POINT ESTIMATION AND EFFICIENCY

• Introduction

Goal of statistical inference: estimate and infer quantities of interest using experimental or observational data

- a class of statistical models used to model data generation process (statistical modeling)
- the "best" method used to derive estimation and inference (statistical inference: point estimation and hypothesis testing)
- validation of models (model selection)

• What about estimation?

- One good estimation approach should be able to estimate model parameters with reasonable accuracy
- should be somewhat robust to intrinsic random mechanism
- an ideally best estimator should have no bias and have the smallest variance in any finite sample
- alternatively, one looks for an estimator which has no bias and has the smallest variance in large sample

Probabilistic Models

A model \mathcal{P} is a collection of probability distributions describing data generation.

Parameters of interest are simply some functionals on \mathcal{P} , denoted by $\nu(P)$ for $P \in \mathcal{P}$.

• Examples

- a non-negative r.v. X (survival time, size of growing cell etc.)

<u>Case A</u>. Models: $X \sim \text{Exponential}(\theta), \theta > 0$ $\mathcal{P} = \left\{ p_{\theta}(x) : p_{\theta}(x) = \theta e^{-\theta x} I(x \ge 0), \theta > 0 \right\} \mathcal{P} \text{ is a}$ parametric model. $\nu(p_{\theta}) = \theta$. <u>Case B.</u> $\mathcal{P} = \{p_{\lambda,G} : p_{\lambda,G} = \int_0^\infty \lambda \exp\{-\lambda x\} dG(\lambda),$ $\lambda \in R$, G is any distribution function $\{ \mathcal{P} \}$ is a semiparametric model. $\nu(p_{\lambda,G}) = \lambda$ or G. Case C. \mathcal{P} consists of all distribution function in $[0,\infty)$. \mathcal{P} is a nonparametric model. $\nu(P) = \int x dP(x).$

- Suppose that X = (Y, Z) is a random vector on $R^+ \times R^d$ (Y survival time, Z a number of covariates) Case A. $Y|Z = z \sim \text{Exponential}(\lambda e^{\theta' z})$ A parametric model with parameter space $\Theta = R^+ \times R^d$. <u>Case B.</u> $Y|Z = z \sim \lambda(y)e^{\theta' z} \exp\{-\Lambda(y)e^{\theta' z}\}$ where $\Lambda(y) = \int_0^y \lambda(y) dy$ and is unknown. A semiparametric model, the Cox proportional hazards model for survival analysis, with parameter space $(\theta, \lambda) \in R \times \{\lambda(y) : \lambda(y) \ge 0, \int_0^\infty \lambda(y) dy = \infty\}.$ Case C. $X \sim P$ on $R^+ \times R^d$ where P is completely arbitrary. This is a nonparametric model.

- Suppose X = (Y, Z) is a random vector in $R \times R^d$ (Y response, Z covariates) Case A.

$$Y = \theta' Z + \epsilon, \quad \theta \in \mathbb{R}^d, \epsilon \sim N(0, \sigma^2).$$

This is a parametric model with parameter space $(\theta, \sigma) \in \mathbb{R}^d \times \mathbb{R}^+.$ <u>Case B</u>.

 $Y = \theta' Z + \epsilon, \quad \theta \in \mathbb{R}^d, \epsilon \sim G \text{ independent of } Z.$

This is a semiparametric model with parameters (θ, g) .

<u>Case C</u>. Suppose $X = (Y, Z) \sim P$ where P is an arbitrary probability distribution on $R \times R^d$.

- A general rule for choosing statistical models
 - models should obey scientific rules
 - models should be flexible enough but parsimonious
 - statistical inference for models is feasible

Review of Estimation Methods

• Least Squares Estimation

- Suppose n i.i.d observations (Y_i, Z_i) , i = 1, ..., n, are generated from the distribution in Example 1.3.

$$\min_{\theta} \sum_{i=1}^{n} (Y_i - \theta' Z_i)^2, \quad \hat{\theta} = (\sum_{i=1}^{n} Z_i Z_i')^{-1} (\sum_{i=1}^{n} Z_i Y_i).$$

- More generally, suppose $Y = g(X) + \epsilon$ where g is unknown. Estimating g can be done by minimizing $\sum_{i=1}^{n} (Y_i - g(X_i))^2$.
- Problem with the latter: the minimizer is not unique and not applicable

UMVUE

- Ideal estimator
 - is unbiased, $E[T] = \theta$;
 - has the smallest variance among all the unbiased estimators;
 - is called the UMVUE estimator.
 - may not exist; but for some models from exponential family, it exists.

• Definition

Definition 4.1 Sufficiency and Completeness For θ , T(X) is

a sufficient statistic, if X|T(X) does not depend on θ ; a minimal sufficient statistic, if for any sufficient statistic U there exists a function H such that T = H(U); a complete statistic, if for any measurable function g, $E_{\theta}[g(T(X))] = 0$ for any θ implies g = 0, where E_{θ} denotes the expectation under the density function with parameter θ .

• Sufficiency and factorization

T(X) is sufficient if and only if $p_{\theta}(x)$ can be factorized in to $g_{\theta}(T(x))h(x)$.

• Sufficiency in exponential family

Recall the canonical form of an exponential family:

$$p_{\eta}(x) = h(x) \exp\{\eta_1 T_1(x) + \dots \eta_s T_s(x) - A(\eta)\}.$$

It is called full rank if the parameter space for $(\eta_1, ..., \eta_s)$ contains an *s*-dimensional rectangle.

Minimal sufficiency in exponential family $T(X) = (T_1, ..., T_s)$ is minimally sufficient if the family is full rank.

Completeness in exponential Family If the exponential family is of full-rank, T(X) is a complete statistic.

• Property of sufficiency and completeness

Rao-Blackwell Theorem Suppose $\hat{\theta}(X)$ is an unbiased estimator for θ . If T(X) is a sufficient statistics of X, then $E[\hat{\theta}(X)|T(X)]$ is unbiased and moreover,

 $Var(E[\hat{\theta}(X)|T(X)]) \le Var(\hat{\theta}(X)),$

with the equality if and only if with probability 1, $\hat{\theta}(X) = E[\hat{\theta}(X)|T(X)].$

Proof

```
E[\hat{\theta}(X)|T] is clearly unbiased.
```

By Jensen's inequality,

$$Var(E[\hat{\theta}(X)|T]) = E[(E[\hat{\theta}(X)|T])^2] - E[\hat{\theta}(X)]^2$$
$$\leq E[\hat{\theta}(X)^2] - \theta^2 = Var(\hat{\theta}(X)).$$

The equality holds if and only if $E[\hat{\theta}(X)|T] = \hat{\theta}(X)$ with probability 1.

• Ancillary statistics

A statistic V is called *ancillary* if V's distribution does not depend on θ .

Basu's Theorem If T is a complete sufficient statistic for the family $\mathcal{P} = \{p_{\theta}, \theta \in \Omega\}$, then for any ancillary statistic V, V is independent of T.

Proof

For any $B \in \mathcal{B}$, let $\eta(t) = P_{\theta}(V \in B | T = t)$. $\Rightarrow E_{\theta}[\eta(T)] = P_{\theta}(V \in B) = c_0$ does not depend on θ . \Rightarrow

$$E_{\theta}[\eta(T) - c_0] = 0 \Longrightarrow \eta(T) = c_0.$$

 $\Rightarrow P_{\theta}(V \in B | T = t)$ is independent of t.

• UMVUE based on complete sufficient statistics

Proposition 4.1 Suppose $\hat{\theta}(X)$ is an unbiased estimator for θ ; i.e., $E[\hat{\theta}(X)] = \theta$. If T(X) is a sufficient statistic of X, then $E[\hat{\theta}(X)|T(X)]$ is unbiased. Moreover, for any unbiased estimator of θ , $\tilde{T}(X)$,

$Var(E[\hat{\theta}(X)|T(X)]) \le Var(\tilde{T}(X)),$

with the equality if and only if with probability 1, $\tilde{T}(X) = E[\hat{\theta}(X)|T(X)].$

Proof

For any unbiased estimator for θ , $\tilde{T}(X)$, $\Rightarrow E[\tilde{T}(X)|T(X)]$ is unbiased and

 $Var(E[\tilde{T}(X)|T(X)]) \le Var(\tilde{T}(X)).$

 $E[E[\tilde{T}(X)|T(X)] - E[\hat{\theta}(X)|T(X)]] = 0$ and $E[\tilde{T}(X)|T(X)]$ and $E[\hat{\theta}(X)|T(X)]$ are independent of θ .

The completeness of T(X) gives that

 $E[\tilde{T}(X)|T(X)] = E[\hat{\theta}(X)|T(X)].$

 $\Rightarrow Var(E[\hat{\theta}(X)|T(X)]) \leq Var(\tilde{T}(X)).$

The above arguments show such a UMVUE is unique.

- Two methods in deriving UMVUE Method 1:
 - find a complete and sufficient statistics T(X);
 - find a function of T(X), g(T(X)), such that $E[g(T(X))] = \theta.$

Method 2:

- find a complete and sufficient statistics T(X);
- find an unbiased estimator for θ , denoted as $\tilde{T}(X)$;
- calculate $E[\tilde{T}(X)|T(X)]$.

• Example

 $-X_1, ..., X_n$ are i.i.d ~ $U(0, \theta)$. The joint density of $X_1, ..., X_n$:

$$\frac{1}{\theta^n} I(X_{(n)} < \theta) I(X_{(1)} > 0).$$

 $X_{(n)}$ is sufficient and complete (check).

 $-E[X_1] = \theta/2$. A UMVUE for $\theta/2$ is given by

$$E[X_1|X_{(n)}] = \frac{n+1}{n} \frac{X_{(n)}}{2}$$

- The other way is to directly find a function $g(X_{(n)}) = \theta/2$ by noting $E[g(X_{(n)})] = \frac{1}{\theta^n} \int_0^\theta g(x) nx^{n-1} dx = \theta/2.$ $\int_0^\theta g(x)x^{n-1}dx = \frac{\theta^{n+1}}{2n}.$ $\Rightarrow g(x) = \frac{n+1}{n} \frac{x}{2}.$

Other Estimation Methods

• Robust estimation

- (least absolute estimation) $Y = \theta' X + \epsilon$ where $E[\epsilon] = 0.$ LSE is sensitive to outliers. One robust estimator is

to minimize $\sum_{i=1}^{n} |Y_i - \theta' X_i|$.

– A more general objective function is to minimize

$$\sum_{i=1}^{n} \phi(Y_i - \theta' X_i),$$

where $\phi(x) = |x|^k, |x| \leq C$ and $\phi(x) = C^k$ when |x| > C (Huber estimators).

• Estimating functions (equations)

– The estimator solves an equation

$$\sum_{i=1}^{n} f(X_i; \theta) = 0.$$

- $f(X;\theta)$ satisfies $E_{\theta}[f(X;\theta)] = 0.$ Rationale: $n^{-1} \sum_{i=1}^{n} f(X_i;\theta) \rightarrow_{a.s.} E_{\theta}[f(X;\theta)].$

• Examples

- In a linear regression example, for any function W(X), $E[XW(X)(Y - \theta'X)] = 0$. Thus an estimating equation for θ can be constructed as

$$\sum_{i=1}^{n} X_{i} W(X_{i})(Y_{i} - \theta' X_{i}) = 0.$$

- Still in the regression example but we now assume the median of ϵ is zero. It is easy to see that $E[XW(X)sign(Y - \theta'X)] = 0$. Then an estimating equation for θ can be constructed as

$$\sum_{i=1}^{n} X_i W(X_i) sign(Y_i - \theta' X_i) = 0.$$

- Maximum likelihood estimation (MLE)
 - MLE is the most commonly use estimator;
 - it is likelihood-based;
 - it possesses a nice asymptotic optimality.

• Example

- Suppose $X_1, ..., X_n$ are i.i.d. observations from $\exp(\theta)$.

$$L_n(\theta) = \theta^n \exp\{-\theta(X_1 + \dots + X_n)\}.$$

$$\Rightarrow \hat{\theta} = \bar{X}.$$

- Suppose $(Y_1, Z_1), ..., (Y_n, Z_n)$ are i.i.d with density function

$$\lambda(y)e^{\theta' z} \exp\{-\Lambda(y)e^{\theta' z}\}g(z),$$

where g(z) is the known density function of Z = z.

$$L_n(\theta,\lambda) = \prod_{i=1}^n \left\{ \lambda(Y_i) e^{\theta' Z_i} \exp\{-\Lambda(Y_i) e^{\theta' Z_i}\} g(Z_i) \right\}.$$

– The maximum likelihood estimators for (θ, λ) do not exist.

- One way is to let Λ be a step function with jumps at Y_1, \ldots, Y_n and let $\lambda(Y_i)$ be the jump size, denoted as p_i . Then the likelihood function becomes

$$L_n(\theta, p_1, ..., p_n) = \prod_{i=1}^n \left\{ p_i e^{\theta' Z_i} \exp\{-\sum_{Y_j \le Y_i} p_j e^{\theta' Z_i}\} g(Z_i) \right\}$$

- The maximum likelihood estimators for $(\theta, p_1, ..., p_n)$ are given as: $\hat{\theta}$ solves the equation

$$\sum_{i=1}^{n} \left[Z_i - \frac{\sum_{Y_j \ge Y_i} Z_j e^{\theta' Z_j}}{\sum_{Y_j \ge Y_i} e^{\theta' Z_j}} \right] = 0$$

and

$$p_i = \frac{1}{\sum_{Y_j \ge Y_i} e^{\theta' Z_j}}.$$

• Bayesian estimation

- The parameter θ in the model distribution $\{p_{\theta}(x)\}$ is treated as a random variable with some prior distribution $\pi(\theta)$.
- The estimator for θ is defined as a value depending on the data and minimizing the expected loss function or the maximal loss function, where the loss function is denoted as $l(\theta, \hat{\theta}(X))$.
- The usual loss function includes the quadratic loss $(\theta \hat{\theta}(X))^2$, the absolute loss $|\theta \hat{\theta}(X)|$, etc.
- It often turns out that $\hat{\theta}(X)$ can be determined from the posterior distribution $P(\theta|X) = P(X|\theta)P(\theta)/P(X).$

• Example

- Suppose $X \sim N(\mu, 1)$. μ has an improper prior distribution and is uniform in $(-\infty, \infty)$. It is clear that the estimator $\hat{\theta}(X)$, minimizing the quadratic loss $E[(\theta - \hat{\theta}(X))^2]$, is the posterior mean $E[\theta|X] = X$.

- Non-exhaustive list of estimation methods
 - Other likelihood based estimation: partial likelihood estimation, conditional likelihood estimation, profile likelihood estimation, quasi-likelihood estimation, pseudo-likelihood estimation, penalized likelihood estimation
 - Other non-likelihood based estimation: rank-based estimation (R-estimation), L-estimation, empirical Bayesian estimation, minimax estimation, estimation under invariance principle

• A brief summary

- no clear distinction among all the methods
- each method has its own advantage
- two points should be considered in choosing which method (estimator):
 - (a) nice theoretical property, for example, unbiasedness (consistency), minimal variance, minimizing some loss function, asymptotic optimality
 - (b) convenience in numerical calculation

Cramér-Rao Bounds for Parametric Models

A simple case: one-dimensional parametric model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ with $\Theta \subset R$.

Question: how well can one estimator be?

• Some basic assumptions

$$- X \sim P_{\theta}$$
 on (Ω, \mathcal{A}) with $\theta \in \Theta$.

- $-p_{\theta} = dP_{\theta}/d\mu$ exists where μ is a σ -finite dominating measure.
- $T(X) \equiv T$ estimates $q(\theta)$ and has $E_{\theta}[|T(X)|] < \infty$; set $b(\theta) = E_{\theta}[T] - q(\theta)$.
- $-q'(\theta) \equiv \dot{q}(\theta)$ exists.

• C-R information bound

Theorem 4.1 Information bound, Cramér-Rao Inequality Suppose:

(C1) Θ is an open subset of the real line.

(C2) There exists a set B with $\mu(B) = 0$ such that for

 $x \in B^c, \partial p_{\theta}(x) / \partial \theta$ exists for all θ . Moreover,

 $A = \{x : p_{\theta}(x) = 0\}$ does not depend on θ .

(C3) $I(\theta) = E_{\theta}[\dot{l}_{\theta}(X)^2] > 0$ where $\dot{l}_{\theta}(x) = \partial \log p_{\theta}(x)/\partial \theta$. Here, $I(\theta)$ is the called the *Fisher information* for θ and \dot{l}_{θ} is called the *score function* for θ .

(C4) $\int p_{\theta}(x) d\mu(x)$ and $\int T(x) p_{\theta}(x) d\mu(x)$ can both be differentiated with respect to θ under the integral sign. (C5) $\int p_{\theta}(x) d\mu(x)$ can be differentiated twice under the integral sign. If (C1)-(C4) hold, then

$$Var_{\theta}(T(X)) \ge \frac{\{\dot{q}(\theta) + \dot{b}(\theta)\}^2}{I(\theta)},$$

and the lower bound is equal to $\dot{q}(\theta)^2/I(\theta)$ if T is unbiased. Equality holds for all θ if and only if for some function $A(\theta)$, we have

$$l_{\theta}(x) = A(\theta) \{ T(x) - E_{\theta}[T(X)] \}, \quad a.e.\mu.$$

If, in addition, (C5) holds, then

$$I(\theta) = -E_{\theta} \left\{ \frac{\partial^2}{\partial \theta^2} \log p_{\theta}(X) \right\} = -E_{\theta} [\ddot{l}_{\theta}(X)].$$

Proof

Note

$$q(\theta) + b(\theta) = \int T(x)p_{\theta}(x)d\mu(x) = \int_{A^c \cap B^c} T(x)p_{\theta}(x)d\mu(x).$$

 \Rightarrow from (C2) and (C4),

$$\dot{q}(\theta) + \dot{b}(\theta) = \int_{A^c \cap B^c} T(x)\dot{l}_{\theta}(x)p_{\theta}(x)d\mu(x) = E_{\theta}[T(X)\dot{l}_{\theta}(X)].$$

$$\begin{split} \int_{A^c \cap B^c} p_{\theta}(x) d\mu(x) &= 1 \Rightarrow \\ 0 &= \int_{A^c \cap B^c} \dot{l}_{\theta}(x) p_{\theta}(x) d\mu(x) = E_{\theta}[\dot{l}_{\theta}(X)]. \\ \Rightarrow \\ \dot{q}(\theta) + \dot{b}(\theta) &= Cov(T(X), \dot{l}_{\theta}(X)). \end{split}$$

By the Cauchy-Schwartz inequality, \Rightarrow

$$|\dot{q}(\theta) + \dot{b}(\theta)| \le Var(T(X))Var(\dot{l}_{\theta}(X)).$$

The equality holds if and only if

$$\dot{l}_{\theta}(X) = A(\theta) \left\{ T(X) - E_{\theta}[T(X)] \right\}, a.s.$$

If (C5) holds, differentiate

$$0 = \int \dot{l}_{\theta}(x) p_{\theta}(x) d\mu(x)$$

• Examples for calculating bounds

- Suppose $X_1, ..., X_n$ are i.i.d $Poisson(\theta)$.

$$\dot{l}_{\theta}(X_1, ..., X_n) = \frac{n}{\theta}(\bar{X}_n - \theta).$$

$$I_n(\theta) = n^2/\theta^2 Var(\bar{X}_n) = n/\theta.$$

Note \bar{X}_n is the UMVUE of θ and $Var(\bar{X}_n) = \theta/n$. We conclude that \bar{X}_n attains the lower bound. However, although $T_n = \bar{X}_n^2 - n^{-1}\bar{X}_n$ is UMVUE of θ^2 , we find $Var(T_n) = 4\theta^3/n + 2\theta^2/n^2 >$ the Cramér-Rao lower bound for θ^2 . In other words, some UMVUEs attain the lower bound but some do not. - Suppose $X_1, ..., X_n$ are i.i.d with density $p_{\theta}(x) = g(x - \theta)$ where g is a known density. This family is the one-dimensional location model. Assume g' exists and the regularity conditions in Theorem 3.1 are satisfied. Then

$$I_n(\theta) = nE_{\theta}\left[\frac{g'(X-\theta)^2}{g(X-\theta)^2}\right] = n\int \frac{g'(x)^2}{g(x)}dx.$$

Note the information does not depend on θ .

- Suppose
$$X_1, ..., X_n$$
 are i.i.d with density
 $p_{\theta}(x) = g(x/\theta)/\theta$ where g is a known density
function. This model is a one-dimensional scale model
with the common shape g. It is direct to calculate

$$I_n(\theta) = \frac{n}{\theta^2} \int (1 + y \frac{g'(y)}{g(y)})^2 g(y) dy.$$

Generalization to Multi-parameter Family

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \subset R^k \}.$$

• Basic assumptions

Assume that P_{θ} has density function p_{θ} with respect to some σ -finite dominating measure μ ; T(X) is an estimator for $q(\theta)$ with $E_{\theta}[|T(X)|] < \infty$ and $b(\theta) = E_{\theta}[T(X)] - q(\theta)$ is the bias of T(X); $\dot{q}(\theta) = \nabla q(\theta)$ exists.

• Information bound

Theorem 4.2 Information inequality Suppose that (M1) Θ an open subset in \mathbb{R}^k . (M2) There exists a set B with $\mu(B) = 0$ such that for $x \in B^c, \partial p_\theta(x) / \partial \theta_i$ exists for all θ and i = 1, ..., k. The set $A = \{x : p_\theta(x) = 0\}$ does no depend on θ . (M3) The $k \times k$ matrix $I(\theta) = (I_{ij}(\theta)) = E_\theta[\dot{l}_\theta(X)\dot{l}_\theta(X)'] > 0$ is positive definite, where

$$\dot{l}_{\theta_i}(x) = \frac{\partial}{\partial \theta_i} \log p_{\theta}(x).$$

Here, $I(\theta)$ is called the Fisher information matrix for θ and \dot{l}_{θ} is called the score for θ . (M4) $\int p_{\theta}(x)d\mu(x)$ and $\int T(x)p_{\theta}(x)d\mu(x)$ can both be differentiated with respect to θ under the integral sign. (M5) $\int p_{\theta}(x) d\mu(x)$ can be differentiated twice with respect to θ under the integral sign. If (M1)-(M4) holds, than

 $Var_{\theta}(T(X)) \ge (\dot{q}(\theta) + \dot{b}(\theta))'I^{-1}(\theta)(\dot{q}(\theta) + \dot{b}(\theta))$

and this lower bound is equal $\dot{q}(\theta)'I(\theta)^{-1}\dot{q}(\theta)$ if T(X) is unbiased. If, in addition, (M5) holds, then

$$I(\theta) = -E_{\theta}[\ddot{l}_{\theta\theta}(X)] = -\left(E_{\theta}\left\{\frac{\partial^2}{\partial\theta_i\partial\theta_j}\log p_{\theta}(X)\right\}\right).$$

Proof Under (M1)-(M4), $\dot{q}(\theta) + \dot{b}(\theta) = \int T(x)\dot{l}_{\theta}(x)p_{\theta}(x)d\mu(x) = E_{\theta}[T(x)\dot{l}_{\theta}(X)].$ From $\int p_{\theta}(x) d\mu(x) = 1, \ 0 = E_{\theta}[\dot{l}_{\theta}(X)].$ \Rightarrow $\left|\left\{\dot{q}(\theta) + \dot{b}(\theta)\right\}' I(\theta)^{-1} \left\{\dot{q}(\theta) + \dot{b}(\theta)\right\}\right|$ $|E_{\theta}[T(X)(\dot{q}(\theta) + \dot{b}(\theta))'I(\theta)^{-1}\dot{l}_{\theta}(X)]|$ $|Cov_{\theta}(T(X), (\dot{q}(\theta) + \dot{b}(\theta))'I(\theta)^{-1}\dot{l}_{\theta}(X))|$ _ $\leq \sqrt{Var_{\theta}(T(X))(\dot{q}(\theta) + \dot{b}(\theta))'I(\theta)^{-1}(\dot{q}(\theta) + \dot{b}(\theta))}.$ Under (M5), differentiate $\int \dot{l}_{\theta}(x)p_{\theta}(x)d\mu(x) = 0$ $I(\theta) = -E_{\theta}[\ddot{l}_{\theta\theta}(X)] = -\left(E_{\theta}\left\{\frac{\partial^2}{\partial\theta_i\partial\theta_i}\log p_{\theta}(X)\right\}\right).$

• Examples

– The Weibull family ${\mathcal P}$ is the parametric model with densities

$$p_{\theta}(x) = \frac{\beta}{\alpha} (\frac{x}{\alpha})^{\beta-1} \exp\left\{-(\frac{x}{\alpha})^{\beta}\right\} I(x \ge 0)$$

with respect to the Lebesgue measure where $\theta = (\alpha, \beta) \in (0, \infty) \times (0, \infty).$

$$\dot{l}_{\alpha}(x) = \frac{\beta}{\alpha} \left\{ \left(\frac{x}{\alpha}\right)^{\beta} - 1 \right\},$$
$$\dot{l}_{\beta}(x) = \frac{1}{\beta} - \frac{1}{\beta} \log \left\{ \left(\frac{x}{\alpha}\right)^{\beta} \right\} \left\{ \left(\frac{x}{\alpha}\right)^{\beta} - 1 \right\}$$

\Rightarrow the Fisher information matrix is

$$I(\theta) = \begin{pmatrix} \beta^2/\alpha^2 & -(1-\gamma)/\alpha \\ -(1-\gamma)/\alpha & \left\{ \pi^2/6 + (1-\gamma)^2 \right\}/\beta^2 \end{pmatrix},$$

where γ is Euler's constant ($\gamma \approx 0.5777...$). The computation of $I(\theta)$ is simplified by noting that $Y \equiv (X/\alpha)^{\beta} \sim \text{Exponential}(x).$

Efficient Influence Function and Score Function

• Definition

- $T(X) = \dot{q}(\theta)' I^{-1}(\theta) \dot{l}_{\theta}(X)$, the latter is called the efficient influence function for estimating $q(\theta)$ and its variance, which is equal to $\dot{q}(\theta)' I(\theta)^{-1} \dot{q}(\theta)$, is called the information bound for $q(\theta)$.

• Notation

If we regard $q(\theta)$ as a function on all the distributions of \mathcal{P} and denote $\nu(P_{\theta}) = q(\theta)$, then

- the efficient influence function is represented as $\tilde{l}(X, P_{\theta}|\nu, \mathcal{P})$
- the information bound for $q(\theta)$ is denoted as $I^{-1}(P_{\theta}|\nu, \mathcal{P})$

• Invariance property

Proposition 4.3 The information bound $I^{-1}(P|\nu, \mathcal{P})$ and the efficient influence function $\tilde{l}(\cdot, P|\nu, \mathcal{P})$ are invariant under smooth changes of parameterization.

Proof

Suppose $\gamma \mapsto \theta(\gamma)$ is a one-to-one continuously differentiable mapping of an open subset Γ of \mathbb{R}^k onto Θ with nonsingular differential $\dot{\theta}$.

The model of distribution can be represented as $\{P_{\theta(\gamma)} : \gamma \in \Gamma\}$.

The score for γ is $\dot{\theta}(\gamma)\dot{l}_{\theta}(X) \Rightarrow$ the information matrix for γ is equal to $I(\gamma) = \dot{\theta}(\gamma)'I(\theta)\dot{\theta}(\gamma)$.

Under the new parameterization, the information bound for $q(\theta) = q(\theta(\gamma)) \text{ is }$

$$(\dot{q}(\theta(\gamma))\dot{\theta}(\gamma))'I(\gamma)^{-1}(\dot{q}(\theta(\gamma))\dot{\theta}(\gamma)) = \dot{q}(\theta)'I(\theta)^{-1}\dot{q}(\theta),$$

which is the same as the information matrix for $\theta = \theta(\gamma)$.

The efficient influence function for γ is equal to

$$(\dot{\theta}(\gamma)\dot{q}(\theta(\gamma)))'I(\gamma)^{-1}\dot{l}_{\gamma} = \dot{q}(\theta)'I(\theta)^{-1}\dot{l}_{\theta}$$

and it is the same as the efficient influence function for θ .

• Canonical parameterization

 $\theta' = (\nu', \eta')$ and $\nu \in \mathcal{N} \subset \mathbb{R}^m$, $\eta \in \mathcal{H} \subset \mathbb{R}^{k-m}$. ν can be regarded as a map mapping P_{θ} to one component of θ , ν , and it is the parameter of interest while η is a nuisance parameter.

Information bound in presence of nuisance parameter

Goal: want to assess the cost of not knowing η by comparing the information bounds and the efficient influence functions for ν in the model \mathcal{P} (η is unknown parameter) and \mathcal{P}_{η} (η is known and fixed).

Case I: η is unknown parameter

$$\dot{l}_{\theta} = \begin{pmatrix} \dot{l}_1 \\ \dot{l}_2 \end{pmatrix}, \quad \tilde{l}_{\theta} = \begin{pmatrix} \tilde{l}_1 \\ \tilde{l}_2 \end{pmatrix}$$

$$I(\theta) = \begin{pmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} \end{pmatrix},$$

where $I_{11} = E_{\theta}[\dot{l}_1\dot{l}'_1], I_{12} = E_{\theta}[\dot{l}_1\dot{l}'_2], I_{21} = E_{\theta}[\dot{l}_2\dot{l}^1_1]$, and $I_{22} = E_{\theta}[\dot{l}_2\dot{l}'_2].$

$$I^{-1}(\theta) = \begin{pmatrix} I_{11\cdot 2}^{-1} & -I_{11\cdot 2}^{-1}I_{12}I_{22}^{-1} \\ -I_{22\cdot 1}^{-1}I_{21}I_{11}^{-1} & I_{22\cdot 1}^{-1} \end{pmatrix} \equiv \begin{pmatrix} I^{11} & I^{12} \\ I^{21} & I^{22} \end{pmatrix},$$

where $I_{11\cdot 2} = I_{11} - I_{12}I_{22}^{-1}I_{21}, \quad I_{22\cdot 1} = I_{22} - I_{21}I_{11}^{-1}I_{12}.$

• Conclusions in Case I

- The information bound for estimating
$$\nu$$
 is equal to
 $I^{-1}(P_{\theta}|\nu, \mathcal{P}) = \dot{q}(\theta)'I^{-1}(\theta)\dot{q}(\theta),$
where $q(\theta) = \nu$, and $\dot{q}(\theta) = (I_{m \times m} \quad 0_{m \times (k-m)}), \Rightarrow$
 $I^{-1}(P_{\theta}|\nu, \mathcal{P}) = I^{-1}_{11\cdot 2} = (I_{11} - I_{12}I^{-1}_{22}I_{21})^{-1}.$
- The efficient influence function for ν is given by

$$\tilde{l}_1 = \dot{q}(\theta)' I^{-1}(\theta) \dot{l}_\theta = I_{11\cdot 2}^{-1} \dot{l}_1^*,$$

where $\dot{l}_{1}^{*} = \dot{l}_{1} - I_{12}I_{22}^{-1}\dot{l}_{2}$. It is easy to check $I_{11\cdot 2} = E[\dot{l}_{1}^{*}(\dot{l}_{1}^{*})'].$

Thus, l_1^* is called the *efficient score function* for ν in \mathcal{P} .

Case II: η is known and fixed

- The information bound for ν is just I_{11}^{-1} ,
- The efficient influence function for ν is equal to $I_{11}^{-1}\dot{l}_1$.

Comparison

- knowing η increases the Fisher information for ν and decreases the information bound for ν ,
- knowledge of η does not increase information about ν if and only if $I_{12} = 0$. In this case, $\tilde{l}_1 = I_{11}^{-1} \dot{l}_1$ and $l_1^* = l_1$.

Examples

– Suppose

$$\mathcal{P} = \left\{ P_{\theta} : p_{\theta} = \phi((x - \nu)/\eta)/\eta, \nu \in \mathbb{R}, \eta > 0 \right\}.$$

Note that

$$\dot{l}_{\nu}(x) = \frac{x - \nu}{\eta^2}, \quad \dot{l}_{\eta}(x) = \frac{1}{\eta} \left\{ \frac{(x - \nu)^2}{\eta^2} - 1 \right\}$$

Then the information matrix $I(\theta)$ is given by by

$$I(\theta) = \begin{pmatrix} \eta^{-2} & 0\\ 0 & 2\eta^{-2} \end{pmatrix}$$

Then we can estimate the ν equally well whether we know the variance or not.

– If we reparameterize the above model as

$$P_{\theta} = N(\nu, \eta^2 - \nu^2), \eta^2 > \nu^2.$$

An easy calculation shows that $I_{12}(\theta) = \nu \eta / (\eta^2 - \nu^2)^2$. Thus lack of knowledge of η in this parameterization does change the information bound for estimation of ν .

• Geometric interpretation

Theorem 4.3

(A) The efficient score function $\dot{l}_1^*(\cdot, P_\theta | \nu, \mathcal{P})$ is the projection of the score function \dot{l}_1 on the orthocomplement of $[\dot{l}_2]$ in $L_2(P_\theta)$, where $[\dot{l}_2]$ is the linear span of the components of \dot{l}_2 . (B) The efficient influence function $\tilde{l}(\cdot, P_\theta | \nu, \mathcal{P}_\eta)$ is the projection of the efficient influence function \tilde{l}_1 on $[\dot{l}_1]$ in $L_2(P_\theta)$. **Proof** (A) The projection of \dot{l}_1 on $[\dot{l}_2]$ is equal to $\Sigma \dot{l}_2$ for some matrix Σ .

Since $E[(\dot{l}_1 - \Sigma \dot{l}_2)\dot{l}'_2] = 0$, $\Sigma = I_{12}I_{22}^{-1}$, and thus the projection on the orthocomplement of $[\dot{l}_2]$ is equal to

$$\dot{l}_1 - I_{12}I_{22}^{-1}\dot{l}_2 = \dot{l}_1^*.$$

(B)

$$\tilde{l}_{1} = I_{11\cdot 2}^{-1}(\dot{l}_{1} - I_{12}I_{22}^{-1}\dot{l}_{2}) = (I_{11}^{-1} + I_{11}^{-1}I_{12}I_{22\cdot 1}^{-1}I_{21}I_{11}^{-1})(\dot{l}_{1} - I_{12}I_{22}^{-1}\dot{l}_{2})$$
$$= I_{11}^{-1}\dot{l}_{1} - I_{11}^{-1}I_{12}\tilde{l}_{2}.$$

From (A), \tilde{l}_2 is orthogonal to \dot{l}_1 , the projection of \tilde{l}_1 on $[\dot{l}_1]$ is equal $I_{11}^{-1}\dot{l}_1 = \tilde{l}(\cdot, P_{\theta}|\nu, \mathcal{P}_{\eta}).$

term	notation	${\cal P}$ (η unknown)	${\cal P}_{\eta}$ (η known)
efficient score	$i_1^*(,P u,\cdot)$	$i_1^* = i_1 - I_{12}I_{22}^{-1}i_2$	<i>i</i> ₁
information	$I(P u,\cdot)$	$E[i_1^*(i_1^*)'] = I_{11} - I_{12}I_{22}^{-1}I_{21}$	I ₁₁
efficient influence information	$\tilde{l}_1(\cdot, P \nu, \cdot)$	$\tilde{i}_{1} = I^{11}i_{1} + I^{12}i_{2} = I^{-1}_{11\cdot 2}i_{1}^{*}$ $= I^{-1}_{11}i_{1} - I^{-1}_{11}I_{12}\tilde{i}_{2}$	$I_{11}^{-1}i_1$
information bound	$I^{-1}(P \nu,\cdot)$	$I^{11} = I^{-1}_{11 \cdot 2} = I^{-1}_{11} + I^{-1}_{11} I_{12} I^{-1}_{22 \cdot 1} I_{21} I^{-1}_{11}$	I_{11}^{-1}

Asymptotic Efficiency Bound

• Motivation

- The Cramér-Rao bound can be considered as the lower bound for any unbiased estimator in finite sample. One may ask whether such a bound still holds in large sample.
- To be more specific, we suppose $X_1, ..., X_n$ are i.i.d P_{θ} $(\theta \in R)$ and an estimator T_n for θ satisfies that

$$\sqrt{n}(T_n - \theta) \to_d N(0, V(\theta)^2).$$

- Question: $V(\theta)^2 \ge 1/I(\theta)$?

• Super-efficient estimator (Hodge's estimator) Let $X_1, ..., X_n$ be i.i.d $N(\theta, 1)$ so that $I(\theta) = 1$. Let |a| < 1 and define

$$T_n = \begin{cases} \bar{X}_n & \text{if} |\bar{X}_n| > n^{-1/4} \\ a \bar{X}_n & \text{if} |\bar{X}_n| \le n^{-1/4}. \end{cases}$$

$$\begin{split} \sqrt{n}(T_n - \theta) &= \sqrt{n}(\bar{X}_n - \theta)I(|\bar{X}_n| > n^{-1/4}) \\ &+ \sqrt{n}(a\bar{X}_n - \theta)I(|\bar{X}_n| \le n^{-1/4}) \\ &= dZI(|Z + \sqrt{n}\theta| > n^{1/4}) \\ &+ \left\{ aZ + \sqrt{n}(a - 1)\theta \right\}I(|Z + \sqrt{n}\theta| \le n^{1/4}) \\ &\to_{a.s.} \quad ZI(\theta \ne 0) + aZI(\theta = 0). \end{split}$$

Thus, the asymptotic variance of $\sqrt{nT_n}$ is equal 1 for $\theta \neq 0$ and a^2 for $\theta = 0$. T_n is a superefficient estimator.

• Locally Regular Estimator

Definition 4.2 $\{T_n\}$ is a locally regular estimator of θ at $\theta = \theta_0$ if, for every sequence $\{\theta_n\} \subset \Theta$ with $\sqrt{n}(\theta_n - \theta) \rightarrow t \in \mathbb{R}^k$, under P_{θ_n} ,

(local regularity) $\sqrt{n}(T_n - \theta_n) \rightarrow_d Z$, as $n \rightarrow \infty$

where the distribution of Z depend on θ_0 but not on t.

• Implication of LRE

- The limit distribution of $\sqrt{n}(T_n \theta_n)$ does not depend on the direction of approach t of θ_n to θ_0 . $\{T_n\}$ is a locally Gaussian regular if Z has normal distribution.
- $-\sqrt{n}(T_n \theta_n) \to_d Z \text{ under } P_{\theta_n} \text{ is equivalent to saying}$ that for any bounded and continuous function g, $E_{\theta_n}[g(\sqrt{n}(T_n - \theta_n))] \to E[g(Z)].$
- T_n in the first example is not a locally regular estimator.

• Hellinger Differentiability

A model $\mathcal{P} = \{P_{\theta} : \theta \in \mathbb{R}^k\}$ is a parametric model dominated by a σ -finite measure μ . It is called a Hellinger-differentiable parametric model if

$$\|\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h'\dot{l}_{\theta}\sqrt{p_{\theta}}\|_{L_{2}(\mu)} = o(|h|),$$

where $p_{\theta} = dP_{\theta}/d\mu$.

• locally asymptotic normality (LAN)

In a model $\mathcal{P} = \{P_{\theta} : \theta \in \mathbb{R}^k\}$ dominated by a σ -finite measure μ , suppose $p_{\theta} = dP_{\theta}/d\mu$. Let $l(x;\theta) = \log p(x,\theta)$ and let

$$l_n(\theta) = \sum_{i=1}^n l(X_i; \theta)$$

be the log-likelihood function of $X_1, ..., X_n$. The local asymptotic normality condition at θ_0 is

$$l_n(\theta_0 + n^{-1/2}t) - l_n(\theta_0) \to_d N(-\frac{1}{2}t'I(\theta_0)t, t'I(\theta_0)t)$$

under P_{θ_0} .

Convolution Result

Theorem 4.4 (Hájek's convolution theorem) Under three regularity conditions with $I(\theta_0)$ nonsingular, the limit distribution of $\sqrt{n}(T_n - \theta_0)$ under P_{θ_0} satisfies

$$Z =^d Z_0 + \Delta_0,$$

where $Z_0 \sim N(0, I^{-1}(\theta_0))$ is independent of Δ_0 .

• Conclusion

- the asymptotic variance of $\sqrt{n}(T_n \theta_0)$ is larger than or equal to $I^{-1}(\theta_0)$;
- the Cramér-Rao bound is a lower bound for the asymptotic variances of any locally regular estimator;
- a further question is what estimator can attains this bound asymptotically (answer will be given in next chapter).

• How to check three regularity conditions?

Proposition 4.6. For every θ in an open subset of \mathbb{R}^k let p_{θ} be a μ -probability density. Assume that the map $\theta \mapsto s_{\theta}(x) = \sqrt{p_{\theta}(x)}$ is continuously differentiable for every x. If the elements of the matrix $I(\theta) = E[(\dot{p}_{\theta}/p_{\theta})(\dot{p}_{\theta}/p_{\theta})']$ are well defined and continuous at θ , then the map $\theta \to \sqrt{p_{\theta}}$ is Hellinger differentiable with \dot{l}_{θ} given by $\dot{p}_{\theta}/p_{\theta}$.

Proof

$$\dot{p}_{\theta} = 2s_{\theta}\dot{s}_{\theta}$$

 $\Rightarrow \dot{s}_{\theta}$ is zero whenever $\dot{p}_{\theta} = 0$.

$$\int \left\{ \frac{s_{\theta+th_t} - s_{\theta}}{t} \right\}^2 d\mu = \int \left\{ \int_0^1 (h_t)' \dot{s}_{\theta+uth} du \right\}^2 d\mu$$
$$\leq \int \int_0^1 ((h_t)' \dot{s}_{\theta+uth_t})^2 du d\mu = \frac{1}{2} \int_0^1 h_t' I(\theta + uth_t) h_t du.$$

As $h_t \to h$, the right side converges to $\int (h'\dot{s}_{\theta})^2 d\mu$.

Since $\frac{s_{\theta+th_t}-s_{\theta}}{t} - h'\dot{s}_{\theta} \to 0$, the same proof as Theorem 3.1 (E) of Chapter 3 gives

$$\int \left[\frac{s_{\theta+th_t} - s_{\theta}}{t} - h'\dot{s}_{\theta}\right]^2 d\mu \to 0.$$

Proposition 4.7 If $\{T_n\}$ is an estimator sequence of $q(\theta)$ such that

$$\sqrt{n}(T_n - q(\theta)) - \frac{1}{\sqrt{n}} \sum_{i=1}^n \dot{\psi}_\theta I(\theta)^{-1} \dot{l}_\theta(X_i) \to_p 0,$$

where ψ is differentiable at θ , then T_n is the efficient and regular estimator for $q(\theta)$.

Proof

"\Rightarrow " Let
$$\Delta_{n,\theta} = n^{-1/2} \sum_{i=1}^{n} \dot{l}_{\theta}(X_i)$$
. $\Rightarrow \Delta_{n,\theta} \to^d \Delta_{\theta} \sim N(0, I(\theta))$.

From Step I of Theorem 4.4, $\log dQ_n/dP_n$ is equivalent to $h'\Delta_{n,\theta} - h'I(\theta)h/2$ asymptotically. \Rightarrow Slutsky's theorem gives that under P_{θ} ,

$$\left(\sqrt{n}(T_n - q(\theta)), \log \frac{dQ_n}{dP_n}\right) \to_d (\dot{\psi}_{\theta} I(\theta)^{-1} \Delta_{\theta}, h' \Delta_{\theta} - h' I(\theta) h/2)$$
$$\sim N\left(\begin{pmatrix} 0\\ -h' I(\theta) h/2 \end{pmatrix}, \begin{pmatrix} \dot{\psi}_{\theta} I(\theta)^{-1} \dot{\psi}_{\theta} & \dot{\psi}_{\theta} h\\ \dot{\psi}_{\theta} h' & h' I(\theta) h \end{pmatrix} \right).$$

 $\Rightarrow \text{From Le Cam's third lemma, under } P_{\theta+h/\sqrt{n}}, \sqrt{n}(T_n - q(\theta))$ converges in distribution to $N(\dot{\psi}_{\theta}h, \dot{\psi}_{\theta}I(\theta)'\dot{\psi}'_{\theta}).$

 $\Rightarrow P_{\theta+h/\sqrt{n}}, \sqrt{n}(T_n - q(\theta + h/\sqrt{n})) \rightarrow_d N(0, \dot{\psi}_{\theta}I(\theta)'\dot{\psi}_{\theta}').$

• Asymptotic linear estimator

Definition 4.4 If a sequence of estimators $\{T_n\}$ has the expansion

$$\sqrt{n}(T_n - q(\theta)) = n^{-1/2} \sum_{i=1}^n \Gamma(X_i) + R_n,$$

where R_n converges to zero in probability, then T_n is called an *asymptotically linear estimator* for $q(\theta)$ with *influence function* Γ . **Proposition 4.3** Suppose T_n is an asymptotically linear estimator of $\nu = q(\theta)$ with influence function Γ . Then A. T_n is Gaussian regular at θ_0 if and only if $q(\theta)$ is differentiable at θ_0 with derivative \dot{q}_{θ} and, with $\tilde{l}_{\nu} = \tilde{l}(\cdot, P_{\theta_0}|q(\theta), \mathcal{P})$ being the efficient influence function for $q(\theta)$, $E_{\theta_0}[(\Gamma - \tilde{l}_{\nu})\dot{l}] = 0$ for any score \dot{l} of \mathcal{P} . B. Suppose $q(\theta)$ is differentiable and T_n is regular. Then $\Gamma \in [\dot{l}]$ if and only if $\Gamma = \tilde{l}_{\nu}$.

Proof

A. By asymptotic linearity of T_n ,

$$\begin{pmatrix} \sqrt{n}(T_n - q(\theta_0)) \\ L_n(\theta_0 + t_n/\sqrt{n}) - L_n(\theta_0) \end{pmatrix}$$
$$\rightarrow_d N \left\{ \begin{pmatrix} 0 \\ -t'I(\theta_0)t \end{pmatrix}, \begin{pmatrix} E_{\theta_0}[\Gamma\Gamma'] & E_{\theta_0}[\Gamma\dot{l}']t \\ E_{\theta_0}[\dot{l}\Gamma']t & t'I(\theta_0)t \end{pmatrix} \right\}$$

From Le Cam's third lemma, $P_{\theta_0+t_n/\sqrt{n}}$,

$$\sqrt{n}(T_n - q(\theta_0)) \to_d N(E_{\theta_0}[\Gamma'\dot{l}]t, E_{\theta_0}[\Gamma\Gamma']).$$

If T_n is regular, then, under $P_{\theta_0+t_n/\sqrt{n}}$,

$$\sqrt{n}(T_n - q(\theta_0 + t_n/\sqrt{n})) \rightarrow_d N(0, E_{\theta_0}[\Gamma\Gamma']).$$

 $\Rightarrow \sqrt{n}(q(\theta_0 + t_n/\sqrt{n}) - q(\theta_0)) \to E_{\theta_0}[\Gamma'\dot{l}]t.$ $\Rightarrow \dot{q}_{\theta} = E_{\theta}[\Gamma'\dot{l}]. \text{ Note } E_{\theta_0}[\tilde{l}'_{\nu}\dot{l}] = \dot{q}_{\theta}.$ To prove the other direction, since $q(\theta)$ is differentiable and under $P_{\theta_0+t_n/\sqrt{n}}$,

$$\sqrt{n}(T_n - q(\theta_0)) \rightarrow_d N(E_{\theta_0}[\Gamma'\dot{l}]t, E[\Gamma\Gamma'])$$

 \Rightarrow from Le Cam's third lemma, under $P_{\theta_0+t_n/\sqrt{n}}$,

$$\sqrt{n}(T_n - q(\theta_0 + t_n/\sqrt{n})) \to_d N(0, E[\Gamma\Gamma']).$$

 $\Rightarrow T_n$ is Gaussian regular.

B. If T_n is regular, from A, $\Gamma - \tilde{l}_{\nu}$ is orthogonal to any score in \mathcal{P} .

 $\Rightarrow \Gamma \in [\dot{l}]$ implies that $\Gamma = \tilde{l}_{\nu}$. The converse is obvious.

READING MATERIALS: Lehmann and Casella, Sections 1.6, 2.1, 2.2, 2.3, 2.5, 2.6, 6.1, 6.2, Ferguson, Chapter 19 and Chapter 20