
CHAPTER 6: BEYOND PARAMETRIC MODELS
AND BEYOND ESTIMATION
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INTRODUCTION TO
NONPARAMETRIC/SEMIPARAMETRIC

MODELS
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Nonparametric/Semiparametric Estimation

I Parametric models uses only a finite number of
parameters to describe data distribution.

I Model parameters are convenient for interpretation.

I However, they are not sufficiently accurate to describe
complex data generation.

I Model misspecification can lead to severe bias or incorrect
inference.

I More flexible models include nonparametric and
semiparametric models.
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Nonparametric density estimation

I One fundamental problem in statistical inference is density
estimation.

I Parametric models can be normal distribution,
t−distribution and etc.

I Nonparametric model requires no assumption on the form
of density functions.

I Assume i.i.d. observations X1, ...,Xn from a distribution
with density f (x).

I The goal is to estimate f (x) without any assumptions.
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Local approaches

I The idea is to estimate the density at any fixed x locally.

I Essentially, only observations close to x will contribute to
estimation.

I Weights will be introduced to determine the locality of
the observations.

I

f̂ (x) = n−1
n∑

i=1

wni(x),

where

wni(x) = a−1
n K

(
Xi − x

an

)
and K (x) ≥ 0 satisfying

∫
K (x)dx = 1.

I an is called the bandwidth.
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Justification

I Show E [f̂ (x)]→ f (x) when an → 0.

I Bias analysis

E [f̂ (x)]− f (x) =

∫
y

K (y)f (x + any)dy − f (x).

I Variance analysis

Var [f̂ (x)2] = (nan)−1

[∫
K (y)2f (x + any)dy

−an (f (x) + Bias)2
]
.
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Some conclusions

I If K (x) = 0.5I (|x | ≤ 1),

f̂ (x) = (2an)−1
{
F̂ (x + an)− F̂ (x − an)

}
.

I Bias=f (x)an + O(an) and
Variance=(nan)−1f (x)

∫
K (y)2dy + o((nan)−1).

I If K (x) is symmetric (Gaussian kernel or Epanechnikov
kernel), then
Bias=a2

nf
′′(x)

∫
K (y)y 2dy/2 + o(a2

n) and Variance
remains the same.

I The choice of the kernel depends on how much
smoothness is known about the density function.
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Asymptotic normality

I

f̂ (x)− E [f̂ (x)]√
Var(f̂ (x))

→d N(0, 1).

I The proof assumes na3
n → 0 and uses Liaponov CLT.

I For a symmetric kernel, the optimal bandwidth is

aoptimal
n =

[
4f (x)

∫
K (y)2dy

(f ′′(x)
∫
K (y)y 2dy)2

]1/5

n−1/5.
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Global approaches

I It views f (x) as a function parameter for estimation so
estimates f (x) via one global optimization instead of
estimation at each x .

I It is computationally efficient.

I The disadvantage is that it may miss some local features
of f (x).
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Empirical distribution function

I Instead of estimating density function, we estimate its
distribution function F (x).

I We consider maximizing the log-likelihood function

n∑
i=1

log f (Xi)

but replace f (Xi) by

F{Xi} = F (Xi)− F (Xi−).
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Asymptotic properties

I F̂ (x) converges to F (x) almost surely.

I

sup
x
|F̂ (x)− F (x)| → 0

almost surely.

I
√
n(F̂ (x)− F (x)) converges in distribution to a Brownian

bridge process.

I The previous kernel density estimator can be viewed as a

smoothing operation on F̂ :

f̂ (x) =

∫
a−1
n K ((y − x)/an)dF̂ (y).
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Sieve Estimation

I We approximate f (x) via a sequence of functions
generated from basis functions:

log f (x) ≈
Kn∑
k=1

βkBk(x).

I Choices of basis functions: piecewise constant, piecewise
linear, piecewise polynomials (splines), wavelets,
trigonometric functions ...

I We then maximize the likelihood function subject to
constraint

∫
f (x)dx = 1.

I When the number of basis function goes to infinity, the
bias due to approximation will vanish.

I However, more basis functions will result in increasing
variability.

I Asymptotic bias/variance analysis (also normality) is more
complicated than and is not as obvious as local
approaches.
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Penalization approach

I The essential idea is to construct “Objective function”
plus “Regularization” (penalty).

I The objective function is an empirical version of a
population quantity which the true density function
minimize.

I The regularization is a penalty function to penalize those
estimators with high variability or irregularity.

I The common estimation is

min−
n∑

i=1

log f (Xi) + λnP(f ),

∫
f (x) = 1,

P(f ) =

∫
|f ′′(x)|2dx .

I λn is the penalty parameter (tuning parameter) to govern
the regularity of the estimator.

I Bias and variance trade-off is reflected in λn.
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Nonparametric Regression

I The goal is to estimate the conditional mean of Y given
X , m(x) = E [Y |X = x ].

I The data are (Y1,X1), ..., (Yn,Xn).

I Parametric models: linear model, generalized linear models

I Parameter models are easy for interpretation but can be
seriously misspecified.
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Nonparametric approaches

I Local approach (kernel estimation)∑n
i=1 YiK ((Xi − x)/an)∑n
i=1 K ((Xi − x)/an)

.

I Local likelihood approach

min
n∑

i=1

(Yi −m(x))2K ((Xi − x)/an).

I Local polynomials
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Global approaches

I Sieve estimation

min
n∑

i=1

(Yi −
Kn∑
k=1

βkBk(Xi))2.

I Penalization estimation

min
n∑

i=1

(Yi −m(Xi))2 + λnP(m).
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Semiparametric Estimation

I It aims to incorporate advantages from both parametric
and nonparametric models.

I Recall: parametric models are easy for interpretation and
estimation is precise with a finite number of parameters;
nonparametric models are robust with minimal
assumptions.

I Semiparametric models describe data distributions using
both parametric components (θ) and nonparametric
components (η).

I θ is finite dimensional and consists of parameters of
interest (for convenience of practical use): treatment
effects, risk ratios ...

I η is nonparametric and included to complement θ for
describing data distribution. It is not the primary interest
so called nuisance parameters.
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Inferential advantage and challenges

I Most often, the parameter θ can be estimated as
accurately as from a parametric models (parametric
convergence rate).

I The nuisance parameter, η, has minimal assumption so
the inference is robust to the structure in η.

I Estimation/inference is challenging due to the mixing
nature of the parameters.

I Usually, we have to treat η as some parameter from a
metric space for inference. Some math from function
analysis is quite involved.
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Examples

I Right censored data

I Current status data

I Smoking prevention project

I Medical cost
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Estimation approaches

I Direct plug-in estimation of nuisance parameters

I Estimating equations

I IPWE for missing data

I NPMLE approach

I Profile likelihood estimation

I Sieve estimation

I Penalization estimation
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INTRODUCTION TO STATISTICAL
LEARNING
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Statistical Learning

• What is statistical learning?

– machine learning, data mining

– supervised vs unsupervised
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• How different from traditional inference?

– different objectives

– different statistical procedures

– supervised learning < −−− > regression

– unsupervised learning < −− > density estimation
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Set-up in decision theory

– X : feature variables

– Y : outcome variable (continuous, categorical, ordinal)

– (X ,Y ) follows some distribution

– goal: determine f : X → Y to minimize some loss

E [L(Y , f (X ))].
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Loss function L(y , x)

– squared loss: L(y , x) = (y − x)2

– absolute deviation loss: L(y , x) = |y − x |
– Huber loss: L(y , x) = (y − x)2I (|y − x | <
δ) + (2δ|y − x | − δ2)I (|y − x | ≥ δ)

– zero-one loss: L(y , x) = I (y 6= x)

– preference loss: L(y1, y2, x1, x2) = 1− I (y1 < y2, x1 < x2)
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Optimal f (x)

– squared loss: f (X ) = E [Y |X ]

– absolute deviation loss: f (X ) = med(Y |X )

– Huber loss: ???

– zero-one loss: f (X ) = argmaxkP(Y = k |X )

– preference loss: ???

– not all loss functions have explicit solutions
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Estimate f (x)

– Empirical data

(Xi ,Yi), i = 1, ..., n

– Direct learning: estimate f directly via parametric,
semi-parametric, or nonparametric methods

– Indirect learning: estimate f by minimizing (empirical risk)

n∑
i=1

L(Yi , f (Xi))
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Candidate set for f (x)

– too small: underfit data

– too large: overfit data

– even more important with high-dimensional X
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Why high-dimensionality is an issue?

– data are sparse

– local approximation is infeasible

– increasing bias and variability with dimensionality

– curse of dimensionality
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Common considerations for f (x)

– linear functions or local linear functions

– linear combination of basis function: polynomials, splines,
wavelets

– let data choose f by penalizing f from roughness
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Parametric learning

– It is one of direct learning methods.

– Estimate f (x) using parametric models.

– Linear models are often used.
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Linear regression model

– Target squared loss or zero-one loss.

– Assume f (X ) = E [Y |X ] = XTβ.

– The least squared estimation

f̂ (x) = xT (XTX)−1XTY .

33/ 83



Shrinkage methods

– Gain variability reduction by sacrificing prediction
accuracy.

– Help to determine important features (variable selection)
if any.

– Include subset selection, ridge regression, LASSO and et.
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Subset selection

– Search for the best subset of size k in terms of RSS.

– Use leaps and bounds procedure.

– Computationally intensive with large dimension.

– The best choice of size k is based on Mallow’s CP.
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Ridge regression

– Minimize
n∑

i=1

(Yi − XT
i β)2 + λ

p∑
j=1

β2
j .

– Equivalently, minimize

n∑
i=1

(Yi − XT
i β)2, subject to

p∑
j=1

β2
j ≤ s.

– The solution

β̂ = (XTX + λI)−1XTY.

– Has Bayesian interpretation.
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LASSO

– Minimize
n∑

i=1

(Yi − XT
i β)2 + λ

p∑
j=1

|βj |.

– Equivalently, minimize

n∑
i=1

(Yi − XT
i β)2, subject to

p∑
j=1

|βj | ≤ s.

– This is a convex optimization.

– Suppose X to have independent columns:

β̂j = sign(β̂ lse)(|β̂ lse | − λ/2)+.

– Nonlinear shrinkage property.
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Summary

– Subset selection is L0-penalty shrinkage but
computationally intensive.

– Ridge regression is L2-penalty shrinkage and shrinks all
coefficients the same way.

– LASSO is L1-penalty shrinkage and it is a nonlinear
shrinkage.
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Other shrinkage methods

– Lq-penalty with q ∈ [1, 2]:

n∑
i=1

(Yi − XT
i β)2 + λ

p∑
j=1

|βj |q.

– Weighted LASSO (aLASSO):

n∑
i=1

(Yi − XT
i β)2 + λ

p∑
j=1

wj |βj |

where wj = |β̂ lse |−q.

– SCAD penalty
∑p

j=1 Jλ(|βj |):

J ′λ(x) = λ

{
I (x ≤ λ) +

(aλ− x)+

(a − 1)λ
I (x > λ)

}
.
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Compare different penalties

– All penalties have shrinkage properties.

– Some penalties give an oracle property as if the true zeros
are known (aLASSO, SCAD).

– But aLASSO needs a consistent initial estimate (not
suitable for high-dimensional).

– SCAD generally needs large sample size and may suffer
computational difficulty (due to its non-convexity).
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Logistic discriminant analysis

– It is often used when Y is dichotomous or categorical.

– Assume

P(Y = k |X =
exp{βk0 + XTβk}

1 +
∑K

l=1 exp{βl0 + XTβl}
.

– Then
f̂ (x) = argmaxk

{
β̂k0 + XT β̂k

}
.
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Discriminant analysis

– Assume that X given Y = k follows a normal distribution
with mean µk and covariance Σk .

– For K = 2, the decision rule (quadratic discriminant
analysis) is based on the sign of

log
π2

π1
− 1

2
(x− µ̂2)T Σ̂−1

2 (x− µ̂2)+
1

2
(x− µ̂1)T Σ̂−1

1 (x− µ̂1).

– If assume Σ1 = Σ2, this results in linear discriminant
anaysis.
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Generalization

– In parametric methods, features X can be replaced by
some basis functions so we have nonlinear discriminant
boundary.

– Efficient estimation for f (x) is possible due to parametric
nature.
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What is semi-nonparametric?

– It is neither parametric nor nonparametric.

– But it is also difference from usual semiparametric models.

– It includes neural networks, projection pursuit, GAM and
MARS.
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Neural network

– It is an artificially structured model.

– Assume one or more hidden layers between input X and
output Y .

– Simple models between one layer variables and its upper
layer.

– Forward- and backward-propagation algorithms are used
for calculation.
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Generalized additive models

– f (x) is assumed to take form

p∑
k=1

fk(X(k).

– More flexible than parametric models

– But assume no interactions among X ’s.

– Backfitting is used for estimation, where each step is a
univariate nonparametric estimation.

– It applies for continuous and categorical outcome variable.
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Projection pursuit

– f (x) takes form
m∑

k=1

gk(βT
k X ).

– More general than GAM.

– Include single index model as special cases and allow X ’s
interactions.

– Recursively estimate each single-index component.

– A local linear approximation and backfitting are used for
each step.
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Direct learning: nonparametric approaches

– No structural assumption for f (x).

– They strongly relate to nonparametric regression in
traditional statistical estimation.

– Include k-NN, kernel methods, sieve methods, tree
methods and MARS.
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Nearest neighbor methods

– It is a prototype method.

– The estimation is the majority of outcomes in
k-neighborhood.

– Distance is an important issue in defining neighborhood.

– Classification boundary is usually irregular.
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Kernel methods

– It is one of the most popular methods in nonparametric
estimation.

– Estimation is based on a locally weighed average, where
weights are given by some kernel function.

– One important issue is the choice of the bandwidth (bias
and variance tradoff).

– It is equivalent to a local constant estimation.

– Generalized to local linear and local polynomials.
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Sieve methods

– It is a global approximation to f (x).

– The idea is simple: approximate f (x) by a series of basis
functions.

– The choices of basis functions: polynomials, trigonometric
functions, regression splines, B-splines, wavelets.

– The choices of the number of basis functions is important.

– Adapt to specific applications.
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Tree methods

– Regression tree for continuous Y and classification tree
for categorical Y .

– It is a sequentially and recursively partition of X ’s space.

– Each partition is done for one X ’s component and the
partition is usually binary.

– The way of choosing which X and where for partition
relies on some specific criteria.

– The tree can grow to the full length but needs pruning to
avoid overfitting.

– Tree size is often chosen as a way to prune the tree.

– A generalization is called random forest: a bootstrapped
way of growing tree to avoid over-dependence on one
single tree.
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Multivariate adaptive regression splines (MARS)

– Some combination of sieve methods and tree methods.

– The basis functions take form (X(k) − t)+ or (t − X(k))+

along with their interactions.

– Like the tree, it is a sequential fitting method.

– A backward deletion procedure is applied to avoid
overfitting.
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Which methods should we choose?

– It depends on specific data and applications.

– Kernel and spline methods are useful for smooth signal
and possess nice theoretical properties.

– Wavelets are useful for discontinuous signal (denoise
imaging).

– Tree methods and MARS have computational advantages
and decision rules are simple but both lack nice theoretical
properties.

– Tree methods are applicable to high-dimensional X .
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Indirect learning

– It doesn’t estimate f (x) directly, most likely due to
in-explicit f (x).

– It estimates the decision rule through minimizing empirical
risks.

– It includes SVM and regularized minimization.
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Support vector machine

– Assume Y ∈ {−1, 1}.
– The goal is to find a hyperplane β0 + XTβ which can

separate Y ’s maximally.

– That is, we wish

Yi(β0 + XT
i β) > 0

for all i = 1, ..., n.
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Perfect separation

– Consider an ideal situation where Y ’s can be perfectly
separated.

– A maximal separation can be determined as that we want
the minimum distance from each point to the separating
plane as large as possible.

– It is equivalent to

max
‖β‖=1

C , subject to Yi(β0 + XT
i β) ≥ C , i = 1, ..., n.

– The dual problem is

max
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjYiYjX
T
i Xj , αi ≥ 0.
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Imperfect separation

– In real data, there is usually no hyperplane separating
perfectly (if there is, it is by chance).

– We should allow some violations by introducing slack
variables ξi ≥ 0:

max
‖β‖=1

C , subject to Yi(β0 +XT
i β) ≥ C (1−ξi)i = 1, ..., n.

–
∑

i ξi describes the total degree of violation should be
controlled (like type I error in hypothesis test):∑

i

ξi ≤ a given constant.
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Imperfect separation

– The dual problem is

max
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjYiYjX
T
i Xj ,

0 ≤ αi ≤ γ,
n∑

i=1

αiYi = 0.

– It is a convex optimization problem.

– It turns out β̂ =
∑

α̂i>0 α̂iYiXi so β̂ is determined by the
points within or on the boundary of a band around the
hyperplane.

– These points are called support vectors.
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SVM allowing nonlinear boundary

– Linear boundary may not be practical.
– To allow nonlinear boundary, assume

f (x) = (h1(x), ..., hm(x))β + β0.

– The dual problem becomes

max
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjYiYjK (Xi ,Xj),

0 ≤ αi ≤ γ,
n∑

i=1

αiYi = 0.

– Here, K (x , x ′) = (h1(x), ..., hm(x)(h1(x ′), ..., hm(x ′))T .
– Moreover,

f̂ (x) =
n∑

i=1

α̂iYiK (x ,Xi) + β̂0.

– Thus, we only need to specific the kernel function K (x , y).
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Equivalent form of SVM

– SVM learning is equivalent to minimizing

n∑
i=1

{1− Yi f (Xi)}+ + λ‖β‖2/2.

– Thus, it is a regularized empirical risk minimization.

– This formation is useful for justifying SVM’s theoretical
property.

– Other loss functions are possible.
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Regularized estimation

– It is typically formed as

min
f ∈H

[
n∑

i=1

L(Yi , f (Xi)) + λJ(f )

]
.

– J(f ) penalizes those band f in H.
– For example, J(f ) = (f ′′(x))2dx gives cubic spline

approximation.
– More general, choose H to be a reproducing kernel

Hilbert space and J(f ) = ‖f ‖Hk
.

– Then the problem becomes minimizing
n∑

i=1

L(Yi ,
n∑

j=1

αjK (Xj ,Xi)) + λ
n∑

i ,j=1

αiαjK (Xi ,Xj)

with the solution

f̂ (x) =
n∑

i=1

α̂kK (x ,Xi).
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Aggregated learning

– Try to take advantages of different classifiers.

– Boosting weak learning methods.

– The methods include model average, stacking, and
boosting.
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Model selection in statistical learning

– All learning methods assume f from some models.

– The choice of models is important: underfitting or
overfitting.

– Often reflected in some tuning parameters in learning
methods: k-NN, bandwidth, the number of basis
functions, tree size, penalty parameters.

– The model selection aims to balance fitting data and
model complexity.

65/ 83



AIC and BIC

– They apply when the loss function is the log-likelihood
function and models are parametric.

– AIC: -2log-lik+2 # parameters
BIC: -2log-lik+2log n # parameters

– Whether AIC or BIC?
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Model complexity

– Not all the models have finite number of parameters.

– A more general measurement for model complexity is
VC-dimension.

– Stochastic errors between the empirical risk and the
limiting risk can be controlled in term of VC-dimension.

– Thus, among a series of models Ω1,Ω2, ..., we choose the
one minimizing

γn(f̂Ω) + bn(Ω).

– γn(f̂Ω) reflects the best approximation using model Ω
(bias).

– bn(Ω) is an upper bound controlling stochastic errors
(variability).

– Limitation: VC-dimension is often not easy to calculate.
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Cross-validation

– It is the most commonly used method.

– It is computationally feasible, although intensive.

– The idea is to use one data as training data and the other
part as testing data to assess prediction error of one
learning method.

– It avoids overfitting due to using only one data set

– Leave-one-out cross validation or k-fold cross-validation is
used.

– Sometimes, it can be calculated quickly.
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Unsupervised learning

– We don’t have outcome labels but only feature data.

– We wish to see the structures within feature data.

– Useful for data exploration and dimension reduction.
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Principal component analysis

– It is one popular method viewing intrinsic structure of X .

– The goal is to determine orthogonal PCs which explain
most of data variations.

– It relies on singular value decomposition (SVD).
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Latent component analysis

– Assume
X = AS + ε.

– S are latent variables and often assumed independent
from Gaussian distributions (factor analysis).

– Estimation of A is via maximum likelihood estimation.

– S can be assumed to be independent but not normally
distributed (independence component analysis).
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Multidimensional scaling

– This method projects original X to a much
lower-dimensional space.

– It is useful for viewing X .

– The goal of the projection is to ensure pairwise distances
before and after projections to be consistent as much as
possible.

– Minimize [∑
i 6=j

(d(Xi ,Xj)− ‖Zi − Zj‖)2

]1/2

.

– Can be modified to add weights to each pair or just keep
distance ranks to be consistent.
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Cluster analysis

– Search for clusters of subjects so that within-cluster
subjects are most similar but between-cluster subjects are
most different.

– Look for a map: C : {1, ..., n} − − > {1, ...,K} from
subject ID to cluster ID.

– Within-cluster distance (loss):

1

2

n∑
i ,j=1

K∑
k=1

I (C(i) = C(j) = k)d(Xi ,Xj).

– Between-cluster distance (loss):

1

2

n∑
i ,j=1

K∑
k=1

I (C(i) = k , C(j) 6= k)d(Xi ,Xj).

– Either minimize within-cluster distance or maximize
between-cluster distance.
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K-means cluster analysis

– Applies when the distance is the Euclidean distance.

– The within–cluster distance is equivalent to

n∑
i=1

K∑
k=1

I (C(i) = k)‖Xi −mk‖2,

where mk is the k-cluster mean.

– An iterative procedure is used to update mk and cluster
membership.
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K-medoids cluster analysis

– It applies to general proximity matrix.

– Replace mean mk by the point Xi (medoid) in the same
cluster which has the least summed distance from the
other points in the cluster.

– Iteratively update the medoid and cluster membership.
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Hierarchical clustering

– Either agglomerative (bottom-up) or divisive (top-down).

– At each level, either merge two clusters or split clusters in
an optimal sense.

– The way of defining between-cluster distance includes
single linkage, complete linkage and group average.

– The output is called a dendrogram.
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Bayes error in learning theory

– The classification error from the most desirable classifier:

η(X ) = P(Y = 1|X ),

P(I (η(X ) > 1/2) 6= Y ) = E [min(η(X ), 1− η(X ))]

=
1

2
− 1

2
E [|1− 2η(X )|].

– Other definitions of classification errors: Komogorov
variational distance, Bhattacharyya measure of affinity,
Shannon entropy, Kullback-Leibler divergence.

– These errors are closely related to Bayes error.
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Consistency

– Consistency of a classifier gn (corresponding to decision
function ηn(x)):

P(gn(X ) 6= Y )→ Bayes error.

– Strongly consistent:

P(gn(X ) 6= Y |data)→a.s. Bayes error.

– Universally (strongly) consistent if the above consistency
is true for any distribution of (X ,Y ).
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A key inequality

– A key inequality:

P(gn(X ) 6= Y |data) ≤ 2E [|ηn(X )− η(X )||data]

≤ 2E
[
(ηn(X )− η(x))2|data

]1/2
.

– The consistency of classifiers can be proved by showing
the L1- or L2-consistency of ηn.
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Consistency in direct learning

– It uses the key inequality.

– Since ηn often has explicit expression in direct learning,
the consistency follows from the L1- or L2- consistency of
ηn.

– For strongly consistency proof, it relies the use of
concentration inequalities to conclude

P(
∣∣∣En[|ηn(X )−η(X )|]−E [|ηn(X )−η(X )|]

∣∣∣ > ε) ≤ ae−nbε
2

then the consistency follows from the first Borel-Cantelli
lemma.
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Summary of consistency results

– If the bin width hn → 0 and nhdn →∞, then the
histogram rule is universally and strongly consistent.

– For fixed odd k , k-NN is universally consistent for the
nearest neighborhood error.

– For k →∞ and k/n→ 0, k-NN is universally and
strongly consistent.

– If the bandwidth h→ 0 and nhd →∞, then the kernel
rule is universally and strongly consistent.

– If the number of basis function Kn →∞ and Kn/n→ 0,
the sieve rule is consistent and is strongly consistent if
Kn log n/n→ 0.
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Consistency in indirect learning

– The decision rule is not explicit.

– However, we know that best classifiers minimizes some
loss function or regularized loss functions.

– Thus,

P(L(gn)−L(g ∗) > ε) ≤ P(L(gn)−Ln(gn)−L(g ∗)+Ln(g ∗) > ε)

≤ 2P(sup
g∈F
|Ln(g)− L(g)| > ε/2).

– We need control stochastic errors of such loss functions
over the model space,

sup
g∈F
|Ln(g)− L(g)|.

– This uses concentration inequalities from empirical
processes and relies on the model size of F .
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Some results

– If N(ε,F , L1(P)) is finite, then the rule based on
maximum likelihood method is strongly consistent.

– If F has a finite VC-dimension, then the rule minimizing
empirical risk

n∑
i=1

I (Yi 6= g(Xi))

is strongly consistent.
– Let F1 ⊂ F2 ⊂ ... each having a finite VC-dimension vk ,

then the rule minimizing structural risk
n∑

i=1

I (Yi 6= g(Xi)) +
√

32vk log(en)/n

is universally and strongly consistent if∑
k

e−vk <∞.
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