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CHAPTER 5: MAXIMUM LIKELIHOOD
ESTIMATION
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Introduction to Efficient Estimation
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• Goal

MLE is asymptotically efficient estimator under some

regularity conditions.
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• Basic setting

Suppose X1, ..., Xn are i.i.d from Pθ0 in the model P .

(A0). θ ̸= θ∗ implies Pθ ̸= Pθ∗ (identifiability).

(A1). Pθ has a density function pθ with respect to a

dominating σ-finite measure µ.

(A2). The set {x : pθ(x) > 0} does not depend on θ.
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• MLE definition

Ln(θ) =
n∏

i=1

pθ(Xi), ln(θ) =
n∑

i=1

log pθ(Xi).

Ln(θ) and ln(θ) are called the likelihood function and the

log-likelihood function of θ, respectively.

An estimator θ̂n of θ0 is the maximum likelihood

estimator (MLE) of θ0 if it maximizes the likelihood

function Ln(θ).
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Ad Hoc Arguments
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√
n(θ̂n − θ0) →d N(0, I(θ0)

−1)

– Consistency: θ̂n → θ0 (no asymptotic bias)

– Efficiency: asymptotic variance attains efficiency

bound I(θ0)
−1.
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• Consistency

Definition 5.1 Let P be a probability measure and let

Q be another measure on (Ω,A) with densities p and q

with respect to a σ-finite measure µ (µ = P +Q always

works). P (Ω) = 1 and Q(Ω) ≤ 1. Then the

Kullback-Leibler information K(P,Q) is

K(P,Q) = EP [log
p(X)

q(X)
].
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Proposition 5.1 K(P,Q) is well-defined, and

K(P,Q) ≥ 0. K(P,Q) = 0 if and only if P = Q.

Proof

By the Jensen’s inequality,

K(P,Q) = EP [− log
q(X)

p(X)
] ≥ − logEP [

q(X)

p(X)
] = − logQ(Ω) ≥ 0.

The equality holds if and only if p(x) =Mq(x) almost surely with

respect P and Q(Ω) = 1

⇒ P = Q.
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• Why is MLE consistent?

θ̂n maximizes ln(θ),

1

n

n∑
i=1

pθ̂n(Xi) ≥
1

n

n∑
i=1

pθ0(Xi).

Suppose θ̂n → θ∗. Then we would expect to the both

sides converge to

Eθ0 [pθ∗(X)] ≥ Eθ0 [pθ0(X)],

which implies K(Pθ0 , Pθ∗) ≤ 0.

From Prop. 5.1, Pθ0 = Pθ∗ . From A0, θ∗ = θ0. That is, θ̂n
converges to θ0.
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• Why is MLE efficient?

Suppose θ̂n → θ0. θ̂n solves the following likelihood (or

score) equations

l̇n(θ̂n) =
n∑

i=1

l̇θ̂n(Xi) = 0.

Taylor expansion at θ0:

−
n∑

i=1

l̇θ0(Xi) = −
n∑

i=1

l̈θ∗(Xi)(θ̂ − θ0),

where θ∗ is between θ0 and θ̂.

√
n(θ̂ − θ0) = − 1√

n

{
n−1

n∑
i=1

l̈θ∗(Xi)

}{
n∑

i=1

l̇θ0(Xi)

}
.
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√
n(θ̂n − θ0) is asymptotically equivalent to

1√
n

n∑
i=1

I(θ0)
−1l̇θ0(Xi).

Then θ̂n is an asymptotically linear estimator of θ0 with

the influence function I(θ0)
−1l̇θ0 = l̃(·, Pθ0 |θ,P).
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Consistency Results
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Theorem 5.1 Consistency with dominating

function

Suppose that

(a) Θ is compact.

(b) log pθ(x) is continuous in θ for all x.

(c) There exists a function F (x) such that

Eθ0 [F (X)] < ∞ and | log pθ(x)| ≤ F (x) for all x and θ.

Then θ̂n →a.s. θ0.
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Proof

For any sample ω ∈ Ω, θ̂n is compact. By choosing a subsequence,

θ̂n → θ∗.

If 1
n

∑n
i=1 lθ̂n(Xi) → Eθ0 [lθ∗(X)], then since

1

n

n∑
i=1

lθ̂n(Xi) ≥
1

n

n∑
i=1

lθ0(Xi),

⇒ Eθ0 [lθ∗(X)] ≥ Eθ0 [lθ0(X)].

⇒ θ∗ = θ0. Done!

It remains to show Pn[lθ̂n(X)] ≡ 1
n

∑n
i=1 lθ̂n(Xi) → Eθ0 [lθ∗(X)].

It suffices to show

|Pn[lθ̂(X)]− Eθ0 [lθ̂(X)]| → 0.
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We can even prove the following uniform convergence result

sup
θ∈Θ

|Pn[lθ(X)]− Eθ0 [lθ(X)]| → 0.

Define

ψ(x, θ, ρ) = sup
|θ′−θ|<ρ

(lθ′(x)− Eθ0 [lθ′(X)]).

Since lθ is continuous, ψ(x, θ, ρ) is measurable and by the DCT,

Eθ0 [ψ(X, θ, ρ)] decreases to Eθ0 [lθ(x)− Eθ0 [lθ(X)]] = 0.

⇒ for ϵ > 0, for any θ ∈ Θ, there exists a ρθ such that

Eθ0 [ψ(X, θ, ρθ)] < ϵ.
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The union of {θ′ : |θ′ − θ| < ρθ} covers Θ. By the compactness of

Θ, there exists a finite number of θ1, ..., θm such that

Θ ⊂ ∪m
i=1{θ′ : |θ′ − θi| < ρθi}.

⇒

sup
θ∈Θ

{Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ sup
1≤i≤m

Pn[ψ(X, θi, ρθi)].

lim sup
n

sup
θ∈Θ

{Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ sup
1≤i≤m

Pθ[ψ(X, θi, ρθi)] ≤ ϵ.

⇒ lim supn supθ∈Θ {Pn[lθ(X)]− Eθ0 [lθ(X)]} ≤ 0. Similarly,

lim supn supθ∈Θ {−Pn[lθ(X)] + Eθ0 [lθ(X)]} ≥ 0.

⇒
lim
n

sup
θ∈Θ

|Pn[lθ(X)]− Eθ0 [lθ(X)]| → 0.



CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION 18

Theorem 5.2 Wald’s Consistency Θ is compact.

Suppose θ 7→ lθ(x) = log pθ(x) is upper-semicontinuous

for all x, in the sense lim supθ′→θ lθ′(x) ≤ lθ(x). Suppose

for every sufficient small ball U ⊂ Θ,

Eθ0 [supθ′∈U lθ′(X)] < ∞. Then θ̂n →p θ0.
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Proof

Eθ0 [lθ0(X)] > Eθ0 [lθ′(X)] for any θ′ ̸= θ0

⇒ there exists a ball Uθ′ containing θ′ such that

Eθ0 [lθ0(X)] > Eθ0 [ sup
θ∗∈Uθ′

lθ∗(X)].

Otherwise, there exists a sequence θ∗m → θ′ but

Eθ0 [lθ0(X)] ≤ Eθ0 [lθ∗
m
(X)]. Since lθ∗

m
(x) ≤ supU ′ lθ′(X) where U ′ is

the ball satisfying the condition,

lim sup
m

Eθ0 [lθ∗
m
(X)] ≤ Eθ0 [lim sup

m
lθ∗

m
(X)] ≤ Eθ0 [lθ′(X)].

⇒ Eθ0 [lθ0(X)] ≤ Eθ0 [lθ′(X)] contradiction!
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For any ϵ, the balls ∪θ′Uθ′ covers the compact set Θ∩{|θ′− θ0| > ϵ}
⇒ there exists a finite covering balls, U1, ..., Um.

P (|θ̂n − θ0| > ϵ) ≤ P ( sup
|θ′−θ0|>ϵ

Pn[lθ′(X)] ≥ Pn[lθ0(X)])

≤ P ( max
1≤i≤m

Pn[ sup
θ′∈Ui

lθ′(X)] ≥ Pn[lθ0(X)])

≤
m∑
i=1

P (Pn[ sup
θ′∈Ui

lθ′(X)] ≥ Pn[lθ0(X)]).

Since

Pn[ sup
θ′∈Ui

lθ′(X)] →a.s. Eθ0 [ sup
θ′∈Ui

lθ′(X)] < Eθ0 [lθ0(X)],

the right-hand side converges to zero. ⇒ θ̂n →p θ0.
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Asymptotic Efficiency Result
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Theorem 5.3 Suppose that the model P = {Pθ : θ ∈ Θ}
is Hellinger differentiable at an inner point θ0 of Θ ⊂ Rk.

Furthermore, suppose that there exists a measurable

function F with Eθ0 [F
2] < ∞ such that for every θ1 and

θ2 in a neighborhood of θ0,

| log pθ1(x)− log pθ2(x)| ≤ F (x)|θ1 − θ2|.

If the Fisher information matrix I(θ0) is nonsingular and

θ̂n is consistent, then

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

I(θ0)
−1l̇θ0(Xi) + opθ0 (1).

In particular,
√
n(θ̂n − θ0) →d N(0, I(θ0)

−1).
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Proof

For any hn → h, by the Hellinger differentiability,

Wn = 2

(√
pθ0+hn/

√
n

pθ0
− 1

)
→ hT l̇θ0 , in L2(Pθ0).

⇒
√
n(log pθ0+hn/

√
n − log pθ0) = 2

√
n log(1 +Wn/2) →p h

T l̇θ0 .

⇒

Eθ0

[√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− hT l̇θ0 ]

]
→ 0

V arθ0

[√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− hT l̇θ0 ]

]
→ 0.

⇒
√
n(Pn − P )[

√
n(log pθ0+hn/

√
n − log pθ0)− hT l̇θ0 ] →p 0.
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From Step I in proving Theorem 4.1,

log
n∏

i=1

log pθ0+hn/
√
n

log pθ0
=

1√
n

n∑
i=1

hT l̇θ0(Xi)−
1

2
hT I(θ0)h+ opθ0

(1).

nEθ0 [log pθ0+hn/
√
n − log pθ0 ] → −hT I(θ0)h/2.

⇒

nPn[log pθ0+hn/
√
n − log pθ0 ] = −1

2
hTn I(θ0)hn + hTn

√
n(Pn − P )[l̇θ0 ]

+opθ0
(1).

Choose hn =
√
n(θ̂n − θ0) and hn = I(θ0)

−1
√
n(Pn − P )[l̇θ0 ]. ⇒

nPn[log pθ̂n−log pθ0 ] =
1

2
{
√
n(Pn−P )[l̇θ0 ]}T I(θ0)−1{

√
n(Pn−P )[l̇θ0 ]}

+opθ0
(1).
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Compare the above two equations:

−1

2

{√
n(θ̂n − θ0) + I(θ0)

−1
√
n(Pn − P )[l̇θ0 ]

}T

I(θ0)

×
{√

n(θ̂n − θ0) + I(θ0)
−1

√
n(Pn − P )[l̇θ0 ]

}
+opθ0

(1) ≥ 0.

⇒
√
n(θ̂n − θ0) = −I(θ0)−1

√
n(Pn − P )[l̇θ0 ] + opθ0

(1).
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Theorem 5.4 For each θ in an open subset of Euclidean

space. Let θ 7→ l̇θ(x) = log pθ(x) be twice continuously

differentiable for every x. Suppose Eθ0 [l̇θ0 l̇
′
θ0
] < ∞ and

E[l̈θ0 ] exists and is nonsingular. Assume that the second

partial derivative of l̇θ(x) is dominated by a fixed

integrable function F (x) for every θ in a neighborhood of

θ0. Suppose θ̂n →p θ0. Then

√
n(θ̂n − θ0) = −(Eθ0 [l̈θ0 ])

−1 1√
n

n∑
i=1

l̇θ0(Xi) + opθ0 (1).
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Proof

θ̂n solves 0 =
∑n

i=1 l̇θ̂(Xi).

⇒

0 =
n∑

i=1

l̇θ0(Xi) +
n∑

i=1

l̈θ0(θ̂n − θ0) +
1

2
(θ̂n − θ0)

T

{
n∑

i=1

l
(3)

θ̃n

}
(θ̂n − θ0).

⇒

|

{
1

n

n∑
i=1

l̈θ0(Xi)

}
(θ̂n − θ0)−

1

n

n∑
i=1

l̇θ0(Xi)| ≤
1

n

n∑
i=1

|F (Xi)|.

⇒ (θ̂n − θ0) = op(1).

⇒

√
n(θ̂n − θ0)

{
1

n

n∑
i=1

l̈θ0(Xi) + op(1)

}
= − 1√

n

n∑
i=1

lθ0(Xi).
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Computation of MLE
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• Solve likelihood equation

n∑
i=1

l̇θ(Xi) = 0.

– Newton-Raphson iteration: at kth iteration,

θ(k+1) = θ(k) −
{
1

n

n∑
i=1

l̈θ(k)(Xi)

}−1 {
1

n

n∑
i=1

l̇θ(k)(Xi)

}
.

– Note − 1
n

∑n
i=1 l̈θ(k)(Xi) ≈ I(θ(k)). ⇒ Fisher scoring

algorithm:

θ(k+1) = θ(k) + I(θ(k))−1

{
1

n

n∑
i=1

l̇θ(k)(Xi)

}
.
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• Optimize the likelihood function

optimum search algorithm: grid search, quasi-Newton

method (gradient decent algorithm), MCMC, simulation

annealing
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EM Algorithm for Missing Data
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When part of data is missing or some mis-measured data

is observed, a commonly used algorithm is called the

expectation-maximization (EM) algorithm.

• Framework of EM algorithm

– Y = (Ymis, Yobs).

– R is a vector of 0/1 indicating which subjects are

missing/not missing. Then Yobs = RY .

– the density function for the observed data (Yobs, R)∫
Ymis

f(Y ; θ)P (R|Y )dYmis.
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• Missing mechanism

Missing at random assumption (MAR):

P (R|Y ) = P (R|Yobs) and P (R|Y ) does not depend on θ;

i.e., the missing probability only depends on the observed

data and it is informative about θ.

Under MAR, ∫
Ymis

f(Y ; θ)dYmisP (R|Y ).

We maximize∫
Ymis

f(Y ; θ)dYmis or log
∫
Ymis

f(Y ; θ)dYmis
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• Details of EM algorithm

We start from any initial value of θ(1) and use the

following iterations. The kth iteration consists both

E-step and M-step:

E-step. We evaluate the conditional expectation

E
[
log f(Y ; θ)|Yobs, θ

(k)
]
.

E
[
log f(Y ; θ)|Yobs, θ

(k)
]
=

∫
Ymis

[log f(Y ; θ)]f(Y ; θ(k))dYmis∫
Ymis

f(Y ; θ(k))dYmis

.
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M-step. We obtain θ(k+1) by maximizing

E
[
log f(Y ; θ)|Yobs, θ

(k)
]
.

We then iterate till the convergence of θ; i.e., the

difference between θ(k+1) and θ(k) is less than a given

criteria.
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• Rationale why EM works

Theorem 5.5 At each iteration of the EM algorithm,

log f(Yobs; θ
(k+1)) ≥ log f(Yobs, θ

(k))

and the equality holds if and only if θ(k+1) = θ(k).
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Proof

E
[
log f(Y ; θ(k+1))|Yobs, θ(k)

]
≥ E

[
log f(Y ; θ(k))|Yobs, θ(k)

]
.

⇒

E
[
log f(Ymis|Yobs; θ(k+1))|Yobs, θ(k)

]
+ log f(Yobs; θ

(k+1))

≥ E
[
log f(Ymis|Yobs, θ(k))|Yobs, θ(k)

]
+ log f(Yobs; θ

(k)).

E
[
log f(Ymis|Yobs; θ(k+1))|Yobs, θ(k)

]
≤ E

[
log f(Ymis|Yobs, θ(k))|Yobs, θ(k)

]
,

⇒ log f(Yobs; θ
(k+1)) ≥ log f(Yobs, θ

(k)). The equality holds iff

log f(Ymis|Yobs, θ(k+1)) = log f(Ymis|Yobs, θ(k)),

⇒ log f(Y ; θ(k+1)) = log f(Y ; θ(k)).
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• Incorporating Newton-Raphson in EM

E-step. We evaluate the conditional expectation

E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ

(k)

]

and

E

[
∂2

∂θ2
log f(Y ; θ)|Yobs, θ

(k)

]
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M-step. We obtain θ(k+1) by solving

0 = E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ

(k)

]

using one-step Newton-Raphson iteration:

θ(k+1) = θ(k) −
{
E

[
∂2

∂θ2
log f(Y ; θ)|Yobs, θ

(k)

]}−1

×E

[
∂

∂θ
log f(Y ; θ)|Yobs, θ

(k)

] ∣∣∣
θ=θ(k)

.
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• Example

– Suppose a random vector Y has a multinomial

distribution with n = 197 and

p = (
1

2
+

θ

4
,
1− θ

4
,
1− θ

4
,
θ

4
).

Then the probability for Y = (y1, y2, y3, y4) is given by

n!

y1!y2!y3!y4!
(
1

2
+

θ

4
)y1(

1− θ

4
)y2(

1− θ

4
)y3(

θ

4
)y4 .

Suppose we observe Y = (125, 18, 20, 34). If we start

with θ(1) = 0.5, after the convergence in the

Newton-Raphson iteration, we obtain

θ(k) = 0.6268215.
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– EM algorithm: the full data is X has a multivariate

normal distribution with n and the

p = (1/2, θ/4, (1− θ)/4, (1− θ)/4, θ/4).

Y = (X1 +X2, X3, X4, X5).
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The score equation for the complete data X is simple

0 =
X2 +X5

θ
− X3 +X4

1− θ
.

M-step of the EM algorithm needs to solve the equation

0 = E

[
X2 +X5

θ
− X3 +X4

1− θ
|Y, θ(k)

]
;

while the E-step evaluates the above expectation.

E[X|Y, θ(k)] = (Y1
1/2

1/2 + θ(k)/4
, Y1

θ(k)/4

1/2 + θ(k)/4
, Y2, Y3, Y4).

θ(k+1) =
E[X2 +X5|Y, θ(k)]

E[X2 +X5 +X3 +X4|Y, θ(k)]
=

Y1
θ(k)/4

1/2+θ(k)/4
+ Y4

Y1
θ(k)/4

1/2+θ(k)/4
+ Y2 + Y3 + Y 4

.

We start form θ(1) = 0.5.
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k θ(k+1) θ(k+1) − θ(k) θ(k+1)−θ̂n
θ(k)−θ̂n

0 .500000000 .126821498 .1465

1 .608247423 .018574075 .1346

2 .624321051 .002500447 .1330

3 .626488879 .000332619 .1328

4 .626777323 .000044176 .1328

5 .626815632 .000005866 .1328

6 .626820719 .000000779

7 .626821395 .000000104

8 .626821484 .000000014
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• Conclusions

– the EM converges and the result agrees with what is

obtained form the Newton-Raphson iteration;

– the EM convergence is linear as

(θ(k+1) − θ̂n)/(θ
(k) − θ̂n) becomes a constant when

convergence;

– the convergence in the Newton-Raphson iteration is

quadratic in the sense (θ(k+1) − θ̂n)/(θ
(k) − θ̂n)

2

becomes a constant when convergence;

– the EM is much less complex than the

Newton-Raphson iteration and this is the advantage

of using the EM algorithm.
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• More example

– the example of exponential mixture model: Suppose

Y ∼ Pθ where Pθ has density

pθ(y) =
{
pλe−λy + (1− p)µe−µy

}
I(y > 0)

and θ = (p, λ, µ) ∈ (0, 1)× (0,∞)× (0,∞). Consider

estimation of θ based on Y1, ..., Yn i.i.d pθ(y). Solving

the likelihood equation using the Newton-Raphson is

much computation involved.
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EM algorithm: the complete data X = (Y,∆) ∼ pθ(x) where

pθ(x) = pθ(y, δ) = (pye−λy)δ((1− p)µe−µy)1−δ.

This is natural from the following mechanism: ∆ is a bernoulli

variable with P (∆ = 1) = p and we generate Y from Exp(λ) if

∆ = 1 and from Exp(µ) if ∆ = 0. Thus, ∆ is missing. The score

equation for θ based on X is equal to

0 = l̇p(X1, ..., Xn) =
n∑

i=1

{
∆i

p
− 1−∆i

1− p

}
,

0 = l̇λ(X1, ..., Xn) =

n∑
i=1

∆i(
1

λ
− Yi),

0 = l̇µ(X1, ..., Xn) =
n∑

i=1

(1−∆i)(
1

µ
− Yi).
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M-step solves the equations

0 =
n∑

i=1

E

[{
∆i

p
− 1−∆i

1− p

}
|Y1, ..., Yn, p(k), λ(k), µ(k)

]

=
n∑

i=1

E

[{
∆i

p
− 1−∆i

1− p

}
|Yi, p(k), λ(k), µ(k)

]
,

0 =
n∑

i=1

E

[
∆i(

1

λ
− Yi)|Y1, ..., Yn, p(k), λ(k), µ(k)

]

=

n∑
i=1

E

[
∆i(

1

λ
− Yi)|Yi, p(k), λ(k), µ(k)

]
,

0 =
n∑

i=1

E

[
1−∆i)(

1

µ
− Yi)|Y1, ..., Yn, p(k), λ(k), µ(k)

]

=
n∑

i=1

E

[
1−∆i)(

1

µ
− Yi)|Yi, p(k), λ(k), µ(k)

]
.
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This immediately gives

p(k+1) =
1

n

n∑
i=1

E[∆i|Yi, p(k), λ(k), µ(k)],

λ(k+1) =

∑n
i=1E[∆i|Yi, p(k), λ(k), µ(k)]∑n

i=1 YiE[∆i|Yi, p(k), λ(k), µ(k)]
,

µ(k+1) =

∑n
i=1E[(1−∆i)|Yi, p(k), λ(k), µ(k)]∑n

i=1 YiE[(1−∆i)|Yi, p(k), λ(k), µ(k)]
.

The conditional expectation

E[∆|Y, θ] = pλe−λY

pλe−λY + (1− p)µe−µY
.

As seen above, the EM algorithm facilitates the computation.
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Information Calculation in EM
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• Notation

– l̇c as the score function for θ in the full data;

– l̇mis|obs as the score for θ in the conditional

distribution of Ymis given Yobs;

– l̇obs as the the score for θ in the distribution of Yobs.

l̇c = l̇mis|obs + l̇obs.

V ar(l̇c) = V ar(E[l̇c|Yobs]) + E[V ar(l̇c|Yobs)].
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• Information in the EM algorithm

We obtain the following Louis formula

Ic(θ) = Iobs(θ) + E[Imis|obs(θ, Yobs)].

Thus, the complete information is the summation of the

observed information and the missing information.

One can even show when the EM converges, the

convergence linear rate, denote as (θ(k+1) − θ̂n)/(θ
(k) − θ̂n)

approximates the 1− Iobs(θ̂n)/Ic(θ̂n).
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Nonparametric Maximum Likelihood Estimation
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• First example

Let X1, ..., Xn be i.i.d random variables with common

distribution F , where F is any unknown distribution

function. The likelihood function for F is given by

Ln(F ) =
n∏

i=1

f(Xi),

where f(Xi) is the density function of F with respect to

some dominating measure.

However, the maximum of Ln(F ) does not exists.

We instead maximize an alternative function

L̃n(F ) =
n∏

i=1

F{Xi},
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where F{Xi} denotes the value F (Xi)− F (Xi−).
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• Second example

Suppose X1, ..., Xn are i.i.d F and Y1, ..., Yn are i.i.d G.

We observe i.i.d pairs (Z1,∆1), ..., (Zn,∆n), where

Zi = min(Xi, Yi) and ∆i = I(Xi ≤ Yi). We can think Xi

as survival time and Yi as censoring time. Then it is easy

to calculate the joint distributions for (Zi,∆i),

i = 1, ..., n, is equal to

Ln(F,G) =
n∏

i=1

{f(Zi)(1−G(Zi))}∆i {(1− F (Zi))g(Zi)}1−∆i

Ln(F,G) does not have the maximum so we consider an

alternative function
n∏

i=1

{F{Zi}(1−G(Zi))}∆i {(1− F (Zi))G{Zi}}1−∆i .
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• Third example

Suppose T is survival time and Z is covariate. Assume

T |Z has a conditional hazard function

λ(t|Z) = λ(t)eθ
TZ .

Then the likelihood function from n i.i.d

(Ti, Zi), i = 1, ..., n is given by

Ln(θ,Λ) =
n∏

i=1

{
λ(Ti) exp{−Λ(Ti)e

θTZi}f(Zi)
}
.

Note f(Zi) is not informative about θ and λ so we can

discard it from the likelihood function. Again, we replace
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λ{Ti} by Λ{Ti} and obtain a modified function

L̃n(θ,Λ) =
n∏

i=1

{
Λ{Ti} exp{−Λ(Ti)e

θTZi}
}
.

Let pi = Λ{Ti} we maximize

n∏
i=1

pi exp{−(
∑

Yj≤Yi

pj)e
θTZi}


or its logarithm as

n∑
i=1

θTZi − exp{θTZi}
∑

Yj≤Yi

pj + log pj

 .
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• Fourth example

We consider X1, ..., Xn are i.i.d F and Y1, ..., Yn are i.i.d

G. We only observe (Yi,∆i) where ∆i = I(Xi ≤ Yi) for

i = 1, ..., n. This data is one type of interval censored

data (or current status data). The likelihood for the

observations is
n∏

i=1

{
F (Yi)

∆i(1− F (Yi))
1−∆ig(Yi)

}
.

To derive the NPMLE for F and G, we instead maximize
n∏

i=1

{
P∆i
i (1− Pi)

1−∆iqi
}
,

subject to the constraint that
∑

qi = 1 and 0 ≤ Pi ≤ 1

increases with Yi.
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Clearly, q̂i = 1/n (suppose Yi are all different). This

constrained maximization turns out to be solved by the

following steps:

(i) Plot the points (i,
∑

Yj≤Yi
∆j), i = 1, ..., n. This is

called the cumulative sum diagram.

(ii) Form the H∗(t), the greatest the convex minorant of

the cumulative sum diagram.

(iii) Let P̂i be the left derivative of H∗ at i.

Then (P̂1, ..., P̂n) maximizes the object function.
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• Summary of NPMLE

– The NPMLE is a generalization of the maximum

likelihood estimation in the parametric model the

semiparametric or nonparametric models.

– We replace the functional parameter by an empirical

function with jumps only at observed data and

maximize a modified likelihood function.

– Both computation of the NPMLE and the asymptotic

property of the NPMLE can be difficult and vary for

different specific problems.
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Alternative Efficient Estimation
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• One-step efficient estimation

– start from a strongly consistent estimator for

parameter θ, denoted by θ̃n, assuming that

|θ̃n − θ0| = Op(n
−1/2).

– One-step procedure is a one-step Newton-Raphson

iteration in solving the likelihood score equation;

θ̂n = θ̃n −
{
l̈n(θ̃n)

}−1
l̇n(θ̃n),

where l̇n(θ) is the sore function and l̈n(θ) is the

derivative of l̇n(θ).
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• Result about the one-step estimation

Theorem 5.6 Let lθ(X) be the log-likelihood function of

θ. Assume that there exists a neighborhood of θ0 such

that in this neighborhood, |l(3)θ (X)| ≤ F (X) with

E[F (X)] < ∞. Then
√
n(θ̂n − θ0) →d N(0, I(θ0)

−1),

where I(θ0) is the Fisher information.
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Proof Since θ̃n →a.s. θ0, we perform the Taylor expansion on the

right-hand side of the one-step equation and obtain

θ̂n = θ̃n −
{
l̈n(θ̃n)

}{
l̇n(θ0) + l̈n(θ

∗)(θ̃n − θ0)
}

where θ∗ is between θ̃n and θ0. ⇒

θ̂n − θ0 =

[
I −

{
l̈n(θ̃n)

}−1

l̈n(θ
∗)

]
(θ̃n − θ0)−

{
l̈n(θ̃n)

}
l̇n(θ0).

On the other hand, by the condition that |l(3)θ (X)| ≤ F (X) with

E[F (X)] <∞,

1

n
l̈n(θ

∗) →a.s. E[l̈θ0(X)],
1

n
l̈n(θ̃n) →a.s. E[l̈θ0(X)].

⇒

θ̂n − θ0 = op(|θ̃n − θ0|)−
{
E[l̈θ0(X)] + op(1)

}−1 1

n
l̇n(θ0).
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• Sightly different one-step estimation

θ̂n = θ̃n + I(θ̃n)
−1l̇(θ̃n).

• Other efficient estimation

the Bayesian estimation method (posterior mode,

minimax estimator etc.)
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• Conclusions

– The maximum likelihood approach provides a natural

and simple way of deriving an efficient estimator.

– Other estimation approaches are possible for efficient

estimation such as one-step estimation, Bayesian

estimation etc.

– Generalization from parametric models to

semiparametric or nonparametric models. How?
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READING MATERIALS: Ferguson, Sections 16-20,

Lehmann and Casella, Sections 6.2-6.7


