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e Goal

MLE is asymptotically efficient estimator under some
regularity conditions.
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e Basic setting

Suppose X1, ..., X, are i.i.d from Fj, in the model P.
(A0). 0 #£ 0* implies Py # Py« (identifiability).
(Al). Py has a density function py with respect to a

dominating o-finite measure .
(A2). The set {z : pg(x) > 0} does not depend on 6.
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e MLE definition
1=1 1=1

L,(0) and [,,(0) are called the likelihood function and the
log-likelihood function of 0, respectively.

An estimator 0, of 0o is the maximum likelihood
estimator (MLE) of f, if it maximizes the likelihood
function L, (6).
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Ad Hoc Arguments
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V0, — 0p) =4 N(0,1(65)7")
~ Consistency: 6,, — 6, (no asymptotic bias)

— Efficiency: asymptotic variance attains efficiency
bound I(6y)~*.
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e Consistency

Definition 5.1 Let P be a probability measure and let
() be another measure on (€2, .4) with densities p and q
with respect to a o-finite measure p (u = P + ) always
works). P(€2) =1 and Q(€2) < 1. Then the
Kullback-Leibler information K (P, Q) is

p(X)
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Proposition 5.1 K (P, Q) is well-defined, and
K(P,Q) > 0. K(P,Q) =0 if and only if P = Q.

Proof
By the Jensen’s inequality,
q(X) q(X)
K(P,Q) = FEp|—1 > —logF = —1 Q) > 0.

The equality holds if and only if p(z) = Mq(x) almost surely with
respect P and Q(2) =1

P=0Q.
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e Why is MLE consistent?

Suppose én — @*. Then we would expect to the both

sides converge to

E90 [pH* (X)] > E90 [p90 (X)]v
which implies K (Fy,, Pyp+) < 0.

A

From Prop. 5.1, Py, = Fy+. From A0, 0* = 6y. That is, 0,

converges to 6.

10
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e Why is MLE efficient?

Suppose 0,, — 0o. 0, solves the following likelihood (or
score) equations

Taylor expansion at 6y:
—S gy (X Z lo-(X:)(6 — 6y),
i=1

where 6* is between 6 and 0.

V(0 —6y) = —\/15 {n‘lélé* (Xi)} {ii:z'go(xi)} .
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J1(0, — 6y) is asymptotically equivalent to
1 & :
= I(0p) e, (X5).
p>

Then 6, is an asymptotically linear estimator of 6, with
the influence function I(6y)"'ly, = I(-, Py, |0, P).

12



CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION

Consistency Results

13
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Theorem 5.1 Consistency with dominating
function

Suppose that

(a) © is compact.

(b) log pg(x) is continuous in € for all x.
(¢) There exists a function F(x) such that

Fy, | F(X)] < 0o and |logpy(z)| < F(x) for all x and 6.
Then én —a.s. (90.

14
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Proof

For any sample w € €, 0, is compact. By choosing a subsequence,
én — 0*.

If 2370 1l (Xi) = Eg,[lo~(X)], then since

1 — 1 —
—EJAXi>—§j X;),
n - 9n( ) = n i:1 90( )

Eg, [lo~ (X)] > Eg,[lo, (X)].
0* = 6y. Done!

It remains to show P,[l; (X)] =237, lg (Xi) = By lo~ (X)].

n

It suffices to show

P [15(X)] — Eayl13(X)]] — 0.

15
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We can even prove the following uniform convergence result

sup [P, [lo(X)] — Eg, [lo(X)]| = 0.
0coO

Define

(.0, p) = Wi 3 (lo () — g [lo (X)]).

Since ly is continuous, ¥ (x, 6, p) is measurable and by the DCT,
Ey, [Y(X,0,p)] decreases to Ey,[lg(x) — Eg,[lo(X)]] = 0.
for € > 0, for any 6 € O, there exists a pg such that

By [1(X, 6, po)] < e.

16
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The union of {0" : |6/ — 0| < pg} covers ©. By the compactness of
©, there exists a finite number of 04, ..., 6,, such that

O C U™ {010 — 6] < p.}.

sup {Pullo(X)] = Egyllo(X)]} < 1§g£mPn[¢(X>9wei)]-

lim sup sup {P,[lg(X)] — Ep, [lo(X)]} < sup Py|e(X,0;,p0,)] < €.

n 0cO 1<i<m

lim sup,, supyce {Prllo(X)] — Eg,[lo(X)]} < 0. Similarly,
lim sup,, sSupgee {—Pnrllo(X)] + Eg, [lo(X)]} > 0.

lim Sug |Pn[l9 (X)] — E90 [l@ (X)H — 0.
IS

17
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Theorem 5.2 Wald’s Consistency © is compact.
Suppose 0 — lg(x) = log ps(x) is upper-semicontinuous
for all z, in the sense lim supy 4 lo/(z) < lg(x). Suppose
for every sufficient small ball U C 0,

Eg, [supgcy lor(X)] < oo. Then 6, —, 6.

18
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Proof

FEo,llg, (X)] > Eg,ller(X)] for any 0" # 0
there exists a ball Uy, containing 6’ such that

E90 [190 (X)] > E9o[ sup l@* (X)]
Q*EUQ/

Otherwise, there exists a sequence 6 — 6’ but
Eg,lg, (X)] < Eg,lg= (X)]. Since lg= (x) < supyy lg (X) where U’ is
the ball satistfying the condition,

lim sup EQO [l@;kn (X)] S EQO [lim sup l@;kn (X)] S EQO [19/ (X)]

m m

FEo,llo, (X)] < Eg,ller(X)] contradiction!

19
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For any e, the balls Uy Uy covers the compact set © N {|0" —bOy| > €}
there exists a finite covering balls, Uy, ..., U,,.

P(|0,, — o] > €) < P(|9/§1;I>|> Py llo (X)) = Pullg, (X)])

< P( max P,|sup lg/(X)] > Pylls, (X)])
1<i<m 0’eU;

< ZP(Pn[;lelg lo/(X)] > Py, (X)]).

Since

Pn[ Sup lo: (X)] —a.s. EQO[ Sup lo: (X)] < E90 [leo (X)]a
0'cU; 0'ecU,

the right-hand side converges to zero. 0,, —p 0.

20
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Asymptotic Efficiency Result

21
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Theorem 5.3 Suppose that the model P = {F,: 0 € ©}
is Hellinger differentiable at an inner point 6, of © C R*.
Furthermore, suppose that there exists a measurable
function F' with Ey [F?] < oo such that for every #; and
65 in a neighborhood of 6,

| log pa, (x) — log p, ()| < F(x)|01 — 62].

If the Fisher information matrix I(6y) is nonsingular and

A

6,, is consistent, then
\/_((9 — (90 Z 1 90 1l90 ) + OPGO(l)'

In particular, v/n(6, — 0y) —q N(0,1(6y)71).
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Proof
For any h,, — h, by the Hellinger differentiability,

Wn = 2 <\/peo—|—hn/\/R — 1) — th.QO, n LQ(PQO).
Do,

V(108 pg, 1, /i — 108 Dg,) = 2v/nlog(l + Wy, /2) —, kT ly,.

Eo, [\/ﬁ(Pn — P)[Vn(108 Py, +n. /i — 108 Pay ) — hTz'go]] =0

Varg, [ﬁ(Pn — P)[Vn(108 pg, 41, /it — 108 Poy ) — th'QO]] 0.

V(P — P)[Vn(10g gy, /i — 108 pe,) — h' lgg] = 0.

23
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From Step I in proving Theorem 4.1,

l0g Py +h, /v/7 Tj 17
logH o800, \FZh Loy (Xi) = 5 hT1(80)h + 0py, (1).

nkae, [log pg,+n, /ym — 10gpe,] — —h ' I(00)h/2.

nPn 108 Payin, /n — 108 Po,] = ——hTI(HO) + hi/n(Py, — P)lg,]

+0p00 (1)

Choose h,, = /n(0,, — 0y) and h,, = I(00) "' /n(P,, — P)l[ly,].

WP log g, ~log pu,] = 5 (V(Po—P)lia]} T 1(00) " {V(Po—P)lis, )

T 0pg, (1)
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Compare the above two equations:

_% {\/ﬁ(én —0) + 1(6p) v/n(P,,

< {Vi(b — 80) + 1(80) ' V/n(P,
+op, (1) > 0.

Vn(On — 00) = —1(60) " v/n(Pn,

~ P)lia)} 1(60)
~ P)lia,) }

P)[lg,] + 0py, (1).

25
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Theorem 5.4 For each 6 in an open subset of Euclidean
space. Let 8 — lp(z) = log pe(z) be twice continuously
differentiable for every x. Suppose Fjy, [igoi’eo] < 0o and
Elly,] exists and is nonsingular. Assume that the second
partial derivative of ly(x) is dominated by a fixed
integrable function F(x) for every # in a neighborhood of
6y. Suppose 0, —p, 0p. Then

\/ﬁ(én — 90) (E90 190 i Z l90 _I_ Opa, (1)

26
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Proof
O solves 0 =31 [5(X;).

l\Dlr—\

0= loo(Xi)+ > g, (0
1 =1 1=1

{ Zleo }9n—eo>—iziao<xi>|<izF(X».

(0n — 60) = op(1).

n -

V(B — o) {1 Sy (X) + op<1>} === > I, (X))

{Zz“’”} (6, — ).

27
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Computation of MLE

28
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e Solve likelihood equation

— Newton-Raphson iteration: at kth iteration,

1
9(k+1) — (9(’9) _ {n Z Z@(k) (Xz)} {n Z le(k) (Xz)} :
1=1 1=1

— Note —= 37, Lo (X;) =~ T(0®). = Fisher scoring
algorithm:

1.
gD = g ¢ (g~ {n > g (Xz-)} .

29
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e Optimize the likelihood function

optimum search algorithm: grid search, quasi-Newton
method (gradient decent algorithm), MCMC, simulation

annealing

30
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EM Algorithm for Missing Data

31
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When part of data is missing or some mis-measured data
1s observed, a commonly used algorithm is called the

expectation-maximization (EM) algorithm.

e Framework of EM algorithm
- Y = (Ymi87 Y;)bs)°

— R is a vector of 0/1 indicating which subjects are
missing/not missing. Then Y,,, = RY.

— the density function for the observed data (Y, R)

| OGO PRIY )Y

32
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e Missing mechanism

Missing at random assumption (MAR):

P(R|Y) = P(R|Yuys) and P(R|Y) does not depend on 6;
1.e., the missing probability only depends on the observed
data and it is informative about 0.

Under MAR,
/ F(Y:0)dY,m P(R|Y).
sz’s

We maximize

| FO0)dY or Tog [ f(V10)dVoe
Ymis

Ymis

33
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e Details of EM algorithm

We start from any initial value of 8 and use the
following iterations. The kth iteration consists both

E-step and M-step:
E-step. We evaluate the conditional expectation

E [log f(Y;60)[Yops, 0]

Jy,llog FY50)]f (Y5 00)dY s

E |l Y:60 }/08 H(k) —
{ng( 1 0)[Yobs, ] Fy.. f(Y;06)dY,,;s

34
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M-step. We obtain 0%+ by maximizing
E |log f(Y'; 0)[Yops, 0%
We then iterate till the convergence of 6; i.e., the

difference between % +1) and #® is less than a given

criteria.

35
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e Rationale why EM works
Theorem 5.5 At each iteration of the EM algorithm,

log f(Yops: 0% TDY > log f(Yops, 6F))

and the equality holds if and only if ++1) = gk),

36
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Proof

E [log FY; 0% Y, 9<k>] >E [log F (Y50 [Yops, e“ﬂ .

E {log f(sz's |Y0bs§ 0(k+1))‘Yobsa Q(k)} + log f(Yobs; 9(k+1))

> E {log f(sz's ‘Yob& 9<k))|Y0b37 H(k)] + log f(Yobs; e(k))

B (108 f (Vonis| Yops: 6841 [Yop, 6
<FE [log f(Ymis|Yob379(k))‘Yob379“{)} :
log f(Yops;: 0FT1)) > log f(Yops, 0F)). The equality holds iff
l0g f (Yimis|Yobs: 8 ) = 10g f(Yomis|Yons, 0P)),

log f(Y;0%HD) =log f(Y;6)).

37
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e Incorporating Newton-Raphson in EM

E-step. We evaluate the conditional expectation

8
(k)

and

82
£ [ O 08 (V16)] Vi 0 >]

38
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M-step. We obtain 8%+ by solving

0

=F
-5 |5

l0g F(V'50)[Yons, 0 >]

using one-step Newton-Raphson iteration:

9 —1
D = i) {E [5; 108 (Y 0) Yo, e<k>] }

0
(k)
x E [ 5108 f(Y;0)[Yops, 6 ] |

9—0 (k)"

39



CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION

e Example

— Suppose a random vector Y has a multinomial

distribution with n = 197 and
1 8 1—-01-66
p=Gr T w)
Then the probability for Y = (y1, y2, ¥3, y4) is given by

n! 1 6, 1—-60._ 1—-60_ 10
—— (5 + _)yl( )92( )y3(_)y4_
Y1:Y2:Ysz-Y4- 2 4 4 4 4

Suppose we observe Y = (125, 18,20, 34). If we start
with 6 = 0.5, after the convergence in the

Newton-Raphson iteration, we obtain
9% = 0.6268215.
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— EM algorithm: the full data is X has a multivariate
normal distribution with n and the

p=(1/2,0/4,(1—0)/4,(1—0)/4,0/4).
Y = (X1 + Xo, X3, X4, Xs).

41
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The score equation for the complete data X is simple

 Xo+ X5 X3+ Xy

0 0 1—-106

M-step of the EM algorithm needs to solve the equation

Xo+ X Xa+ X
0—E 2;‘ 5 i+94‘Y79(k)3

while the E-step evaluates the above expectation.

1/2 o) /4

E[X|Y.0%)] = (Y, Y,
XY =M wm e M a em

}Glalégaxzﬁ)-

g(k)/4

olk+1) _ E[Xs + X5[Y, 0] B Yiimremya TYa
- - (k) :
E[Xy+ X5+ X3+ XulY, 0]y, orgts + Yo+ Ya 4 Y4

We start form (1) = 0.5.



CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION

L | glk+1) glk+1) _ p(k) Gg:jigf%
0 | .500000000 | .126821498 | .1465

1 | 608247423 | .018574075 | .1346

2 | .624321051 | .002500447 | .1330

3 | .626488879 | .000332619 | .1328

4 | .626777323 | .000044176 | .1328

5 | .626815632 | .000005866 | .1328

6 | .626820719 | .000000779

7 | .626821395 | .000000104

8 | .626821484 | .000000014

43
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e Conclusions

— the EM converges and the result agrees with what is
obtained form the Newton-Raphson iteration:;

— the EM convergence is linear as
(0% —0,) /(6% — @) becomes a constant when

convergence;

— the convergence in the Newton-Raphson iteration is
quadratic in the sense (0%+1) —0,)/(0%) —9,)?

becomes a constant when convergence;

— the EM is much less complex than the
Newton-Raphson iteration and this is the advantage
of using the EM algorithm.

44
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e More example

— the example of exponential mixture model: Suppose
Y ~ Py where By has density

po(y) = {pAe™ + (1 = p)ue ™} I(y > 0)

and 0 = (p, A\, 1) € (0,1) x (0,00) x (0,00). Consider
estimation of 6 based on Y7, ..., Y, i.i.d ps(y). Solving
the likelihood equation using the Newton-Raphson is

much computation involved.

45
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EM algorithm: the complete data X = (Y, A) ~ pg(x) where

po(w) = po(y,d) = (pye )’ ((1 — p)ue )12,

This is natural from the following mechanism: A is a bernoulli
variable with P(A = 1) = p and we generate Y from Exp(\) if
A =1 and from Exp(u) if A = 0. Thus, A is missing. The score

equation for 6 based on X is equal to

. (A 1= A
O:lp(Xl,...,Xn):Z{ - }

. 1
0=1Ix(X1,....X,) = ZAi(X ~Y)),

0=1,(X1, .. Xp) = (1_Ai)(% —Yi).

46
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M-step solves the equations

& A, 11— A
0=> E L LYy, Y, p R AR “f)]
i=1 [{ p L=p }| 1 ! g

- A, 1—A;
1
0=) E [Ai(X - Y;)|v3, ...,Yn,p<k>,A<’“>,u<k>]
1

_ 1
=1

& 1

=) F [1 — A (= — Y;)|l/;,p(k),)\(k),u(k)] .
. 7
1=1

47
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This immediately gives

1 mn
p(k+1) _ - ZE[AHYLP(R),)\(%),M(M],
i=1
Soiq BIAY;, p®) AR (R)]
Iu(k—|—1) Z?_ E[(l — )|Y p(k) A (F) M(k)]
Zz 1 YE[( )’Yz,p(k) A(E) ,u(k)]

The conditional expectation

A+

pAe—AY
PAeY 1 (1 — pluehY

E[A]Y, 0] =

As seen above, the EM algorithm facilitates the computation.

48



CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION

Information Calculation in EM

49
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e Notation
— [ as the score function for # in the full data;

— jmi5|obs as the score for 6 in the conditional
distribution of Y,,,;, given Y, ,;

— iobs as the the score for 0 in the distribution of Y.

l.c — l.mis\obs -+ Z.obs-

Var(l,) = Var(E[l.|Yows]) + E[Var(le|Yos)]-
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e Information in the EM algorithm
We obtain the following Louis formula
Ic<(9) — obs(e) + E[Imis|obs(97 ifobs)]-
Thus, the complete information is the summation of the

observed information and the missing information.

One can even show when the EM converges, the
convergence linear rate, denote as (0*+D —4,)/(®) —4,)
approximates the 1 — ]Obs(én)/lc(én).
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Nonparametric Maximum Likelihood Estimation

52
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e First example

Let X4, ..., X,, beiid random variables with common
distribution F', where F' is any unknown distribution
function. The likelihood function for F'is given by

where f(X;) is the density function of F' with respect to

some dominating measure.
However, the maximum of L, (F) does not exists.

We instead maximize an alternative function

Lo(F) = f[lF{Xz-},

53
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where F{X;} denotes the value F(X;) — F(X;—).

54
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e Second example

Suppose X1, ..., X,, are i.i.d F' and Y7, ....Y,, are i.i.d G.
We observe i.i.d pairs (21, Aq), ..., (Zn, Ay), where

Z; =min(X;,Y;) and A; = I(X; <Y;). We can think X;
as survival time and Y; as censoring time. Then it is easy
to calculate the joint distributions for (Z;, A;),

1 =1,...,n, 1s equal to

L(F.G) = [T{S(Z)(1 = GUZ)Y {(1 = F(Z)alZ))

L,(F,G) does not have the maximum so we consider an

alternative function

n

[[{F{Z}(1 = G(Z)}* {(1 - F(Z)G{Z}} ™.

1=1

55
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e Third example

Suppose 1’ is survival time and Z is covariate. Assume
T|Z has a conditional hazard function

At Z) = At)e? 2.

Then the likelihood function from n i.i.d
(T, Z;),1 = 1,...,n is given by

n

La(0,A) = TT{NT) exp{~A(T)e" %} £(Z)}

i=1
Note f(Z;) is not informative about # and A so we can
discard it from the likelihood function. Again, we replace

56
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MT;} by A{T;} and obtain a modified function

n

La(0.A) = TT{MT} exp{-A(T))e”" 7} ).

1=1

Let p;, = AM{T;} we maximize

ﬁ {pz- exp{—( > _ pj)eeTZ’i}}

i=1 Y; <Y;

or its logarithm as

i=1 Y;<Y;

> {HTZZ- —exp{0'Z;} > p;+ logpj} .

57
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e Fourth example

We consider X4, ..., X,, are 1.i.d F' and Y73, ....Y,, are 1.i.d
G. We only observe (Y;, A;) where A; = I[(X; <Y;) for
v = 1, ...,n. This data is one type of interval censored
data (or current status data). The likelihood for the
observations is

n

[T{F(v)2 (- F(¥)) ~2g(v))}.

i=1
To derive the NPMLE for F' and G, we instead maximize

[I{P>( - Py},

i=1
subject to the constraint that > ¢; =1 and 0 < P, <1
increases with Y.
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Clearly, ¢; = 1/n (suppose Y; are all different). This
constrained maximization turns out to be solved by the

following steps:
(i) Plot the points (2,3 y, <y, A;),4 = 1,...,n. This is
called the cumulative sum diagram.

(ii) Form the H*(t), the greatest the convex minorant of

the cumulative sum diagram.
(iii) Let P; be the left derivative of H* at i.

Then (151, ..., P,) maximizes the object function.

59
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e Summary of NPMLE

— The NPMLE is a generalization of the maximum
likelihood estimation in the parametric model the

semiparametric or nonparametric models.

— We replace the functional parameter by an empirical
function with jumps only at observed data and
maximize a modified likelihood function.

— Both computation of the NPMLE and the asymptotic
property of the NPMLE can be difficult and vary for
different specific problems.
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Alternative Efficient Estimation

61
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e One-step efficient estimation

— start from a strongly consistent estimator for
parameter 6, denoted by 6,,, assuming that

6, — 05] = O, (n112).

— One-step procedure is a one-step Newton-Raphson
iteration in solving the likelihood score equation;
where ln(ﬁ) is the sore function and ln(Q) is the
derivative of ,,(6).
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e Result about the one-step estimation

Theorem 5.6 Let [(X) be the log-likelihood function of
6. Assume that there exists a neighborhood of 6, such
that in this neighborhood, |I5”(X)| < F(X) with
F[F(X)] < co. Then

V(0, — 0y) —q N(0,1(6,)7Y),

where () is the Fisher information.

63



CHAPTER 5 MAXIMUM LIKELIHOOD ESTIMATION

Proof Since én —ra.s. 0o, we perform the Taylor expansion on the
right-hand side of the one-step equation and obtain

O = B — {10 (0) } {1 (00) + (076 — 0) }
where 0* is between 6,, and 6.
b b0 = | 1= {10} 16| @~ 00) {120} (00)

On the other hand, by the condition that |lé3)(X)| < F(X) with

E[F(X)] < oo,
%;‘n(e*) o Bl (X)), %Zn(éﬂ) a5, Ellgy (X)),

b~ 0 = 0, (1 — b0l) — { Blia, (X)) + 0 (1)} i (00).
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e Sightly different one-step estimation

~

0, =0, + 1(0,)711(8,).

e Other efficient estimation

the Bayesian estimation method (posterior mode,

minimax estimator etc.)
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e Conclusions

— The maximum likelihood approach provides a natural
and simple way of deriving an efficient estimator.

— Other estimation approaches are possible for efficient
estimation such as one-step estimation, Bayesian

estimation etc.

— (eneralization from parametric models to

semiparametric or nonparametric models. How?
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READING MATERIALS: Ferguson, Sections 16-20,
Lehmann and Casella, Sections 6.2-6.7
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