CHAPTER 6: BEYOND PARAMETRIC MODELS
AND BEYOND ESTIMATION
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INTRODUCTION TO
NONPARAMETRIC/SEMIPARAMETRIC
MODELS
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Nonparametric/Semiparametric Estimation

>

Parametric models uses only a finite number of
parameters to describe data distribution.

Model parameters are convenient for interpretation.

However, they are not sufficiently accurate to describe
complex data generation.

Model misspecification can lead to severe bias or incorrect
inference.

More flexible models include nonparametric and
semiparametric models.
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Nonparametric density estimation

>

One fundamental problem in statistical inference is density
estimation.

Parametric models can be normal distribution,
t—distribution and etc.

Nonparametric model requires no assumption on the form
of density functions.

Assume i.i.d. observations Xi, ..., X, from a distribution
with density f(x).
The goal is to estimate f(x) without any assumptions.
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Local approaches

» The idea is to estimate the density at any fixed x locally.

» Essentially, only observations close to x will contribute to
estimation.

» Weights will be introduced to determine the locality of
the observations.

?(X) =nt Z Wi (x),

Wai(x) = a1 K (X’ — X)

an

where

and K(x) > 0 satisfying [ K(x)dx = 1.
» a, is called the bandwidth.
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» Show E[f(x)] = f(x) when a, — 0.
» Bias analysis

EF(x)] - f(x) = / K(y)F(x + any)dy — F(x).

y

» Variance analysis
Var[?(x)z] = (na,) ™" [/ K(y)*f(x + any)dy

—a, (f(x) + Bias)z} :
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- If K(x) = 0.5/(|x| < 1),

~

F(x) = (28)) 7 {F(x + an) = F(x = an) }

» Bias=f(x )a,, + O(a,,) and
Variance=(na,)1f(x) [ K(y)?dy + o((na,)™).

» If K(x) is symmetric (Gaussian kernel or Epanechnikov
kernel), then
Bias=a2f"(x) [ K(y)y?dy/2 + o(a?) and Variance
remains the same.

» The choice of the kernel depends on how much
smoothness is known about the density function.
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Asymptotic normality

F(x) — E[f(x)] Ly N(O.1).
Var(f(x))

» The proof assumes na> — 0 and uses Liaponov CLT.
» For a symmetric kernel, the optimal bandwidth is

1/5
optimal __ fK )*dy / 15
n f” f K(y)y?dy)?
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Global approaches

» It views f(x) as a function parameter for estimation so
estimates f(x) via one global optimization instead of
estimation at each x.

» It is computationally efficient.

» The disadvantage is that it may miss some local features
of f(x).
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Empirical distribution function

» Instead of estimating density function, we estimate its
distribution function F(x).

» We consider maximizing the log-likelihood function

Z log £(X;)

but replace f(X;) by
FIX) = FOG) — F(X-)
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Asymptotic properties

» F(x) converges to F(x) almost surely.

>

sup F(x) = F(x)] =0

almost surely.

> \/ﬁ(l?(x) — F(x)) converges in distribution to a Brownian
bridge process.

» The previous kernel density estimator can be viewed as a
smoothing operation on F:

F(x) = / a7 K((y — x)/a)dE(y).
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Sieve Estimation

» We approximate f(x) via a sequence of functions
generated from basis functions:

log £ (x Zﬁksk

» Choices of basis functions: piecewise constant, piecewise
linear, piecewise polynomials (splines), wavelets,
trigonometric functions ...

» We then maximize the likelihood function subject to
constraint [ f(x)dx = 1.

» When the number of basis function goes to infinity, the
bias due to approximation will vanish.

» However, more basis functions will result in increasing
variability.

» Asymptotic bias/variance analysis (also normality) is more
complicated than and is not as obvious as local

approaches.
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Penalization approach

>

The essential idea is to construct “Objective function”
plus “Regularization” (penalty).

The objective function is an empirical version of a
population quantity which the true density function
minimize.

The regularization is a penalty function to penalize those
estimators with high variability or irregularity.

The common estimation is

min — 3" log F(X) + MP(F). /f(x) -1,

P(f) = / |7 (x)|Pdx.

An is the penalty parameter (tuning parameter) to govern
the regularity of the estimator.
Bias and variance trade-off is reflected in \,.
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Nonparametric Regression

» The goal is to estimate the conditional mean of Y given
X, m(x) = E[Y|X = x].

» The data are (Y1, X1), ..., (Ya, Xa)-

» Parametric models: linear model, generalized linear models

» Parameter models are easy for interpretation but can be
seriously misspecified.
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Nonparametric approaches

» Local approach (kernel estimation)

2 iy YiK((Xi = x)/an)
2 K((Xi = x)/an)

» Local likelihood approach

min » (Y; — m(x))’K((X; — x)/a,).

» Local polynomials
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Global approaches

» Sieve estimation
n Ky
min » (Vi =Y BiBi(X))*.
i=1 k=1

» Penalization estimation
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Semiparametric Estimation

>

It aims to incorporate advantages from both parametric
and nonparametric models.

Recall: parametric models are easy for interpretation and
estimation is precise with a finite number of parameters;
nonparametric models are robust with minimal
assumptions.

Semiparametric models describe data distributions using
both parametric components (#) and nonparametric
components (7).

0 is finite dimensional and consists of parameters of
interest (for convenience of practical use): treatment
effects, risk ratios ...

7 is nonparametric and included to complement 6 for
describing data distribution. It is not the primary interest
so called nuisance parameters.
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Inferential advantage and challenges

» Most often, the parameter 6 can be estimated as
accurately as from a parametric models (parametric
convergence rate).

» The nuisance parameter, 1, has minimal assumption so
the inference is robust to the structure in 7.

» Estimation /inference is challenging due to the mixing
nature of the parameters.

» Usually, we have to treat 1 as some parameter from a
metric space for inference. Some math from function
analysis is quite involved.
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» Right censored data

» Current status data

» Smoking prevention project
» Medical cost
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Estimation approaches

Direct plug-in estimation of nuisance parameters

v

v

Estimating equations

IPWE for missing data
NPMLE approach

Profile likelihood estimation

v

v

v

Sieve estimation

v

Penalization estimation

v
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INTRODUCTION TO STATISTICAL
LEARNING
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Statistical Learning

e What is statistical learning?

— machine learning, data mining
— supervised vs unsupervised
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e How different from traditional inference?
— different objectives
— different statistical procedures
— supervised learning < — — — > regression
— unsupervised learning < —— > density estimation
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Set-up in decision theory

— X: feature variables

— Y outcome variable (continuous, categorical, ordinal)
— (X, Y) follows some distribution

— goal: determine f : X — Y to minimize some loss

E[L(Y, f(X))]
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Loss function L(y, x)

— squared loss: L(y,x) = (y — x)?
— absolute deviation loss: L(y,x) = |y — x|
— Huber loss: L(y,x) = (y — x)*I(ly — x| <
0) + (26]y — x| = 8*)I(ly — x| = 9)
— zero-one loss: L(y,x) = I(y # x)
— preference loss: L(y1, y2,x1,%) =1 —1(y1 < y2,x1 < x2)
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Optimal f(x)

— squared loss: f(X) = E[Y|X]
absolute deviation loss: f(X) = med(Y|X)
Huber loss: 777
zero-one loss: f(X) = argmax, P(Y = k|X)
preference loss: 777

not all loss functions have explicit solutions
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Estimate f(x)

— Empirical data
(X,', ,'), | = 1, 1

— Direct learning: estimate f directly via parametric,
semi-parametric, or nonparametric methods

— Indirect learning: estimate f by minimizing (empirical risk)

n

> LY F(X)

i=1
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Candidate set for f(x)

— too small: underfit data
— too large: overfit data
— even more important with high-dimensional X

29/ 83



Why high-dimensionality is an issue?

data are sparse

local approximation is infeasible

increasing bias and variability with dimensionality

curse of dimensionality
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Common considerations for f(x)

— linear functions or local linear functions

— linear combination of basis function: polynomials, splines,
wavelets

— let data choose f by penalizing f from roughness
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Parametric learning

— It is one of direct learning methods.
— Estimate f(x) using parametric models.
— Linear models are often used.
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Linear regression model

— Target squared loss or zero-one loss.
— Assume f(X) = E[Y|X] = XTp.
— The least squared estimation

A

fF(x) =xT(XTX)"IXTy.
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Shrinkage methods

— Gain variability reduction by sacrificing prediction
accuracy.

— Help to determine important features (variable selection)
if any.

— Include subset selection, ridge regression, LASSO and et.
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Subset selection

— Search for the best subset of size k in terms of RSS.
— Use leaps and bounds procedure.

— Computationally intensive with large dimension.

— The best choice of size k is based on Mallow's CP.
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Ridge regression
— Minimize
n p

Y= XTBP+ A B8

i=1 j=1

Equivalently, minimize

n

-1 j=1

The solution

B=(XTX+ANIXTY.

Has Bayesian interpretation.

P
S (Vi = XTB)?, subject to Y 52 <.

36/ 83



— Minimize ,
D (Yi= XT840 15
i=1 j=1
— Equivalently, minimize

n

P
> (¥i = XTBY, subject to Y [5] <.

-1 j=1

— This is a convex optimization.
— Suppose X to have independent columns:

B = sign(B*)(|5"| — A/2)*.

— Nonlinear shrinkage property.
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— Subset selection is Lg-penalty shrinkage but
computationally intensive.

— Ridge regression is Ly-penalty shrinkage and shrinks all
coefficients the same way.

— LASSO is L;-penalty shrinkage and it is a nonlinear
shrinkage.
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Other shrinkage methods
— Lg-penalty with g € [1,2]:

n

p
S Y= XTB2+AD 1B

i=1 j=1
— Weighted LASSO (aLASSO):

n

D= X8+ 1) wilpl
j=1

i=1

where w; = |3"¢| 9.

— SCAD penalty >°7 ; Jy(|5]):

J(x) = A {/(x <A+ H/(x > )\)} .

39/ 83



Penalized cosff

(a) Hard threshold

(b) Adaptive LASSO

(c) SCAD

Penalized coelf

Weighted L_1 with alph;

Penalized cosff

10

Bota coeffect

Bota coeffect

10

Bota coeffect
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Compare different penalties

— All penalties have shrinkage properties.

— Some penalties give an oracle property as if the true zeros
are known (aLASSO, SCAD).

— But aLASSO needs a consistent initial estimate (not
suitable for high-dimensional).

— SCAD generally needs large sample size and may suffer
computational difficulty (due to its non-convexity).
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Logistic discriminant analysis

— It is often used when Y is dichotomous or categorical.
— Assume

exp{Bko + X7 Bk}

P(Y = K[X = b .
1+ > exp{Bi+ X751}

— Then ) A A
f(x) = argmax, {Bkg + XTﬁk} .

42/ 83



Discriminant analysis

— Assume that X given Y = k follows a normal distribution
with mean py and covariance X .

— For K = 2, the decision rule (quadratic discriminant
analysis) is based on the sign of

m 1 A NTE N 1 o NTe .
log W—j_§(X_N2)Tzz1(X_M2)+§(X—M1)TZ1 Hx— ).

— If assume X; = Y5, this results in linear discriminant
anaysis.
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Generalization

— In parametric methods, features X can be replaced by
some basis functions so we have nonlinear discriminant
boundary.

— Efficient estimation for f(x) is possible due to parametric
nature.
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What is semi-nonparametric?

— It is neither parametric nor nonparametric.
— But it is also difference from usual semiparametric models.

— It includes neural networks, projection pursuit, GAM and
MARS.
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Neural network

— It is an artificially structured model.

— Assume one or more hidden layers between input X and
output Y.

— Simple models between one layer variables and its upper
layer.

— Forward- and backward-propagation algorithms are used
for calculation.
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Generalized additive models

— f(x) is assumed to take form

p
> (X
k=1

More flexible than parametric models

But assume no interactions among X's.

Backfitting is used for estimation, where each step is a
univariate nonparametric estimation.

It applies for continuous and categorical outcome variable.
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Projection pursuit

— f(x) takes form
> 8B X).
k=1

More general than GAM.

Include single index model as special cases and allow X's
interactions.

Recursively estimate each single-index component.

A local linear approximation and backfitting are used for
each step.
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Direct learning: nonparametric approaches

— No structural assumption for f(x).

— They strongly relate to nonparametric regression in
traditional statistical estimation.

— Include k-NN, kernel methods, sieve methods, tree
methods and MARS.

49/ 83



Nearest neighbor methods

— It is a prototype method.

— The estimation is the majority of outcomes in
k-neighborhood.

— Distance is an important issue in defining neighborhood.
— Classification boundary is usually irregular.
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Kernel methods

— It is one of the most popular methods in nonparametric
estimation.

— Estimation is based on a locally weighed average, where
weights are given by some kernel function.

— One important issue is the choice of the bandwidth (bias
and variance tradoff).

— It is equivalent to a local constant estimation.
— Generalized to local linear and local polynomials.
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— It is a global approximation to f(x).

— The idea is simple: approximate f(x) by a series of basis
functions.

— The choices of basis functions: polynomials, trigonometric
functions, regression splines, B-splines, wavelets.

— The choices of the number of basis functions is important.
— Adapt to specific applications.
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— Regression tree for continuous Y and classification tree
for categorical Y.

— It is a sequentially and recursively partition of X's space.

— Each partition is done for one X's component and the
partition is usually binary.

— The way of choosing which X and where for partition
relies on some specific criteria.

— The tree can grow to the full length but needs pruning to
avoid overfitting.

— Tree size is often chosen as a way to prune the tree.

— A generalization is called random forest: a bootstrapped
way of growing tree to avoid over-dependence on one
single tree.
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Multivariate adaptive regression splines (MARS)

— Some combination of sieve methods and tree methods.

— The basis functions take form (X — t)4 or (t — X))+
along with their interactions.

— Like the tree, it is a sequential fitting method.

— A backward deletion procedure is applied to avoid
overfitting.

54/ 83



Which methods should we choose?

— It depends on specific data and applications.

— Kernel and spline methods are useful for smooth signal
and possess nice theoretical properties.

— Wavelets are useful for discontinuous signal (denoise
imaging).

— Tree methods and MARS have computational advantages
and decision rules are simple but both lack nice theoretical
properties.

— Tree methods are applicable to high-dimensional X.
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Indirect learning

— It doesn't estimate f(x) directly, most likely due to
in-explicit f(x).

— It estimates the decision rule through minimizing empirical
risks.

— It includes SVM and regularized minimization.
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Support vector machine

— Assume Y € {—1,1}.
— The goal is to find a hyperplane By + XT3 which can
separate Y's maximally.

— That is, we wish
K(,BO + XiT/g) > 0

foralli=1,...,n.
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Perfect separation

— Consider an ideal situation where Y's can be perfectly
separated.

— A maximal separation can be determined as that we want
the minimum distance from each point to the separating
plane as large as possible.

— It is equivalent to

max C, subject to Yi(Bo+ X' B)>C,i=1,...n
1

— The dual problem is

maxZa, — = 204 aJY,-YJ-X,-TXj, a; > 0.

/,_/1
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Imperfect separation

— In real data, there is usually no hyperplane separating
perfectly (if there is, it is by chance).

— We should allow some violations by introducing slack
variables & > 0:

maE( C, subject to Yi(Bo+X."B) > C(1-&)i=1,...,n.

— ;& describes the total degree of violation should be
controlled (like type | error in hypothesis test):

Z & < a given constant.

i
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Imperfect separation

— The dual problem is

maxza, —= ZanYYXTX

/,_/1

0<a; <7, ZaiYiZQ
i=1
— It is a convex optimization problem.
— It turns out B = Za,->0 &; Y X; so BA is determined by the
points within or on the boundary of a band around the
hyperplane.

— These points are called support vectors.
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SVM allowing nonlinear boundary

— Linear boundary may not be practical.
— To allow nonlinear boundary, assume

F(x) = (h(x); .. hm(x)) 5 + Po-

— The dual problem becomes

maxZa,——ZanYYK (X, X)),

ij=1

0<aq; <7, Za,-Y,:O.

i=1

- II;|/|ere, K(x,x") = (h1(x), ..c; hm(x)(h1(X), -..s hm(X')) T

F(x) = Z &; YiK(x, X;) + Bo.

i=1
— Thus, we only need to specific the kernel function K(x, y).
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Equivalent form of SVM

— SVM learning is equivalent to minimizing

n

ST {1 Yif (X)), + AllBIR/ 2.
i=1
— Thus, it is a regularized empirical risk minimization.

— This formation is useful for justifying SVM's theoretical
property.
— Other loss functions are possible.
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Regularized estimation
— It is typically formed as

min ZL )+ AJ(F)| .

feH

— J(f) penalizes those band fin H.

— For example, J(f) = (f"(x))?dx gives cubic spline
approximation.

— More general, choose H to be a reproducing kernel
Hilbert space and J(f) = ||f||3,-

— Then the problem becomes minimizing

D LY D K (X, X)) + A Y aiagK (X, X))
i—1 j=1 ij=1
with the solution

= ié\ékK(X, X,)
i=1
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Aggregated learning

— Try to take advantages of different classifiers.
— Boosting weak learning methods.

— The methods include model average, stacking, and
boosting.
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Model selection in statistical learning

— All learning methods assume f from some models.

— The choice of models is important: underfitting or
overfitting.

— Often reflected in some tuning parameters in learning
methods: k-NN, bandwidth, the number of basis
functions, tree size, penalty parameters.

— The model selection aims to balance fitting data and
model complexity.
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AlIC and BIC

— They apply when the loss function is the log-likelihood
function and models are parametric.

— AIC: -2log-lik+2 # parameters
BIC: -2log-lik+2log n # parameters

— Whether AIC or BIC?
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Model complexity

— Not all the models have finite number of parameters.

— A more general measurement for model complexity is
VC-dimension.

— Stochastic errors between the empirical risk and the
limiting risk can be controlled in term of VC-dimension.

— Thus, among a series of models €21, (2, ..., we choose the

one minimizing A
Yn(fa) + ba(S2).

— 7a(fa) reflects the best approximation using model Q
(bias).

— b,(R) is an upper bound controlling stochastic errors
(variability).

— Limitation: VC-dimension is often not easy to calculate.

67/ 83



Cross-validation

— It is the most commonly used method.

It is computationally feasible, although intensive.

The idea is to use one data as training data and the other
part as testing data to assess prediction error of one
learning method.

It avoids overfitting due to using only one data set

Leave-one-out cross validation or k-fold cross-validation is
used.

— Sometimes, it can be calculated quickly.
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Unsupervised learning

— We don't have outcome labels but only feature data.
— We wish to see the structures within feature data.
— Useful for data exploration and dimension reduction.
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Principal component analysis

— It is one popular method viewing intrinsic structure of X.

— The goal is to determine orthogonal PCs which explain
most of data variations.

— It relies on singular value decomposition (SVD).
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Latent component analysis

— Assume
X =AS +e

— S are latent variables and often assumed independent
from Gaussian distributions (factor analysis).
— Estimation of A is via maximum likelihood estimation.

— S can be assumed to be independent but not normally
distributed (independence component analysis).
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Multidimensional scaling

— This method projects original X to a much
lower-dimensional space.

— It is useful for viewing X.

— The goal of the projection is to ensure pairwise distances
before and after projections to be consistent as much as
possible.

— Minimize
1/2
> (d(Xi, X)) = 112 = Z|1)?
i#j

— Can be modified to add weights to each pair or just keep
distance ranks to be consistent.
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Cluster analysis

— Search for clusters of subjects so that within-cluster
subjects are most similar but between-cluster subjects are
most different.

— Look for a map: C: {1,...,n} — — > {1,..., K} from
subject ID to cluster ID.
— Within-cluster distance (loss):

230>ty = €)= KX X).

ij=1 k=1

— Between-cluster distance (loss):

5 ZZ C(j) # k)d(X;, X;).

I,_] 1 k=1

— Either minimize within-cluster distance or maximize
between-cluster distance.
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K-means cluster analysis

— Applies when the distance is the Euclidean distance.
— The within—cluster distance is equivalent to

K
Z/ k)[IX; = mu|?,
1 k=1

where my is the k-cluster mean.

i=

— An iterative procedure is used to update my and cluster
membership.
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K-medoids cluster analysis

— It applies to general proximity matrix.

— Replace mean my by the point X; (medoid) in the same
cluster which has the least summed distance from the
other points in the cluster.

— lteratively update the medoid and cluster membership.
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Hierarchical clustering

— Either agglomerative (bottom-up) or divisive (top-down).

— At each level, either merge two clusters or split clusters in
an optimal sense.

— The way of defining between-cluster distance includes
single linkage, complete linkage and group average.

— The output is called a dendrogram.
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Bayes error in learning theory

— The classification error from the most desirable classifier:
n(X) = P(Y = 1|X),

PU(X) > 1/2) # ) = Elmin(n(X), 1 ~ (X))
=2~ 2ElL - 2(X)])

— Other definitions of classification errors: Komogorov
variational distance, Bhattacharyya measure of affinity,
Shannon entropy, Kullback-Leibler divergence.

— These errors are closely related to Bayes error.
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— Consistency of a classifier g, (corresponding to decision
function n,(x)):

P(g.(X) # Y) — Bayes error.
— Strongly consistent:
P(gn(X) # Y|data) —, Bayes error.

— Universally (strongly) consistent if the above consistency
is true for any distribution of (X, Y).
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A key inequality

— A key inequality:
P(ga(X) # Yl|data) < 2E[|n,(X) — n(X)[|data]

< 2F [(na(X) — n(x))*data] .

— The consistency of classifiers can be proved by showing
the L;- or Ly-consistency of n,.
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Consistency in direct learning

— It uses the key inequality.

— Since 1), often has explicit expression in direct learning,
the consistency follows from the L;- or L,- consistency of
Mn-

— For strongly consistency proof, it relies the use of
concentration inequalities to conclude

2

P(|Enllna(X) =1(X) 1= E[Ina(X) =n(X)]]| > €) < ae™"*

then the consistency follows from the first Borel-Cantelli
lemma.
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Summary of consistency results

— If the bin width h, — 0 and nh,‘j — 00, then the
histogram rule is universally and strongly consistent.

— For fixed odd k, k-NN is universally consistent for the
nearest neighborhood error.

— For k — oo and k/n — 0, k-NN is universally and
strongly consistent.

— If the bandwidth h — 0 and nhY — oo, then the kernel
rule is universally and strongly consistent.

— If the number of basis function K,, — oo and K,/n — 0,
the sieve rule is consistent and is strongly consistent if
K,logn/n — 0.
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Consistency in indirect learning

— The decision rule is not explicit.

— However, we know that best classifiers minimizes some
loss function or regularized loss functions.

— Thus,

P(L(gn)_L(g*) > 6) < P(L(gn)_Ln(gn)_L(g*)+Ln(g*) > 6)

< 2P(sup [L,(g) — L(g)| > €/2).

geF

— We need control stochastic errors of such loss functions
over the model space,

sup |Ln(g) — L(g)l-

gEF

— This uses concentration inequalities from empirical
processes and relies on the model size of F.
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Some results

— If N(e, F, L1(P)) is finite, then the rule based on
maximum likelihood method is strongly consistent.
— If F has a finite VC-dimension, then the rule minimizing

empirical risk
n

> IY # 8(X)
i=1
is strongly consistent.
— Let F; C F, C ... each having a finite VC-dimension v,
then the rule minimizing structural risk

Z I(Y; # g(Xi)) + \/32vi log(en) /n

i=1

is universally and strongly consistent if

Z eV < 0.
k
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