CHAPTER 6: BEYOND PARAMETRIC MODELS AND BEYOND ESTIMATION

INTRODUCTION TO NONPARAMETRIC/SEMIPARAMETRIC MODELS

Nonparametric/Semiparametric Estimation

- Parametric models uses only a finite number of parameters to describe data distribution.
- Model parameters are convenient for interpretation.
- However, they are not sufficiently accurate to describe complex data generation.
- Model misspecification can lead to severe bias or incorrect inference.
- More flexible models include nonparametric and semiparametric models.

Nonparametric density estimation

- One fundamental problem in statistical inference is density estimation.
- Parametric models can be normal distribution, t-distribution and etc.
- Nonparametric model requires no assumption on the form of density functions.
- Assume i.i.d. observations X_{1}, \ldots, X_{n} from a distribution with density $f(x)$.
- The goal is to estimate $f(x)$ without any assumptions.

Local approaches

- The idea is to estimate the density at any fixed x locally.
- Essentially, only observations close to x will contribute to estimation.
- Weights will be introduced to determine the locality of the observations.

$$
\widehat{f}(x)=n^{-1} \sum_{i=1}^{n} w_{n i}(x)
$$

where

$$
w_{n i}(x)=a_{n}^{-1} K\left(\frac{X_{i}-x}{a_{n}}\right)
$$

and $K(x) \geq 0$ satisfying $\int K(x) d x=1$.

- a_{n} is called the bandwidth.

Justification

- Show $E[\widehat{f}(x)] \rightarrow f(x)$ when $a_{n} \rightarrow 0$.
- Bias analysis

$$
E[\widehat{f}(x)]-f(x)=\int_{y} K(y) f\left(x+a_{n} y\right) d y-f(x)
$$

- Variance analysis

$$
\begin{aligned}
\operatorname{Var}\left[\widehat{f}(x)^{2}\right]= & \left(n a_{n}\right)^{-1}\left[\int K(y)^{2} f\left(x+a_{n} y\right) d y\right. \\
& \left.-a_{n}(f(x)+\mathrm{Bias})^{2}\right]
\end{aligned}
$$

Some conclusions

- If $K(x)=0.5 I(|x| \leq 1)$,

$$
\widehat{f}(x)=\left(2 a_{n}\right)^{-1}\left\{\widehat{F}\left(x+a_{n}\right)-\widehat{F}\left(x-a_{n}\right)\right\} .
$$

- Bias $=f(x) a_{n}+O\left(a_{n}\right)$ and Variance $=\left(n a_{n}\right)^{-1} f(x) \int K(y)^{2} d y+o\left(\left(n a_{n}\right)^{-1}\right)$.
- If $K(x)$ is symmetric (Gaussian kernel or Epanechnikov kernel), then
Bias $=a_{n}^{2} f^{\prime \prime}(x) \int K(y) y^{2} d y / 2+o\left(a_{n}^{2}\right)$ and Variance remains the same.
- The choice of the kernel depends on how much smoothness is known about the density function.

Asymptotic normality

$$
\frac{\widehat{f}(x)-E[\widehat{f}(x)]}{\sqrt{\operatorname{Var}(\widehat{f}(x))}} \rightarrow_{d} N(0,1) .
$$

- The proof assumes $n a_{n}^{3} \rightarrow 0$ and uses Liaponov CLT.
- For a symmetric kernel, the optimal bandwidth is

$$
a_{n}^{\text {optimal }}=\left[\frac{4 f(x) \int K(y)^{2} d y}{\left(f^{\prime \prime}(x) \int K(y) y^{2} d y\right)^{2}}\right]^{1 / 5} n^{-1 / 5} .
$$

Global approaches

- It views $f(x)$ as a function parameter for estimation so estimates $f(x)$ via one global optimization instead of estimation at each x.
- It is computationally efficient.
- The disadvantage is that it may miss some local features of $f(x)$.

Empirical distribution function

- Instead of estimating density function, we estimate its distribution function $F(x)$.
- We consider maximizing the log-likelihood function

$$
\sum_{i=1}^{n} \log f\left(X_{i}\right)
$$

but replace $f\left(X_{i}\right)$ by

$$
F\left\{X_{i}\right\}=F\left(X_{i}\right)-F\left(X_{i}-\right)
$$

Asymptotic properties

- $\widehat{F}(x)$ converges to $F(x)$ almost surely.

$$
\sup _{x}|\widehat{F}(x)-F(x)| \rightarrow 0
$$

almost surely.

- $\sqrt{n}(\widehat{F}(x)-F(x))$ converges in distribution to a Brownian bridge process.
- The previous kernel density estimator can be viewed as a smoothing operation on \widehat{F} :

$$
\widehat{f}(x)=\int a_{n}^{-1} K\left((y-x) / a_{n}\right) d \widehat{F}(y)
$$

Sieve Estimation

- We approximate $f(x)$ via a sequence of functions generated from basis functions:

$$
\log f(x) \approx \sum_{k=1}^{K_{n}} \beta_{k} B_{k}(x)
$$

- Choices of basis functions: piecewise constant, piecewise linear, piecewise polynomials (splines), wavelets, trigonometric functions ...
- We then maximize the likelihood function subject to constraint $\int f(x) d x=1$.
- When the number of basis function goes to infinity, the bias due to approximation will vanish.
- However, more basis functions will result in increasing variability.
- Asymptotic bias/variance analysis (also normality) is more complicated than and is not as obvious as local approaches.
- The essential idea is to construct "Objective function" plus "Regularization" (penalty).
- The objective function is an empirical version of a population quantity which the true density function minimize.
- The regularization is a penalty function to penalize those estimators with high variability or irregularity.
- The common estimation is

$$
\begin{gathered}
\min -\sum_{i=1}^{n} \log f\left(X_{i}\right)+\lambda_{n} P(f), \quad \int f(x)=1 \\
P(f)=\int\left|f^{\prime \prime}(x)\right|^{2} d x
\end{gathered}
$$

- λ_{n} is the penalty parameter (tuning parameter) to govern the regularity of the estimator.
- Bias and variance trade-off is reflected in λ_{n}.

Nonparametric Regression

- The goal is to estimate the conditional mean of Y given $X, m(x)=E[Y \mid X=x]$.
- The data are $\left(Y_{1}, X_{1}\right), \ldots,\left(Y_{n}, X_{n}\right)$.
- Parametric models: linear model, generalized linear models
- Parameter models are easy for interpretation but can be seriously misspecified.

Nonparametric approaches

- Local approach (kernel estimation)

$$
\frac{\sum_{i=1}^{n} Y_{i} K\left(\left(X_{i}-x\right) / a_{n}\right)}{\sum_{i=1}^{n} K\left(\left(X_{i}-x\right) / a_{n}\right)} .
$$

- Local likelihood approach

$$
\min \sum_{i=1}^{n}\left(Y_{i}-m(x)\right)^{2} K\left(\left(X_{i}-x\right) / a_{n}\right)
$$

- Local polynomials

Global approaches

- Sieve estimation

$$
\min \sum_{i=1}^{n}\left(Y_{i}-\sum_{k=1}^{K_{n}} \beta_{k} B_{k}\left(X_{i}\right)\right)^{2}
$$

- Penalization estimation

$$
\min \sum_{i=1}^{n}\left(Y_{i}-m\left(X_{i}\right)\right)^{2}+\lambda_{n} P(m)
$$

Semiparametric Estimation

- It aims to incorporate advantages from both parametric and nonparametric models.
- Recall: parametric models are easy for interpretation and estimation is precise with a finite number of parameters; nonparametric models are robust with minimal assumptions.
- Semiparametric models describe data distributions using both parametric components (θ) and nonparametric components (η).
- θ is finite dimensional and consists of parameters of interest (for convenience of practical use): treatment effects, risk ratios ...
- η is nonparametric and included to complement θ for describing data distribution. It is not the primary interest so called nuisance parameters.

Inferential advantage and challenges

- Most often, the parameter θ can be estimated as accurately as from a parametric models (parametric convergence rate).
- The nuisance parameter, η, has minimal assumption so the inference is robust to the structure in η.
- Estimation/inference is challenging due to the mixing nature of the parameters.
- Usually, we have to treat η as some parameter from a metric space for inference. Some math from function analysis is quite involved.

Examples

- Right censored data
- Current status data
- Smoking prevention project
- Medical cost

Estimation approaches

- Direct plug-in estimation of nuisance parameters
- Estimating equations
- IPWE for missing data
- NPMLE approach
- Profile likelihood estimation
- Sieve estimation
- Penalization estimation

INTRODUCTION TO STATISTICAL LEARNING

Statistical Learning

- What is statistical learning?
- machine learning, data mining
- supervised vs unsupervised
- How different from traditional inference?
- different objectives
- different statistical procedures
- supervised learning $<--->$ regression
- unsupervised learning $<-->$ density estimation

Set-up in decision theory

- X : feature variables
- Y : outcome variable (continuous, categorical, ordinal)
- (X, Y) follows some distribution
- goal: determine $f: X \rightarrow Y$ to minimize some loss

$$
E[L(Y, f(X))] .
$$

Loss function $L(y, x)$

- squared loss: $L(y, x)=(y-x)^{2}$
- absolute deviation loss: $L(y, x)=|y-x|$
- Huber loss: $L(y, x)=(y-x)^{2} I(|y-x|<$ $\delta)+\left(2 \delta|y-x|-\delta^{2}\right) I(|y-x| \geq \delta)$
- zero-one loss: $L(y, x)=I(y \neq x)$
- preference loss: $L\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=1-I\left(y_{1}<y_{2}, x_{1}<x_{2}\right)$

Optimal $f(x)$

- squared loss: $f(X)=E[Y \mid X]$
- absolute deviation loss: $f(X)=\operatorname{med}(Y \mid X)$
- Huber loss: ???
- zero-one loss: $f(X)=\operatorname{argmax}_{k} P(Y=k \mid X)$
- preference loss: ???
- not all loss functions have explicit solutions

Estimate $f(x)$

- Empirical data

$$
\left(X_{i}, Y_{i}\right), \quad i=1, \ldots, n
$$

- Direct learning: estimate f directly via parametric, semi-parametric, or nonparametric methods
- Indirect learning: estimate f by minimizing (empirical risk)

$$
\sum_{i=1}^{n} L\left(Y_{i}, f\left(X_{i}\right)\right)
$$

Candidate set for $f(x)$

- too small: underfit data
- too large: overfit data
- even more important with high-dimensional X

Why high-dimensionality is an issue?

- data are sparse
- local approximation is infeasible
- increasing bias and variability with dimensionality
- curse of dimensionality

Common considerations for $f(x)$

- linear functions or local linear functions
- linear combination of basis function: polynomials, splines, wavelets
- let data choose f by penalizing f from roughness
- It is one of direct learning methods.
- Estimate $f(x)$ using parametric models.
- Linear models are often used.

Linear regression model

- Target squared loss or zero-one loss.
- Assume $f(X)=E[Y \mid X]=X^{\top} \beta$.
- The least squared estimation

$$
\hat{f}(x)=x^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} Y
$$

Shrinkage methods

- Gain variability reduction by sacrificing prediction accuracy.
- Help to determine important features (variable selection) if any.
- Include subset selection, ridge regression, LASSO and et.

Subset selection

- Search for the best subset of size k in terms of RSS.
- Use leaps and bounds procedure.
- Computationally intensive with large dimension.
- The best choice of size k is based on Mallow's CP.

Ridge regression

- Minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-X_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

- Equivalently, minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-X_{i}^{T} \beta\right)^{2}, \quad \text { subject to } \sum_{j=1}^{p} \beta_{j}^{2} \leq s
$$

- The solution

$$
\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- Has Bayesian interpretation.
- Minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-X_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- Equivalently, minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-X_{i}^{T} \beta\right)^{2}, \quad \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq s
$$

- This is a convex optimization.
- Suppose \mathbf{X} to have independent columns:

$$
\hat{\beta}_{j}=\operatorname{sign}\left(\hat{\beta}^{l s e}\right)\left(\left|\hat{\beta}^{l s e}\right|-\lambda / 2\right)^{+} .
$$

- Nonlinear shrinkage property.

Summary

- Subset selection is L_{0}-penalty shrinkage but computationally intensive.
- Ridge regression is L_{2}-penalty shrinkage and shrinks all coefficients the same way.
- LASSO is L_{1}-penalty shrinkage and it is a nonlinear shrinkage.

Other shrinkage methods

- L_{q}-penalty with $q \in[1,2]:$

$$
\sum_{i=1}^{n}\left(Y_{i}-X_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|^{q}
$$

- Weighted LASSO (aLASSO):

$$
\sum_{i=1}^{n}\left(Y_{i}-X_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p} w_{j}\left|\beta_{j}\right|
$$

where $w_{j}=\left|\hat{\beta}^{\text {lse }}\right|^{-q}$.

- SCAD penalty $\sum_{j=1}^{p} J_{\lambda}\left(\left|\beta_{j}\right|\right)$:

$$
J_{\lambda}^{\prime}(x)=\lambda\left\{I(x \leq \lambda)+\frac{(a \lambda-x)_{+}}{(a-1) \lambda} I(x>\lambda)\right\}
$$

(a) Hard threshold
(b) Adaptive LASSO
(c) SCAD

Compare different penalties

- All penalties have shrinkage properties.
- Some penalties give an oracle property as if the true zeros are known (aLASSO, SCAD).
- But aLASSO needs a consistent initial estimate (not suitable for high-dimensional).
- SCAD generally needs large sample size and may suffer computational difficulty (due to its non-convexity).

Logistic discriminant analysis

- It is often used when Y is dichotomous or categorical.
- Assume

$$
P\left(Y=k \left\lvert\, X=\frac{\exp \left\{\beta_{k 0}+X^{T} \beta_{k}\right\}}{1+\sum_{l=1}^{K} \exp \left\{\beta_{l 0}+X^{T} \beta_{l}\right\}}\right.\right.
$$

- Then

$$
\hat{f}(x)=\operatorname{argmax}_{k}\left\{\hat{\beta}_{k 0}+X^{T} \hat{\beta}_{k}\right\} .
$$

Discriminant analysis

- Assume that X given $Y=k$ follows a normal distribution with mean μ_{k} and covariance Σ_{k}.
- For $K=2$, the decision rule (quadratic discriminant analysis) is based on the sign of
$\log \frac{\pi_{2}}{\pi_{1}}-\frac{1}{2}\left(x-\hat{\mu}_{2}\right)^{T} \hat{\Sigma}_{2}^{-1}\left(x-\hat{\mu}_{2}\right)+\frac{1}{2}\left(x-\hat{\mu}_{1}\right)^{T} \hat{\Sigma}_{1}^{-1}\left(x-\hat{\mu}_{1}\right)$.
- If assume $\Sigma_{1}=\Sigma_{2}$, this results in linear discriminant anaysis.

Generalization

- In parametric methods, features X can be replaced by some basis functions so we have nonlinear discriminant boundary.
- Efficient estimation for $f(x)$ is possible due to parametric nature.

What is semi-nonparametric?

- It is neither parametric nor nonparametric.
- But it is also difference from usual semiparametric models.
- It includes neural networks, projection pursuit, GAM and MARS.

Neural network

- It is an artificially structured model.
- Assume one or more hidden layers between input X and output Y.
- Simple models between one layer variables and its upper layer.
- Forward- and backward-propagation algorithms are used for calculation.

Generalized additive models

$-f(x)$ is assumed to take form

$$
\sum_{k=1}^{p} f_{k}\left(X_{(k)}\right.
$$

- More flexible than parametric models
- But assume no interactions among X's.
- Backfitting is used for estimation, where each step is a univariate nonparametric estimation.
- It applies for continuous and categorical outcome variable.

Projection pursuit

- $f(x)$ takes form

$$
\sum_{k=1}^{m} g_{k}\left(\beta_{k}^{T} X\right)
$$

- More general than GAM.
- Include single index model as special cases and allow X^{\prime} 's interactions.
- Recursively estimate each single-index component.
- A local linear approximation and backfitting are used for each step.

Direct learning: nonparametric approaches

- No structural assumption for $f(x)$.
- They strongly relate to nonparametric regression in traditional statistical estimation.
- Include k-NN, kernel methods, sieve methods, tree methods and MARS.

Nearest neighbor methods

- It is a prototype method.
- The estimation is the majority of outcomes in k-neighborhood.
- Distance is an important issue in defining neighborhood.
- Classification boundary is usually irregular.

Kernel methods

- It is one of the most popular methods in nonparametric estimation.
- Estimation is based on a locally weighed average, where weights are given by some kernel function.
- One important issue is the choice of the bandwidth (bias and variance tradoff).
- It is equivalent to a local constant estimation.
- Generalized to local linear and local polynomials.

Sieve methods

- It is a global approximation to $f(x)$.
- The idea is simple: approximate $f(x)$ by a series of basis functions.
- The choices of basis functions: polynomials, trigonometric functions, regression splines, B-splines, wavelets.
- The choices of the number of basis functions is important.
- Adapt to specific applications.

Tree methods

- Regression tree for continuous Y and classification tree for categorical Y.
- It is a sequentially and recursively partition of X's space.
- Each partition is done for one X 's component and the partition is usually binary.
- The way of choosing which X and where for partition relies on some specific criteria.
- The tree can grow to the full length but needs pruning to avoid overfitting.
- Tree size is often chosen as a way to prune the tree.
- A generalization is called random forest: a bootstrapped way of growing tree to avoid over-dependence on one single tree.

Multivariate adaptive regression splines (MARS)

- Some combination of sieve methods and tree methods.
- The basis functions take form $\left(X_{(k)}-t\right)_{+}$or $\left(t-X_{(k)}\right)_{+}$ along with their interactions.
- Like the tree, it is a sequential fitting method.
- A backward deletion procedure is applied to avoid overfitting.

Which methods should we choose?

- It depends on specific data and applications.
- Kernel and spline methods are useful for smooth signal and possess nice theoretical properties.
- Wavelets are useful for discontinuous signal (denoise imaging).
- Tree methods and MARS have computational advantages and decision rules are simple but both lack nice theoretical properties.
- Tree methods are applicable to high-dimensional X.

Indirect learning

- It doesn't estimate $f(x)$ directly, most likely due to in-explicit $f(x)$.
- It estimates the decision rule through minimizing empirical risks.
- It includes SVM and regularized minimization.

Support vector machine

- Assume $Y \in\{-1,1\}$.
- The goal is to find a hyperplane $\beta_{0}+X^{T} \beta$ which can separate Y 's maximally.
- That is, we wish

$$
Y_{i}\left(\beta_{0}+X_{i}^{T} \beta\right)>0
$$

for all $i=1, \ldots, n$.

Perfect separation

- Consider an ideal situation where Y^{\prime} 's can be perfectly separated.
- A maximal separation can be determined as that we want the minimum distance from each point to the separating plane as large as possible.
- It is equivalent to

$$
\max _{\|\beta\|=1} C, \quad \text { subject to } Y_{i}\left(\beta_{0}+X_{i}^{\top} \beta\right) \geq C, i=1, \ldots, n
$$

- The dual problem is

$$
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j}, \quad \alpha_{i} \geq 0
$$

Imperfect separation

- In real data, there is usually no hyperplane separating perfectly (if there is, it is by chance).
- We should allow some violations by introducing slack variables $\xi_{i} \geq 0$:

$$
\max _{\|\beta\|=1} C, \text { subject to } Y_{i}\left(\beta_{0}+X_{i}^{T} \beta\right) \geq C\left(1-\xi_{i}\right) i=1, \ldots, n
$$

- $\sum_{i} \xi_{i}$ describes the total degree of violation should be controlled (like type I error in hypothesis test):

$$
\sum_{i} \xi_{i} \leq \text { a given constant. }
$$

Imperfect separation

- The dual problem is

$$
\begin{gathered}
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} Y_{i} Y_{j} X_{i}^{T} X_{j} \\
0 \leq \alpha_{i} \leq \gamma, \quad \sum_{i=1}^{n} \alpha_{i} Y_{i}=0
\end{gathered}
$$

- It is a convex optimization problem.
- It turns out $\hat{\beta}=\sum_{\hat{\alpha}_{i}>0} \hat{\alpha}_{i} Y_{i} X_{i}$ so $\hat{\beta}$ is determined by the points within or on the boundary of a band around the hyperplane.
- These points are called support vectors.

SVM allowing nonlinear boundary

- Linear boundary may not be practical.
- To allow nonlinear boundary, assume

$$
f(x)=\left(h_{1}(x), \ldots, h_{m}(x)\right) \beta+\beta_{0} .
$$

- The dual problem becomes

$$
\begin{gathered}
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} Y_{i} Y_{j} K\left(X_{i}, X_{j}\right) \\
0 \leq \alpha_{i} \leq \gamma, \quad \sum_{i=1}^{n} \alpha_{i} Y_{i}=0
\end{gathered}
$$

- Here, $K\left(x, x^{\prime}\right)=\left(h_{1}(x), \ldots, h_{m}(x)\left(h_{1}\left(x^{\prime}\right), \ldots, h_{m}\left(x^{\prime}\right)\right)^{T}\right.$.
- Moreover,

$$
\hat{f}(x)=\sum_{i=1}^{n} \hat{\alpha}_{i} Y_{i} K\left(x, X_{i}\right)+\hat{\beta}_{0}
$$

- Thus, we only need to specific the kernel function $K(x, y)$.

Equivalent form of SVM

- SVM learning is equivalent to minimizing

$$
\sum_{i=1}^{n}\left\{1-Y_{i} f\left(X_{i}\right)\right\}_{+}+\lambda\|\beta\|^{2} / 2
$$

- Thus, it is a regularized empirical risk minimization.
- This formation is useful for justifying SVM's theoretical property.
- Other loss functions are possible.
- It is typically formed as

$$
\min _{f \in \mathcal{H}}\left[\sum_{i=1}^{n} L\left(Y_{i}, f\left(X_{i}\right)\right)+\lambda J(f)\right] .
$$

- $J(f)$ penalizes those band f in \mathcal{H}.
- For example, $J(f)=\left(f^{\prime \prime}(x)\right)^{2} d x$ gives cubic spline approximation.
- More general, choose \mathcal{H} to be a reproducing kernel Hilbert space and $J(f)=\|f\|_{\mathcal{H}_{k}}$.
- Then the problem becomes minimizing

$$
\sum_{i=1}^{n} L\left(Y_{i}, \sum_{j=1}^{n} \alpha_{j} K\left(X_{j}, X_{i}\right)\right)+\lambda \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} K\left(X_{i}, X_{j}\right)
$$

with the solution

$$
\hat{f}(x)=\sum_{i=1}^{n} \hat{\alpha}_{k} K\left(x, X_{i}\right)
$$

Aggregated learning

- Try to take advantages of different classifiers.
- Boosting weak learning methods.
- The methods include model average, stacking, and boosting.

Model selection in statistical learning

- All learning methods assume f from some models.
- The choice of models is important: underfitting or overfitting.
- Often reflected in some tuning parameters in learning methods: k-NN, bandwidth, the number of basis functions, tree size, penalty parameters.
- The model selection aims to balance fitting data and model complexity.

AIC and BIC

- They apply when the loss function is the log-likelihood function and models are parametric.
- AIC: -2log-lik+2 \# parameters

BIC: -2log-lik+2log n \# parameters

- Whether AIC or BIC?

Model complexity

- Not all the models have finite number of parameters.
- A more general measurement for model complexity is VC-dimension.
- Stochastic errors between the empirical risk and the limiting risk can be controlled in term of VC-dimension.
- Thus, among a series of models $\Omega_{1}, \Omega_{2}, \ldots$, we choose the one minimizing

$$
\gamma_{n}\left(\hat{f}_{\Omega}\right)+b_{n}(\Omega)
$$

- $\gamma_{n}\left(\hat{f}_{\Omega}\right)$ reflects the best approximation using model Ω (bias).
- $b_{n}(\Omega)$ is an upper bound controlling stochastic errors (variability).
- Limitation: VC-dimension is often not easy to calculate.

Cross-validation

- It is the most commonly used method.
- It is computationally feasible, although intensive.
- The idea is to use one data as training data and the other part as testing data to assess prediction error of one learning method.
- It avoids overfitting due to using only one data set
- Leave-one-out cross validation or k-fold cross-validation is used.
- Sometimes, it can be calculated quickly.

Unsupervised learning

- We don't have outcome labels but only feature data.
- We wish to see the structures within feature data.
- Useful for data exploration and dimension reduction.

Principal component analysis

- It is one popular method viewing intrinsic structure of X.
- The goal is to determine orthogonal PCs which explain most of data variations.
- It relies on singular value decomposition (SVD).

Latent component analysis

- Assume

$$
X=A S+\epsilon
$$

- S are latent variables and often assumed independent from Gaussian distributions (factor analysis).
- Estimation of A is via maximum likelihood estimation.
- S can be assumed to be independent but not normally distributed (independence component analysis).

Multidimensional scaling

- This method projects original X to a much lower-dimensional space.
- It is useful for viewing X.
- The goal of the projection is to ensure pairwise distances before and after projections to be consistent as much as possible.
- Minimize

$$
\left[\sum_{i \neq j}\left(d\left(X_{i}, X_{j}\right)-\left\|Z_{i}-Z_{j}\right\|\right)^{2}\right]^{1 / 2}
$$

- Can be modified to add weights to each pair or just keep distance ranks to be consistent.

Cluster analysis

- Search for clusters of subjects so that within-cluster subjects are most similar but between-cluster subjects are most different.
- Look for a map: $\mathcal{C}:\{1, \ldots, n\}-->\{1, \ldots, K\}$ from subject ID to cluster ID.
- Within-cluster distance (loss):

$$
\frac{1}{2} \sum_{i, j=1}^{n} \sum_{k=1}^{K} I(\mathcal{C}(i)=\mathcal{C}(j)=k) d\left(X_{i}, X_{j}\right)
$$

- Between-cluster distance (loss):

$$
\frac{1}{2} \sum_{i, j=1}^{n} \sum_{k=1}^{k} I(\mathcal{C}(i)=k, \mathcal{C}(j) \neq k) d\left(X_{i}, X_{j}\right)
$$

- Either minimize within-cluster distance or maximize between-cluster distance.

K-means cluster analysis

- Applies when the distance is the Euclidean distance.
- The within-cluster distance is equivalent to

$$
\sum_{i=1}^{n} \sum_{k=1}^{K} I(\mathcal{C}(i)=k)\left\|X_{i}-m_{k}\right\|^{2}
$$

where m_{k} is the k-cluster mean.

- An iterative procedure is used to update m_{k} and cluster membership.

K-medoids cluster analysis

- It applies to general proximity matrix.
- Replace mean m_{k} by the point X_{i} (medoid) in the same cluster which has the least summed distance from the other points in the cluster.
- Iteratively update the medoid and cluster membership.

Hierarchical clustering

- Either agglomerative (bottom-up) or divisive (top-down).
- At each level, either merge two clusters or split clusters in an optimal sense.
- The way of defining between-cluster distance includes single linkage, complete linkage and group average.
- The output is called a dendrogram.

Bayes error in learning theory

- The classification error from the most desirable classifier:

$$
\begin{gathered}
\eta(X)=P(Y=1 \mid X), \\
P(I(\eta(X)>1 / 2) \neq Y)=E[\min (\eta(X), 1-\eta(X))] \\
=\frac{1}{2}-\frac{1}{2} E[|1-2 \eta(X)|] .
\end{gathered}
$$

- Other definitions of classification errors: Komogorov variational distance, Bhattacharyya measure of affinity, Shannon entropy, Kullback-Leibler divergence.
- These errors are closely related to Bayes error.

Consistency

- Consistency of a classifier g_{n} (corresponding to decision function $\left.\eta_{n}(x)\right)$:

$$
P\left(g_{n}(X) \neq Y\right) \rightarrow \text { Bayes error. }
$$

- Strongly consistent:

$$
P\left(g_{n}(X) \neq Y \mid \text { data }\right) \rightarrow_{\text {a.s. }} \text { Bayes error. }
$$

- Universally (strongly) consistent if the above consistency is true for any distribution of (X, Y).

A key inequality

- A key inequality:

$$
\begin{gathered}
P\left(g_{n}(X) \neq Y \mid \text { data }\right) \leq 2 E\left[\left|\eta_{n}(X)-\eta(X)\right| \mid \text { data }\right] \\
\leq 2 E\left[\left(\eta_{n}(X)-\eta(x)\right)^{2} \mid \text { data }\right]^{1 / 2} .
\end{gathered}
$$

- The consistency of classifiers can be proved by showing the $L_{1^{-}}$or L_{2}-consistency of η_{n}.

Consistency in direct learning

- It uses the key inequality.
- Since η_{n} often has explicit expression in direct learning, the consistency follows from the $L_{1^{-}}$or $L_{2^{-}}$consistency of η_{n}.
- For strongly consistency proof, it relies the use of concentration inequalities to conclude $P\left(\left|E_{n}\left[\left|\eta_{n}(X)-\eta(X)\right|\right]-E\left[\left|\eta_{n}(X)-\eta(X)\right|\right]\right|>\epsilon\right) \leq a e^{-n b \epsilon^{2}}$ then the consistency follows from the first Borel-Cantelli lemma.

Summary of consistency results

- If the bin width $h_{n} \rightarrow 0$ and $n h_{n}^{d} \rightarrow \infty$, then the histogram rule is universally and strongly consistent.
- For fixed odd $k, k-N N$ is universally consistent for the nearest neighborhood error.
- For $k \rightarrow \infty$ and $k / n \rightarrow 0, k-\mathrm{NN}$ is universally and strongly consistent.
- If the bandwidth $h \rightarrow 0$ and $n h^{d} \rightarrow \infty$, then the kernel rule is universally and strongly consistent.
- If the number of basis function $K_{n} \rightarrow \infty$ and $K_{n} / n \rightarrow 0$, the sieve rule is consistent and is strongly consistent if $K_{n} \log n / n \rightarrow 0$.

Consistency in indirect learning

- The decision rule is not explicit.
- However, we know that best classifiers minimizes some loss function or regularized loss functions.
- Thus,
$P\left(L\left(g_{n}\right)-L\left(g^{*}\right)>\epsilon\right) \leq P\left(L\left(g_{n}\right)-L_{n}\left(g_{n}\right)-L\left(g^{*}\right)+L_{n}\left(g^{*}\right)>\epsilon\right)$

$$
\leq 2 P\left(\sup _{g \in \mathcal{F}}\left|L_{n}(g)-L(g)\right|>\epsilon / 2\right)
$$

- We need control stochastic errors of such loss functions over the model space,

$$
\sup _{g \in \mathcal{F}}\left|L_{n}(g)-L(g)\right|
$$

- This uses concentration inequalities from empirical processes and relies on the model size of \mathcal{F}.

Some results

- If $N\left(\epsilon, \mathcal{F}, L_{1}(P)\right)$ is finite, then the rule based on maximum likelihood method is strongly consistent.
- If \mathcal{F} has a finite VC-dimension, then the rule minimizing empirical risk

$$
\sum_{i=1}^{n} I\left(Y_{i} \neq g\left(X_{i}\right)\right)
$$

is strongly consistent.

- Let $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ each having a finite VC-dimension v_{k}, then the rule minimizing structural risk

$$
\sum_{i=1}^{n} I\left(Y_{i} \neq g\left(X_{i}\right)\right)+\sqrt{32 v_{k} \log (e n) / n}
$$

is universally and strongly consistent if

$$
\sum_{k} e^{-v_{k}}<\infty
$$

