-

POINT ESTIMATION AND EFFICIENCY

e Introduction

Goal of statistical inference: estimate and infer quantities
of interest using experimental or observational data

— a class of statistical models used to model data
generation process (statistical modeling)

— the “best” method used to derive estimation and
inference (statistical inference: point estimation and

hypothesis testing)

— validation of models (model selection)
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e What about estimation?

— One good estimation approach should be able to
estimate model parameters with reasonable accuracy

— should be somewhat robust to intrinsic random

mechanism

— an ideally best estimator should have no bias and
have the smallest variance in any finite sample

— alternatively, one looks for an estimator which has no
bias and has the smallest variance in large sample
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Probabilistic Models

A model P is a collection of probability distributions
describing data generation.

Parameters of interest are simply some functionals on P,

denoted by v(P) for P € P.
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e Fixamples

— a non-negative r.v. X (survival time, size of growing

cell etc.)
Case A. Models: X ~ Exponential(¢),0 > 0

P = {pg(x) : po(x) = 0e™%I(x > 0),0 > O} P is a
parametric model. v(pg) = 6.

Case B. P ={pxc :prc =[5 Aexp{—Ax}dG()),
A € R, (G is any distribution function}. P is a

semiparametric model. v(pyg) = A or G.
Case C. P consists of all distribution function in

[0,00). P is a nonparametric model.

v(P) = [xdP(x).
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— Suppose that X = (Y, Z) is a random vector on
R™ x R* (Y survival time, Z a number of covariates)
Case A. Y|Z = z ~ Exponential(A\e??) A parametric
model with parameter space © = RT x R%.
Case B. Y|Z = z ~ Ay)e?? exp{—A(y)e?*} where
Aly) = [§ My)dy and is unknown. A semiparametric

model, the Cox proportional hazards model for

survival analysis, with parameter space

(0,2) € Rx{A(y) : Ay) =2 0, - A(y)dy = oo}
Case C. X ~ P on RT x RY where P is completely
arbitrary. This is a nonparametric model.

. /




response, /Z covariates)

Clase A.

Y =0Z+¢ 0cRe~N(0,0?.

This is a parametric model with parameter space
(0,0) € R* x RT.
Case B.

This is a semiparametric model with parameters

(0, 9).
Case C. Suppose X = (Y, Z) ~ P where P is an
\ arbitrary probability distribution on R x R<.

/— Suppose X = (Y, Z) is a random vector in R x R¢ (}x

Y=0Z+¢ 6¢cR%e~ G independent of Z.
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e A general rule for choosing statistical models
— models should obey scientific rules
— models should be flexible enough but parsimonious

— statistical inference for models is feasible
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evieW of Estimation Methods \

e Least Squares Estimation

— Suppose n i.i.d observations (Y;, Z;), i = 1,...,n, are
generated from the distribution in Example 1.3.

mein;( Y; — 0'Z;)?, ZZZ’ ZZY

— More generally, suppose Y = ¢g(X) + € where g is
unknown. Estimating g can be done by minimizing

i1 (Y — g(X3))%

— Problem with the latter: the minimizer is not unique

\ and not applicable /
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e Ideal estimator

is unbiased, E|T] = 0;

has the smallest variance among all the unbiased

estimators:;

1s called the UMVUE estimator.

may not exist; but for some models from exponential

family, it exists.
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e Definition

Definition 4.1 Sufficiency and Completeness For 6,
T(X) is

a sufficient statistic, if X|T(X) does not depend on 6;

a minimal sufficient statistic, if for any sufficient statistic
U there exists a function H such that T'= H(U);

a complete statistic, if for any measurable function g,
Fylg(T(X))] = 0 for any 6 implies g = 0, where Ej
denotes the expectation under the density function with
parameter 6.

. /
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e Sufficiency and factorization

T(X) is sufficient if and only if pg(x) can be factorized in
to go(T'(x))h(x).
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e Sufficiency in exponential family

Recall the canonical form of an exponential family:

py(z) = h(x) exp{mTi(x) + ..nTs(x) — A(n)}.

It is called full rank if the parameter space for (1, ...,ns)

contains an s-dimensional rectangle.

Minimal sufficiency in exponential family
T(X)=(T1,...,T,) is minimally sufficient if the family is
tull rank.

Completeness in exponential Family If the
exponential family is of full-rank, T'(X) is a complete

statistic.

/
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e Property of sufficiency and completeness

Rao-Blackwell Theorem Suppose 6(X) is an unbiased
estimator for 6. If T(X) is a sufficient statistics of X,
then E[(X)|T(X)] is unbiased and moreover,

Var(E[0(X)|T(X)]) < Var(d(X)),

with the equality if and only if with probability 1,

6(X) = E[0(X)|T(X)].

. /
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Proof
E[0(X)|T] is clearly unbiased.

By Jensen’s inequality,
Var(E[0(X)|T]) = E[(E[6(X)|T])?] — E[0(X)]?

< E[0(X)?] — 6 = Var(0(X)).

The equality holds if and only if E[0(X)|T] = 6(X) with
probability 1.

-
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e Ancillary statistics

A statistic V' is called ancillary it V'’s distribution does
not depend on 6.

Basu’s Theorem If 7" is a complete sufficient statistic
for the family P = {py, 0 € Q}, then for any ancillary
statistic V', V is independent of 7.

-
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Proof
For any B € B, let n(t) = Py(V € B|T =1t).

Egn(T') — co] = 0=n(T)

Py(V € B|T =) is independent of t.

-

Ey[n(T)] = Py(V € B) = ¢o does not depend on 6.

= Cp.

16



4 N

e UMVUE based on complete sufficient statistics

Proposition 4.1 Suppose é(X ) is an unbiased estimator

A

for 0; i.e., B|0(X)] =60. If T(X) is a sufficient statistic of

X, then E0(X)|T(X)] is unbiased. Moreover, for any
unbiased estimator of 8, T(X),

Var(BI9(X)|T(X))) < Var(T(X)),

with the equality if and only if with probability 1,
T'(X) = E0(X)[T(X)].

. /
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/Proof

For any unbiased estimator for 6, T(X),
E[T(X)|T(X)] is unbiased and

Var(E[T(X)|T(X)]) < Va/r(T(X)).

E[E[T(X)|T(X)] - E[6(X)|T(X)]] = 0 and E[T(X)|T(X)] and
E0(X)|T(X)] are independent of 6.

The completeness of T'(X) gives that
E[T(X)|T(X)] = B[0(X)|T(X)].

Var(E[0(X)|T(X)]) < Var(T(X)).
\The above arguments show such a UMVUE is unique.

/
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e T'wo methods in deriving UMVUE
Method 1:

— find a complete and sufficient statistics T'(X);

— find a function of T'(X), g(T (X)), such that
Elg(T(X))] = 0.

-
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Method 2:

— find a complete and sufficient statistics T'(X);

~

— find an unbiased estimator for 6, denoted as T(X);

~

— calculate E|T(X)|T(X)].

-
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e Example

- Xq,..., X, are i.i.d ~ U(0, ). The joint density of

Xl,...,XnI
1
gnl (X < 0)1(Xq) > 0).

X is sufficient and complete (check).

- FE|X,| =6/2. A UMVUE for /2 is given by
n—l—lX(n)
X1 X = .
Xl Xw] = ———

-
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— The other way is to directly find a function
9(Xn)) = 0/2 by noting

1 /9 B
Elg(Xwm)] = 9_”/0 g(z)na™ tdx = 0/2.
¢ n—ld 9n+1
/o g(x)x T = et
n+1lx
g(z) = n 9

22



ther Estimation Methods

e Robust estimation

— (least absolute estimation) Y = 6’ X + ¢ where

Ele] = 0.
LSE is sensitive to outliers. One robust estimator is
to minimize Y i, |Y; — 0’ X;|.

— A more general objective function is to minimize

Z¢ Y, — 0'X))

where ¢(z) = |z|*, |z| < C and ¢(x) = C* when
\ |z| > C (Huber estimators).
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e Estimating functions (equations)

— The estimator solves an equation

n

Zf(Xz';@) = 0.

1=1

— f(X;0) satisfies Fy|f(X;0)] = 0.
Rationale: n=' 3" | f(X;;0) —as Eolf(X;0)].

-
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/o Examples \

— In a linear regression example, for any function
W(X), EIXW(X)(Y —0'X)| =0. Thus an
estimating equation for 6 can be constructed as

ST XWI(X) (Y —0'X;) = 0.
1=1

— Still in the regression example but we now assume the
median of € is zero. It is easy to see that
E|XW (X)sign(Y — 0’ X)| = 0. Then an estimating
equation for # can be constructed as

1=1

. ' /

25



-

e Maximum likelihood estimation (MLE)

— MLE is the most commonly use estimator;
— 1t 1s likelihood-based;

— 1t possesses a nice asymptotic optimality.

-
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e Example

é:

— Suppose X1, ..., X, are i.i.d. observations from exp(0).

Ln(0) = 0" exp{—0(X) + ... - X,))}.

X.
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~

— Suppose (Y1, 24), ..., (Yy, Z,) are i.i.d with density

function
Ay)e”* exp{—A(y)e”*}g(2),
where g(z) is the known density function of Z = z.

n

La(#,0) = [T {AY)e"? exp{-A(Y)e" }(Z))}

1=1

— The maximum likelihood estimators for (6, ) do not

exist.

/
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/ — One way is to let A be a step function with jumps at\
Yi, ..., Y, and let A(Y;) be the jump size, denoted as
p;. Then the likelihood function becomes

Ln(0,p1, -, pn) = |1 {piem exp{— ) ijQ'ZZ}g(Zz-)}.
i=1 Y;<Y;

— The maximum likelihood estimators for (0, p1, ..., pn)
are given as: 6 solves the equation

_ . -
~ 1, Yy,sy, Zie" | 0
Z 2 3 % |
i=1 | Y;2Y; |
and
1
Pi 07"

N e Y

29



/o Bayesian estimation \

— The parameter 6 in the model distribution {pg(x)} is
treated as a random variable with some prior
distribution 7(6).

— The estimator for 6 is defined as a value depending on
the data and minimizing the expected loss function or
the maximal loss function, where the loss function is

denoted as (0, 0(X)).

— The usual loss function includes the quadratic loss
(0 — 6(X))?, the absolute loss |# — 0(X)|, etc.

— It often turns out that 6(X) can be determined from

the posterior distribution

\_ PUOIX) = P(X]0)P0)/P(X). -
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e Example

— Suppose X ~ N(u,1). p has an improper prior
distribution and is uniform in (—oco, 00). It is clear
that the estimator 0(X), minimizing the quadratic
loss E[(6 — 6(X))?], is the posterior mean
EfX] = X.
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e Non-exhaustive list of estimation methods

— Other likelihood based estimation: partial likelihood
estimation, conditional likelihood estimation, profile
likelihood estimation, quasi-likelihood estimation,
pseudo-likelihood estimation, penalized likelihood
estimation

— Other non-likelihood based estimation: rank-based
estimation (R-estimation), L-estimation, empirical
Bayesian estimation, minimax estimation, estimation

under invariance principle

. /
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e A brief summary
— no clear distinction among all the methods
— each method has its own advantage
— two points should be considered in choosing which

method (estimator):

(a) nice theoretical property, for example, unbiasedness
(consistency), minimal variance, minimizing some

loss function, asymptotic optimality

(b) convenience in numerical calculation

. /
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Cramér-Rao Bounds for Parametric Models

A simple case: one-dimensional parametric model

P ={F:0 €0} with © C R.

Question: how well can one estimator be?

-
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e Some basic assumptions
— X ~ Fyon (2, A) with 6 € ©.

— pg = dPy/du exists where p is a o-finite dominating
measure.

— T(X) =T estimates q(#) and has Ey||T(X)|] < oo;
set b(0) = Ey|T| — q(0).

— ¢'(0) = ¢(0) exists.

-




/o C-R information bound \

Theorem 4.1 Information bound, Cramér-Rao
Inequality Suppose:

(C1) © is an open subset of the real line.

(C2) There exists a set B with p(B) = 0 such that for
r € B¢ Opg(x)/00 exists for all 6. Moreover,

A =A{x:py(x) =0} does not depend on 6.

(C3) I(0) = Eplly(X)?] > 0 where lp(z) = dlog pe(z) /0.
Here, 1(0) is the called the Fisher information for 6 and
ly is called the score function for 6.

(C4) [po(x)du(zx) and [T(x)pe(x)du(xr) can both be
differentiated with respect to # under the integral sign.
(C5) [ pe(x)du(x) can be differentiated twice under the

@tegral sign. /
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If (C1)-(C4) hold, then

{q(6) + b(6)}7
Varg(T(X)) > 0 ,

and the lower bound is equal to ¢(6)?/1(0) if T is
unbiased. Equality holds for all 8 it and only if for some

function A(6), we have
lo(z) = A(O{T(2) — E[T(X)]}, a.ep.
If, in addition, (C5) holds, then

10) = —E, {6‘?’9 1ogp9<X>} — By (X))

-
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/Proof

Note

2(6) + b(8) = / T () po () dja () = / T()ps (2)du(x).

AcNnBe

from (C2) and (C4),

i(0) +b(8) = / T()ip(2)po (@) dp(z) = Eo[T(X)ig(X)].

AcNnBe

fACch po(x)dp(x) =1

38
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By the Cauchy-Schwartz inequality,
4(0) + b(0)| < Var(T(X))Var(lg(X)).
The equality holds if and only if

lo(X) = AO){T(X) — Eo[T(X)]} , a.s.
If (C5) holds, differentiate

0— / io (2)po (2)dp(x)

1(6) = —Eplo(X)).

-

0= / iy (2)po (2)dpa() + / o ()2 ps (2)d(x).

39
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e Examples for calculating bounds

— Suppose X1, ..., X, are i.i.d Poisson(0).
n

lo(X1,..., X,) = E(X"‘ —0).

1,(0) =n?/0°Var(X,) =n/0.
Note X, is the UMVUE of § and Var(X,,) = 0/n. We

conclude that X,, attains the lower bound.

However, although T, = X2 — n~'X,, is UMVUE of

6%, we find Var(T,) = 460°/n + 20% /n* > the
Cramer—Rao lower bound for #?. In other words, some

UMVUESs attain the lower bound but some do not

. _/
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— Suppose Xi, ..., X,, are i.i.d with density
po(x) = g(x — 0) where ¢ is a known density. This
family is the one-dimensional location model. Assume

¢’ exists and the regularity conditions in Theorem 3.1
are satisfied. Then

o fX =0 rg@?
L(0) =Bl gy 1= n | Sy

Note the information does not depend on 6.
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— Suppose Xi, ..., X,, are i.i.d with density
po(x) = g(x/0)/0 where g is a known density
function. This model is a one-dimensional scale model
with the common shape ¢g. It is direct to calculate

I,(0) = % /(1 + ygg/((j))fg(y)dy-
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Generalization to Multi-parameter Family

P={P:0€ 0 C R}

e Basic assumptions

Assume that P has density function py with respect to
some o-finite dominating measure p; T'(X) is an
estimator for ¢(0) with Ey||T(X)|] < oo and

b(0) = Eu|T(X)] — q(0) is the bias of T(X); ¢(0) = Vq(0)

exists.

- /




/o Information bound \

Theorem 4.2 Information inequality Suppose that
(M1) © an open subset in RF.

(M2) There exists a set B with u(B) = 0 such that for
r € B¢, Opg(x)/00; exists for all # and ¢ =1, ..., k. The
set A ={x: pg(x) =0} does no depend on 6.

(M3) The k x k matrix

1(8) = (1,;(0)) = Eyllo(X)1p(X)'] > 0 is positive definite,
where

: 0
lo, () = 90,

Here, 1(0) is called the Fisher information matrix for 6

log po(x).

and ig is called the score for 6.

M4 olx)du(x) and [ T(x)pg(x)du(x) can both be
\()fp()u() J T (z)pe(x)dp(x) Y
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differentiated with respect to # under the integral sign.
(M5) [ pe(x)du(x) can be differentiated twice with
respect to 6 under the integral sign.

If (M1)-(M4) holds, than

Varg(T(X)) = (4(0) +b(6))'T~*(0)(4(9) + b(8))

and this lower bound is equal ¢(#)'1(0) '¢(9) if T(X) is
unbiased. If, in addition, (M5) holds, then

100) = ~Eufl X)) = (B { 57 w0 ).

-
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/PI'OOf Under (M1)-(M4),

-

From f po(x

VAN

i(8) + b(6) = / T()iy («)ps (x)du(x) = Eo[T(2)ig(X)].

Jdu(z) =1, 0 = Egllp(X)].

o} 1o {i0 }
) 1(6

Under (M5), differentiate [ lg(z)pe(z)du(z) = 0

16) = ~Eollo ()] = ~ (o { 505 logma(X) )

/
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e Eixamples

— The Weibull family P is the parametric model with

densities
po(r) = 25y e {2y} 1 2 0

with respect to the Lebesgue measure where
0 = (o, 8) € (0,00) x (0, 00).

(@) = 5 - 518 { ) H{(E) 1}

47



the Fisher information matrix is

o= ~(1-7)/a
—(1=9)/a {7*/6+(1—-7)"}/5"
where v is Euler’s constant (v = 0.5777...). The
computation of I(6) is simplified by noting that
Y = (X/a)? ~ Exponential(z).

).
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Efficient Influence Function and Score Function

e Definition

- T(X) =q(0)I7(0)ly(X), the latter is called the
efficient influence function for estimating () and its
variance, which is equal to ¢(0)'I(0)~1¢(6), is called
the information bound for ¢(0).

- /
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e Notation

If we regard ¢(f) as a function on all the distributions of
P and denote v(Fy) = q(0), then

— the efficient influence function is represented as
[ (X , P 0 ‘ UV, 7))

— the information bound for ¢(8) is denoted as
[~ (PQ‘% P)

. /
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e Invariance property

Proposition 4.3 The information bound I~'(P|v, P)
and the efficient influence function I(-, P|v,P) are
invariant under smooth changes of parameterization.

-
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Proof

Suppose v — 6() is a one-to-one continuously differentiable
mapping of an open subset I' of R* onto © with nonsingular
differential 6.

The score for v is 8(7)lg(X) = the information matrix for ~ is
equal to I(y) = 0(7)'I(0)0(7).

-

The model of distribution can be represented as { Py, : v € I'}.
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Under the new parameterization, the information bound for

q(0) = q(0(v)) is

which is the same as the information matrix for 6 = 6(~).

The efficient influence function for v is equal to
(OO T(v) "y = d(8)'1(8) e

and it is the same as the efficient influence function for 6.

-
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e Canonical parameterization

0= n)andve N CR™ ne™HC R"™. v can be
regarded as a map mapping Fy to one component of 4, v,
and it is the parameter of interest while 7 is a nuisance

parameter.

. /
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Information bound in presence of nuisance parameter

Goal: want to assess the cost of not knowing n by

comparing the information bounds and the efficient
influence functions for v in the model P (n is unknown

parameter) and P, (1 is known and fixed).

-
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Case I: n is unknown parameter

- 1\ - [y

l — . l — ~

’ <l2)’ ’ (l2)
I11 1o

o= 7).

Where Ill = E@[lllll], 112 = E@[lllé], 121 = Eg[lglﬂ, and
122 = E@[lglé]

17(6) = ( e _11_52]12[2_21) = (Ill Im) ,

~IpnInlyy' I A

where I11.0 = I11 — Loy o1, Inoq = Ino — Iy I 1o,

-
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/o Conclusions in Case I
— The information bound for estimating v is equal to
I7H(Pylv, P) = ¢(8)' T~ (8)4(6),
where ¢(0) = v, and ¢(0) = (Lnxm Omxk—m) ) ;
[N Py|lv,P) = Iy = (Iny — Lhol5y Ioy)
— The efficient influence function for v is given by
= q(0)I7X(0)ly = I;LIE,
where i}‘ — il - 112]2_21i2. It is easy to check

Ly = El(1})]

Thus, [7 is called the efficient score function for v in

N
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Case II: n is known and fixed

— The information bound for v is just [ 1_11,

— The efficient influence function for v is equal to I73%l;.
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Comparison

— knowing 7 increases the Fisher information for v and

decreases the information bound for v,

— knowledge of n does not increase information about v
if and only if /15 = 0. In this case, [} = ]ﬂlll and

lik :ll-

. /
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/Examples

— Suppose
P ={Fy:po = o((x —v)/n)/n,veR,n>0}.
Note that
r— v 1 ((x—v)?
l,(x) = 7 lh(x) = ; { . 1} .

Then we can estimate the v equally well whether we

\ know the variance or not.
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— If we reparameterize the above model as

Py = N(v,n* —v?),n° > 1v°.

An easy calculation shows that

I5(0) = vn/(n* — v*)?. Thus lack of knowledge of 1 in
this parameterization does change the information
bound for estimation of v.
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e Geometric interpretation

Theorem 4.3

(A) The efficient score function [*(-, Py|v, P) is the
projection of the score function l; on the
orthocomplement of [I5] in Lo(Pp), where [I5] is the linear
span of the components of .

(B) The efficient influence function i(-, Py|v, P,) is the
projection of the efficient influence function 4 on [};] in

Lo(Pp).

. /
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/PI‘OOf (A) The projection of I1 on [l] is equal to iy for some \

matrix ..

Since E[(l; — Xl2)l5] =0, ¥ = I1515,, and thus the projection on
the orthocomplement of [l5] is equal to

I — Io13 s =1},

(B)
o= I35 (1 — T IR ) = (It + I Lo I To I (1 — T I3t )
= I ' — I ols.

From (A), Il is orthogonal to l1, the projection of I; on [I1] is equal

\11—115'1 = I(-, Pylv, Py). /
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term notation P Pn
(n unknown) (n known)
efficient score ZT(, Plv, ) ZT =1y — 11212_21Z2 Iq
. . sk o7k —1
information I(P|v, ) E[ZT(ZT) | =111 — 112122 Iy I11
efficient I1(-, Plv, ") Iy :I11i1+I12i2 :I1_11.2l‘>'1< Il_llil
. . . —1; —1 s
influence information = I11 1 — I11 I1519
information bound I_l(P|V, ) il = 11_112 Il_ll
1 1 —1 —1
=1y T Iy 12dgp 1211y
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symptotic Efficiency Bound

e Motivation

— The Cramér-Rao bound can be considered as the

lower bound for any unbiased estimator in finite
sample. One may ask whether such a bound still
holds in large sample.

(0 € R) and an estimator T;, for 6 satisfies that
VT, —0) —4 N(0,V(6)?).

Question: V(6)* > 1/1(0)?

— To be more specific, we suppose X, ..., X,, are i.i.d Py

/
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/o Super-efficient estimator (Hodge’s estimator) Let \
X1, ..., X, beiid N(0,1) so that I(0) = 1. Let |a] < 1
and define
_— X, iflX,|>n"1/4
v aX, iflX,| <n /4

\/E(Xn — 9)1(|X’n‘ > n_1/4)
+n(aX, — O)I(|X,| <n /*)
= JZI(|Z + /nb| > nt/Y)
+{aZ +nla—1)0} I(|1Z + /nd|] < n'/*)
—as. 210 #0)+aZl(0=0).

\/ﬁ(Tn o 9)

Thus, the asymptotic variance of \/nT,, is equal 1 for

\(975 0 and a® for § = 0. T}, is a superefficient estimator. /
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e Locally Regular Estimator

Definition 4.2 {T,} is a locally reqular estimator of 6 at
0 = 0, if, for every sequence {6, } C © with
vn(6, —0) — t € R*, under Py,

(local regularity) /n(T, —0,) —q¢ Z, as n — oo

where the distribution of Z depend on 6, but not on ¢.

. /
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-

~

e Implication of LRE
— The limit distribution of y/n(7T,, —0,,) does not depend

on the direction of approach t of 8,, to 6y. {T},} is a
locally Gaussian regular if Z has normal distribution.

—+/n(T,, — 0,) —4 Z under Py is equivalent to saying

that for any bounded and continuous function g,

Ey, lg(v/n(Tn — 0,))] — Elg(Z)].

— T,, in the first example is not a locally regular

estimator.
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e Hellinger Differentiability

A model P = {F, : 0 € R*} is a parametric model
dominated by a o-finite measure u. It is called a
Hellinger-differentiable parametric model if

1 .
H\/P9+h — \/p_@ — §h79\/p_9HLz(u) — O(W)»
where pg = dPy/d .

-
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e locally asymptotic normality (LAN)
In a model P = {P, : 0 € R*} dominated by a o-finite

and let
In(0) = ) U(Xi;0)
i=1

be the log-likelihood function of X4, ..., X,,. The local
asymptotic normality condition at 6 is

1
(0 +nY2%t) — 1,(0y) —a N (—§t’] (00)t, t'1(6p)t)

under Fy,.

-

measure [, suppose pg = dFPy/du. Let l(x;0) = logp(z, 0)

~

/
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Convolution Result

Theorem 4.4 (Hdjek’s convolution theorem) Under
three regularity conditions with I(6y) nonsingular, the
limit distribution of /n(7T,, — 6y) under P, satisfies

Z = ZO - AO)
where Zy ~ N(0,17%(6p)) is independent of A,.

. /
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e Conclusion

— the asymptotic variance of y/n(7T,, — ) is larger than

— the Cramér-Rao bound is a lower bound for the

— a further question is what estimator can attains this

~

or equal to I71(6y);
asymptotic variances of any locally regular estimator;

bound asymptotically (answer will be given in next
chapter).

/
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e How to check three regularity conditions?

Proposition 4.6. For every 0 in an open subset of R”
let py be a u-probability density. Assume that the map
0 — sg(x) = \/pe(x) is continuously differentiable for
every x. If the elements of the matrix

I1(0) = E|(pg/pe)(De/ps)’] are well defined and continuous
at 6, then the map 6 — /py is Hellinger differentiable

with lp given by pg /Do

. /
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/Proof

Po = 28050
Sg 1s zero whenever pg = 0.

2

/{Sethh; 89} d,u:/{/ (ht)/50+uth,du} du
0

1 1
1
< // ((ht)/59+utht)2d’LLdlLL — 5 / h;](@ + utht)htdu
0 0

As hy — h, the right side converges to [(h'$9)*dp.

SQ—I—tht —Sg
t

Chapter 3 gives

Since — h'$g — 0, the same proof as Theorem 3.1 (E) of

2
/ [St9+tht — S0 o h,89] d/,é 0.

t

-

/
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Proposition 4.7 If {T},} is an estimator sequence of ¢(6)
such that

V(T — q(6) ZW )" Lp(Xi) — 0,

where v is differentiable at 8, then T, is the efficient and

regular estimator for ¢(@).

. /
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roof

From Step I of Theorem 4.4, log dQ, /dP, is equivalent to
h'A,e— h'I(0)h/2 asymptotically.
Slutsky’s theorem gives that under Py,

dQn
dP,

NN(( 0 ) (%I(Q)‘%e oh ))
—R'I(O)h/2 )" boh' WIOW) )"

From Le Cam’s third lemma, under Py, m, v1r(T, — q(0))
converges in distribution to N(vgh, 1eI(8)4)}).

(\/H(Tn — 4(6)), log ) —od (eI(8) " Ay, b Ag — H'T(0)/2)

“=7 Let An,@ — n_1/2 Z?Il Z.Q (XZ) An79 _>d AH ~ N(07 1(9))

/
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e Asymptotic linear estimator

expansion
VT, — q(9)) =n~Y? > T(X;) + Ry,
i=1

where R,, converges to zero in probability, then T, is
called an asymptotically linear estimator for q(6) with
influence function I

-

Definition 4.4 If a sequence of estimators {T},} has the

~

/
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Proposition 4.3 Suppose T, is an asymptotically linear
estimator of v = ¢(#) with influence function I". Then

A. T, is Gaussian regular at 0y if and only if ¢(0) is
differentiable at 6y with derivative ¢y and, with

L, = 1(-, Py, |q(0), ) being the efficient influence function
for ¢(0), Ey,[(T — 1,)I] = 0 for any score [ of P.

B. Suppose () is differentiable and T;, is regular. Then
' e [l] if and only if I' = [,.

. /
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/Proof

A. By asymptotic linearity of T,,

( Vn(Tn — q(6o)) )
Ly (00 + tn/v/n) — Ln(00)

From Le Cam’s third lemma, Py 1, / =&,
V(T — q(60)) —a N(Eg, [I"1]t, Eg, [TT']).

If T}, is regular, then, under Py ., Y

f( (60 + tn/v/1) — q(60)) — Ep, [T'I]t.
= Fy [F l] Note Ly, [l l] = qp.

_

N 0 Eo,[TT]  Eg, [TVt
— —t'I(0)t )\ Eg [iT']t t'I(6o)t ) [

V(Tn — q(0o + tn/v/n)) —a N(0, Eg, [IT]).
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To prove the other direction, since ¢(#) is differentiable and under

P90+tn/\/ﬁ’
V(T = q(60)) —a N(Eg,[I"1]t, E[LT'))

from Le Cam’s third lemma, under Py 1, /. /m,

\/ﬁ(Tn - Q<90 + tn/\/ﬁ» —d N(07 E[FF/])°

T, is Gaussian regular.
B. If T,, is regular, from A, I — [, is orthogonal to any score in P.

I' € [I] implies that ' = [,. The converse is obvious.

. /
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