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POINT ESTIMATION AND EFFICIENCY

• Introduction

Goal of statistical inference: estimate and infer quantities

of interest using experimental or observational data

– a class of statistical models used to model data

generation process (statistical modeling)

– the “best” method used to derive estimation and

inference (statistical inference: point estimation and

hypothesis testing)

– validation of models (model selection)
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• What about estimation?

– One good estimation approach should be able to

estimate model parameters with reasonable accuracy

– should be somewhat robust to intrinsic random

mechanism

– an ideally best estimator should have no bias and

have the smallest variance in any finite sample

– alternatively, one looks for an estimator which has no

bias and has the smallest variance in large sample
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Probabilistic Models

A model P is a collection of probability distributions

describing data generation.

Parameters of interest are simply some functionals on P ,

denoted by ν(P ) for P ∈ P .
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• Examples

– a non-negative r.v. X (survival time, size of growing

cell etc.)

Case A. Models: X ∼ Exponential(θ), θ > 0

P =
{
pθ(x) : pθ(x) = θe−θxI(x ≥ 0), θ > 0

}
P is a

parametric model. ν(pθ) = θ.

Case B. P = {pλ,G : pλ,G =
∫∞
0 λ exp{−λx}dG(λ),

λ ∈ R, G is any distribution function}. P is a

semiparametric model. ν(pλ,G) = λ or G.

Case C. P consists of all distribution function in

[0,∞). P is a nonparametric model.

ν(P ) =
∫
xdP (x).



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 5'

&

$

%

– Suppose that X = (Y, Z) is a random vector on

R+ ×Rd (Y survival time, Z a number of covariates)

Case A. Y |Z = z ∼ Exponential(λeθ
′z) A parametric

model with parameter space Θ = R+ ×Rd.

Case B. Y |Z = z ∼ λ(y)eθ
′z exp{−Λ(y)eθ

′z} where

Λ(y) =
∫ y
0 λ(y)dy and is unknown. A semiparametric

model, the Cox proportional hazards model for

survival analysis, with parameter space

(θ, λ) ∈ R× {λ(y) : λ(y) ≥ 0,
∫∞

0 λ(y)dy =∞}.
Case C. X ∼ P on R+ ×Rd where P is completely

arbitrary. This is a nonparametric model.
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– Suppose X = (Y, Z) is a random vector in R×Rd (Y

response, Z covariates)

Case A.

Y = θ′Z + ε, θ ∈ Rd, ε ∼ N(0, σ2).

This is a parametric model with parameter space

(θ, σ) ∈ Rd ×R+.

Case B.

Y = θ′Z + ε, θ ∈ Rd, ε ∼ G independent of Z.

This is a semiparametric model with parameters

(θ, g).

Case C. Suppose X = (Y, Z) ∼ P where P is an

arbitrary probability distribution on R×Rd.
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• A general rule for choosing statistical models

– models should obey scientific rules

– models should be flexible enough but parsimonious

– statistical inference for models is feasible
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Review of Estimation Methods

• Least Squares Estimation

– Suppose n i.i.d observations (Yi, Zi), i = 1, ..., n, are

generated from the distribution in Example 1.3.

min
θ

n∑

i=1

(Yi − θ′Zi)2, θ̂ = (
n∑

i=1

ZiZ
′
i)
−1(

n∑

i=1

ZiYi).

– More generally, suppose Y = g(X) + ε where g is

unknown. Estimating g can be done by minimizing
∑n
i=1(Yi − g(Xi))

2.

– Problem with the latter: the minimizer is not unique

and not applicable
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UMVUE

• Ideal estimator

– is unbiased, E[T ] = θ;

– has the smallest variance among all the unbiased

estimators;

– is called the UMVUE estimator.

– may not exist; but for some models from exponential

family, it exists.
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• Definition

Definition 4.1 Sufficiency and Completeness For θ,

T (X) is

a sufficient statistic, if X|T (X) does not depend on θ;

a minimal sufficient statistic, if for any sufficient statistic

U there exists a function H such that T = H(U);

a complete statistic, if for any measurable function g,

Eθ[g(T (X))] = 0 for any θ implies g = 0, where Eθ

denotes the expectation under the density function with

parameter θ.
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• Sufficiency and factorization

T (X) is sufficient if and only if pθ(x) can be factorized in

to gθ(T (x))h(x).
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• Sufficiency in exponential family

Recall the canonical form of an exponential family:

pη(x) = h(x) exp{η1T1(x) + ...ηsTs(x)−A(η)}.

It is called full rank if the parameter space for (η1, ..., ηs)

contains an s-dimensional rectangle.

Minimal sufficiency in exponential family

T (X) = (T1, ..., Ts) is minimally sufficient if the family is

full rank.

Completeness in exponential Family If the

exponential family is of full-rank, T (X) is a complete

statistic.
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• Property of sufficiency and completeness

Rao-Blackwell Theorem Suppose θ̂(X) is an unbiased

estimator for θ. If T (X) is a sufficient statistics of X,

then E[θ̂(X)|T (X)] is unbiased and moreover,

V ar(E[θ̂(X)|T (X)]) ≤ V ar(θ̂(X)),

with the equality if and only if with probability 1,

θ̂(X) = E[θ̂(X)|T (X)].
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Proof

E[θ̂(X)|T ] is clearly unbiased.

By Jensen’s inequality,

V ar(E[θ̂(X)|T ]) = E[(E[θ̂(X)|T ])2]−E[θ̂(X)]2

≤ E[θ̂(X)2]− θ2 = V ar(θ̂(X)).

The equality holds if and only if E[θ̂(X)|T ] = θ̂(X) with

probability 1.
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• Ancillary statistics

A statistic V is called ancillary if V ’s distribution does

not depend on θ.

Basu’s Theorem If T is a complete sufficient statistic

for the family P = {pθ, θ ∈ Ω}, then for any ancillary

statistic V , V is independent of T .
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Proof

For any B ∈ B, let η(t) = Pθ(V ∈ B|T = t).

⇒ Eθ[η(T )] = Pθ(V ∈ B) = c0 does not depend on θ.

⇒
Eθ[η(T )− c0] = 0⇒η(T ) = c0.

⇒ Pθ(V ∈ B|T = t) is independent of t.
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• UMVUE based on complete sufficient statistics

Proposition 4.1 Suppose θ̂(X) is an unbiased estimator

for θ; i.e., E[θ̂(X)] = θ. If T (X) is a sufficient statistic of

X, then E[θ̂(X)|T (X)] is unbiased. Moreover, for any

unbiased estimator of θ, T̃ (X),

V ar(E[θ̂(X)|T (X)]) ≤ V ar(T̃ (X)),

with the equality if and only if with probability 1,

T̃ (X) = E[θ̂(X)|T (X)].
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Proof

For any unbiased estimator for θ, T̃ (X),

⇒ E[T̃ (X)|T (X)] is unbiased and

V ar(E[T̃ (X)|T (X)]) ≤ V ar(T̃ (X)).

E[E[T̃ (X)|T (X)]−E[θ̂(X)|T (X)]] = 0 and E[T̃ (X)|T (X)] and

E[θ̂(X)|T (X)] are independent of θ.

The completeness of T (X) gives that

E[T̃ (X)|T (X)] = E[θ̂(X)|T (X)].

⇒ V ar(E[θ̂(X)|T (X)]) ≤ V ar(T̃ (X)).

The above arguments show such a UMVUE is unique.
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• Two methods in deriving UMVUE

Method 1:

– find a complete and sufficient statistics T (X);

– find a function of T (X), g(T (X)), such that

E[g(T (X))] = θ.
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Method 2:

– find a complete and sufficient statistics T (X);

– find an unbiased estimator for θ, denoted as T̃ (X);

– calculate E[T̃ (X)|T (X)].
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• Example

– X1, ..., Xn are i.i.d ∼ U(0, θ). The joint density of

X1, ..., Xn:

1

θn
I(X(n) < θ)I(X(1) > 0).

X(n) is sufficient and complete (check).

– E[X1] = θ/2. A UMVUE for θ/2 is given by

E[X1|X(n)] =
n+ 1

n

X(n)

2
.
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– The other way is to directly find a function

g(X(n)) = θ/2 by noting

E[g(X(n))] =
1

θn

∫ θ

0
g(x)nxn−1dx = θ/2.

∫ θ

0
g(x)xn−1dx =

θn+1

2n
.

⇒g(x) =
n+ 1

n

x

2
.
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Other Estimation Methods

• Robust estimation

– (least absolute estimation) Y = θ′X + ε where

E[ε] = 0.

LSE is sensitive to outliers. One robust estimator is

to minimize
∑n
i=1 |Yi − θ′Xi|.

– A more general objective function is to minimize
n∑

i=1

φ(Yi − θ′Xi),

where φ(x) = |x|k, |x| ≤ C and φ(x) = Ck when

|x| > C (Huber estimators).
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• Estimating functions (equations)

– The estimator solves an equation

n∑

i=1

f(Xi; θ) = 0.

– f(X; θ) satisfies Eθ[f(X; θ)] = 0.

Rationale: n−1∑n
i=1 f(Xi; θ)→a.s. Eθ[f(X; θ)].
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• Examples

– In a linear regression example, for any function

W (X), E[XW (X)(Y − θ′X)] = 0. Thus an

estimating equation for θ can be constructed as

n∑

i=1

XiW (Xi)(Yi − θ′Xi) = 0.

– Still in the regression example but we now assume the

median of ε is zero. It is easy to see that

E[XW (X)sign(Y − θ′X)] = 0. Then an estimating

equation for θ can be constructed as

n∑

i=1

XiW (Xi)sign(Yi − θ′Xi) = 0.
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• Maximum likelihood estimation (MLE)

– MLE is the most commonly use estimator;

– it is likelihood-based;

– it possesses a nice asymptotic optimality.
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• Example

– Suppose X1, ..., Xn are i.i.d. observations from exp(θ).

Ln(θ) = θn exp{−θ(X1 + ...+Xn)}.

⇒ θ̂ = X̄.
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– Suppose (Y1, Z1), ..., (Yn, Zn) are i.i.d with density

function

λ(y)eθ
′z exp{−Λ(y)eθ

′z}g(z),

where g(z) is the known density function of Z = z.

Ln(θ, λ) =
n∏

i=1

{
λ(Yi)e

θ′Zi exp{−Λ(Yi)e
θ′Zi}g(Zi)

}
.

– The maximum likelihood estimators for (θ, λ) do not

exist.
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– One way is to let Λ be a step function with jumps at

Y1, ..., Yn and let λ(Yi) be the jump size, denoted as

pi. Then the likelihood function becomes

Ln(θ, p1, ..., pn) =
n∏

i=1



pie

θ′Zi exp{−
∑

Yj≤Yi
pje

θ′Zi}g(Zi)



 .

– The maximum likelihood estimators for (θ, p1, ..., pn)

are given as: θ̂ solves the equation

n∑

i=1


Zi −

∑
Yj≥Yi Zje

θ′Zj

∑
Yj≥Yi e

θ′Zj


 = 0

and

pi =
1

∑
Yj≥Yi e

θ′Zj
.
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• Bayesian estimation

– The parameter θ in the model distribution {pθ(x)} is

treated as a random variable with some prior

distribution π(θ).

– The estimator for θ is defined as a value depending on

the data and minimizing the expected loss function or

the maximal loss function, where the loss function is

denoted as l(θ, θ̂(X)).

– The usual loss function includes the quadratic loss

(θ − θ̂(X))2, the absolute loss |θ − θ̂(X)|, etc.

– It often turns out that θ̂(X) can be determined from

the posterior distribution

P (θ|X) = P (X|θ)P (θ)/P (X).
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• Example

– Suppose X ∼ N(µ, 1). µ has an improper prior

distribution and is uniform in (−∞,∞). It is clear

that the estimator θ̂(X), minimizing the quadratic

loss E[(θ − θ̂(X))2], is the posterior mean

E[θ|X] = X.
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• Non-exhaustive list of estimation methods

– Other likelihood based estimation: partial likelihood

estimation, conditional likelihood estimation, profile

likelihood estimation, quasi-likelihood estimation,

pseudo-likelihood estimation, penalized likelihood

estimation

– Other non-likelihood based estimation: rank-based

estimation (R-estimation), L-estimation, empirical

Bayesian estimation, minimax estimation, estimation

under invariance principle
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• A brief summary

– no clear distinction among all the methods

– each method has its own advantage

– two points should be considered in choosing which

method (estimator):

(a) nice theoretical property, for example, unbiasedness

(consistency), minimal variance, minimizing some

loss function, asymptotic optimality

(b) convenience in numerical calculation
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Cramér-Rao Bounds for Parametric Models

A simple case: one-dimensional parametric model

P = {Pθ : θ ∈ Θ} with Θ ⊂ R.

Question: how well can one estimator be?
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• Some basic assumptions

– X ∼ Pθ on (Ω,A) with θ ∈ Θ.

– pθ = dPθ/dµ exists where µ is a σ-finite dominating

measure.

– T (X) ≡ T estimates q(θ) and has Eθ[|T (X)|] <∞;

set b(θ) = Eθ[T ]− q(θ).
– q′(θ) ≡ q̇(θ) exists.
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• C-R information bound

Theorem 4.1 Information bound, Cramér-Rao

Inequality Suppose:

(C1) Θ is an open subset of the real line.

(C2) There exists a set B with µ(B) = 0 such that for

x ∈ Bc, ∂pθ(x)/∂θ exists for all θ. Moreover,

A = {x : pθ(x) = 0} does not depend on θ.

(C3) I(θ) = Eθ[l̇θ(X)2] > 0 where l̇θ(x) = ∂ log pθ(x)/∂θ.

Here, I(θ) is the called the Fisher information for θ and

l̇θ is called the score function for θ.

(C4)
∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be

differentiated with respect to θ under the integral sign.

(C5)
∫
pθ(x)dµ(x) can be differentiated twice under the

integral sign.
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If (C1)-(C4) hold, then

V arθ(T (X)) ≥ {q̇(θ) + ḃ(θ)}2

I(θ)
,

and the lower bound is equal to q̇(θ)2/I(θ) if T is

unbiased. Equality holds for all θ if and only if for some

function A(θ), we have

l̇θ(x) = A(θ){T (x)− Eθ[T (X)]}, a.e.µ.

If, in addition, (C5) holds, then

I(θ) = −Eθ
{
∂2

∂θ2
log pθ(X)

}
= −Eθ[l̈θ(X)].
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Proof

Note

q(θ) + b(θ) =

∫
T (x)pθ(x)dµ(x) =

∫

Ac∩Bc
T (x)pθ(x)dµ(x).

⇒ from (C2) and (C4),

q̇(θ) + ḃ(θ) =

∫

Ac∩Bc
T (x)l̇θ(x)pθ(x)dµ(x) = Eθ[T (X)l̇θ(X)].

∫
Ac∩Bc pθ(x)dµ(x) = 1 ⇒

0 =

∫

Ac∩Bc
l̇θ(x)pθ(x)dµ(x) = Eθ[l̇θ(X)].

⇒
q̇(θ) + ḃ(θ) = Cov(T (X), l̇θ(X)).
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By the Cauchy-Schwartz inequality, ⇒

|q̇(θ) + ḃ(θ)| ≤ V ar(T (X))V ar(l̇θ(X)).

The equality holds if and only if

l̇θ(X) = A(θ) {T (X)− Eθ[T (X)]} , a.s.

If (C5) holds, differentiate

0 =

∫
l̇θ(x)pθ(x)dµ(x)

⇒
0 =

∫
l̈θ(x)pθ(x)dµ(x) +

∫
l̇θ(x)2pθ(x)dµ(x).

⇒ I(θ) = −Eθ[l̈θ(X)].



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 40'

&

$

%

• Examples for calculating bounds

– Suppose X1, ..., Xn are i.i.d Poisson(θ).

l̇θ(X1, ..., Xn) =
n

θ
(X̄n − θ).

In(θ) = n2/θ2V ar(X̄n) = n/θ.

Note X̄n is the UMVUE of θ and V ar(X̄n) = θ/n. We

conclude that X̄n attains the lower bound.

However, although Tn = X̄2
n − n−1X̄n is UMVUE of

θ2, we find V ar(Tn) = 4θ3/n+ 2θ2/n2 > the

Cramér-Rao lower bound for θ2. In other words, some

UMVUEs attain the lower bound but some do not.
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– Suppose X1, ..., Xn are i.i.d with density

pθ(x) = g(x− θ) where g is a known density. This

family is the one-dimensional location model. Assume

g′ exists and the regularity conditions in Theorem 3.1

are satisfied. Then

In(θ) = nEθ[
g′(X − θ)
g(X − θ)

2

] = n
∫ g′(x)2

g(x)
dx.

Note the information does not depend on θ.
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– Suppose X1, ..., Xn are i.i.d with density

pθ(x) = g(x/θ)/θ where g is a known density

function. This model is a one-dimensional scale model

with the common shape g. It is direct to calculate

In(θ) =
n

θ2

∫
(1 + y

g′(y)

g(y)
)2g(y)dy.
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Generalization to Multi-parameter Family

P = {Pθ : θ ∈ Θ ⊂ Rk}.

• Basic assumptions

Assume that Pθ has density function pθ with respect to

some σ-finite dominating measure µ; T (X) is an

estimator for q(θ) with Eθ[|T (X)|] <∞ and

b(θ) = Eθ[T (X)]− q(θ) is the bias of T (X); q̇(θ) = ∇q(θ)
exists.
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• Information bound

Theorem 4.2 Information inequality Suppose that

(M1) Θ an open subset in Rk.

(M2) There exists a set B with µ(B) = 0 such that for

x ∈ Bc, ∂pθ(x)/∂θi exists for all θ and i = 1, ..., k. The

set A = {x : pθ(x) = 0} does no depend on θ.

(M3) The k × k matrix

I(θ) = (Iij(θ)) = Eθ[l̇θ(X)l̇θ(X)′] > 0 is positive definite,

where

l̇θi(x) =
∂

∂θi
log pθ(x).

Here, I(θ) is called the Fisher information matrix for θ

and l̇θ is called the score for θ.

(M4)
∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be
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differentiated with respect to θ under the integral sign.

(M5)
∫
pθ(x)dµ(x) can be differentiated twice with

respect to θ under the integral sign.

If (M1)-(M4) holds, than

V arθ(T (X)) ≥ (q̇(θ) + ḃ(θ))′I−1(θ)(q̇(θ) + ḃ(θ))

and this lower bound is equal q̇(θ)′I(θ)−1q̇(θ) if T (X) is

unbiased. If, in addition, (M5) holds, then

I(θ) = −Eθ[l̈θθ(X)] = −
(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.
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Proof Under (M1)-(M4),

q̇(θ) + ḃ(θ) =

∫
T (x)l̇θ(x)pθ(x)dµ(x) = Eθ[T (x)l̇θ(X)].

From
∫
pθ(x)dµ(x) = 1, 0 = Eθ[l̇θ(X)].

⇒

|
{
q̇(θ) + ḃ(θ)

}′
I(θ)−1

{
q̇(θ) + ḃ(θ)

}
|

= |Eθ[T (X)(q̇(θ) + ḃ(θ))′I(θ)−1l̇θ(X)]|
= |Covθ(T (X), (q̇(θ) + ḃ(θ))′I(θ)−1l̇θ(X))|

≤
√
V arθ(T (X))(q̇(θ) + ḃ(θ))′I(θ)−1(q̇(θ) + ḃ(θ)).

Under (M5), differentiate
∫
l̇θ(x)pθ(x)dµ(x) = 0

⇒
I(θ) = −Eθ[l̈θθ(X)] = −

(
Eθ

{
∂2

∂θi∂θj
log pθ(X)

})
.
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• Examples

– The Weibull family P is the parametric model with

densities

pθ(x) =
β

α
(
x

α
)β−1 exp

{
−(

x

α
)β
}
I(x ≥ 0)

with respect to the Lebesgue measure where

θ = (α, β) ∈ (0,∞)× (0,∞).

l̇α(x) =
β

α

{
(
x

α
)β − 1

}
,

l̇β(x) =
1

β
− 1

β
log

{
(
x

α
)β
}{

(
x

α
)β − 1

}
.
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⇒ the Fisher information matrix is

I(θ) =

(
β2/α2 −(1− γ)/α

−(1− γ)/α {π2/6 + (1− γ)2} /β2

)
,

where γ is Euler’s constant (γ ≈ 0.5777...). The

computation of I(θ) is simplified by noting that

Y ≡ (X/α)β ∼ Exponential(x).
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Efficient Influence Function and Score Function

• Definition

– T (X) = q̇(θ)′I−1(θ)l̇θ(X), the latter is called the

efficient influence function for estimating q(θ) and its

variance, which is equal to q̇(θ)′I(θ)−1q̇(θ), is called

the information bound for q(θ).
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• Notation

If we regard q(θ) as a function on all the distributions of

P and denote ν(Pθ) = q(θ), then

– the efficient influence function is represented as

l̃(X,Pθ|ν,P)

– the information bound for q(θ) is denoted as

I−1(Pθ|ν,P)
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• Invariance property

Proposition 4.3 The information bound I−1(P |ν,P)

and the efficient influence function l̃(·, P |ν,P) are

invariant under smooth changes of parameterization.
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Proof

Suppose γ 7→ θ(γ) is a one-to-one continuously differentiable

mapping of an open subset Γ of Rk onto Θ with nonsingular

differential θ̇.

The model of distribution can be represented as {Pθ(γ) : γ ∈ Γ}.

The score for γ is θ̇(γ)l̇θ(X) ⇒ the information matrix for γ is

equal to I(γ) = θ̇(γ)′I(θ)θ̇(γ).



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 53'

&

$

%

Under the new parameterization, the information bound for

q(θ) = q(θ(γ)) is

(q̇(θ(γ))θ̇(γ))′I(γ)−1(q̇(θ(γ))θ̇(γ)) = q̇(θ)′I(θ)−1q̇(θ),

which is the same as the information matrix for θ = θ(γ).

The efficient influence function for γ is equal to

(θ̇(γ)q̇(θ(γ)))′I(γ)−1l̇γ = q̇(θ)′I(θ)−1l̇θ

and it is the same as the efficient influence function for θ.
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• Canonical parameterization

θ′ = (ν ′, η′) and ν ∈ N ⊂ Rm, η ∈ H ⊂ Rk−m. ν can be

regarded as a map mapping Pθ to one component of θ, ν,

and it is the parameter of interest while η is a nuisance

parameter.
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Information bound in presence of nuisance parameter

Goal: want to assess the cost of not knowing η by

comparing the information bounds and the efficient

influence functions for ν in the model P (η is unknown

parameter) and Pη (η is known and fixed).
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Case I: η is unknown parameter

l̇θ =

(
l̇1

l̇2

)
, l̃θ =

(
l̃1

l̃2

)

I(θ) =

(
I11 I12

I21 I22

)
,

where I11 = Eθ[l̇1 l̇
′
1], I12 = Eθ[l̇1 l̇

′
2], I21 = Eθ[l̇2 l̇

1
1], and

I22 = Eθ[l̇2 l̇
′
2].

I−1(θ) =

(
I−1
11·2 −I−1

11·2I12I
−1
22

−I−1
22·1I21I

−1
11 I−1

22·1

)
≡
(
I11 I12

I21 I22

)
,

where I11·2 = I11 − I12I
−1
22 I21, I22·1 = I22 − I21I

−1
11 I12.
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• Conclusions in Case I

– The information bound for estimating ν is equal to

I−1(Pθ|ν,P) = q̇(θ)′I−1(θ)q̇(θ),

where q(θ) = ν, and q̇(θ) = ( Im×m 0m×(k−m) ) , ⇒
I−1(Pθ|ν,P) = I−1

11·2 = (I11 − I12I
−1
22 I21)−1.

– The efficient influence function for ν is given by

l̃1 = q̇(θ)′I−1(θ)l̇θ = I−1
11·2 l̇

∗
1,

where l̇∗1 = l̇1 − I12I
−1
22 l̇2. It is easy to check

I11·2 = E[l̇∗1(l̇∗1)′].

Thus, l∗1 is called the efficient score function for ν in

P .
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Case II: η is known and fixed

– The information bound for ν is just I−1
11 ,

– The efficient influence function for ν is equal to I−1
11 l̇1.
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Comparison

– knowing η increases the Fisher information for ν and

decreases the information bound for ν,

– knowledge of η does not increase information about ν

if and only if I12 = 0. In this case, l̃1 = I−1
11 l̇1 and

l∗1 = l1.
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Examples

– Suppose

P = {Pθ : pθ = φ((x− ν)/η)/η, ν ∈ R, η > 0} .

Note that

l̇ν(x) =
x− ν
η2

, l̇η(x) =
1

η

{
(x− ν)2

η2
− 1

}
.

Then the information matrix I(θ) is given by by

I(θ) =

(
η−2 0

0 2η−2

)
.

Then we can estimate the ν equally well whether we

know the variance or not.
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– If we reparameterize the above model as

Pθ = N(ν, η2 − ν2), η2 > ν2.

An easy calculation shows that

I12(θ) = νη/(η2− ν2)2. Thus lack of knowledge of η in

this parameterization does change the information

bound for estimation of ν.
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• Geometric interpretation

Theorem 4.3

(A) The efficient score function l̇∗1(·, Pθ|ν,P) is the

projection of the score function l̇1 on the

orthocomplement of [l̇2] in L2(Pθ), where [l̇2] is the linear

span of the components of l̇2.

(B) The efficient influence function l̃(·, Pθ|ν,Pη) is the

projection of the efficient influence function l̃1 on [l̇1] in

L2(Pθ).
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Proof (A) The projection of l̇1 on [l̇2] is equal to Σl̇2 for some

matrix Σ.

Since E[(l̇1 − Σl̇2)l̇′2] = 0, Σ = I12I
−1
22 , and thus the projection on

the orthocomplement of [l̇2] is equal to

l̇1 − I12I
−1
22 l̇2 = l̇∗1.

(B)

l̃1 = I−1
11·2(l̇1 − I12I

−1
22 l̇2) = (I−1

11 + I−1
11 I12I

−1
22·1I21I

−1
11 )(l̇1 − I12I

−1
22 l̇2)

= I−1
11 l̇1 − I−1

11 I12 l̃2.

From (A), l̃2 is orthogonal to l̇1, the projection of l̃1 on [l̇1] is equal

I−1
11 l̇1 = l̃(·, Pθ|ν,Pη).
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term notation P Pη
(η unknown) (η known)

efficient score l̇∗
1

(, P |ν, ·) l̇∗
1

= l̇1 − I12I
−1
22

l̇2 l̇1

information I(P |ν, ·) E[l̇∗
1

(l̇∗
1

)′] = I11 − I12I
−1
22

I21 I11

efficient l̃1(·, P |ν, ·) l̃1 = I11 l̇1 + I12 l̇2 = I
−1
11·2 l̇

∗
1

I
−1
11

l̇1

influence information = I
−1
11

l̇1 − I
−1
11

I12 l̃2

information bound I−1(P |ν, ·) I11 = I
−1
11·2 I

−1
11

= I
−1
11

+ I
−1
11

I12I
−1
22·1I21I

−1
11
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Asymptotic Efficiency Bound

• Motivation

– The Cramér-Rao bound can be considered as the

lower bound for any unbiased estimator in finite

sample. One may ask whether such a bound still

holds in large sample.

– To be more specific, we suppose X1, ..., Xn are i.i.d Pθ
(θ ∈ R) and an estimator Tn for θ satisfies that

√
n(Tn − θ)→d N(0, V (θ)2).

– Question: V (θ)2 ≥ 1/I(θ)?
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• Super-efficient estimator (Hodge’s estimator) Let
X1, ..., Xn be i.i.d N(θ, 1) so that I(θ) = 1. Let |a| < 1
and define

Tn =





X̄n if|X̄n| > n−1/4

aX̄n if|X̄n| ≤ n−1/4.

√
n(Tn − θ) =

√
n(X̄n − θ)I(|X̄n| > n−1/4)

+
√
n(aX̄n − θ)I(|X̄n| ≤ n−1/4)

= dZI(|Z +
√
nθ| > n1/4)

+
{
aZ +

√
n(a− 1)θ

}
I(|Z +

√
nθ| ≤ n1/4)

→a.s. ZI(θ 6= 0) + aZI(θ = 0).

Thus, the asymptotic variance of
√
nTn is equal 1 for

θ 6= 0 and a2 for θ = 0. Tn is a superefficient estimator.
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• Locally Regular Estimator

Definition 4.2 {Tn} is a locally regular estimator of θ at

θ = θ0 if, for every sequence {θn} ⊂ Θ with√
n(θn − θ)→ t ∈ Rk, under Pθn ,

(local regularity)
√
n(Tn − θn)→d Z, as n→∞

where the distribution of Z depend on θ0 but not on t.
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• Implication of LRE

– The limit distribution of
√
n(Tn− θn) does not depend

on the direction of approach t of θn to θ0. {Tn} is a

locally Gaussian regular if Z has normal distribution.

–
√
n(Tn − θn)→d Z under Pθn is equivalent to saying

that for any bounded and continuous function g,

Eθn [g(
√
n(Tn − θn))]→ E[g(Z)].

– Tn in the first example is not a locally regular

estimator.
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• Hellinger Differentiability

A model P = {Pθ : θ ∈ Rk} is a parametric model

dominated by a σ-finite measure µ. It is called a

Hellinger-differentiable parametric model if

‖√pθ+h −
√
pθ −

1

2
h′ l̇θ
√
pθ‖L2(µ) = o(|h|),

where pθ = dPθ/dµ.



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 70'

&

$

%

• locally asymptotic normality (LAN)

In a model P = {Pθ : θ ∈ Rk} dominated by a σ-finite

measure µ, suppose pθ = dPθ/dµ. Let l(x; θ) = log p(x, θ)

and let

ln(θ) =
n∑

i=1

l(Xi; θ)

be the log-likelihood function of X1, ..., Xn. The local

asymptotic normality condition at θ0 is

ln(θ0 + n−1/2t)− ln(θ0)→d N(−1

2
t′I(θ0)t, t′I(θ0)t)

under Pθ0 .
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Convolution Result

Theorem 4.4 (Hájek’s convolution theorem) Under

three regularity conditions with I(θ0) nonsingular, the

limit distribution of
√
n(Tn − θ0) under Pθ0 satisfies

Z =d Z0 + ∆0,

where Z0 ∼ N(0, I−1(θ0)) is independent of ∆0.



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 72'

&

$

%

• Conclusion

– the asymptotic variance of
√
n(Tn − θ0) is larger than

or equal to I−1(θ0);

– the Cramér-Rao bound is a lower bound for the

asymptotic variances of any locally regular estimator;

– a further question is what estimator can attains this

bound asymptotically (answer will be given in next

chapter).
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• How to check three regularity conditions?

Proposition 4.6. For every θ in an open subset of Rk

let pθ be a µ-probability density. Assume that the map

θ 7→ sθ(x) =
√
pθ(x) is continuously differentiable for

every x. If the elements of the matrix

I(θ) = E[(ṗθ/pθ)(ṗθ/pθ)
′] are well defined and continuous

at θ, then the map θ → √pθ is Hellinger differentiable

with l̇θ given by ṗθ/pθ.



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 74'

&

$

%

Proof

ṗθ = 2sθṡθ
⇒ ṡθ is zero whenever ṗθ = 0.

∫ {
sθ+tht − sθ

t

}2

dµ =

∫ {∫ 1

0

(ht)
′ṡθ+uthdu

}2

dµ

≤
∫ ∫ 1

0

((ht)
′ṡθ+utht)

2dudµ =
1

2

∫ 1

0

h′tI(θ + utht)htdu.

As ht → h, the right side converges to
∫

(h′ṡθ)2dµ.

Since
sθ+tht−sθ

t − h′ṡθ → 0, the same proof as Theorem 3.1 (E) of

Chapter 3 gives
∫ [

sθ+tht − sθ
t

− h′ṡθ
]2

dµ→ 0.
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Proposition 4.7 If {Tn} is an estimator sequence of q(θ)

such that

√
n(Tn − q(θ))−

1√
n

n∑

i=1

ψ̇θI(θ)−1l̇θ(Xi)→p 0,

where ψ is differentiable at θ, then Tn is the efficient and

regular estimator for q(θ).
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Proof

“⇒” Let ∆n,θ = n−1/2
∑n

i=1 l̇θ(Xi). ⇒ ∆n,θ →d ∆θ ∼ N(0, I(θ)).

From Step I of Theorem 4.4, log dQn/dPn is equivalent to

h′∆n,θ − h′I(θ)h/2 asymptotically.

⇒ Slutsky’s theorem gives that under Pθ,
(√

n(Tn − q(θ)), log
dQn
dPn

)
→d (ψ̇θI(θ)−1∆θ, h

′∆θ − h′I(θ)h/2)

∼ N
((

0

−h′I(θ)h/2

)
,

(
ψ̇θI(θ)−1ψ̇θ ψ̇θh

ψ̇θh
′ h′I(θ)h

))
.

⇒ From Le Cam’s third lemma, under Pθ+h/
√
n,
√
n(Tn − q(θ))

converges in distribution to N(ψ̇θh, ψ̇θI(θ)′ψ̇′θ).

⇒ Pθ+h/
√
n,
√
n(Tn − q(θ + h/

√
n))→d N(0, ψ̇θI(θ)′ψ̇′θ).
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• Asymptotic linear estimator

Definition 4.4 If a sequence of estimators {Tn} has the

expansion

√
n(Tn − q(θ)) = n−1/2

n∑

i=1

Γ(Xi) + Rn,

where Rn converges to zero in probability, then Tn is

called an asymptotically linear estimator for q(θ) with

influence function Γ.
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Proposition 4.3 Suppose Tn is an asymptotically linear

estimator of ν = q(θ) with influence function Γ. Then

A. Tn is Gaussian regular at θ0 if and only if q(θ) is

differentiable at θ0 with derivative q̇θ and, with

l̃ν = l̃(·, Pθ0 |q(θ),P) being the efficient influence function

for q(θ), Eθ0 [(Γ− l̃ν)l̇] = 0 for any score l̇ of P .

B. Suppose q(θ) is differentiable and Tn is regular. Then

Γ ∈ [l̇] if and only if Γ = l̃ν .



CHAPTER 4 POINT ESTIMATION AND EFFICIENCY 79'

&

$

%

Proof

A. By asymptotic linearity of Tn,
( √

n(Tn − q(θ0))

Ln(θ0 + tn/
√
n)− Ln(θ0)

)

→d N

{(
0

−t′I(θ0)t

)
,

(
Eθ0 [ΓΓ′] Eθ0 [Γl̇′]t

Eθ0 [l̇Γ′]t t′I(θ0)t

)}
.

From Le Cam’s third lemma, Pθ0+tn/
√
n,

√
n(Tn − q(θ0))→d N(Eθ0 [Γ′ l̇]t, Eθ0 [ΓΓ′]).

If Tn is regular, then, under Pθ0+tn/
√
n,

√
n(Tn − q(θ0 + tn/

√
n))→d N(0, Eθ0 [ΓΓ′]).

⇒ √n(q(θ0 + tn/
√
n)− q(θ0))→ Eθ0 [Γ′l̇]t.

⇒ q̇θ = Eθ[Γ
′ l̇]. Note Eθ0 [l̃′ν l̇] = q̇θ.
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To prove the other direction, since q(θ) is differentiable and under

Pθ0+tn/
√
n,

√
n(Tn − q(θ0))→d N(Eθ0 [Γ′ l̇]t, E[ΓΓ′])

⇒ from Le Cam’s third lemma, under Pθ0+tn/
√
n,

√
n(Tn − q(θ0 + tn/

√
n))→d N(0, E[ΓΓ′]).

⇒ Tn is Gaussian regular.

B. If Tn is regular, from A, Γ− l̃ν is orthogonal to any score in P.

⇒ Γ ∈ [l̇] implies that Γ = l̃ν . The converse is obvious.
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