is
large, the prior distribution dominates so the posterior mean or mode shrinks to zeros.

The solution to the ridge regression gives

β̂ = (XTX + λI)−1XY,

where I is the p × p identity matrix. Obviously, when we have no penalty (λ = 0), this is the
usual least square estimator; when we increase the penalty constant, the coefficients in β will
shrink towards zeros. As in the usual least square regression, the trace of the project matrix
XT (XTX + λI)−1X is called the effective degrees of freedom.
6.6.1.3 Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is another shrinkage method similar to the ridge regression by replacing the square
penalty by the absolute value penalty (sometimes we say replacing L2-penalty by L1-penalty).
Particularly, we estimate β by minimizing

n∑
i=1

(Yi −XT
i β)2 + λ

p∑
j=1

|βj|.

Or equivalently, we solve the following optimization problem:

min
n∑
i=1

(Yi −Xiβ)2 subject to

p∑
j=1

|βj| ≤ s,

where λ and s are the penalty constants and there exists one-to-one map relationship between λ
and s in these two equivalent problems. From the Bayesian point of view, the above estimation
is equivalent to finding the posterior mode of β after we impose the double exponential prior
distribution for each component of β. Usually, the quadratic programming or the coordinate
descent algorithm is used to obtain the solution.

To compare LASSO versus the previous shrinkage methods, let us examine one special case
when the columns of X are orthonormal variables. In this case, the least square estimator
for the jth component of β is given by β̂lsej =

∑n
i=1XijYi. In the best subset selection of size

k, we only retain those β̂lsej when it is among the top k absolute coefficients; in other words,
we shrink those (p − k) small coefficients to zeros. In the ridge regression, it is easy to see

that β̂rsj = β̂lsej /(1 + λ); therefore, we shrink all the coefficients proportionally. For LASSO, if

β̂LASSOj 6= 0, it solves equation that if βj 6= 0,

−
n∑
i=1

2Xij(Yi −XT
i β) + λsign(βj) = 0,

so by the orthogonality of X, it solves

2(β̂lsej − βj) = λsign(βj).

Therefore, if the solution βj is positive, then βj = β̂lsej −λ/2; if the solution βj is negative, then

βj = β̂lsej − λ/2. If β̂LASSOj = 0, then the left-derivative of the objective function at βj = 0 is
negative but the right-derivative at βj = 0 is positive. That is,

−2β̂lsej − λ ≤ 0, −2β̂lsej + λ ≥ 0;
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equivalently, |β̂lsej | ≤ λ/2. Combining these result, we obtain

β̂LASSOj = sign(β̂lsej )(|β̂lsej | − λ/2)+.

This demonstrates the nonlinear shrinkage of the LASSO estimator: that is, for larger coef-
ficients, their least square estimators are shrunk by the same constant λ/2 towards zero; for
small coefficients, their least square estimator are shrunk to zeros. One remark we want to make
here is that such selective behavior in the LASSO estimation is only true for the orthonormal
feature variables; when the variables are correlated, this may not be true but the non-uniform
shrinkage still exists.

From this simple example, we can see that both the best subset selection and LASSO
estimation are useful for selecting important feature variables, but the ridge estimation is not.
Since the best subset selection is computationally intensive or even infeasible when the feature
space is large, the LASSO estimation becomes most attractive when one is interested in selecting
important variables.
6.6.1.4 Other shrinkage methods

In addition to the LASSO estimation, there are many other shrinkage methods in literature.
They can be categorized into two groups. The first group includes all the threshold methods, ei-
ther hard threshold or soft threshold, where the former methods set those estimated coefficients
to zeros once they are below some threshold and the latter methods only shrink these coefficient
estimators towards zero. The threshold methods have been widely used in denoising signals via
wavelets. The second group includes all the penalized methods such as the LASSO estimation.
The difference among these methods lies in the choice of the penalty term in the minimization.
One of such methods is to generalize LASSO to the following minimization problem:

min
n∑
i=1

(Yi −XT
i β)2 + λ

p∑
j=1

|βj|q,

where q is some negative number. Particularly, setting q in (1,2) can gain partial advantage
from both the LASSO estimation (selectivity) and the ridge estimation (good prediction perfor-
mance). Choosing q below 1 will make the shrinkage even more but cause more prediction bias;
additionally, the optimization becomes more difficult due to the non-convexity of the objective
function.

Another generalization of the LASSO estimation is to give flexible weights for penalizing
different components of β. That is, the estimator is obtained by solving the following problem

min
n∑
i=1

(Yi −XT
i β)2 + λ

p∑
j=1

wj|βj|,

where wj, j = 1, ..., p are some weights and could depend on data. One particular choice of

the weights is to set wj = |β̂lsej |−q for some non-negative number q. This becomes the so-called
adaptive LASSO estimation (aLASSO). Some literature also consider the mixture L2 and L1

penalty in estimation:

min
n∑
i=1

(Yi −XT
i β)2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

|βj|2.
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There has also been some interest on obtaining the oracle property of selection: if the true
βj is known to be zero, the estimator for βj is also zero with probability tending to one. Such
an oracle property can be obtained if one uses some careful choices of the penalty term. One
example is the Shrinkage Clipped Absolute Deviation (SCAD) penalty where the optimization
problem becomes

min
n∑
i=1

(Yi −XT
i β)2 +

p∑
j=1

Jλ(|βj|),

where

J ′λ(x) = λ

{
I(x ≤ λ) +

(aλ− x)+

(a− 1)λ
I(x > λ)

}
,

where a is a constant larger than 2 (often a = 3.7 is used). The following figure shows how this
penalty differs from the other ones discussed above. Since this optimization is not a convex
problem, the computation is difficult.

Using LASSO and other shrinkage methods is not just restricted to linear regression; they
have been applied to a variety of other regression problems.

Figure 2: Plot of penalty functions with λ=2 for (a) the hard threshold; (b) aLASSO with
α = 2; (c) SCAD

6.6.2 Logistic regression and discriminant analysis

In this section, we start to review parametric approaches for directly learning f(x) when Y is
categorical. Such a problem is called a classification problem in order to make it different from
the regression problem in the previous section. From the decision theory, the ideal learning rule
is to classify a future subject with feature x into the category with label k, k = 1, ..., K, when
P (Y = k|X = x) is the largest. Thus, in direct learning, everything ends up with estimating
P (Y = k|X = x) using empirical observations.
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A natural way of estimating P (Y = k|X = x) is via a logistic model (if Y is binary) or a
log-odds model (if Y has more than two categories). Particulary, we assume

P (Y = k|X) =
exp{βk0 +XTβk}

1 +
∑K

l=1 exp{βl0 +XTβl}
, k = 1, ..., K − 1.

To estimate β, an iterative weighted least square algorithm is used to maximize the observe
likelihood function. The resulting decision rule is then

f(x) = argmaxk=1,...,K

{
β̂k0 + xT β̂k

}
,

where we set βK0 = 0 and βK = 0.
Another commonly used method is called linear discriminant analysis. In this method,

instead of modelling the conditional distribution of Y given X, we model the distribution of
the feature variables X within each category of Y . Particularly, we assume that given Y = k,
k = 1, ..., K, the distribution of X is a multivariate normal distribution with mean µk and
covariance matrix Σk; that is,

pk(X) =
1

(2π)p/2|Σk|1/2
exp{−(X − µk)TΣ−1

k (X − µk)/2}.

One can then maximize the observed likelihood function to estimate all the parameters,

µ̂k =
n∑
i=1

XiI(Yi = k)/nk, Σ̂k =
n∑
i=1

(Xi − µ̂k)T (Xi − µ̂k)I(Yi = k)/nk,

where nk is the number of subjects in category k. Under such an assumption, it is easy to see
by the Bayesian rule,

P (Y = k|X) =
πkpk(X)∑K
l=1 πlpl(X)

,

where πk denotes the prior probability of Y = k, and
∑K

l=1 πl = 1. Therefore, the decision rule
is that we classify one subject with feature value x into category k if pk(x)πk is the largest.
Under the special case when K = 2, this is equivalent to examine the sign of

log
π2

π1

− 1

2
(x− µ̂2)T Σ̂−1

2 (x− µ̂2) +
1

2
(x− µ̂1)T Σ̂−1

1 (x− µ̂1),

which is a quadratic function of x. Such a rule is called quadratic discriminant analysis. If we
further assume Σ1 = Σ2 = Σ, then µ̂k is the same as before but

Σ̂ =
n∑
i=1

2∑
k=1

(Xi − µ̂k)T (Xi − µ̂k)I(Yi = k)/n.

The decision rule can be simplified as checking the sign of

log
π2

π1

− 1

2
µ̂T2 Σ̂−1µ̂2 +

1

2
µ̂T1 Σ̂−1µ̂1 + xT Σ̂−1(µ̂2 − µ̂1).
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This is called linear discriminant analysis as the rule is based on a linear function of x. Some
literature suggest to use αΣ̂k + (1− α)Σ̂ to replace Σ̂k in the quadratic discriminant analysis,
which is a compromise between the linear discriminant analysis and the quadratic discriminant
analysis.

Comparing the logistic regression and discriminant analysis, it is not difficult to see that the
former only models the distribution of Y given X so it can handle qualitative feature variables;
the latter models the distribution of X given Y via normality assumption so it requires X’s
being Gaussian. The former will be less efficient if the true distribution of X in each category is
Gaussian; however, the latter is not robust to gross outliers. Generally, it is felt that the logistic
regression is a safer and more robust procedure than the discriminant analysis, although a lot
of numerical experiences do not really show that one performs better than the other.

6.6.3 Generalized discriminant analysis

There are some generalizations of the discriminant analysis methods we have discussed. One
generalization is to replace feature variables by some basis functions of feature values. In this
way, we will obtain more nonlinear boundary instead of linear or quadratic boundaries.

Another generalization is to assume that the distribution of X given each Y -category is a
mixture normal distribution, i.e.,

P (X|Y = k) =

Rk∑
r=1

πkrN(µkr,Σ),

where πkr is the mixing proportion. The estimators for the parameters can be obtained by
maximizing the observed likelihood function, for which the expectation-maximization (EM)
algorithm is often used.

6.7 Direct Learning: Semi-Nonparametric Approaches

In this section, we describe some semi-nonparametric approaches in direct learning. By saying
semi-nonparametric, we mean that the model for estimating f(X) is assumed to be close to
but not fully nonparametric. A list of such methods include neural networks, slice inverse
regression, generalized additive models and multivariate adaptive regression splines.

6.7.1 Neural networks

Neural networks are prediction models for outcome Y (either quantitative or qualitative) based
on input X. These models are some directed networks with one or multiple hidden layers
(see Figure 11.2 of HTF book). For description, we focus on the neural network with one
single hidden layer (called vanilla neural) as shown in this figure. Suppose Z1, ..., Zm are the
intermediate variable in the hidden layer. The first set of models are to link inputX to Z1, ..., Zm
via

Zk = σk(X
Tαk), k = 1, ...,m.

The second set of models are to link Z1, ..., Zm to output Y by assuming

E[Y |X] = g(β1Z1 + ...+ βmZm + β0) ≡ f(X).
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Here, the link functions σ1(·), ..., σm(·) and g(·) are usually from one of the following classes
1/(1 + e−x), x, I(x > 0). Under the neural network models, the target function f(X) is then
estimated as

g(β̂1σ1(XT α̂1) + ...+ β̂mσm(XT α̂m)),

where β̂’s and α̂’s are the estimates for β’s and α’s respectively. Since each single direct link is
modelled parametrically, the neural networks appear to be parametric models. However, due
to the arbitrary choices of the number of hidden variables Z, such models are very flexible and
one can even show that such networks will approximate any function of E[Y |X].

The neural networks has an advantage of computational simplicity due to simple parametric
model in any direct link. An algorithm called back-propagation is used to estimate all the
parameters (sometimes called weights). Specifically, we aim to minimize the following loss
function

n∑
i=1

{Yi − g(β1σ1(XT
i α1) + ...+ βmσm(XT

i αm))}2

if Y is continuous, or

−
n∑
i=1

Yi log g(β1σ1(XT
i α1) + ...+ βmσm(XT

i αm))

if Y is binary. The back-propagation algorithm is a gradient decent algorithm, where at (r+1)st
iteration,

β
(r+1)
k = β

(r)
k − γr

n∑
i=1

δiZki,

α
(r+1)
kl = α

(r)
kl − γr

n∑
i=1

sikXil,

where γr is the step size in the decent algorithm (called learning rate)

sik = σ′k(X
T
i αk)βkδi,

and
δi = −2(Yi − f(Xi))f

′(β1Zi1 + ...+ βmZim + β0)

for the continuous Y and

δi = −Yi/f(Xi)f
′(β1Zi1 + ...+ βmZim + β0)

for the binary Y . Thus, the update for the parameters can be carried in two-pass algorithm.
In the forward pass, we use the current parameters to estimate f(·); in the backward pass, we
compute δi then sik. Because the computation components are local, that is, each hidden unit
passes and receives information only to and from units that share a connection, this algorithm
can be implemented efficiently on a parallel computing architecture.

Finally, the learning rate γr is usually taken to be a constant but can be optimized by a line
search that minimizes the error at each update. See examples in Section 11.6 of HTF book.
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6.7.2 Generalized additive models

Generalized additive models are one class of flexible models for directly estimating f(x) (either
E[Y |X = x] or P (Y = 1|X = x)). For continuous Y , such models take form

E[Y |X1, ..., Xp] = α +

p∑
k=1

fk(X(k)),

where f1, .., fp are unknown smooth functions and X(k) denotes the kth component of X. For
dichotomous Y , such models take form

logitP (Y = 1|X) = α +

p∑
k=1

fk(X(k)).

Clearly, the generalized additive model include the linear model as special cases and allow a fully
nonparametric relationship between each component of X and Y , but not a fully nonparametric
relationship between the whole X and Y . That is why we include this method as one of semi-
nonparametric methods.

We first focus on continuous Y . The estimation of all f ’s is based on minimizing a regularized
loss function

n∑
i=1

{Yi − α−
p∑
j=1

fk(Xi(j))}2 +

p∑
j=1

λj

∫
f ′′j (tj)

2dtj,

where Xi(j) denotes the jth component of Xi. The second term is a penalty to penalize non-
smoothness of fj and will result in fitting fj via cubic smoothing splines with knots at the
observed Xi(j)’s. Other penalties can be used, as will be seen in next chapter. For identifiability,
we assume

∑n
i=1 fi(Xi(j)) = 0 so α is the average of Yi’s. To minimize this objective function,

there exists a simple algorithm called “backfitting” which can be used to estimate all fk’s. This
algorithm is described below:
1. Initialization: set α̂ = n−1

∑n
i=1 Yi and f̂j = 0, j = 1, ..., p.

2. Iterate from j = 1, ...p. At jth iteration, we set

Ŷi = Yi − α̂−
∑
k 6=j

f̂k(Xi(k)).

We fit smoothing splines by regressing Ŷi on Xi(j) to estimate f̂j. Cycle this iterations till the

convergence of f̂ ’s.
For qualitative outcome Y , the same backfitting algorithm can be applied: at jth iteration,

we fix other f ’s at the current value but maximize the likelihood function to estimate fj. Such
estimation can be particularly incorporated in the iteratively reweighted least squares algorithm.
For example, in the case when Y is a dichotomous outcome, the backfitting algorithm works as
follows:
1. Set α̂ = log[Ȳn/(1− Ȳn)] and f̂j = 0.

2. Define η̂i = α̂ +
∑n

j=1 f̂j(Xi(j)) and p̂i = 1/(1 + exp{−η̂i}). Let

Zi = η̂i + (Yi − p̂i)/(p̂i(1− p̂i)).
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and wi = p̂i(1− p̂i). Repeat the second step in the previous backfitting algorithm by minimizing
the following weighted least square

n∑
i=1

wi(Zi −
p∑
j=1

fj(Xi(j)))
2.

Cycle till convergence.
Generalized additive models provide flexible modelling for obtaining the decision function

f̂(X). However, it does not account for the interactions among X’s and the computation may
not be feasible when the number of X’s is large.

6.7.3 Projection pursuit regression

In project pursuit regression, we model f(X) using form

f(x) =
m∑
k=1

gk(β
T
k x),

where both gk and βk are unknown. For identifiability, we require ‖βk‖ = 1. When βTkX = Xk,
this model becomes the generalized additive model. However, the project pursuit regression
allows the interactions among feature variables and in fact, if m is large enough, such an
expression can be used to approximate any continuous function. When m is 1, this becomes
the single index model which is commonly used in econometrics.

Model fitting in project pursuit regression is carried out in a forward step-wise way. We
start m = 1 to first fit model f(X) = g1(βT1 X). To do this, the backfitting procedure can
be applied by iteratively estimating β1 and then g1. Particularly, given g1, we approximate
g1(βT1 X) by

g1({βold1 }TX) + g′1({βold1 }TX)(β1 − βold1 )TX

then minimize

n∑
i=1

(
Yi −

{
g1({βold1 }TXi) + g′1({βold1 }TXi)(β1 − βold1 )TXi

}}2

to obtain β1. Then fixing β1, we estimate g1 by regressing Yi on βT1 Xi via smoothing splines
or other smoothing nonparametric regression methods. We iterate till the convergence of the
estimators for β1 and g1. We then move to the model with an additional term g2(βT2 X). This
can be done similarly by replacing Yi with Yi − g1(βT1 Xi). Such a procedure can be carried out
by adding more additive components but stops when the next added term does not appreciably
improve the prediction performance of the model.

The projection pursuit is not restricted to regression model. Its applications also include
density estimation and are reflected in the neural networks discussed before. In different context,
a close and similar area to the projection pursuit is called central subspace, which is defined
as a linear space containing some linear combinations of X explaining the dependence between
Y and X, for instance, {βT1 X, ..., βTmX} in the current models. There has been a lot of work
on identifying central subspaces but the earliest one is the so-called slice inverse regression as
introduced by Duan and Li (1991).
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6.8 Direct Learning: Nonparametric Approaches

In this section, we study a variety of nonparametric methods in estimating f(x). These methods
include some prototype methods like the nearest neighborhood method and smooth methods
like kernel methods. Tree methods, which have been shown to be powerful in learning, are also
discussed.

6.8.1 Nearest neighbor methods

One of the most prototype methods for classification is the nearest neighborhood method.
Suppose Y denotes the class label. To predict the class label for a given feature value x, we
simply search within the observations (X1, Y1), ..., (Xn, Yn) and locate a number of ones whose
feature values are closest to x. The majority of the corresponding Yi for these neighbors is set
to be the predicted value for x. The number of neighborhood is often fixed at some positive
integer k; so this method is called the k-nearest neighborhood method.

Although this method is simple, it has been successful in many applications including hand-
written digits, satellite image scenes and EKG patterns, where the decision boundary is very
irregular. When k decreases, the training error is close to zero but the variance becomes high.
However, a famous result of Cover and Hart (1967) shows that asymptotically the error rate of
the 1-nearest neighborhood is never more than twice the Bayes error rate.

One essential issue in this method is how to define distances between any two points in the
feature space. Normally one will use the Euclidean distance for continuous feature variables
and use Hamming distance for categorical one. Some other metrics can also be used, especially
when feature variables lie on some manifold.

6.8.2 Kernel methods

Kernel methods belong to direct learning methods where one uses smoothing techniques to
estimate target f(x). Particularly, such smoothing is a way of local smoothing; that is, to
estimate the value of f(x) at some point x = x0, most likely, the local observations where Xi is
close to x0 are used for interpolate f(x0), where the localization is determined by some kernel
weighting function. In some sense, the kernel methods are similar to the nearest neighborhood
method described previously, except that the neighborhood is defined more softly and smoothly
in the kernel methods.

In a regression setting, to estimate f(x0) = E[Y |X = x0], a typical kernel estimator is the
so-called Nadaraya-Watson kernel estimator:

f̂(x0) =
n−1

∑n
i=1Kh(Xi, x0)Yi

n−1
∑n

i=1Kh(Xi, x0)
,

where Kh(x) is a kernel function with bandwidth h (it can be a vector (h1, ..., hp)). Sometimes,
we choose Kh(x) = (h1h2 · · ·hp)−1K1(|x1|/h1) × · · · × Kp(|xp|/hp) with K1(·), ..., Kp(·) being
possibly different kernel function (positive and integrable) in one-dimensional space; but usually,
we let Kh(x) = h−p1 K1(‖x‖/h1) where ‖·‖ is some norm defined in Rp space. In most of practice,
K1, ..., Kp are chosen to be either the Gaussian kernel (2π)−1/2 exp{−x2/2} or the Epanechnikov
kernel 0.75I(|x| ≤ x)(1−x2). The choice of the bandwidths h can be adaptive to x0. Generally,
large bandwidths result in lower variances but higher bias. When x0 is on the boundary of
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X’s domain, the above kernel estimation can be large biased due to the fact that the local
neighborhood contains less points.

There have been a large number of theoretical results developed for the kernel estimation
in the past literature. Here, we focus on the issue of variance and bias trade-off in the kernel
estimation. Consider the case that X is one-dimensional and for simplicity, we only examine
the numerator in the definition of f̂(x0), i.e.,

ĝ(x0) = n−1

n∑
i=1

Kh(|Xi − x0|/h)Yi.

Assume V ar(Yi|Xi) = σ2. Note that

E[ĝ(x0)] = E[Kh(|X1 − x0|/h)f(X1)]

and its variance
V ar[ĝ(x0)] = n−1V ar(Kh(|X1 − x0|/h)Y1)

= n−1σ2E[Kh(|X1 − x0|/h)2] + n−1V ar(Kh(|X1 − x0|/h)f(X1))

= n−1σ2E[Kh(|X1 − x0|/h)2] + n−1E[Kh(|X1 − x0|/h)2f(X1)2]

−n−1{E[Kh(|X1 − x0|/h)f(X1)]}2.

On the other hand, for any smoothing function g(x),

E[Kh(|X1 − x0|/h)g(X1)] =

∫
x

h−1K1((x− x0)/h)g(x)p(x)dx,

where p(x) is the smooth density of X1. After transforming x1 = x0 + hz and the Taylor
expansion, we obtain

E[Kh(|X1 − x0|/h)g(X1)] =

∫
z

K1(z)g(hz + x0)p(hz + x0)dz

=

∫
z

K1(z)
{
g(x0)p(x0) + h(gp)′|x=x0 + h2(gp)′′|x=x0/2 + ...

}
dz.

Since the kernel function is symmetric, we thus have that the above term is equal to g(x0)p(x0)+
O(h2). Similarly, we can show

E[Kh(|X1 − x0|/h)2g(X1)] = h−1{g(x0)p(x0) +O(h2)}.

Following these result, we conclude that

E[ĝ(x0)] = f(x0)p(x0) +O(h2)

and

V ar(ĝ(x0)) = (nh)−1σ2(p(x0)+O(h2))+(nh)−1(f(x0)2p(x0)+O(h2))−n−1{f(x0)p(x0)+O(h2)}2

= O((nh)−1).
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Actually, for the Nadaraya-Watson estimator, we obtain similar results:

E[f̂(x0)] = f(x0) +O(h2), V ar(f̂(x0)) = O((nh)−1).

This confirms that when smaller bandwidth is used, the kernel estimator has smaller bias but
larger variance. Finally, the bias-variance trade-off can be quantified using the mean square
error given as

{E[f̂(x0)]− f(x0)}2 + V ar(f̂(x0)) = O(h4) +O((nh)−1).

Thus, the optimal bandwidth in terms of minimizing this quantity is in the order n−1/5, which
is the optimal bandwidth in one-dimensional kernel estimation. For general feature space in
Rp, this optimal bandwidth is given by n−1/(4+p).

As mentioned before, the above kernel estimator, which relies on the local average, has large
bias when x0 is close to the boundary. To solve this issue, an alternative estimator is called
the local linear estimator, which fits a weighted linear regression locally. To see this, we first
notice that the previous kernel estimator is essentially minimizing the following weighted least
square problem:

n∑
i=1

Kh(|Xi − x0|) {Yi − α(x0)}2 ,

where α(x0) is a constant parameter. Essentially, we fit a locally constant line to data. Then
a local linear estimator is to minimizing

n∑
i=1

Kh(|Xi − x0|) {Yi − α(x0)− β(x0)(Xi − x0)}2 ;

that is, instead of fitting a constant locally, we fit a linear line locally. The obtained α̂(x0) is the

local linear estimator for f(x0) and β̂(x0) is actually a kernel estimator for the first derivative
of f(x0). Because of the approximation using the linear estimator locally, it is easy to see that
the local linear estimator corrects bias up to the first order. A further generalization of the
local linear estimator is the following local polynomial regression, which minimizing

n∑
i=1

Kh(|Xi − x0|)
{
Yi − β0(x0)− β1(x0)(Xi − x0)− ...− βk(x0)(Xi − x0)k/k!

}2
.

Thus, the derived estimator β̂0(x0) for f(x0) corrects bias up to the kth order. Of course, there
is price paid for such bias reduction and that is increased variance.

There has been a great amount of work on the latter kernel estimators. Most of theory
rely on the delicate and tedious Taylor expansion. Some helpful conclusions for practical use
include: local linear estimators help bias reduction dramatically at the boundaries while local
quadratic fits do little at the boundaries for bias but increase the variance a lot. The local
polynomials of odd degree dominates those of even degrees. Interesting readers can consult the
reference by Fan and Gilbjes (1996).

The above methods can be easily generalized to regression problem in multiple dimension
feature spaces. However, when the dimension becomes high, local regression becomes less useful
due to the curse of dimensionality. Moreover, boundary effects become a much bigger problem
in two or higher dimensional space since the fraction of points on the boundary is large. Finally,
the visualization of f̂(x) is also difficult in higher dimension.
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So far, we only consider estimating E[Y |X], mainly based on the locally weighted least
square. In some situations, when Y is nominal or ordinal, f(x) is related to conditional density
of Y given X. The least square method may not be efficient. In this case, we can estimate f(x)
via the following local likelihood approach. In this method, the main idea is to maximize the
observed log-likelihood locally. For example, suppose that the density of Y given X is given by
g(Y, f(X)). Then a local log-likelihood function is defined as

n∑
i=1

Kh(|Xi − x0|) log g(Yi, f(x0)).

We can maximize the above function to estimate f(x0). Similarly, we can generalize this
estimation to polynomial approximation by replacing g(Yi, f(x0)) in the above expression with

g(Yi, β0(x0) + β1(x0)(Xi − x0) + ....+ βk(x0)(Xi − x0)k/k!).

The local likelihood function has been applied to many non-continuous or non-regular settings,
for example, censored data.

There are other local methods based on kernel approximation, including local median, local
polynomial in least absolute deviations and etc.

6.8.3 Sieve methods

Different from the previous local estimation approaches, sieve estimation is a way of directly
learning f(x) in a global sense. To be explicit, this method estimates f(x) via a linear approx-
imation of basis functions,

m∑
k=1

βkhk(x),

where h1(x), ..., hm(x) are basis functions. That is, we approximate the target function globally
using a series of simple approximations. The choices of basis functions include trigometric
functions, polynomials, splines, and wavelets etc. Particularly, the last two basis functions are
most popular in learning literature, which we will discuss below. Again, we start with as simple
case assuming X from one-dimensional feature space.

Splines are essentially piece-wise polynomials which require some smoothness at joint points.
To be more specific, suppose X ∈ [0, 1] and we call joint points as knots and denote as 0 <
t1 < t2 < ... < ts < 1. Then a spline function is some polynomial in [0, t1], [t1, t2], ... but this
function is assumed to be continuous or even have higher continuous derivatives at t1, t2, ..., ts.
When the knots are fixed, such splines are sometimes called regression splines. It turns out
that another way to represent these splines can be constructed through xk−1 or (x− tl)k−1

+ for
a set of k’s and l = 1, ..., s. However, these expressions, although mathematically simple, may
not be useful for practical computation. A more computationally useful spline representation
is called B-spline basis, which is computed using the following iterative equation:

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1 +

ti+k − x
ti+k − ti+1

Bi+1,k−1(x)

and Bi,1(x) = I(ti ≤ x < ti+1). Actually, in the B-spline approximation, we can allow the
knots to be duplicated (more duplication results in less smoothness at the knots). In theory,
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the B-splines can be used to approximate any function with sufficient smoothness, such as the
weakly-differentiable functions in Sobolev spaces.

Wavelets smoothing is another sieve approximation, which receives extensive applications in
signal processing and compression. This method relies on constructing a series of wavelet basis
functions, which can capture signals in both time and frequency domain (note that traditional
Fourier analysis only approximates functions in frequency domain). Its mathematical definition
is as follows. Let φ(x) be a mother wavelet such like the Haar basis I(x ∈ [0, 1]) or the
Daubiechius wavelets or symmlet wavelets. Let φj,k(x) = 2j/2φ(2jx−k) and let Vj be the space
spanned by {φj,k : k = ...,−1, 0, 1, ...}. Due to the choice of φ, V0 ⊂ V1 ⊂ V2 ⊂ ... and the limit
space is L2-space. We can understand that the projection of any function f(x) on Vj as the
signal in f(x) up to jth level resolution. Furthermore, if we decompose Vj+1 into the direct
summation of Vj and Wj, then

Vj = V0

⊕
W0

⊕
W1...

⊕
Wj.

Thus, the projection of f(x) on Wk can be treated as the details seen at the kth level resolution.
In other words, the wavelet approximation is equivalent to decompose the raw function (signal)
into the details at a series of increasing resolution levels, an analysis called a multiresolution
analysis.

The details at high resolution levels are very likely due to high-frequency noises in the signals
so should be discarded (called denoising process). This is equivalent to shrinking the wavelet
coefficients associated with the projection a high resolution levels towards zeros. A popular
method for such a shrinkage is called SURE shrinkage (Stein Unbiased Risk Estimation) which
adds a L1-penalty to the wavelet coefficients:

min
θ
‖Y −Wθ‖2 + λ

∑
|θj|,

where W is the wavelet transformation matrix. Since W is orthonormal, this leas to

θ̂j = sign(Y ∗j )(|Y ∗j | − λ)+,

where Y ∗j is the jth component of W−1Y. We often choose λ to be σ
√

2 logN , where σ is
an estimate of the standard deviation of the noise, and N is the number of data points. The
inverse o W can be calculated using a clever pyramidal scheme, which is even faster than the
fast Fourier transform.

6.8.4 Tree-based methods

Tree-based methods can be considered as another type of sieve approximation for estimating
f(x). In these methods, f(x) is approximated by a linear combination of high-order interactions
of dichotomized functions I(x(j) < tk) or I(x(j) > tk) where x(j) is the jth component of x and
tk is the dichotomization point. Such an approximation is performed in a sequential order. For
a regression tree in estimating f(x) = E[Y |X = x], we provide details in the following.

Starting with all the data, we consider partition along the jth component X(j) and determine
the split point s to minimizing

min
c1

n∑
i=1

(Yi − c1)2I(Xi(j) ≤ s) + min
c2

n∑
i=1

(Yi − c2)2I(Xi(j) > s).
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Then we perform a greed search for j and s so that the above function attains minimal. In
other words, we look for the optimal component and the optimal dichotomization so that the
total mean square errors are minimized. Now suppose that this optimal partition is obtained.
Next, within each partitioned rectangle {x : I(x(j) ≤ s)} and {x : I(x(j) > s}, we now search
for another component and split point in order to minimize the total mean square errors within
each rectangle. We continue such partitions for m steps.

Obviously, this tree can grow to the largest tree when each branch contains only one obser-
vation. However, such largest tree is not desirable as it causes overfitting the data. Therefore,
there should be some way to determine when the tree growth should stop. An effective strategy
in pruning a tree is based on cost-complexity trade-doff. For a given tree, suppose that it has
m nodes at the end (in other words, each node represents the partitioned rectangle at the end).
We let Vk denote the within rectangle variability and Nk be the number of observations in this
rectangle. Then a cost-complexity can be defined as

m∑
k=1

NkVk + αm.

In other words, when a tree grows, the first term is decreasing but the second term increases so
as to penalize a complex tree. The constant α balances the trade-off between these quantities.

The same partition idea can be carried out for dichotomous outcome, which results in the so-
called classification tree. The difference is that choosing partition is based on minimizing some
different loss function in the classification tree. Such loss function can be the misclassification
error (the proportion of the observations which are labelled different from the majority class in
the partitioned rectangle), the Gini index,

∑K
k=1 p̂k(1 − p̂k), where p̂k is the proportion of the

observations labelled as class k, and the cross-entropy or deviance,
∑K

k=1 p̂k log p̂k.
Recently, another effective classification method has been developed based on classification

tree and it is termed as random forest. Random forest is an ensemble method which uses
recursive partitioning to generate many trees and then aggregate the results, where each tree
is independently generated using a bootstrap sample of the data. Because of such randomness
and aggregation, this method is robust against over-fitting and missing observations and can
handle large numbers of input feature variables. The method is easy to parallelize as the
forest is created using the observations not selected in each bootstrap sample. However, it is
computationally slow and may use lots of memory because a large number of trees are stored.

The algorithm in random forest can be briefly described below. Suppose we want to grow N
trees. We randomly draw N bootstrap samples from the original data. For each of the bootstrap
samples, grow an unpruned classification or regression tree with the following modification: at
each node of the tree, we randomly sample s(s << p) of the feature variables and choose the
best split from these variables. Finally, we predict new data by aggregating the predictions of
N trees.

Using a random forest, we can also calculate the misclassification error rates in the data not
in the bootstrap sample and this estimate is quite accurate for the true error rate when enough
trees are grown. Additionally, a random forest can also be used to assess variable importance
and proximity measure between any two observations (the fraction of trees in which two elements
are in the same terminal node).
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6.8.5 Multivariate adaptive regression splines

Multivariate adaptive regression splines, abbreviated as MARS, is an adaptive procedure for
regression and is useful for high-dimensional problem. This method uses expansions in piecewise
linear basis functions of form (X(j) − t)+ and (t−X(j))+, where t takes values of the observed
X(j)’s for j = 1, ..., p. Using these basis functions, we build regression models via a forward
stepwise linear regression:

f(X) = β0 +
m∑
k=1

βkhk(X),

where hk(X) is in form of (Xi(j)− t)+ and (t−X(j))+ and the coefficients are estimated using
the least square regression. At each stage, we add to the model the best term in a form of
hk(X)(X(j) − t)+ and hk(X)(t −X(j))+ which gives the largest decrease in training error. We
continue till the preset maximal number of terms in the model is reached.

The final model typically overfits data so a backward deletion procedure is applied. In the
backward procedure, a term whose removal causes the smallest increase in residual square errors
is deleted, producing the best model for each model size. The best model size is then selected
via some general cross-validation, which we will introduce later.

The reason of using these piecewise linear basis functions is due to their local approximation
property, similar to wavelets. This is seen in the product of these functions where only a small
part around observed data is non-zero. The second important advantage of using these basis
functions is about computation. This is said in more detail in Hastie et al. (2009).

6.9 Indirect Learning

In this section, we introduce indirect learning methods, which estimate f(x) by minimizing
some sensible loss function instead of estimating f(x) directly. This is often useful when the
true f(x) associated with given loss functions is not explicit in terms of the joint distribution
of (Y,X). In this section, we focus on the classification problem where Y has two categories
(value -1 and 1).

6.9.1 Separate hyperplane

A separate hyperplane is equivalent to finding a linear function (xTβ + β0) with constraint
‖β‖ = 1 of feature variables which can separate two classes well in some sense. We will describe
two separate hyperplane methods: Rosenblatt’s perceptron learning algorithm and optimal
separating hyperplane.

The perceptron learning algorithm aims to find a separating hyperplane which minimizes
the distance of misclassfied points to the decision boundary. Suppose that the decision rule is
that we classify subject into 1 if xTβ+β0 > 0 and −1 otherwise. Then any misclassified points
are those subject i from 1, ..., n such that Yi(X

T
i β + β0) < 0. Then the summed distances from

these points to the decision boundary are

D(β, β0) =
n∑
i=1

{
Yi(X

T
i β + β0)

}−
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where x− = max(0,−x). A stochastic gradient descent algorithm is used to minimize this
function, where the gradients are give as

∂D(β, β0)

∂β
=

n∑
i=1

YiXiI
{
Yi(X

T
i β + β0) < 0

}
,
∂D(β, β0)

∂β0

=
n∑
i=1

YiI
{
Yi(X

T
i β + β0) < 0

}
.

In this algorithm one updates (β, β0) after visiting each misclassified subjects using (β, β0) +
ρ(YiXi, Yi) where ρ is a step size (called learning rate). It can be shown that the algorithm
converges to a separating hyperplane in finite steps if such a separating hyperplane does exist.
However, there are a number of problems with this algorithm as well: first, when data are
separable, there are many solutions depending on start values; convergence can be slow; the
algorithm will not converge if data are not separable.

To obtain a unique separating hyperplane, a method has also been developed to find the
optimal separating hyperplane (Vapnik, 1996). This method aims to maximize the signed
distance from the decision boundary to the closet point from either class. If we let C denotes
such distance, then such an optimization problem is

max
β,β0,‖β‖=1

C subject to Yi(X
T
i β + β0) ≥ C, i = 1, ..., n.

Note that setting ‖β‖ = 1 in this optimization problem is arbitrary so we can constrain this
norm to any positive constant, say 1/C. After reparameterizating β0 and β0‖β‖, the problem
is equivalent to

min
β,β0
‖β‖ subject to Yi(X

T
i β + β0) ≥ 1, i = 1, ..., n,

or equivalently,

min
β,β0

1

2
‖β‖2 subject to Yi(X

T
i β + β0) ≥ 1, i = 1, ..., n.

This is a quadratic criterion with linear inequality constraints so is a convex optimization
problem. The corresponding Lagrange function is

1

2
‖β‖2 +

n∑
i=1

αi
{
Yi(X

T
i β + β0)− 1

}
subject to constraints αi ≥ 0, i = 1, ..., n. Setting the derivatives to zeros, we obtain

n∑
i=1

αiYiXi = β,

n∑
i=1

αYi = 0.

After plugging it back to the Lagrange function, we obtain the so-called Wolfe dual

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjYiYjX
T
i Xj, subject to αi ≥ 0.

This is a simple convex optimization problem which standard softwares can solve. Furthermore,
by the Ksrush-Kuhn-Tucker conditions, the solution also satisfies

αi
{
Yi(X

T
i β + β0)− 1

}
= 0, i = 1, ..., n.
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(Read reference on Convex Optimization.) Therefore, if αi > 0, then Yi(X
T
i β + β0) = 1 so

subject i is on the boundary of a slab closest to the separate hyperplane; otherwise, αi = 0 and
Yi(X

T
i β+β0) > 1 so subject i is away from the boundary. Additionally, the previous derivation

shows β =
∑n

i=1 αiYiXi =
∑

αi>0 YiXi; thus, β is determined by the points on the boundary of
the slab, which are called the support points. Once the separate hyperplane is obtained, the
classification rule is simply sign{xT β̂ + β̂0}.

The optimal separating hyperplane is unique if the data are truly separable. Since the
hyperplane only depends on a few support points, it is more robust to model misspecification
or outliers. This is one advantage of this method over discriminant analysis. However, when the
data are not separable, there will be no feasible solution and an alternative method is needed.
Such a method is known as the support vector machine, which allows for overlap and will be
introduced next.

6.9.2 Support vector machine

Support vector machine is one of the most popularly used learning method in practice. The
advantages of this method include allowing nonseparable data, computational simplicity and
good prediction performance. We consider two types of this method: in first type, the input is
just the feature space and the method is called support vector classifier; in the second type, the
input is some basis functions associated with each data point and the method is called support
vector machine.
6.9.2.1 Support vector classifier

Recall that in the method of finding the optimal separating hyperplane, we try to find a
hyperplane separating the data in two classes so that their distances from the hyperplane is at
least some constant C. In other words, the two classes of data points are well separated and lie
out of a band which centers around the hyperplane and the band width (called margin) is 2C.
We choose the optimal plane so that this margin is the largest. However, when the data points
are not separable, this is impossible and we should allow some points on the wrong side of the
hyperplane. To realize it mathematically, we relax the strict constraint Yi(X

T
i β + β0) ≥ C by

changing it to
Yi(X

T
i β + β0) ≥ C(1− ξi),

where ξi ≥ 0, i = 1, ..., n, are called slack variables.
We note that ξi also represents the proportion amount by which the prediction XT

i β + β0

is on the wrong side of the margin of the band. Therefore, one possibility is to set a bound
for the total proportion amount,

∑n
i=1 ξi. Under such a bound, we then look for the band with

the large margin. In other words, we search for a hyperplane with largest margin separating
data points so that the proportion amount of prediction on the wrong sides of the margins is
controlled under some bound, that is, the largest separation by allowing some proportion of
misclassification rates.

This becomes the following optimization problem

max
β,β0,‖β‖=1

C subject to Yi(X
T
i β + β) ≥ C(1− ξi), ξi ≥ 0,

n∑
i=1

ξi ≤ constant.
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Using the same transformation as in the previous section, we obtain an equivalent problem

min
1

2
‖β‖2 subject to Yi(X

T
i β + β) ≥ (1− ξi), ξi ≥ 0,

n∑
i=1

ξi ≤ constant.

Again, this is a convex optimization problem with linear constraints. An equivalent problem is

min
1

2
‖β‖2 + γ

n∑
i=1

ξi, subject to Yi(X
T
i β + β) ≥ (1− ξi), ξi ≥ 0,

where γ replaces the constant before. The separate case corresponds to γ =∞.
The Lagrange function is

1

2
‖β‖2 + γ

n∑
i=1

ξi −
n∑
i=1

αi
{
Yi(X

T
i β + β0)− (1− ξi)

}
−

n∑
i=1

µiξi,

with constraints αi ≥ 0, µi ≥ 0. Its derivatives with respect to (β, β0) and ξi yield

β =
n∑
i=1

αiYiXi, 0 =
n∑
i=1

αiYi, αi = γ − µi.

After substituting back to the Lagrange function, we obtain the dual problem

max
α,µ

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjYiYjX
T
i Xj,

subject to constraints

0 ≤ αi ≤ γ, i = 1, ..., n,
n∑
i=1

αiYi = 0.

This can be solved using standard softwares for convex optimization (Murray et al, 1981).
From the Karush-Kuhn-Tucker conditions, we obtain

αi

{
Yi(X

T
i β̂ + β̂0)− (1− ξ̂i)

}
= 0, µ̂iξ̂i = 0, Yi(X

T
i β̂ + β̂0)− (1− ξ̂i) ≥ 0.

We thus conclude that if α̂i ∈ (0, γ), then Yi(X
T
i β̂ + β̂0) = 1 − ξ̂i; but under this case, µ̂i > 0

so ξ̂i = 0; therefore, Yi(X
T
i β̂ + β̂0) = 1 so such data points lie on the margins of the band; for

those points inside the band, ξ̂i > 0 and α̂i = γ. Now, since

β̂ =
∑
α̂i>0

α̂iYiXi,

we conclude that β̂ is determined by the points within or on the boundary of the band (these

points are called support vectors). Furthermore, β̂0 can also be determined using the first
equation from the Karush-Kuhn-Tucker conditions.
6.9.2.2 Support vector machine
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So far, the support vector machine targets a linear boundary of feature spaces, which may
not be practically useful if the separation is actually nonlinear. However, the above approach
can be easily generalized to obtain nonlinear boundaries if we replace feature space Xi by some
basis functions evaluated at Xi. The procedure is the same as before. Suppose that we choose
basis functions h(x) = (h1(x), ..., hm(x))T then the classification boundary is given by

f(x) = h(x)Tβ + β0.

Following the previous derivation, the dual problem becomes maximizes

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjYiYj < h(Xi), h(Xj) >,

subject to constraints

0 ≤ αi ≤ γ,
n∑
i=1

αiYi = 0,

where < x, y >= xTy. Then the classification boundary is given by

f(x) =
n∑
i=1

αiYi < h(x), h(xi) > +β0.

Let K(x, x′) =< h(x), h(x′) >, which is called a kernel function. The above calculation and
classification rule only depend on the kernel function. Therefore, in this support vector machine
method, one only needs to specify the kernel function for calculation. Some popular choices
of the kernel function in the support vector machine literature include the polynomial kernel,
K(x, x′) = (1+ < x, x′ >)d, the radial basis, K(x, x′) = exp{−‖x − x‖2/c}, and the neural
network, K(x, x′) = tanh(θ1 < x, x′ > +θ2).

The constant γ in the support vector machine governs the smoothness of the boundary. A
large value of γ gives a wiggly boundary so could overfit training data.

Another extension as observed here is that we can even allow feature space belongs to some
Hilbert space, for example, Xi represents subject’s profile over time. The above procedure still
applies if we replace < x, x′ > by the inner product in the Hilbert space. In other words, the
SVM method applies to the case that one uses profile information to classify subjects.
6.9.2.3 Casting SVM into a penalized learning

The way we introduced the SVM method is more based on intuitive thinking that one tries
to separate two classes in some maximal sense. In fact, the SVM can be translated into an
empirical risk minimization problem as discussed in Chapter 2.

Specifically, we define a loss function L(y, x) = (1−yx)+. We aim to minimize the empirical
loss but subject to a constraint ‖β‖ bounded by some constant. Equivalently, we minimize

n∑
i=1

{1− Yif(Xi)}+ + λ‖β‖2/2,

where λ is a constant. By setting ξi = {1 − Yif(Xi)}+ and letting γ = 1/λ, we can easily
show that this minimization is equivalent to maximizing the objective function in the previous
section. In this way, we cast the SVM as a regularized empirical risk minimization.
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Following this framework, we can also obtain the SMV for other problems, including mul-
ticlass problems and regression problems. The former essentially solves many two-class SVM
problems. For the latter, the basic idea is to replace the loss function {1−yf(x)}+ by a different
loss V (y − f(x)), where V (t) = (|t| − ε)I(|t| ≥ ε) for some small constant ε which allows some
small prediction errors. Note that the loss function uses the linear contribution of the absolute
residuals so the fit is less sensitive to outliers (the same advantage in Huber estimation).

6.9.3 Function estimation via regularization

Regularization methods aim to estimate f(x) by simultaneously regularizing the complexity
allowed in estimation through imposing large penalty for those undesired estimators. In a
simple regression problem, to estimate f(x), we consider minimizing the following penalized
residual sum of squares:

n∑
i=1

(Yi − f(Xi))
2 + λ

∫
[f ′′(x)]2dx,

where λ is a fixed smoothing parameter. In this objective function, the first term measures the
fit performance of f(x); while the second term penalizes curvatures in this function. These two
terms are balanced through λ; otherwise, when λ = 0, the estimator is any function such that
f(Xi) = Yi resulting in overfitting, when λ =∞, the estimator is a linear function which may
produce large bias. It can be shown that there exists a unique minimizer which is actually a
natural cubic spline with knots at the unique values of the observed X1, ..., Xn. Furthermore,
the estimation is equivalent to a ridge regression with these cubic splines being regressors.
When Y is not continuous, the same regularization can be applied to the likelihood function by
replacing the above least square with the negative log-likelihood function form observed data.

Generally, we can write any regularization methods as

min
f∈H

[
n∑
i=1

L(Yi, f(Xi)) + λJ(f)

]
,

where H is a functional space (usually a Hilbert space) which f is chosen from, L(y, x) is a
loss function, and J(f) is a penalty functional for f . A general penalty given by Girosi et al.
(1995) takes form

J(f) =

∫
|f̃(s)|2

G̃(s)
ds,

where f̃(s) is the Fourier transform of f and G̃(s) is some positive function that falls off to zero
as ‖s‖ → ∞. In other words, we penalize high-frequency component of f . They show that the
solutions have form

K∑
k=1

αkφk(x) +
n∑
i=1

θkG(x−Xi),

where {φk} spans the null space of J-operator and G is the inverse Fourier transformation of
G̃.

Another important application of the above regularization method is to set J(f) = ‖f‖HK ,
where HK is a reproducing kernel Hilbert space (RKHS) defined based on a positive definite



BEYOND PARAMETRIC MODELS 178

kernel function K(x, y). Specifically, an RKHS is a Hilbert space in which all the point eval-
uations are bounded linear functionals (unlike L2-space). If we use <,> to denote the inner
product in this space, then there exists some function ηt in this space, such that for any f in
this pace,

< ηt, f >= f(t).

Then let K(t, x) = ηt(x) so it is a positive definite function and is called the reproducing kernel
in the space for the reason that < K(t, ·), K(s, ·) >= K(s, t). On the other hand, the Moore-
Aronszajn theorem states that for every positive definite function K(t, s), there exists a unique
RKHS associated with K(t, s). Such a kernel function possesses an eigen-expansion

K(x, y) =
∞∑
i=1

γiφi(x)φi(y)

with γi ≥ 0,
∑

i γ
2
i < ∞ and φ1, φ2, ... are the orthonormal basis functions in HK . Thus, for

any function f ∈ HK ,

f(x) =
∞∑
i=1

ciφi(x).

The minimization problem is equivalent to minimizing

n∑
i=1

L(Yi,
∞∑
j=1

φj(Xi)) + λ
∞∑
j=1

c2
j/γj.

It can also be shown that the solution is finite dimensional and has form

f̂(x) =
n∑
i=1

α̂iK(x,Xi),

where α̂’s minimizes

n∑
i=1

L(Yi,
n∑
j=1

α̂nK(Xj, Xi)) + λ
n∑
i=1

n∑
j=1

K(Xi, Xj)αiαj.

Such an expression is a linear combination of K(x,Xi), known as the representer of evaluation
at Xi in HK .

The choice of the kernel functions includes (< x, y > +1)d, the Gaussian kernel and etc.
We have already seen using such kernel functions in the support vector machine.

6.10 Aggregated Supervised Learning

Aggregated learning is essentially to combine different learning methods to obtain better pre-
diction rules. A simplest way is to try different learning methods then average their predictions.
For example, in classification problem, we may use logistic discriminant, nearest neighborhood,
SVM, or classification tree. When a new subject enters, the predicted class of this subjects will
be the majority of the predictions from all these methods. This idea is equivalent to model
averaging in Bayesian framework.



BEYOND PARAMETRIC MODELS 179

Another way of aggregating different learning methods is called stacking. We consider
squared error loss. Let f̂

(−i)
1 , ..., f̂

(−i)
m be the predicted values for subject i using learning methods

1, 2, ..., m based on the data excluding subject i. The stacking method is then to find the
optimal linear combinations of these predictions to minimize

n∑
i=1

{
Yi −

m∑
k=1

ωkf̂
(−i)
k (Xi)

}2

.

The final prediction rule is given by
m∑
k=1

ω̂kfk(x),

where ω̂k is the minimizer. This method aggregates all the learning methods based on their
cross-validation errors, which will be discussed later and which are good assessment of the
prediction performance from each learning method.

A more powerful way to aggregate multiple learning methods is called boosting, which is
an iterative procedure to combine the outputs of weak learning methods to produce a powerful
committee. Here, a weak learning method means that the error rate is only slightly better than
random guessing. We first look at one binary classification problem (Y = −1, 1). The final
output from the boosting method is a prediction rule given as

sign

(
m∑
k=1

αkf̂k(x)

)
,

where f̂1, ..., f̂m are the estimators from m learning methods and α1, ..., αm are their correspond-
ing weights. The sequential procedure in the boosting method is a sequential way of updating
these weights. The detail of this algorithm (called AdaBoost) is below:
1. We assign each subject i equal weight wi = 1/n.
2. From learning method k = 1 to m,
(a) we apply learning method k to data using weights (w1, ..., wn) to obtain f̂k,
(b) compute the error rate as

errk =

∑n
i=1wiI(Yi 6= f̂k(Xi))∑n

i=1wi

then
αk = log[(1− errk)/errk],

(c) recalculate each individual weight as proportional to wi exp{αkI(Yi 6= f̂k(Xi))} and send to
next classifier.
3. Finally output sign

(∑m
k=1 αkf̂k(x)

)
.

The idea in the above algorithm is that if for kth classifier, subject i is misclassified, we then
increase this subject’s weight by a factor exp{αk} in the (k+ 1)th classifier. In other words, we
use a new classifier to make up for the misclassification in the current classifier. The AdaBoost
procedure sometimes can dramatically increase the performance of even a very week classifier.
Clearly, if we let all the learning methods to be the same (for example, all are classification



BEYOND PARAMETRIC MODELS 180

trees), then every iteration in this procedure is to keep training classification tree to correct
misclassified subjects. This may be the reason why we call it boosting. Interestingly, such a
boosting algorithm is equivalent to minimize an exponential loss L(Y, f(X)) = exp{−Y f(X)}
using forward stagewise additive models, i.e., at kth stage, we minimize

n∑
i=1

exp{−Yi(f̂k−1(Xi) + βg(Xi))}

over β and g(x) is a function belonging to feasible sets in kth learning method. The equivalence
can be bound in Section 10.4 of Hastie et al. (2009). Moreover, because of this recursive nature
and the forward stagewise learning in the boosting algorithm, this method can be naturally
incorporated into classification tree, which is also a recursive learning procedure. The resulting
method is called boosting tree.

6.11 Model Selection in Supervised Learning

In all the learning methods, there are some parameters controlling the complexity of learning
methods in order to avoid overfitting. These parameters can be model size in parametric
learning and semi-nonparametric learning, the number of observations in nearest neighborhood
method, the bandwidth in kernel learning, the number of basis functions in sieve estimation,
tree size, and penalty parameters in SVM and regularization methods. However, we discussed
very little about the choices of these parameters till now. Specifically, we will discuss a few
commonly used approached to assess learning methods, including Bayesian information criteria,
minimum description length and cross-validation. Obviously, there exists many other methods
out there to assess learning methods but since they are in the same spirit to balance the
prediction accuracy and complexity, we will not review them in this section.

With no doubt, assessing learning methods is extremely important in guiding practical use
of learning methods and quantifying the performance of final models. A good method for
assessing learning performance should result in a parsimonious model with accurate prediction
in any external testing data.

6.11.1 Akaike and Bayesian information criteria

Both AIC and BIC are applicable methods when the learning methods are carried out by
maximizing some log-likelihood function and the complexity of methods is reflected in the
number of parameters used in the methods. Specially, the AIC is defined as

−2 log-likelihood + 2d/n,

and the BIC is
−2 log-likelihood + 2d log n,

where d is the number of the parameters and n is the size of data. The former is derived based
on the following asymptotic relationship:

−2E
[
logP (Y ; θ̂)

]
≈ − 2

n
E

[
n∑
i=1

logP (Yi; θ̂)

]
+

2d

n
,
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where P (y; θ) is the working distribution for Y indexed by parameter θ and d is the dimension of
θ. Instead, the BIC is motivated by the Bayesian approach for model selection: when a uniform
prior is assumed for all the candidate models, the model with the largest posterior probability
should have largest conditional probability of the observed data given this model; however, the
latter, by a Laplace approximation at the maximum likelihood estimator, is approximated by
log-likelihood at θ̂ subtracting d log n. We note that the BIC tends to penalize complex models
more heavily, giving preference to simpler models in selection. In practice, there is no clear
choice between AIC and BIC, since AIC usually chooses models which are too complex when
n goes to infinity while BIC chooses models which are too simple for finite sample. As a note,
the BIC method is also equivalent to the minimum description length approach, which was
motivated from optimal coding theory.

6.11.2 Model selection based on VC-complexity

As seen before, the AIC and BIC are only applicable when the loss function is equivalent
to the negative log-likelihood function and the complexity of learning models is represented
by the number of parameter in consideration. A more general extension is model selection
approach based on VC-complexity, which essentially applies to any loss function and any classes
of learning model with finite VC-dimensionality. We remark that for parametric models, the
VC-dimensionality is equal to the number of independent parameters.

To illustrate idea, we introduce some general notations. We use γn(f) to denote

n−1

n∑
i=1

L(Yi, f(Xi)).

LetMn be a class of models in consideration for estimating f(X). For any model Ω fromMn,

we let f̂Ω be the estimated f(x) based on this model (the estimation procedure can be either
minimizing γn(f) over the parameters in model Ω or using direct learning method as before).
For example, in parametric learning, Ω can be linear regression model with fixed model size;
in sieve learning, Ω can be a model consisting of smoothing functions with a fixed number of
basis functions.

Suppose f0 is the minimizer minimizing E[γn(f0)] and we define a natural loss

l(f0, f) = E[γn(f)]− E[γn(f0)].

For each given model Ω ∈Mn, we define f ∗Ω as the one minimize l(f0, f) for f over Ω and this is
called an oracle estimator by Donoho and Johnstone. The ideal way of choosing best model Ω is
to minimize l(f0, f

∗
Ω). However, since the true expectation is not calculable in real data, we may

consider minimizing an empirical version of l(f0, f), which is equivalent to minimizing γn(f̂Ω).

Unfortunately, the best model minimizing γn(f̂Ω) may not necessarily minimize E[γn(f̂Ω)] due
to stochastic errors

γn(f̂Ω)− E[γn(f̂Ω)].

To account for such errors, one commonly used method is that instead of minimizing γn(f̂Ω),
we aim to minimize a penalized version

γn(f̂Ω) + penn(Ω),
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where penn(Ω) is a penalty function imposed for model Ω.
Now the question becomes what penalty function, penn(Ω), is appropriate. To see this,

suppose that the Ω̂ is the minimizer for the above function. We note that for any Ω,

l(f0, f̂Ω̂) = E[γn(f̂Ω̂)]− E[γn(f0)]

= −(γn(f̂Ω̂)− E[γn(f̂Ω̂)]) + γn(f̂Ω̂)− E[γn(f0)].

Since
γn(f̂Ω̂) + penn(Ω̂) ≤ γn(f̂Ω) + penn(Ω) ≤ γn(f ∗Ω) + penn(Ω),

we obtain

l(f0, f̂Ω̂) ≤ −(γn(f̂Ω̂)− E[γn(f̂Ω̂)]) + γn(f ∗Ω)− penn(Ω̂) + penn(Ω)− E[γn(f ∗Ω)] + l(f0, f
∗
Ω)

≤ |(γn(f ∗Ω)− E[γn(f ∗Ω)])− (γn(f̂Ω̂)− E[γn(f̂Ω̂)])| −
{
penn(Ω̂)− penn(Ω)

}
+ l(f0, f

∗
Ω).

Therefore, if we can choose a penalty function such that in probability,

|(γn(f ∗Ω)− E[γn(f ∗Ω)])− (γn(f̂Ω̂)− E[γn(f̂Ω̂)])| ≤ penn(Ω̂),

then it yields
l(f0, f̂Ω̂) ≤ l(f0, f

∗
Ω) + penn(Ω).

Consequently, if we further let penn(Ω) uniformly diminishes as data size increases, it is con-
cluded that the model based on the penalized minimization will result in an estimator whose
asymptotic loss is equivalent to the best oracle estimator.

The key condition for the penalty function is

|(γn(f ∗Ω)− E[γn(f ∗Ω)])− (γn(f̂Ω̂)− E[γn(f̂Ω̂)])| ≤ penn(Ω̂),

which is equivalent to saying that the penalty dominates the stochastic fluctuation of γn(·).
However, since Ω and f̂Ω is unknown, we may wish to study the uniform behavior of

sup
Ω̃∈Mn

sup
f∈Ω̃

|(γn(f ∗Ω)− E[γn(f ∗Ω)])− (γn(f)− E[γn(f)])| − penn(Ω̃).

This is closely related to the stochastic behavior of the empirical process

sup
f∈Ω̃

{
γn(f)− E[γn(f)] : f ∈ Ω̃

}
so concentration inequalities play essential roles. Here, we focus on one special case (in fact,
the most common situation in statistical learning), where the complexity of models inMn can
be characterized by the so-called Vapnick-Chernovenkis (VC) dimension.

The formal definition of the VC dimension for a model Ω, which consists of finite or infinitely
many functions for f(x), is the largest number of points that can be shattered by the subgraphs
of these functions. In some sense, the VC dimension characterizes the compactness of the
functions in Ω. If the functions Ω belong to a linear space with q-dimension, then the VC
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dimension is q+ 1. For the VC class, one important result from the empirical process theory is
that in probability,

sup
f
|γn(f)− E[γn(f)]| ≤ a(VC dimension) log n√

n
,

where a(·) is a deterministic function independent of n. Therefore, from the previous derivation,
we can choose the penalty function as

penn(Ω) = n−1/2a(VC dimension of Ω) log n.

In other words, the way to select the best model based on the VC complexity is to minimize

γn(f̂Ω) + n−1/2a(VC dimension of Ω) log n.

We note that in parametric models, the VC dimension is equal to one plus the number of
parameters, so the above way of model selection is closely related to the BIC method described in
the previous section. Using the VC complexity, Vapnik suggested a structural risk minimization
for learning. Essentially, one fits a nested sequence of models of increasing VC dimensions and
then chooses the model with the smallest value of the above objective function.

6.11.3 Cross-validation

Although the model selection based on VC-complexity is applicable to any types of loss func-
tions, one limitation is that one has to theoretically evaluate the VC dimensionality of each
model. Moreover, the penalty function depends on an upper bound controlling the stochastic
error of the empirical process, which may not be a sharp bound so may result in over simple
models for prediction.

Recall that the goal of model selection in assessing learning methods is to produce a model
which has the smallest prediction error when applied to any external data. Because of this goal,
the simplest and most widely used method for estimating prediction error is the method of cross-
validation. The idea of this method is straightforward. We randomly partition the observed
data into two sets of data with one set called training set and the other called testing set. We
apply the candidate method/model to the training set to obtain f̂ then evaluate the prediction
error in the testing set. We repeat this process a number of times and use the average of all the
prediction errors as a criterion to assess the performance of learning methods/models. Such an
average is named the cross-validation error. Therefore, the best learning methods/models are
chosen to be the ones with the smallest cross-validation error.

There are different ways of partitioning observed data. The simplest way is called the leave-
one-out cross validation. In this method, only one subject is in the test set while we use the
rest (n− 1)-subjects in the training est. If let f̂ (−i) denote the final estimator for f based the
training set with subject i, then the cross-validation error is given as

1

n

n∑
i=1

L(Yi, f̂
(−i)(Xi)).

Other ways of partitioning data include k-fold cross-validation, where 1/k proportion of the
data are randomly selected into the test set. Normally, the larger size in the test set, the larger
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bias in terms of how accurate the cross-validation error is for the true prediction error; but the
lower variance it gives. Usually, five- or ten-fold cross-validation are recommended in practice.

For the leave-one-out cross validation, the cross-validation error can sometimes be approxi-
mated by simple expression when the loss is squared error loss and the predicted values for all
the subjects are written as ΣY, where Σ is a n by n matrix. Such an approximation, often
called generalized cross-validation, is given as

n−1

n∑
i=1

[
Yi − f̂(Xi)

1− trace(Σ)/n

]2

.

The trace of Σ is called the effective number of the parameters. The advantage of the generalized
cross-validation is its computational convenience, as only one learning procedure is needed to
evaluate the leave-one-out cross validation error.

An alternative way of the cross-validation is to use the bootstrapped sample for learning
then average over all the bootstrapped samples. We will not review this method here but refer
interested readers to Section 7.11 of Hastie et al. (2009).

6.12 Unsupervised Learning

6.12.1 Principal component analysis

Principal component analysis is one of the most important methods in unsupervised learning,
where data contain only feature variables but no outcomes and the goal is to identify the intrinsic
distributional structures in given data. The principal component analysis is to identify the so-
called principal directions so that the data variability along these directions represents most of
the total variability in the data.

Specifically, let X1, ..., Xn be the observed feature values in Rp from n subjects. We aim to
find a matrix Vp×q = (V1, ..., Vq) where q is the rank of (XT

1 , ..., X
T
n )T such that V1, ..., Vq are

orthogonal unit vectors and

n∑
i=1

‖Xi − X̄n − V V T (Xi − X̄n)‖2

is minimized. Here, X̄n is the sample mean of X1, ..., Xn. To understand the above expression,
we note that V T (Xi − X̄n) is the projection of the centered feature (Xi − X̄n) on the space
spanned by the columns of V . Therefore, the above minimization is equivalent to finding a
space of dimension q so that the projection of the observed feature (after centralization) absorb
the maximal variability in the original data.

The solution for the optimal V can be obtained via the singular value decomposition. Par-
ticularly, let X be a n by p matrix with each row being X1− X̄n, ..., Xn− X̄n. A singular value
decomposition gives

X = UDVT ,

where U is n by p orthonormal matrix, V is a p by p orthonormal matrix, and D is a diagonal
matrix so that its diagonal elements satisfy d1 ≥ d2 ≥ ... ≥ dp ≥ 0. Then the optimal V is
given as the first q columns of V. The first q columns of UDT are the projection of X on these
q principal directions so are called principal components.
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From the above singular decomposition, it is easy to show that XiV1 has the highest variance
among all the linear combination of the feature variables; XiV2 has the highest variance among
all the linear combinations which are orthogonal to V1 and so on. Actually, this is the original
intuition for conducting principal component analysis.

The choice of the number of principal components is subjective. One often chooses the
first q principal components if their explained variation is above some threshold c (for example,
c = 70%) or even more of the total variability in the data; that is,

d2
1 + ...+ d2

q

d2
1 + ...+ d2

p

≥ c.

When q is much smaller than p, the first q principal components are said to sufficiently rep-
resent the whole feature variables so can be used in downstream analysis. Thus, the principal
component analysis is a useful tool for dimension reduction.

6.12.2 Latent component analysis

Latent component analysis assumes that the data of feature variables are simply multiple indi-
rect measurements of a few latent sources. Therefore, if we can capture the latent sources, we
then characterize the most important structure within the data. Moreover, when the number
of latent sources is small, they can be used to represent the whole data so we achieve another
way of dimension reduction.

Two most important methods in latent component analysis are factor analysis and indepen-
dent component analysis. In factor analysis, the Gaussian distribution plays an essential role;
however, independent component analysis relies on the non-Gaussian nature of the underlying
sources.

In factor analysis, we assume that there exists q (q < p) latent variables, S1, ..., Sq, such
that

X(k) = ak1S1 + ....+ akqSq + εk,

where ak1, ..., akq are constants and εk is independent noise not explained by latent sources
S1, ..., Sq. We further assume S1, ..., Sq are from Gaussian distributions and uncorrelated. As
the result, if denote A = (akj)k=1,...,p,j=1,...,q, then it follows

Σ = AAT + diag(var(ε)1, ..., var(εp)),

where Σ is the sample covariance of (X1, ..., Xp). We remark that there is an unidentifiability
associated with A as AO satisfies the same model for any orthonormal matrix. In other words,
one has to restrict A to obtain a unique solution. Obtaining an estimator for A is often carried
out using the singular value decomposition or the maximum likelihood method.

Comparatively, independent component analysis uses the same latent models structure;
however, it requires that S1, ..., Sq be independent but not necessarily Gaussian. Such a restric-
tion imposes more stringent higher moment conditions than uncorrelated relationship in factor
analysis. Thus, it makes the estimation of A unique and allows the non-Gaussian distribu-
tion of S1, ..., Sq. The solution to the independent component analysis is obtained by minimize
some entropy or we can start from factor analysis then look for some rotation that leads to
independent components.
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6.12.3 Multidimensional scaling

Both principal component analysis and latent component analysis map the original data points
to some low-dimensional manifold, where such a low-dimensional manifold can be explicitly
expressed in terms of principal components or latent components. Multidimensional scaling
has a similar goal but the obtained low-dimensional manifold may not be so explicit due to its
different motivation.

The multidimensional scaling method only uses the dissimilarity between any two observa-
tions, which is defined as some distance between these two observations. Let dij denote the
dissimilarity between data Xi and Xj. Then the multidimensional scaling seeks the correspond-
ing values Z1, ..., Zn for all the subjects in a low dimensional space Rq so that the dissimilarity
among subjects is retained as maximally as possible; that is,[∑

i 6=j

(dij − ‖Zi − Zj‖)2

]1/2

is minimized. This is also known as least squares or Kruskal-Shephard scaling. A gradient
descent algorithm is used to find the minimum.

Some variation of the criterion can be used, including Sammon mapping which minimizes∑
i 6=j

(dij − ‖Zi − Zj‖)2

dij
.

The latter emphasizes more on preserving smaller pairwise distances. Another way, called
Shephard-Kruskal nonmetric scaling only relies on the ranks of the dissimilarities by minimizing∑

i 6=j

(dij − g(‖Zi − Zj‖))2,

where g is an increasing function also in the minimization.
Because multidimensional scaling only gives the projections of the original data on a low-

dimensional manifold so does not give a parameterization of the manifold, it only reveals the
intrinsic structures in the existing data so may not be convenient to be applied to new data. In
this sense, multidimensional scaling is more useful for visualizing data in some low-dimensional
manifolds.

6.12.4 Cluster analysis

Different from the previous unsupervised learning methods, cluster analysis, also called data
segmentation, does not aim for a low-dimensional representation of data; instead, it seeks some
collections of subjects (clusters) such that subjects within clusters are more similar than between
clusters in terms of feature values. Because of this, the central quantity in the cluster analysis
is similar to multidimensional scaling, that is, the degree of similarity (dissimilarity) between
subjects. The real quantity used in the cluster analysis is the so-called proximity matrice, which
is a n by n matrix with (i, j) element being the similarity (or dissimilarity) between subject i
and subject j.

Since both multidimensional scaling and cluster analysis use dissimilarity, we may discuss a
bit more on how to define such a measure. For quantitative features, it may be simply defined
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as l(|Xi −Xj|), where l(·) is a non-negative loss function, for instance, the Euclidean distance.
For the feature with ordinal values, one way is to assign scores to each ordinal value then treat
the assigned scores as quantitative feature. The most common distance for the categorical
feature is the Hamming distance, which is calculated as the number of mismatched categories
between any two subjects. Therefore, when the feature from each individual consists some or
all these types of values, a weighted summation of the distances from each coordinate can be
used to define the distance between these two observations. The choice of the weights is a
subject matter.

With dissimilarity matrix, the first algorithm for cluster analysis is called combinatorial
algorithm. We suppose that the whole data consist of K clusters and we label them as 1, 2, ..., K.
Then the goal of cluster analysis is to identify a map C which maps each subject id to one of
these K labels. Since cluster analysis wants to have subjects within the same cluster more
similar to the subjects between clusters, a natural way is to define the within-cluster loss as

1

2

n∑
i=1

n∑
j=1

K∑
k=1

I(C(i) = C(j) = k)d(Xi, Xj)

while define the between-cluster loss as

1

2

n∑
i=1

n∑
j=1

K∑
k=1

I(C(i) = k, C(j) 6= k)d(Xi, Xj).

Hence, we want to either minimize the within-cluster loss or maximize the between-cluster loss.
These two optimizations are equivalent since the summation of these two losses is a constant.
Unfortunately, such an optimization is almost infeasible due to larger number of maps to be
calculated.

Some strategies based on iterative greedy decent are feasible, although they may end up
with suboptimal maps. Among them, one of the most popular algorithms is called the K-means
algorithm, which applies to the situation when all the feature values are quantitative and the
distance is the squared Euclidean distance. Under this case, this algorithm follows from the
observation that the within-cluster loss is equal to

n∑
i=1

K∑
k=1

I(C(i) = k)‖Xi −mk‖2,

where mk is the mean of the kth cluster. Thus, the K-means algorithm can be described as
follows: given C, we find m1, ...,mK to minimize the above function; next, given m1, ...,mK , for
each subject i, we determine C(i) as

argmink=1,...,K‖Xi −mk‖2;

we iterate till no change of cluster assignment. Clearly, the K-means algorithm is easy to be
implemented. However, it may go to some local minimum so it is often suggested to start from
many different random choices of m1, ...,mK then choose the solution having the smallest value
of the within-cluster loss. As a final note, the K-means algorithm is closely related to the EM
algorithm in estimating a Gaussian mixture model, where in each iteration, the M-step updates
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the means of the latent normal components and the E-step imputes the membership of each
observation.

For general feature values and general proximity matrix, the K-means algorithm is not
applicable. To handle this issue, one develops the K-medoids algorithm. This algorithm is
very similar to the K-means algorithm, except that in the first step, instead of identifying the
mean, we identify cluster medoids as the observation in the cluster which minimizes the total
distances to all other points in the same cluster:

argmini∈C−1(k)

∑
C(j)=k

d(Xj, Xi);

the second step is the same but we replace the Euclidean distance by d(Xj, Xi).
Both K-means and K-medoids require a pre-specified number of the clusters. There is

another clustering algorithm called hierarchical clustering, which does not specify the number
of the clusters but lets data automatically form clusters. Eventually, users can decide how many
clusters are appropriate. Strategies for hierarchical clustering divide into two basic approaches:
agglomerative (bottom-up) and divisive (top-down). Agglomerative approaches starts at the
bottom, where each subject is treated as a single cluster, and recursively merge a selected
pair of clusters into a single cluster. The pair chosen for merging consist of the two groups
with the smallest intergroup dissimilarity. Eventually, all the clusters will be merged into
one largest cluster containing all the subjects. Instead, divisive approach starts from a single
cluster consisting of all the subjects and recursively split of one the existing clusters into two
clusters, where the split is chosen to produce two new groups with the largest between-group
dissimilarity. Eventually, the last level at the bottom contains n clusters where each cluster
contains one single subject. Thus, in both methods, there are a total (n − 1) levels in the
hierarchy.

Recursive binary splitting/agglomeration can be represented by a rooted binary tree, where
the nodes of the trees at kth level represents the kth level clusters. Along the tree, the dissimi-
larity between merged clusters is monotone increasing. The height of each node is proportional
to the value of the intergroup dissimilarity between its two descendent clusters. This tree graph
is called a dendrogram.

In hierarchy clustering, it is necessary to define the dissimilarity between any two clusters.
There are different ways for this definition. One definition called the single linkage is to define

d(C1, C2) = min
i∈C1,j∈C2

d(Xi, Xj).

A second definition is called complete linkage with

d(C1, C2) = max
i∈C1,j∈C2

d(Xi, Xj).

Additionally, a third definition of group average is

d(C1, C2) =
1

n1n2

∑
i∈C1,j∈C2

d(Xi, Xj).

One general observation is that if the data dissimilarity indicate a strong clustering tendency,
with each of the clusters being compact and well separated from others, then all these defini-
tions for group dissimilarity produce similar results. However, because of the nature in these
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definitions, the single linkage can produce clusters with very large diameter (the maximal dis-
tance within the cluster) and the complete linkage is oppositive; while the group average is a
compromise between the two extremes.

Finally, another unsupervised learning method is called self-organizing maps. This method
can be viewed as a constrained version of K-means clustering, where the prototypes are encour-
aged to lie in a one- or two-dimensional manifold in the feature space. The resulting manifold
is called a constrained topological map. The detail of the algorithm can be found in Section
14.4 of Hastie et al. (2009).


