POINT ESTIMATION AND EFFICIENCY

- Introduction

Goal of statistical inference: estimate and infer quantities of interest using experimental or observational data

- a class of statistical models used to model data generation process (statistical modeling)
- the "best" method used to derive estimation and inference (statistical inference: point estimation and hypothesis testing)
- validation of models (model selection)
- What about estimation?
- One good estimation approach should be able to estimate model parameters with reasonable accuracy
- should be somewhat robust to intrinsic random mechanism
- an ideally best estimator should have no bias and have the smallest variance in any finite sample
- alternatively, one looks for an estimator which has no bias and has the smallest variance in large sample

Probabilistic Models

A model \mathcal{P} is a collection of probability distributions describing data generation.

Parameters of interest are simply some functionals on \mathcal{P}, denoted by $\nu(P)$ for $P \in \mathcal{P}$.

- Examples
- a non-negative r.v. X (survival time, size of growing cell etc.)
Case A. Models: $X \sim$ Exponential $(\theta), \theta>0$ $\mathcal{P}=\left\{p_{\theta}(x): p_{\theta}(x)=\theta e^{-\theta x} I(x \geq 0), \theta>0\right\} \mathcal{P}$ is a parametric model. $\nu\left(p_{\theta}\right)=\theta$.
Case B. $\mathcal{P}=\left\{p_{\lambda, G}: p_{\lambda, G}=\int_{0}^{\infty} \lambda \exp \{-\lambda x\} d G(\lambda)\right.$, $\lambda \in R, G$ is any distribution function $\}. \mathcal{P}$ is a semiparametric model. $\nu\left(p_{\lambda, G}\right)=\lambda$ or G.
Case $C . \mathcal{P}$ consists of all distribution function in $[0, \infty) . \mathcal{P}$ is a nonparametric model.
$\nu(P)=\int x d P(x)$.
- Suppose that $X=(Y, Z)$ is a random vector on $R^{+} \times R^{d}$ (Y survival time, Z a number of covariates) Case $A . Y \mid Z=z \sim \operatorname{Exponential}\left(\lambda e^{\theta^{\prime} z}\right)$ A parametric model with parameter space $\Theta=R^{+} \times R^{d}$. Case B. $Y \mid Z=z \sim \lambda(y) e^{\theta^{\prime} z} \exp \left\{-\Lambda(y) e^{\theta^{\prime} z}\right\}$ where $\Lambda(y)=\int_{0}^{y} \lambda(y) d y$ and is unknown. A semiparametric model, the Cox proportional hazards model for survival analysis, with parameter space $(\theta, \lambda) \in R \times\left\{\lambda(y): \lambda(y) \geq 0, \int_{0}^{\infty} \lambda(y) d y=\infty\right\}$. Case C. $X \sim P$ on $R^{+} \times R^{d}$ where P is completely arbitrary. This is a nonparametric model.
- Suppose $X=(Y, Z)$ is a random vector in $R \times R^{d}(Y$ response, Z covariates)
Case A.

$$
Y=\theta^{\prime} Z+\epsilon, \quad \theta \in R^{d}, \epsilon \sim N\left(0, \sigma^{2}\right) .
$$

This is a parametric model with parameter space $(\theta, \sigma) \in R^{d} \times R^{+}$.
Case B.

$$
Y=\theta^{\prime} Z+\epsilon, \quad \theta \in R^{d}, \epsilon \sim G \text { independent of } Z
$$

This is a semiparametric model with parameters (θ, g).
Case C. Suppose $X=(Y, Z) \sim P$ where P is an arbitrary probability distribution on $R \times R^{d}$.

- A general rule for choosing statistical models
- models should obey scientific rules
- models should be flexible enough but parsimonious
- statistical inference for models is feasible

Review of Estimation Methods

- Least Squares Estimation
- Suppose n i.i.d observations $\left(Y_{i}, Z_{i}\right), i=1, \ldots, n$, are generated from the distribution in Example 1.3.

$$
\min _{\theta} \sum_{i=1}^{n}\left(Y_{i}-\theta^{\prime} Z_{i}\right)^{2}, \quad \hat{\theta}=\left(\sum_{i=1}^{n} Z_{i} Z_{i}^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} Z_{i} Y_{i}\right) .
$$

- More generally, suppose $Y=g(X)+\epsilon$ where g is unknown. Estimating g can be done by minimizing $\sum_{i=1}^{n}\left(Y_{i}-g\left(X_{i}\right)\right)^{2}$.
- Problem with the latter: the minimizer is not unique and not applicable

UMVUE

- Ideal estimator
- is unbiased, $E[T]=\theta$;
- has the smallest variance among all the unbiased estimators;
- is called the UMVUE estimator.
- may not exist; but for some models from exponential family, it exists.
- Definition

Definition 4.1 Sufficiency and Completeness For θ, $T(X)$ is
a sufficient statistic, if $X \mid T(X)$ does not depend on θ; a minimal sufficient statistic, if for any sufficient statistic
U there exists a function H such that $T=H(U)$;
a complete statistic, if for any measurable function g, $E_{\theta}[g(T(X))]=0$ for any θ implies $g=0$, where E_{θ} denotes the expectation under the density function with parameter θ.

- Sufficiency and factorization
$T(X)$ is sufficient if and only if $p_{\theta}(x)$ can be factorized in to $g_{\theta}(T(x)) h(x)$.
- Sufficiency in exponential family

Recall the canonical form of an exponential family:

$$
p_{\eta}(x)=h(x) \exp \left\{\eta_{1} T_{1}(x)+\ldots \eta_{s} T_{s}(x)-A(\eta)\right\} .
$$

It is called full rank if the parameter space for $\left(\eta_{1}, \ldots, \eta_{s}\right)$ contains an s-dimensional rectangle.

Minimal sufficiency in exponential family $T(X)=\left(T_{1}, \ldots, T_{s}\right)$ is minimally sufficient if the family is full rank.

Completeness in exponential Family If the exponential family is of full-rank, $T(X)$ is a complete statistic.

- Property of sufficiency and completeness

Rao-Blackwell Theorem Suppose $\hat{\theta}(X)$ is an unbiased estimator for θ. If $T(X)$ is a sufficient statistics of X, then $E[\hat{\theta}(X) \mid T(X)]$ is unbiased and moreover,

$$
\operatorname{Var}(E[\hat{\theta}(X) \mid T(X)]) \leq \operatorname{Var}(\hat{\theta}(X)),
$$

with the equality if and only if with probability 1 , $\hat{\theta}(X)=E[\hat{\theta}(X) \mid T(X)]$.

Proof

$E[\hat{\theta}(X) \mid T]$ is clearly unbiased.

By Jensen's inequality,

$$
\begin{gathered}
\operatorname{Var}(E[\hat{\theta}(X) \mid T])=E\left[(E[\hat{\theta}(X) \mid T])^{2}\right]-E[\hat{\theta}(X)]^{2} \\
\leq E\left[\hat{\theta}(X)^{2}\right]-\theta^{2}=\operatorname{Var}(\hat{\theta}(X)) .
\end{gathered}
$$

The equality holds if and only if $E[\hat{\theta}(X) \mid T]=\hat{\theta}(X)$ with probability 1.

- Ancillary statistics

A statistic V is called ancillary if V 's distribution does not depend on θ.

Basu's Theorem If T is a complete sufficient statistic for the family $\mathcal{P}=\left\{p_{\theta}, \theta \in \Omega\right\}$, then for any ancillary statistic V, V is independent of T.

Proof

For any $B \in \mathcal{B}$, let $\eta(t)=P_{\theta}(V \in B \mid T=t)$.
$\Rightarrow E_{\theta}[\eta(T)]=P_{\theta}(V \in B)=c_{0}$ does not depend on θ.
\Rightarrow

$$
E_{\theta}\left[\eta(T)-c_{0}\right]=0 \Rightarrow \eta(T)=c_{0} .
$$

$\Rightarrow P_{\theta}(V \in B \mid T=t)$ is independent of t.

- UMVUE based on complete sufficient statistics

Proposition 4.1 Suppose $\hat{\theta}(X)$ is an unbiased estimator for θ; i.e., $E[\hat{\theta}(X)]=\theta$. If $T(X)$ is a sufficient statistic of X, then $E[\hat{\theta}(X) \mid T(X)]$ is unbiased. Moreover, for any unbiased estimator of $\theta, \tilde{T}(X)$,

$$
\operatorname{Var}(E[\hat{\theta}(X) \mid T(X)]) \leq \operatorname{Var}(\tilde{T}(X))
$$

with the equality if and only if with probability 1 , $\tilde{T}(X)=E[\hat{\theta}(X) \mid T(X)]$.

Proof

For any unbiased estimator for $\theta, \tilde{T}(X)$,
$\Rightarrow E[\tilde{T}(X) \mid T(X)]$ is unbiased and

$$
\operatorname{Var}(E[\tilde{T}(X) \mid T(X)]) \leq \operatorname{Var}(\tilde{T}(X))
$$

$E[E[\tilde{T}(X) \mid T(X)]-E[\hat{\theta}(X) \mid T(X)]]=0$ and $E[\tilde{T}(X) \mid T(X)]$ and $E[\hat{\theta}(X) \mid T(X)]$ are independent of θ.

The completeness of $T(X)$ gives that

$$
\begin{gathered}
E[\tilde{T}(X) \mid T(X)]=E[\hat{\theta}(X) \mid T(X)] . \\
\Rightarrow \operatorname{Var}(E[\hat{\theta}(X) \mid T(X)]) \leq \operatorname{Var}(\tilde{T}(X)) .
\end{gathered}
$$

The above arguments show such a UMVUE is unique.

- Two methods in deriving UMVUE

Method 1:

- find a complete and sufficient statistics $T(X)$;
- find a function of $T(X), g(T(X))$, such that $E[g(T(X))]=\theta$.

Method 2:

- find a complete and sufficient statistics $T(X)$;
- find an unbiased estimator for θ, denoted as $\tilde{T}(X)$;
- calculate $E[\tilde{T}(X) \mid T(X)]$.
- Example
- X_{1}, \ldots, X_{n} are i.i.d $\sim U(0, \theta)$. The joint density of X_{1}, \ldots, X_{n} :

$$
\frac{1}{\theta^{n}} I\left(X_{(n)}<\theta\right) I\left(X_{(1)}>0\right)
$$

$X_{(n)}$ is sufficient and complete (check).
$-E\left[X_{1}\right]=\theta / 2$. A UMVUE for $\theta / 2$ is given by

$$
E\left[X_{1} \mid X_{(n)}\right]=\frac{n+1}{n} \frac{X_{(n)}}{2} .
$$

- The other way is to directly find a function $g\left(X_{(n)}\right)=\theta / 2$ by noting

$$
\begin{gathered}
E\left[g\left(X_{(n)}\right)\right]=\frac{1}{\theta^{n}} \int_{0}^{\theta} g(x) n x^{n-1} d x=\theta / 2 . \\
\int_{0}^{\theta} g(x) x^{n-1} d x=\frac{\theta^{n+1}}{2 n} . \\
\Rightarrow g(x)=\frac{n+1}{n} \frac{x}{2} .
\end{gathered}
$$

Other Estimation Methods

- Robust estimation
- (least absolute estimation) $Y=\theta^{\prime} X+\epsilon$ where $E[\epsilon]=0$.
LSE is sensitive to outliers. One robust estimator is to minimize $\sum_{i=1}^{n}\left|Y_{i}-\theta^{\prime} X_{i}\right|$.
- A more general objective function is to minimize

$$
\sum_{i=1}^{n} \phi\left(Y_{i}-\theta^{\prime} X_{i}\right),
$$

where $\phi(x)=|x|^{k},|x| \leq C$ and $\phi(x)=C^{k}$ when $|x|>C$ (Huber estimators).

- Estimating functions (equations)
- The estimator solves an equation

$$
\sum_{i=1}^{n} f\left(X_{i} ; \theta\right)=0 .
$$

- $f(X ; \theta)$ satisfies $E_{\theta}[f(X ; \theta)]=0$.

Rationale: $n^{-1} \sum_{i=1}^{n} f\left(X_{i} ; \theta\right) \rightarrow_{\text {a.s. }} E_{\theta}[f(X ; \theta)]$.

- Examples
- In a linear regression example, for any function $W(X), E\left[X W(X)\left(Y-\theta^{\prime} X\right)\right]=0$. Thus an estimating equation for θ can be constructed as

$$
\sum_{i=1}^{n} X_{i} W\left(X_{i}\right)\left(Y_{i}-\theta^{\prime} X_{i}\right)=0
$$

- Still in the regression example but we now assume the median of ϵ is zero. It is easy to see that $E\left[X W(X) \operatorname{sign}\left(Y-\theta^{\prime} X\right)\right]=0$. Then an estimating equation for θ can be constructed as

$$
\sum_{i=1}^{n} X_{i} W\left(X_{i}\right) \operatorname{sign}\left(Y_{i}-\theta^{\prime} X_{i}\right)=0
$$

- Maximum likelihood estimation (MLE)
- MLE is the most commonly use estimator;
- it is likelihood-based;
- it possesses a nice asymptotic optimality.
- Example
- Suppose X_{1}, \ldots, X_{n} are i.i.d. observations from $\exp (\theta)$.

$$
\begin{aligned}
& \quad L_{n}(\theta)=\theta^{n} \exp \left\{-\theta\left(X_{1}+\ldots+X_{n}\right)\right\} . \\
& \Rightarrow \hat{\theta}=\bar{X}
\end{aligned}
$$

- Suppose $\left(Y_{1}, Z_{1}\right), \ldots,\left(Y_{n}, Z_{n}\right)$ are i.i.d with density function

$$
\lambda(y) e^{\theta^{\prime} z} \exp \left\{-\Lambda(y) e^{\theta^{\prime} z}\right\} g(z)
$$

where $g(z)$ is the known density function of $Z=z$.

$$
L_{n}(\theta, \lambda)=\prod_{i=1}^{n}\left\{\lambda\left(Y_{i}\right) e^{\theta^{\prime} Z_{i}} \exp \left\{-\Lambda\left(Y_{i}\right) e^{\theta^{\prime} Z_{i}}\right\} g\left(Z_{i}\right)\right\}
$$

- The maximum likelihood estimators for (θ, λ) do not exist.
- One way is to let Λ be a step function with jumps at Y_{1}, \ldots, Y_{n} and let $\lambda\left(Y_{i}\right)$ be the jump size, denoted as p_{i}. Then the likelihood function becomes

$$
L_{n}\left(\theta, p_{1}, \ldots, p_{n}\right)=\prod_{i=1}^{n}\left\{p_{i} e^{\theta^{\prime} Z_{i}} \exp \left\{-\sum_{Y_{j} \leq Y_{i}} p_{j} e^{\theta^{\prime} Z_{i}}\right\} g\left(Z_{i}\right)\right\} .
$$

- The maximum likelihood estimators for $\left(\theta, p_{1}, \ldots, p_{n}\right)$ are given as: $\hat{\theta}$ solves the equation

$$
\sum_{i=1}^{n}\left[Z_{i}-\frac{\sum_{Y_{j} \geq Y_{i}} Z_{j} e^{\theta^{\prime} Z_{j}}}{\sum_{Y_{j} \geq Y_{i}} e^{\theta^{\prime} Z_{j}}}\right]=0
$$

and

$$
p_{i}=\frac{1}{\sum_{Y_{j} \geq Y_{i}} e^{\theta^{\prime} Z_{j}}} .
$$

- Bayesian estimation
- The parameter θ in the model distribution $\left\{p_{\theta}(x)\right\}$ is treated as a random variable with some prior distribution $\pi(\theta)$.
- The estimator for θ is defined as a value depending on the data and minimizing the expected loss function or the maximal loss function, where the loss function is denoted as $l(\theta, \hat{\theta}(X))$.
- The usual loss function includes the quadratic loss $(\theta-\hat{\theta}(X))^{2}$, the absolute loss $|\theta-\hat{\theta}(X)|$, etc.
- It often turns out that $\hat{\theta}(X)$ can be determined from the posterior distribution
$P(\theta \mid X)=P(X \mid \theta) P(\theta) / P(X)$.
- Example
- Suppose $X \sim N(\mu, 1)$. μ has an improper prior distribution and is uniform in $(-\infty, \infty)$. It is clear that the estimator $\hat{\theta}(X)$, minimizing the quadratic loss $E\left[(\theta-\hat{\theta}(X))^{2}\right]$, is the posterior mean $E[\theta \mid X]=X$.
- Non-exhaustive list of estimation methods
- Other likelihood based estimation: partial likelihood estimation, conditional likelihood estimation, profile likelihood estimation, quasi-likelihood estimation, pseudo-likelihood estimation, penalized likelihood estimation
- Other non-likelihood based estimation: rank-based estimation (R-estimation), L-estimation, empirical Bayesian estimation, minimax estimation, estimation under invariance principle
- A brief summary
- no clear distinction among all the methods
- each method has its own advantage
- two points should be considered in choosing which method (estimator):
(a) nice theoretical property, for example, unbiasedness (consistency), minimal variance, minimizing some loss function, asymptotic optimality
(b) convenience in numerical calculation

Cramér-Rao Bounds for Parametric Models

A simple case: one-dimensional parametric model $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$ with $\Theta \subset R$.
Question: how well can one estimator be?

- Some basic assumptions
$-X \sim P_{\theta}$ on (Ω, \mathcal{A}) with $\theta \in \Theta$.
- $p_{\theta}=d P_{\theta} / d \mu$ exists where μ is a σ-finite dominating measure.
- $T(X) \equiv T$ estimates $q(\theta)$ and has $E_{\theta}[|T(X)|]<\infty$; set $b(\theta)=E_{\theta}[T]-q(\theta)$.
- $q^{\prime}(\theta) \equiv \dot{q}(\theta)$ exists.
- C-R information bound

Theorem 4.1 Information bound, Cramér-Rao

 Inequality Suppose:(C1) Θ is an open subset of the real line.
(C2) There exists a set B with $\mu(B)=0$ such that for $x \in B^{c}, \partial p_{\theta}(x) / \partial \theta$ exists for all θ. Moreover, $A=\left\{x: p_{\theta}(x)=0\right\}$ does not depend on θ.
(C3) $I(\theta)=E_{\theta}\left[\dot{l}_{\theta}(X)^{2}\right]>0$ where $\dot{l}_{\theta}(x)=\partial \log p_{\theta}(x) / \partial \theta$.
Here, $I(\theta)$ is the called the Fisher information for θ and \dot{i}_{θ} is called the score function for θ.
(C4) $\int p_{\theta}(x) d \mu(x)$ and $\int T(x) p_{\theta}(x) d \mu(x)$ can both be differentiated with respect to θ under the integral sign. (C5) $\int p_{\theta}(x) d \mu(x)$ can be differentiated twice under the integral sign.

If (C1)-(C4) hold, then

$$
\operatorname{Var}_{\theta}(T(X)) \geq \frac{\{\dot{q}(\theta)+\dot{b}(\theta)\}^{2}}{I(\theta)}
$$

and the lower bound is equal to $\dot{q}(\theta)^{2} / I(\theta)$ if T is unbiased. Equality holds for all θ if and only if for some function $A(\theta)$, we have

$$
\dot{i}_{\theta}(x)=A(\theta)\left\{T(x)-E_{\theta}[T(X)]\right\}, \quad \text { a.e. } \mu .
$$

If, in addition, (C5) holds, then

$$
I(\theta)=-E_{\theta}\left\{\frac{\partial^{2}}{\partial \theta^{2}} \log p_{\theta}(X)\right\}=-E_{\theta}\left[\ddot{l}_{\theta}(X)\right]
$$

Proof

Note

$$
q(\theta)+b(\theta)=\int T(x) p_{\theta}(x) d \mu(x)=\int_{A^{c} \cap B^{c}} T(x) p_{\theta}(x) d \mu(x)
$$

\Rightarrow from (C2) and (C4),

$$
\dot{q}(\theta)+\dot{b}(\theta)=\int_{A^{c} \cap B^{c}} T(x) \dot{l}_{\theta}(x) p_{\theta}(x) d \mu(x)=E_{\theta}\left[T(X) \dot{l}_{\theta}(X)\right]
$$

$$
\int_{A^{c} \cap B^{c}} p_{\theta}(x) d \mu(x)=1 \Rightarrow
$$

$$
0=\int_{A^{c} \cap B^{c}} \dot{i}_{\theta}(x) p_{\theta}(x) d \mu(x)=E_{\theta}\left[\dot{l}_{\theta}(X)\right]
$$

\Rightarrow

$$
\dot{q}(\theta)+\dot{b}(\theta)=\operatorname{Cov}\left(T(X), \dot{l}_{\theta}(X)\right)
$$

By the Cauchy-Schwartz inequality, \Rightarrow

$$
|\dot{q}(\theta)+\dot{b}(\theta)| \leq \operatorname{Var}(T(X)) \operatorname{Var}\left(\dot{l}_{\theta}(X)\right)
$$

The equality holds if and only if

$$
\dot{l}_{\theta}(X)=A(\theta)\left\{T(X)-E_{\theta}[T(X)]\right\}, \text { a.s. }
$$

If (C5) holds, differentiate

$$
0=\int i_{\theta}(x) p_{\theta}(x) d \mu(x)
$$

\Rightarrow

$$
0=\int \ddot{l}_{\theta}(x) p_{\theta}(x) d \mu(x)+\int \dot{i}_{\theta}(x)^{2} p_{\theta}(x) d \mu(x)
$$

$\Rightarrow I(\theta)=-E_{\theta}\left[\ddot{l}_{\theta}(X)\right]$.

- Examples for calculating bounds
- Suppose X_{1}, \ldots, X_{n} are i.i.d Poisson (θ).

$$
\begin{gathered}
i_{\theta}\left(X_{1}, \ldots, X_{n}\right)=\frac{n}{\theta}\left(\bar{X}_{n}-\theta\right) \\
I_{n}(\theta)=n^{2} / \theta^{2} \operatorname{Var}\left(\bar{X}_{n}\right)=n / \theta
\end{gathered}
$$

Note \bar{X}_{n} is the UMVUE of θ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\theta / n$. We conclude that \bar{X}_{n} attains the lower bound.
However, although $T_{n}=\bar{X}_{n}^{2}-n^{-1} \bar{X}_{n}$ is UMVUE of
θ^{2}, we find $\operatorname{Var}\left(T_{n}\right)=4 \theta^{3} / n+2 \theta^{2} / n^{2}>$ the
Cramér-Rao lower bound for θ^{2}. In other words, some UMVUEs attain the lower bound but some do not.

- Suppose X_{1}, \ldots, X_{n} are i.i.d with density $p_{\theta}(x)=g(x-\theta)$ where g is a known density. This family is the one-dimensional location model. Assume g^{\prime} exists and the regularity conditions in Theorem 3.1 are satisfied. Then

$$
I_{n}(\theta)=n E_{\theta}\left[\frac{g^{\prime}(X-\theta)^{2}}{g(X-\theta)}\right]=n \int \frac{g^{\prime}(x)^{2}}{g(x)} d x .
$$

Note the information does not depend on θ.

- Suppose X_{1}, \ldots, X_{n} are i.i.d with density $p_{\theta}(x)=g(x / \theta) / \theta$ where g is a known density function. This model is a one-dimensional scale model with the common shape g. It is direct to calculate

$$
I_{n}(\theta)=\frac{n}{\theta^{2}} \int\left(1+y \frac{g^{\prime}(y)}{g(y)}\right)^{2} g(y) d y .
$$

Generalization to Multi-parameter Family

$\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta \subset R^{k}\right\}$.

- Basic assumptions

Assume that P_{θ} has density function p_{θ} with respect to some σ-finite dominating measure $\mu ; T(X)$ is an estimator for $q(\theta)$ with $E_{\theta}[|T(X)|]<\infty$ and $b(\theta)=E_{\theta}[T(X)]-q(\theta)$ is the bias of $T(X) ; \dot{q}(\theta)=\nabla q(\theta)$ exists.

- Information bound

Theorem 4.2 Information inequality Suppose that (M1) Θ an open subset in R^{k}.
(M2) There exists a set B with $\mu(B)=0$ such that for $x \in B^{c}, \partial p_{\theta}(x) / \partial \theta_{i}$ exists for all θ and $i=1, \ldots, k$. The set $A=\left\{x: p_{\theta}(x)=0\right\}$ does no depend on θ.
(M3) The $k \times k$ matrix
$I(\theta)=\left(I_{i j}(\theta)\right)=E_{\theta}\left[\dot{i}_{\theta}(X) \dot{l}_{\theta}(X)^{\prime}\right]>0$ is positive definite, where

$$
\dot{i}_{\theta_{i}}(x)=\frac{\partial}{\partial \theta_{i}} \log p_{\theta}(x)
$$

Here, $I(\theta)$ is called the Fisher information matrix for θ and \dot{i}_{θ} is called the score for θ.
(M4) $\int p_{\theta}(x) d \mu(x)$ and $\int T(x) p_{\theta}(x) d \mu(x)$ can both be
differentiated with respect to θ under the integral sign. (M5) $\int p_{\theta}(x) d \mu(x)$ can be differentiated twice with respect to θ under the integral sign.
If (M1)-(M4) holds, than

$$
\operatorname{Var}_{\theta}(T(X)) \geq(\dot{q}(\theta)+\dot{b}(\theta))^{\prime} I^{-1}(\theta)(\dot{q}(\theta)+\dot{b}(\theta))
$$

and this lower bound is equal $\dot{q}(\theta)^{\prime} I(\theta)^{-1} \dot{q}(\theta)$ if $T(X)$ is unbiased. If, in addition, (M5) holds, then

$$
I(\theta)=-E_{\theta}\left[\ddot{l}_{\theta \theta}(X)\right]=-\left(E_{\theta}\left\{\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log p_{\theta}(X)\right\}\right) .
$$

Proof Under (M1)-(M4),

$$
\dot{q}(\theta)+\dot{b}(\theta)=\int T(x) \dot{i}_{\theta}(x) p_{\theta}(x) d \mu(x)=E_{\theta}\left[T(x) \dot{i}_{\theta}(X)\right] .
$$

From $\int p_{\theta}(x) d \mu(x)=1,0=E_{\theta}\left[\dot{i}_{\theta}(X)\right]$.

$$
\begin{aligned}
& \left|\{\dot{q}(\theta)+\dot{b}(\theta)\}^{\prime} I(\theta)^{-1}\{\dot{q}(\theta)+\dot{b}(\theta)\}\right| \\
= & \left|E_{\theta}\left[T(X)(\dot{q}(\theta)+\dot{b}(\theta))^{\prime} I(\theta)^{-1} \dot{i}_{\theta}(X)\right]\right| \\
= & \left|\operatorname{Cov}_{\theta}\left(T(X),(\dot{q}(\theta)+\dot{b}(\theta))^{\prime} I(\theta)^{-1} \dot{i}_{\theta}(X)\right)\right| \\
\leq & \sqrt{\operatorname{Var}_{\theta}(T(X))(\dot{q}(\theta)+\dot{b}(\theta))^{\prime} I(\theta)^{-1}(\dot{q}(\theta)+\dot{b}(\theta))} .
\end{aligned}
$$

Under (M5), differentiate $\int \dot{i}_{\theta}(x) p_{\theta}(x) d \mu(x)=0$
\Rightarrow

$$
I(\theta)=-E_{\theta}\left[\ddot{I}_{\theta \theta}(X)\right]=-\left(E_{\theta}\left\{\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log p_{\theta}(X)\right\}\right) .
$$

- Examples
- The Weibull family \mathcal{P} is the parametric model with densities

$$
p_{\theta}(x)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\} I(x \geq 0)
$$

with respect to the Lebesgue measure where $\theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)$.

$$
\begin{gathered}
i_{\alpha}(x)=\frac{\beta}{\alpha}\left\{\left(\frac{x}{\alpha}\right)^{\beta}-1\right\}, \\
i_{\beta}(x)=\frac{1}{\beta}-\frac{1}{\beta} \log \left\{\left(\frac{x}{\alpha}\right)^{\beta}\right\}\left\{\left(\frac{x}{\alpha}\right)^{\beta}-1\right\} .
\end{gathered}
$$

\Rightarrow the Fisher information matrix is

$$
I(\theta)=\left(\begin{array}{cc}
\beta^{2} / \alpha^{2} & -(1-\gamma) / \alpha \\
-(1-\gamma) / \alpha & \left\{\pi^{2} / 6+(1-\gamma)^{2}\right\} / \beta^{2}
\end{array}\right),
$$

where γ is Euler's constant ($\gamma \approx 0.5777 \ldots$...). The computation of $I(\theta)$ is simplified by noting that $Y \equiv(X / \alpha)^{\beta} \sim \operatorname{Exponential}(x)$.

Efficient Influence Function and Score Function

- Definition
- $T(X)=\dot{q}(\theta)^{\prime} I^{-1}(\theta) \dot{i}_{\theta}(X)$, the latter is called the efficient influence function for estimating $q(\theta)$ and its variance, which is equal to $\dot{q}(\theta)^{\prime} I(\theta)^{-1} \dot{q}(\theta)$, is called the information bound for $q(\theta)$.
- Notation

If we regard $q(\theta)$ as a function on all the distributions of
\mathcal{P} and denote $\nu\left(P_{\theta}\right)=q(\theta)$, then

- the efficient influence function is represented as $\tilde{l}\left(X, P_{\theta} \mid \nu, \mathcal{P}\right)$
- the information bound for $q(\theta)$ is denoted as $I^{-1}\left(P_{\theta} \mid \nu, \mathcal{P}\right)$
- Invariance property

Proposition 4.3 The information bound $I^{-1}(P \mid \nu, \mathcal{P})$ and the efficient influence function $\tilde{l}(\cdot, P \mid \nu, \mathcal{P})$ are invariant under smooth changes of parameterization.

Proof

Suppose $\gamma \mapsto \theta(\gamma)$ is a one-to-one continuously differentiable mapping of an open subset Γ of R^{k} onto Θ with nonsingular differential $\dot{\theta}$.

The model of distribution can be represented as $\left\{P_{\theta(\gamma)}: \gamma \in \Gamma\right\}$.

The score for γ is $\dot{\theta}(\gamma) \dot{l}_{\theta}(X) \Rightarrow$ the information matrix for γ is equal to $I(\gamma)=\dot{\theta}(\gamma)^{\prime} I(\theta) \dot{\theta}(\gamma)$.

Under the new parameterization, the information bound for $q(\theta)=q(\theta(\gamma))$ is

$$
(\dot{q}(\theta(\gamma)) \dot{\theta}(\gamma))^{\prime} I(\gamma)^{-1}(\dot{q}(\theta(\gamma)) \dot{\theta}(\gamma))=\dot{q}(\theta)^{\prime} I(\theta)^{-1} \dot{q}(\theta)
$$

which is the same as the information matrix for $\theta=\theta(\gamma)$.

The efficient influence function for γ is equal to

$$
(\dot{\theta}(\gamma) \dot{q}(\theta(\gamma)))^{\prime} I(\gamma)^{-1} \dot{l}_{\gamma}=\dot{q}(\theta)^{\prime} I(\theta)^{-1} \dot{i}_{\theta}
$$

and it is the same as the efficient influence function for θ.

- Canonical parameterization
$\theta^{\prime}=\left(\nu^{\prime}, \eta^{\prime}\right)$ and $\nu \in \mathcal{N} \subset R^{m}, \eta \in \mathcal{H} \subset R^{k-m} . \nu$ can be regarded as a map mapping P_{θ} to one component of θ, ν, and it is the parameter of interest while η is a nuisance parameter.

Information bound in presence of nuisance parameter

Goal: want to assess the cost of not knowing η by comparing the information bounds and the efficient influence functions for ν in the model \mathcal{P} (η is unknown parameter) and $\mathcal{P}_{\eta}(\eta$ is known and fixed $)$.

Case I: η is unknown parameter

$$
\begin{gathered}
i_{\theta}=\binom{i_{1}}{i_{2}}, \quad \tilde{l}_{\theta}=\binom{\tilde{l}_{1}}{\tilde{l}_{2}} \\
I(\theta)=\left(\begin{array}{ll}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{array}\right),
\end{gathered}
$$

where $I_{11}=E_{\theta}\left[\dot{l}_{1} \dot{l}_{1}^{\prime}\right], I_{12}=E_{\theta}\left[\dot{l}_{1} \dot{l}_{2}^{\prime}\right], I_{21}=E_{\theta}\left[\dot{l}_{2} \dot{l}_{1}^{1}\right]$, and $I_{22}=E_{\theta}\left[\dot{i}_{2} i_{2}^{\prime}\right]$.

$$
I^{-1}(\theta)=\left(\begin{array}{cc}
I_{11 \cdot 2}^{-1} & -I_{11 \cdot 2}^{-1} I_{12} I_{22}^{-1} \\
-I_{22 \cdot 1}^{-1} I_{21} I_{11}^{-1} & I_{22 \cdot 1}^{-1}
\end{array}\right) \equiv\left(\begin{array}{cc}
I^{11} & I^{12} \\
I^{21} & I^{22}
\end{array}\right),
$$

where $I_{11 \cdot 2}=I_{11}-I_{12} I_{22}^{-1} I_{21}, \quad I_{22 \cdot 1}=I_{22}-I_{21} I_{11}^{-1} I_{12}$.

- Conclusions in Case I
- The information bound for estimating ν is equal to

$$
I^{-1}\left(P_{\theta} \mid \nu, \mathcal{P}\right)=\dot{q}(\theta)^{\prime} I^{-1}(\theta) \dot{q}(\theta)
$$

where $q(\theta)=\nu$, and $\dot{q}(\theta)=\left(\begin{array}{ll}I_{m \times m} & 0_{m \times(k-m)}\end{array}\right), \Rightarrow$

$$
I^{-1}\left(P_{\theta} \mid \nu, \mathcal{P}\right)=I_{11 \cdot 2}^{-1}=\left(I_{11}-I_{12} I_{22}^{-1} I_{21}\right)^{-1} .
$$

- The efficient influence function for ν is given by

$$
\tilde{l}_{1}=\dot{q}(\theta)^{\prime} I^{-1}(\theta) \dot{l}_{\theta}=I_{11 \cdot 2}^{-1} \dot{l}_{1}^{*},
$$

where $\dot{l}_{1}^{*}=\dot{l}_{1}-I_{12} I_{22}^{-1} \dot{l}_{2}$. It is easy to check

$$
I_{11 \cdot 2}=E\left[l_{1}^{*}\left(i_{1}^{*}\right)^{\prime}\right] .
$$

Thus, l_{1}^{*} is called the efficient score function for ν in \mathcal{P}.

Case II: η is known and fixed

- The information bound for ν is just I_{11}^{-1},
- The efficient influence function for ν is equal to $I_{11}^{-1} \dot{l}_{1}$.

Comparison

- knowing η increases the Fisher information for ν and decreases the information bound for ν,
- knowledge of η does not increase information about ν if and only if $I_{12}=0$. In this case, $\tilde{l}_{1}=I_{11}^{-1} \dot{l}_{1}$ and $l_{1}^{*}=l_{1}$.

Examples

- Suppose

$$
\mathcal{P}=\left\{P_{\theta}: p_{\theta}=\phi((x-\nu) / \eta) / \eta, \nu \in R, \eta>0\right\} .
$$

Note that

$$
\dot{l}_{\nu}(x)=\frac{x-\nu}{\eta^{2}}, \quad \dot{l}_{\eta}(x)=\frac{1}{\eta}\left\{\frac{(x-\nu)^{2}}{\eta^{2}}-1\right\}
$$

Then the information matrix $I(\theta)$ is given by by

$$
I(\theta)=\left(\begin{array}{cc}
\eta^{-2} & 0 \\
0 & 2 \eta^{-2}
\end{array}\right) .
$$

Then we can estimate the ν equally well whether we know the variance or not.

- If we reparameterize the above model as

$$
P_{\theta}=N\left(\nu, \eta^{2}-\nu^{2}\right), \eta^{2}>\nu^{2} .
$$

An easy calculation shows that
$I_{12}(\theta)=\nu \eta /\left(\eta^{2}-\nu^{2}\right)^{2}$. Thus lack of knowledge of η in this parameterization does change the information bound for estimation of ν.

- Geometric interpretation

Theorem 4.3

(A) The efficient score function $\dot{l}_{1}^{*}\left(\cdot, P_{\theta} \mid \nu, \mathcal{P}\right)$ is the projection of the score function \dot{l}_{1} on the orthocomplement of $\left[i_{2}\right]$ in $L_{2}\left(P_{\theta}\right)$, where $\left[i_{2}\right]$ is the linear span of the components of \dot{l}_{2}.
(B) The efficient influence function $\tilde{l}\left(\cdot, P_{\theta} \mid \nu, \mathcal{P}_{\eta}\right)$ is the projection of the efficient influence function \tilde{l}_{1} on $\left[\dot{i}_{1}\right]$ in $L_{2}\left(P_{\theta}\right)$.

Proof (A) The projection of $\dot{1}_{1}$ on $\left[i_{2}\right]$ is equal to $\Sigma \dot{i}_{2}$ for some matrix Σ.
Since $E\left[\left(i_{1}-\Sigma i_{2}\right) \dot{l}_{2}^{\prime}\right]=0, \Sigma=I_{12} I_{22}^{-1}$, and thus the projection on the orthocomplement of $\left[i_{2}\right]$ is equal to

$$
\dot{i}_{1}-I_{12} I_{22}^{-1} i_{2}=\dot{i}_{1}^{*} .
$$

(B)

$$
\begin{aligned}
\tilde{l}_{1}=I_{11 \cdot 2}^{-1}\left(i_{1}-I_{12} I_{22}^{-1} \dot{l}_{2}\right) & =\left(I_{11}^{-1}+I_{11}^{-1} I_{12} I_{22 \cdot 1}^{-1} I_{21} I_{11}^{-1}\right)\left(\dot{l}_{1}-I_{12} I_{22}^{-1} \dot{l}_{2}\right) \\
& =I_{11}^{-1} \dot{l}_{1}-I_{11}^{-1} I_{12} \tilde{l}_{2} .
\end{aligned}
$$

From (A), \tilde{l}_{2} is orthogonal to \dot{l}_{1}, the projection of \tilde{l}_{1} on $\left[\dot{l}_{1}\right]$ is equal $I_{11}^{-1} i_{1}=\tilde{l}\left(\cdot, P_{\theta} \mid \nu, \mathcal{P}_{\eta}\right)$.

term	notation	\mathcal{P} $(\eta$ unknown $)$	\mathcal{P}_{η} $(\eta$ known $)$
efficient score	$i_{1}^{*}(, P \mid \nu, \cdot)$	$i_{1}^{*}=i_{1}-I_{12} I_{22}^{-1} i_{2}$	i_{1}
information	$I(P \mid \nu, \cdot)$	$E\left[i_{1}^{*}\left(i_{1}^{*}\right)^{\prime}\right]=I_{11}-I_{12} I_{22}^{-1} I_{21}$	I_{11}
efficient influence information	$\tilde{l}_{1}(\cdot, P \mid \nu, \cdot)$	$\tilde{l}_{1}=I^{11} i_{1}+I^{12} i_{2}=I_{11}^{-1} i_{1}-I_{11}^{-1} I_{12} \tilde{l}_{2}$	$I_{11}^{-1} i_{1}$
information bound	$I_{11}^{-1}(P \mid \nu, \cdot)$	$I_{11}^{11}=I_{11}^{-1}$ $=I_{11}^{-1}+I_{11}^{-1} I_{12} I_{22 \cdot 1}^{-1} I_{21} I_{11}^{-1}$	I_{11}^{-1}

Asymptotic Efficiency Bound

- Motivation
- The Cramér-Rao bound can be considered as the lower bound for any unbiased estimator in finite sample. One may ask whether such a bound still holds in large sample.
- To be more specific, we suppose X_{1}, \ldots, X_{n} are i.i.d P_{θ} $(\theta \in R)$ and an estimator T_{n} for θ satisfies that

$$
\sqrt{n}\left(T_{n}-\theta\right) \rightarrow_{d} N\left(0, V(\theta)^{2}\right) .
$$

- Question: $V(\theta)^{2} \geq 1 / I(\theta)$?
- Super-efficient estimator (Hodge's estimator) Let X_{1}, \ldots, X_{n} be i.i.d $N(\theta, 1)$ so that $I(\theta)=1$. Let $|a|<1$ and define

$$
\begin{aligned}
& T_{n}=\left\{\begin{array}{cc}
\bar{X}_{n} & \text { if }\left|\bar{X}_{n}\right|>n^{-1 / 4} \\
a \bar{X}_{n} & \text { if }\left|\bar{X}_{n}\right| \leq n^{-1 / 4} .
\end{array}\right. \\
& \sqrt{n}\left(T_{n}-\theta\right)=\sqrt{n}\left(\bar{X}_{n}-\theta\right) I\left(\left|\bar{X}_{n}\right|>n^{-1 / 4}\right) \\
& +\sqrt{n}\left(a \bar{X}_{n}-\theta\right) I\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right) \\
& =\quad{ }_{d} Z I\left(|Z+\sqrt{n} \theta|>n^{1 / 4}\right) \\
& +\{a Z+\sqrt{n}(a-1) \theta\} I\left(|Z+\sqrt{n} \theta| \leq n^{1 / 4}\right) \\
& \rightarrow \text { a.s. } Z I(\theta \neq 0)+a Z I(\theta=0) .
\end{aligned}
$$

Thus, the asymptotic variance of $\sqrt{n} T_{n}$ is equal 1 for $\theta \neq 0$ and a^{2} for $\theta=0 . T_{n}$ is a superefficient estimator.

- Locally Regular Estimator

Definition $4.2\left\{T_{n}\right\}$ is a locally regular estimator of θ at $\theta=\theta_{0}$ if, for every sequence $\left\{\theta_{n}\right\} \subset \Theta$ with $\sqrt{n}\left(\theta_{n}-\theta\right) \rightarrow t \in R^{k}$, under $P_{\theta_{n}}$,
(local regularity) $\sqrt{n}\left(T_{n}-\theta_{n}\right) \rightarrow_{d} Z$, as $n \rightarrow \infty$ where the distribution of Z depend on θ_{0} but not on t.

- Implication of LRE
- The limit distribution of $\sqrt{n}\left(T_{n}-\theta_{n}\right)$ does not depend on the direction of approach t of θ_{n} to $\theta_{0} .\left\{T_{n}\right\}$ is a locally Gaussian regular if Z has normal distribution.
$-\sqrt{n}\left(T_{n}-\theta_{n}\right) \rightarrow_{d} Z$ under $P_{\theta_{n}}$ is equivalent to saying that for any bounded and continuous function g,
$E_{\theta_{n}}\left[g\left(\sqrt{n}\left(T_{n}-\theta_{n}\right)\right)\right] \rightarrow E[g(Z)]$.
- T_{n} in the first example is not a locally regular estimator.
- Hellinger Differentiability

A model $\mathcal{P}=\left\{P_{\theta}: \theta \in R^{k}\right\}$ is a parametric model dominated by a σ-finite measure μ. It is called a Hellinger-differentiable parametric model if

$$
\left\|\sqrt{p_{\theta+h}}-\sqrt{p_{\theta}}-\frac{1}{2} h^{\prime} i_{\theta} \sqrt{p_{\theta}}\right\|_{L_{2}(\mu)}=o(|h|),
$$

where $p_{\theta}=d P_{\theta} / d \mu$.

- locally asymptotic normality (LAN)

In a model $\mathcal{P}=\left\{P_{\theta}: \theta \in R^{k}\right\}$ dominated by a σ-finite measure μ, suppose $p_{\theta}=d P_{\theta} / d \mu$. Let $l(x ; \theta)=\log p(x, \theta)$ and let

$$
l_{n}(\theta)=\sum_{i=1}^{n} l\left(X_{i} ; \theta\right)
$$

be the log-likelihood function of X_{1}, \ldots, X_{n}. The local asymptotic normality condition at θ_{0} is

$$
l_{n}\left(\theta_{0}+n^{-1 / 2} t\right)-l_{n}\left(\theta_{0}\right) \rightarrow_{d} N\left(-\frac{1}{2} t^{\prime} I\left(\theta_{0}\right) t, t^{\prime} I\left(\theta_{0}\right) t\right)
$$

under $P_{\theta_{0}}$.

Convolution Result

Theorem 4.4 (Hájek's convolution theorem) Under three regularity conditions with $I\left(\theta_{0}\right)$ nonsingular, the limit distribution of $\sqrt{n}\left(T_{n}-\theta_{0}\right)$ under $P_{\theta_{0}}$ satisfies

$$
Z={ }^{d} Z_{0}+\Delta_{0}
$$

where $Z_{0} \sim N\left(0, I^{-1}\left(\theta_{0}\right)\right)$ is independent of Δ_{0}.

- Conclusion
- the asymptotic variance of $\sqrt{n}\left(T_{n}-\theta_{0}\right)$ is larger than or equal to $I^{-1}\left(\theta_{0}\right)$;
- the Cramér-Rao bound is a lower bound for the asymptotic variances of any locally regular estimator;
- a further question is what estimator can attains this bound asymptotically (answer will be given in next chapter).
- How to check three regularity conditions?

Proposition 4.6. For every θ in an open subset of R^{k} let p_{θ} be a μ-probability density. Assume that the map $\theta \mapsto s_{\theta}(x)=\sqrt{p_{\theta}(x)}$ is continuously differentiable for every x. If the elements of the matrix $I(\theta)=E\left[\left(\dot{p}_{\theta} / p_{\theta}\right)\left(\dot{p}_{\theta} / p_{\theta}\right)^{\prime}\right]$ are well defined and continuous at θ, then the map $\theta \rightarrow \sqrt{p_{\theta}}$ is Hellinger differentiable with \dot{i}_{θ} given by $\dot{p}_{\theta} / p_{\theta}$.

Proof

$\dot{p}_{\theta}=2 s_{\theta} \dot{s}_{\theta}$
$\Rightarrow \dot{s}_{\theta}$ is zero whenever $\dot{p}_{\theta}=0$.

$$
\begin{aligned}
& \int\left\{\frac{s_{\theta+t h_{t}}-s_{\theta}}{t}\right\}^{2} d \mu=\int\left\{\int_{0}^{1}\left(h_{t}\right)^{\prime} \dot{s}_{\theta+u t h} d u\right\}^{2} d \mu \\
\leq & \iint_{0}^{1}\left(\left(h_{t}\right)^{\prime} \dot{s}_{\theta+u t h_{t}}\right)^{2} d u d \mu=\frac{1}{2} \int_{0}^{1} h_{t}^{\prime} I\left(\theta+u t h_{t}\right) h_{t} d u
\end{aligned}
$$

As $h_{t} \rightarrow h$, the right side converges to $\int\left(h^{\prime} \dot{s}_{\theta}\right)^{2} d \mu$.

Since $\frac{s_{\theta+t h_{t}}-s_{\theta}}{t}-h^{\prime} \dot{s}_{\theta} \rightarrow 0$, the same proof as Theorem $3.1(\mathrm{E})$ of Chapter 3 gives

$$
\int\left[\frac{s_{\theta+t h_{t}}-s_{\theta}}{t}-h^{\prime} \dot{s}_{\theta}\right]^{2} d \mu \rightarrow 0
$$

Proposition 4.7 If $\left\{T_{n}\right\}$ is an estimator sequence of $q(\theta)$ such that

$$
\sqrt{n}\left(T_{n}-q(\theta)\right)-\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\psi}_{\theta} I(\theta)^{-1} \dot{l}_{\theta}\left(X_{i}\right) \rightarrow_{p} 0
$$

where ψ is differentiable at θ, then T_{n} is the efficient and regular estimator for $q(\theta)$.

Proof

$" \Rightarrow "$ Let $\Delta_{n, \theta}=n^{-1 / 2} \sum_{i=1}^{n} i_{\theta}\left(X_{i}\right) . \Rightarrow \Delta_{n, \theta} \rightarrow^{d} \Delta_{\theta} \sim N(0, I(\theta))$.

From Step I of Theorem 4.4, $\log d Q_{n} / d P_{n}$ is equivalent to $h^{\prime} \Delta_{n, \theta}-h^{\prime} I(\theta) h / 2$ asymptotically.
\Rightarrow Slutsky's theorem gives that under P_{θ},

$$
\begin{gathered}
\left(\sqrt{n}\left(T_{n}-q(\theta)\right), \log \frac{d Q_{n}}{d P_{n}}\right) \rightarrow_{d}\left(\dot{\psi}_{\theta} I(\theta)^{-1} \Delta_{\theta}, h^{\prime} \Delta_{\theta}-h^{\prime} I(\theta) h / 2\right) \\
\quad \sim N\left(\binom{0}{-h^{\prime} I(\theta) h / 2},\left(\begin{array}{cc}
\dot{\psi}_{\theta} I(\theta)^{-1} \dot{\psi}_{\theta} & \dot{\psi}_{\theta} h \\
\dot{\psi}_{\theta} h^{\prime} & h^{\prime} I(\theta) h
\end{array}\right)\right)
\end{gathered}
$$

\Rightarrow From Le Cam's third lemma, under $P_{\theta+h / \sqrt{n}}, \sqrt{n}\left(T_{n}-q(\theta)\right)$ converges in distribution to $N\left(\dot{\psi}_{\theta} h, \dot{\psi}_{\theta} I(\theta)^{\prime} \dot{\psi}_{\theta}^{\prime}\right)$.
$\Rightarrow P_{\theta+h / \sqrt{n}}, \sqrt{n}\left(T_{n}-q(\theta+h / \sqrt{n})\right) \rightarrow_{d} N\left(0, \dot{\psi}_{\theta} I(\theta)^{\prime} \dot{\psi}_{\theta}^{\prime}\right)$.

- Asymptotic linear estimator

Definition 4.4 If a sequence of estimators $\left\{T_{n}\right\}$ has the expansion

$$
\sqrt{n}\left(T_{n}-q(\theta)\right)=n^{-1 / 2} \sum_{i=1}^{n} \Gamma\left(X_{i}\right)+R_{n}
$$

where R_{n} converges to zero in probability, then T_{n} is called an asymptotically linear estimator for $q(\theta)$ with influence function Γ.

Proposition 4.3 Suppose T_{n} is an asymptotically linear estimator of $\nu=q(\theta)$ with influence function Γ. Then A. T_{n} is Gaussian regular at θ_{0} if and only if $q(\theta)$ is differentiable at θ_{0} with derivative \dot{q}_{θ} and, with $\tilde{l}_{\nu}=\tilde{l}\left(\cdot, P_{\theta_{0}} \mid q(\theta), \mathcal{P}\right)$ being the efficient influence function for $q(\theta), E_{\theta_{0}}\left[\left(\Gamma-\tilde{l}_{\nu}\right) \dot{l}\right]=0$ for any score \dot{l} of \mathcal{P}. B. Suppose $q(\theta)$ is differentiable and T_{n} is regular. Then $\Gamma \in[i]$ if and only if $\Gamma=\tilde{l}_{\nu}$.

Proof

A. By asymptotic linearity of T_{n},

$$
\begin{gathered}
\binom{\sqrt{n}\left(T_{n}-q\left(\theta_{0}\right)\right)}{L_{n}\left(\theta_{0}+t_{n} / \sqrt{n}\right)-L_{n}\left(\theta_{0}\right)} \\
\rightarrow_{d} N\left\{\binom{0}{-t^{\prime} I\left(\theta_{0}\right) t},\left(\begin{array}{cc}
E_{\theta_{0}}\left[\Gamma \Gamma^{\prime}\right] & E_{\theta_{0}}\left[\Gamma i^{\prime}\right] t \\
E_{\theta_{0}}\left[i \Gamma^{\prime}\right] t & t^{\prime} I\left(\theta_{0}\right) t
\end{array}\right)\right\}
\end{gathered}
$$

From Le Cam's third lemma, $P_{\theta_{0}+t_{n} / \sqrt{n}}$,

$$
\sqrt{n}\left(T_{n}-q\left(\theta_{0}\right)\right) \rightarrow_{d} N\left(E_{\theta_{0}}\left[\Gamma^{\prime} i\right] t, E_{\theta_{0}}\left[\Gamma \Gamma^{\prime}\right]\right)
$$

If T_{n} is regular, then, under $P_{\theta_{0}+t_{n} / \sqrt{n}}$,

$$
\begin{aligned}
& \quad \sqrt{n}\left(T_{n}-q\left(\theta_{0}+t_{n} / \sqrt{n}\right)\right) \rightarrow_{d} N\left(0, E_{\theta_{0}}\left[\Gamma \Gamma^{\prime}\right]\right) . \\
& \Rightarrow \sqrt{n}\left(q\left(\theta_{0}+t_{n} / \sqrt{n}\right)-q\left(\theta_{0}\right)\right) \rightarrow E_{\theta_{0}}\left[\Gamma^{\prime} i\right] t . \\
& \Rightarrow \dot{q}_{\theta}=E_{\theta}\left[\Gamma^{\prime} i\right] . \text { Note } E_{\theta_{0}}\left[\tilde{l}_{\nu}^{\prime} i\right]=\dot{q}_{\theta} .
\end{aligned}
$$

To prove the other direction, since $q(\theta)$ is differentiable and under $P_{\theta_{0}+t_{n} / \sqrt{n}}$,

$$
\sqrt{n}\left(T_{n}-q\left(\theta_{0}\right)\right) \rightarrow_{d} N\left(E_{\theta_{0}}\left[\Gamma^{\prime} \dot{l}\right] t, E\left[\Gamma \Gamma^{\prime}\right]\right)
$$

\Rightarrow from Le Cam's third lemma, under $P_{\theta_{0}+t_{n} / \sqrt{n}}$,

$$
\sqrt{n}\left(T_{n}-q\left(\theta_{0}+t_{n} / \sqrt{n}\right)\right) \rightarrow_{d} N\left(0, E\left[\Gamma \Gamma^{\prime}\right]\right) .
$$

$\Rightarrow T_{n}$ is Gaussian regular.
B. If T_{n} is regular, from $\mathrm{A}, \Gamma-\tilde{l}_{\nu}$ is orthogonal to any score in \mathcal{P}.
$\Rightarrow \Gamma \in[\dot{l}]$ implies that $\Gamma=\tilde{l}_{\nu}$. The converse is obvious.

READING MATERIALS: Lehmann and Casella, Sections 1.6, 2.1, 2.2, 2.3, 2.5, 2.6, 6.1, 6.2, Ferguson, Chapter 19 and Chapter 20

