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e Why large sample theory

— studying small sample property is usually difficult
and complicated

— large sample theory studies the limit behavior of a
sequence of random variables, say X,,.

— example: X,, — p, vn(X, — p)
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Modes of Convergence
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e Convergence almost surely

Definition 3.1 X, is said to converge almost surely to
X, denoted by X,, —, X, if there exists a set A C ()
such that P(A°) =0 and for each w € A, X,,(w) = X (w)

in real space.
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e Lquivalent condition

{w: X,(w) = X(w)}°
= Ueso Ny {w Slip | X (w) — X (w)| > €}

m>n

Xy —ras X it
P(sup | X,, — X|>¢€¢) =0

m>n
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e Convergence in probability

Definition 3.2 X, is said to converge in probability to
X, denoted by X, —, X, if for every € > 0,

P(| X, — X|>¢) = 0.



CHAPTER 3 LARGE SAMPLE THEORY

e Convergence in moments/means

Definition 3.3 X, is said to converge in rth mean to X,
denote by X,, —, X, if

E||X,—X|"] = 0 as n — oo for functions X,,, X € L,.(P),
where X € L,(P) means [ |X|"dP < cc.
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e Convergence in distribution

Definition 3.4 X, is said to converge in distribution of
X, denoted by X,, =4 X or F,, =4 F (or L(X,) = L(X)
with L referring to the “law” or “distribution”), if the
distribution functions Fj, and F' of X,, and X satisty

F,(x) — F(x) as n — oo for each continuity point x of F.
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e Uniform integrability

Definition 3.5 A sequence of random variables { X} is
uniformly integrable it

lim lim sup F{|X,|I(|X,] > X))} =0.

A—00 n— 00
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e A note

— Convergence almost surely and convergence in
probability are the same as we defined in measure
theory.

— Two new definitions are
x convergence in rth mean

x convergence in distribution

11
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e “convergence in distribution”
— is very different from others

— example: a sequence X,Y, XY, XY, ... where X and
Y are N(0,1); the sequence converges in distribution
to N(0,1) but the other modes do not hold.

— “convergence in distribution” is important for

asymptotic statistical inference.
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e Relationship among different modes

Theorem 3.1 A. If X,, =, X, then X,, =, X.

B. It X,, =, X, then X,,, —,, X for some subsequence
X, -

C. It X,, =, X, then X,, —, X.

D. If X,, —, X and |X,|" is uniformly integrable, then
X, —, X.

E. If X,, =, X and limsup,, F|X,|" < E|X|", then

X, —, X.
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F.If X, —, X, then X,, —,» X for any 0 <1’ <.

G. It X,, =, X, then X,, =4 X.

H. X,, —, X if and only if for every subsequence {X,, }
there exists a further subsequence {X,, ;} such that
Xl —7a.s <X.

[. If X,, =4 cfor a constant ¢, then X, —, c.

14
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rry

o g
:, STzt
; =
Xn —3 X ,’l' X s o cwnstant
4
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Proof

A and B follow from the results in the measure theory.

Prove C. Markov inequality: for any increasing function g(-) and

random variable Y, P(|Y| > ¢) < E[%].

P(X, — X|>¢) < B[E=2=Xl) 0.

€

16
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Prove D. It is sufficient to show that for any subsequence of { X, },

there exists a further subsequence {X,,, } such that
E|X,, — X|" — 0.

For any subsequence of { X}, from B, there exists a further

subsequence {X,, } such that X,,, —,. X. For any ¢, there exists
A such that limsup,, E[|X,, |"I(|X,,|" > A)] <e.

Particularly, choose A\ such that P(|X|" = \) =0
[ X" T(| X " 2 A) =as [X[TI([X]" = A).

By the Fatou’s Lemma,

B X" I(1X]" = A)] < limsup E[[ Xy, |"I(| X, [" = A)] <e

Nk

17
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Bl X, — X|']
< B[ X, — X[TT(| X, " < 20, | X[ < 2X)]

VB[ Xy, — X[TT(| X, |” > 2), o1, |X[" > 2))]
< B[ X, — X[TT(| X, " < 20, | X]7 < 2X)]

+2"E[(| X, [" + [ XT)I(1 X, [7 2 22, or | X7 2 2M)],

where the last inequality follows from the inequality
(+y)" < 2"(max(z,y))" <27(2" +y"),z >0,y > 0.

When n; is large, the second term is bounded by

24 2" { E[| X0, |"I(| X, | = N] + E[|X]"I(IX] = M)]} < 27 e.

limsup, E[|X,, — X|"] <2"le.

18
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Prove E. It is sufficient to show that for any subsequence of { X},

there exists a further subsequence {X,,, } such that
E[|X,, — X|"] — 0.

For any subsequence of {X,,}, there exists a further subsequence

{X,,} such that X,,, —,s X. Define

Y = 27 (| X " + [ X]) = | X, — X" 2 0.
By the Fatou’s Lemma,

/ limint Y, dP < liminf / Y, dP.
N

Nk

It is equivalent to

2T E[X]"] < lim inf {27 E[| Xy, |"] + 2" E[|X]"] = E[| X5, — X["]}.

19
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Prove F. The Holder inequality:

[r@g@lan < { [11@Pdute } A [1strrants }

11
4=
P q

Choose u =P, f = |Xn—X\T/,g =landp=r/r,q=r/(r—71")in
the Holder inequality

E[|X. - X|"] < E[|X,, — X|"]"/" = 0.

20
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Prove G. X,, =, X. If P(X =) =0, then for any € > 0,

P(I(X, <z)—I(X <z)|>e€
= P X,<z)—-I(X<z)|>¢|X—2>))
+P(I( X, <z)—I(X <z)|>6|X —2] <))
PX, <z, X>z4+06)+P(X, >z, X <z -9
+P(|X — [ <9)
< P(X,—X|>90)+P(|X —z| <9).

IA

The first term converges to zero since X,, —, X.
The second term can be arbitrarily small if ¢ is small, since
lims_o P(|X —2| <) =P(X =x) =0.

I(X, <z)—, (X <2x)

F.(z)=F[I(X, <z) = E|I(X <z)]=F(x).

21
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Prove H. One direction follows from B.

To prove the other direction, use the contradiction. Suppose there
exists € > 0 such that P(|X,, — X| > €) does not converge to zero.
find a subsequence { X, } such hat P(| X, — X| > ¢€) > § for

some 0 > 0.

However, by the condition, there exists a further subsequence X,

such that X,,» =, X then X,» —, X from A. Contradiction!
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Prove I. Let X = c.

P(| X, —c|>€¢) <1—F,(c+e)+ F,(c—¢)
—1—Fx(c+e€)+ F(c—¢€) =0.

23
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e Some counter-examples

(Ezample 1) Suppose that X, is degenerate at a point
1/n;ie., P(X, =1/n)=1. Then X, converges in

distribution to zero. Indeed, X,, converges almost surely.

24
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(Ezample 2) X1, X, ... are i.i.d with standard normal
distribution. Then X,, —,; X; but X,, does not converge
in probability to Xj.

25
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(Ezample 3) Let Z be a random variable with a uniform
distribution in [0, 1]. Let

Xo=I(m27*" < Z < (m+1)27%) when n =2 + m
where 0 < m < 2¥. Then it is shown that X,, converges
in probability to zero but not almost surely. This
example is already given in the second chapter.

26
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(Erzample 4) Let Z be Uniform(0,1) and let
X,=2"1(0< Z <1/n). Then E[|X,|"]] = oo but X,

converges to zero almost surely.

27
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e Result for convergence in rth mean

Theorem 3.2 (Vitali’s theorem) Suppose that
X, € L.(P), ie., || X, < 0o, where 0 < r < 0o and
X, —, X. Then the following are equivalent:

A. {|X,|"} are uniformly integrable.

B. X, =, X.

C. E[|X,["] = E[|XT).

28
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e One sufficient condition for uniform integrability

— Liapunov condition: there exists a positive constant
€o such that limsup, E[|X,| %] < oo

Bl Xn "]

EllXn[ I([Xal” 2 M) = ——7

29
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Integral inequalities

30
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o Young’s inequality
al” b

|ab\§?+7, CL,b>O,

where the equality holds if and only if a = b.

log x is concave:

1 1 1

p

Geometric interpretation (insert figure here):

1
log(—|al” + —[b]?) = —log|al” + ~log [b].
q p q

31



CHAPTER 3 LARGE SAMPLE THEORY

e Holder inequality

[11@a@ldnte) < { [ 11@Pau@) { [ lo@lrdu)}"

— in the Young’s inequality, let

= f(@)/ {J | (@) Pdu(z)}"”
b= g(x)/ {[g(x)|"dp(x)}""".

~when p=Pand f=X(w), g=1, p5 "y > p; ™
where i, = E[|X|"] and 7 > s > ¢ > 0.

— when p = q = 2, obtain Cauchy-Schwartz inequality:

32
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o NMinkowski’s tnequality r > 1,
|X + Y, < | X + 1Y}
— derivation:

E[IX + Y[ < E[(1X[+ V)X + Y]]

< B[ X[ E|X+Y [T+ B[V EIX+Y ]

~ || - || in fact is a norm in the linear space

{X || X[, < co}. Such a normed space is denoted as
L.(P).
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o Markov’s inequality

Elg(|X])]
gle)

where g > 0 is a increasing function in |0, co).

P(X| =z ¢) <

— Derivation:

P(|X] =€) < P(g(|X]) = g(e)
g(1X
= ElI(g(1X]) = g(e))] < E| J
g(e)
— When ¢(z) = 2% and X replaced by X — pu, obtain
Chebyshev’s inequality:

)
)

Var(X)

2

P(IX —pl =€) <

€

34
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e Application of Vitali’s theorem

~Y1,Y,, ... are i.i.d with mean p and variance o?. Let

X, =Y,.
— By the Chebyshev’s inequality,
Var(X, 2
(X, — | > ¢) < LX) _ 7
€ ne

Xp —p [

— From the Liapunov condition with » =1 and ¢y = 1,
| X, — p| satisfies the uniform integrability condition

El|Xn —pl] = 0.

35
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Convergence in Distribution

36
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“Convergence in distribution is the most important mode

of convergence in statistical inference.”

37
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Equivalent conditions

Theorem 3.3 (Portmanteau Theorem) The following
conditions are equivalent.

(a). X, converges in distribution to X.

(b). For any bounded continuous function g(-),

Elg(Xy)] = Elg(X)].

(¢). For any open set G in R,

liminf, P(X, € G) > P(X € G).

(d). For any closed set F'in R,

limsup, P(X, € F) < P(X € F).

(e). For any Borel set O in R with P(X € 00) = 0 where
00 1is the boundary of O, P(X,, € O) — P(X € O).
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Proof

(a)=(b). Without loss of generality, assume |g(x)| < 1. We choose
|[—M, M] such that P(|X|= M) =0.

Since g is continuous in [—M, M|, ¢ is uniformly continuous in
[— M, M].

Partition [—M, M| into finite intervals I; U ... U I,;, such that
within each interval I}, max;, g(x) — mins, g(x) < e and X has no

mass at all the endpoints of I, (why?).
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Therefore, if choose any point xy € I,k =1,...,m,

[Elg(Xn)] = Elg(X)]
< Ellg(Xo)|I(|Xn] > M)] + El|g(X)|I(|X] > M)]

HE[g(Xa) (| Xn| < M)] =Y g(x1)P(Xp € Ii)
k=1

m

Y g(ar)P(Xn € 1) = Y gla) P(X € L)

k=1

HEG(X)I(|X] < M)] = > glar) P(X € I)]
k=1

VAN

P(| X, |>M)+P(|X| > M

+2€ + Z IP(X, € I,) — P(X € I,)|.
k=1

limsup,, |E[g(X,)] — Elg(X)]| < 2P(|X| > M) + 2¢. Let
M — oo and € — 0.
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(b)=(c). For any open set GG, define g(z) =1 — a7y Where
d(x,G°) is the minimal distance between = and G€, inf,cqe |z — y|.

For any y € G, d(z1,G) — |z2 —y| < |71 —y| — |22 —y| < |21 — 22,
d(r1,G°) — d(x2,G) < |z1 — x2|.
9(z1) — g(x2)| < €7 Hd(21, G%) — d(22,G)| < € My — w2,
g(x) is continuous and bounded.
Elg(Xy)] = Elg(X)].

Note 0 < g(z) < Ig(x)

limnian(Xn c@G)> limninfE[g(Xn)] — Elg(X)].

Let € = 0 = FE[g(X)] converges to E[I(X € G)] = P(X € G).

(¢)=(d). This is clear by taking complement of F.

41
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(d)=(e). For any O with P(X € 00) = 0,

limsup P(X,, € O) <limsup P(X,, € O) < P(X € O) = P(X € 0),

n mn

liminf P(X,, € O) > liminf P(X,, € 0°) > P(X € 0O°) = P(X € O).

(e)=(a). Choose O = (—o0, x| with P(X € 00) = P(X =x) = 0.

42
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e Counter-examples

— Let g(x) = x, a continuous but unbounded function.
Let X,, be a random variable taking value n with
probability 1/n and value 0 with probability
(1 —1/n). Then X,, —4 0. However, Flg(X)| =1
does not converge to 0.

— The continuity at boundary in (e) is also necessary:
let X,, be degenerate at 1/n and consider

O={x:z >0} Then P(X, € O)=1but X,, —40.

43
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Weak Convergence and Characteristic Functions

44
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Theorem 3.4 (Continuity Theorem) Let ¢, and ¢
denote the characteristic functions of X,, and X

respectively. Then X,, —, X is equivalent to
¢n(t) — @(t) for each t.

45
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Proof

To prove = direction, from (b) in Theorem 3.1,

On(t) = B[] — E[e"] = ¢(t).

The proof of <= direction consists of a few tricky constructions

(skipped).

46
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e One simple example Xy, ..., X,, ~ Bernoulli(p)
Qb)‘(n (t) _ E[eit(Xl—i—...—i—Xn)/n] _ (1 = p _I_pezt/n)n

= (1 —p+p+itp/n+o(l/n))" — .
Note the limit is the c.f. of X = p. Thus, X,, =4 p so X,,
converges in probability to p.



CHAPTER 3 LARGE SAMPLE THEORY

e (Generalization to multivariate random vectors

— X,, ¢ X if and only if
Elexp{it’ X, }| — Elexp{it’ X }|, where t is any

k-dimensional constant
— Equivalently, ' X,, —4t'X for any ¢

— to study the weak convergence of random vectors, we
can reduce to study the weak convergence of
one-dimensional linear combination of the random

vectors

— This is the well-known Cramér-Wold’s device

48
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Theorem 3.5 (The Cramér-Wold device) Random
vector X, in RF satisfy X,, —4 X if and only
X, -, X in R for all t € R,

49
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Properties of Weak Convergence

50
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Theorem 3.6 (Continuous mapping theorem)
suppose X,, —+45 X, or X, =, X, or X, —4 X. Then
for any continuous function g(-), g(X,) converges to
g(X) almost surely, or in probability, or in distribution.
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Proof
If X, =05 X,— 9(X5) —as 9(X).

If X,, —, X, then for any subsequence, there exists a further
subsequence X,,, —4.s. X. Thus, g(X,,) —a.s 9(X). Then
9(X,) = g(X) from (H) in Theorem 3.1.

To prove that g(X,,) —4 g(X) when X,, —4 X, use (b) of Theorem
3.1.

52
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e One remark

Theorem 3.6 concludes that g(X,,) —4 g(X) if X,, —»4 X
and ¢ is continuous. In fact, this result still holds if

P(X € C(g)) = 1 where C(g) contains all the continuity
points of g. That is, if ¢’s discontinuity points take zero

probability of X, the continuous mapping theorem holds.

53
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Theorem 3.7 (Slutsky theorem) Suppose X,, —4 X,
Y, =,y and Z,, —, z for some constant y and z. Then
Lin Xy + 1, =g 2X + .

54
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Proof
First show that X,, +Y,, ¢ X +v.

For any € > 0,
PX,4+Y,<zx)<PX,+Y,<uz|V,—yl<e)+ P(|Yn—y| >¢)

<PX,<z—y+e)+ P(Y,—y| >e€).

limsup,, Fix, 1y, (x) <limsup, Fx (rt —y+¢€) < Fx(x —y+ €).

55
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On the other hand,
PX,+Y,>z)=PXn+Y,>x,|Y,—y| <€)+ P(|Y, —y| >¢)

<PX,>z—y—¢€)+P(|Y,—y| >e€).

limsup(l — Fx, 1y, (z)) <limsup P(X,, >z —y — ¢)

n n

<limsup P(X, >x—y—2¢) < (1 - Fx(z—y— 2¢)).

Fx(x —y—2¢) <liminf, Fx, iy, (z) <limsup, Fx, 1y, () <
Fx(x+y+e).

Fxiy(z—) <liminf Fx .y, () <limsup Fx, +v, (z) < Fx1y(2).

n
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To complete the proof,
1

P(|(Zp—2)Xp| >€) < P(|Z,—2| > )+ P(|Z,— 2| < €, X,| > E)

limsup P(|(Z, — 2)X,| > €) <limsup P(|Z, — z| > €°)

1 1
li P(X,|>—) = P(X|> —).
+limsup P(|X,| > 5-) = P(IX] = o)

that (Z, —2)X, —, 0.

Clearly zX,, =4 2X Zn Xy —q 2X from the proof in the first
half.

Again, using the first half’s proof, Z, X,, + Y,, —q4 2X 4+ v.
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e Fixamples

— Suppose X,, =4 N(0,1). Then by continuous
mapping theorem, X2 —; x%.

— This example shows that g can be discontinuous in
Theorem 3.6. Let X,, -4 X with X ~ N(0,1) and
g(x) = 1/x. Although g(x) is discontinuous at origin,
we can still show that 1/X,, —4 1/X, the reciprocal
of the normal distribution. This is because
P(X =0) = 0. However, in Example 3.6 where
g(x) = I(x > 0), it shows that Theorem 3.6 may not
be true if P(X € C(g)) < 1.
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— The condition Y,, —, y, where y 1s a constant, is

necessary. For example, let X,, = X ~ Uniform(0,1).

Let Y,, = —X so Y, —y4 —X where X is an

independent random variable with the same
distribution as X. However X,, + Y,, = 0 does not
converge in distribution to X — X.

59
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— Let X1, X5, ... be a random sample from a normal

distribution with mean g and variance o* > 0,

\/E(Xn — :LL) —7d N(07 02)7

VilXn =) L nio.02) = N0, 1),

in large sample, t,,_; can be approximated by a
standard normal distribution.
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Representation of Weak Convergence

61
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Theorem 3.8 (Skorohod’s Representation
Theorem) Let {X,,} and X be random variables in a
probability space (€2, A, P) and X,, —4 X. Then there
exists another probability space (Q, A, P) and a sequence
of random variables X,, and X defined on this space such
that X,, and X,, have the same distributions, X and X
have the same distributions, and moreover, X, . X.

62
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e (Quantile function

F~Y(p) = inf{x : F(z) > p}.

Proposition 3.1 (a) F! is left-continuous.

(b) If X has continuous distribution function F', then
F(X) ~ Uniform(0,1).

(c) Let £ ~ Uniform(0,1) and let X = F~1(£). Then for
all z, {X <z} ={¢( < F(x)}. Thus, X has distribution
function F.

63
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Proof

(a) Clearly, F~! is nondecreasing. Suppose p,, increases to p then
F~1(p,) increases to some y < F~!(p). Then F(y) > p, so

Fly)>2p. = F'p) <y =y=F"(p).

<z C{F(X) < F(z)} — F(z) < P(F(X) < F(z)).
{FIX)<F(x)—e}Cc{X <z} = P(F(X)< F(x) —
P(F(X) < F(z)—) < F(z).
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Proof

Let (9, A, P) be ([0,1], Bn[0,1],\). Define X,, = F1(¢),
X = F~1(¢), where £ ~ Uniform(0,1). X,, has a distribution F,

which is the same as X,,.

For any ¢t € (0,1) such that there is at most one value x such that
F(x) =t (it is easy to see t is the continuous point of F'~1),

for any z < x, F(2) <t

when n is large, F,,(z) <t so F.1(t) > 2.

liminf, F1(t) > 2z = liminf, F;1(t) > 2 = F~1(¢).
From F(x +¢€) >t, Fp(v+¢) >tso F71(t) <z +e.

limsup, F;1(t) <z +¢e = limsup, F;1(t) < .

Thus F1(t) — F~1(t) for almost every t € (0,1) = X,, —q.5. X.
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e Usefulness of representation theorem

— For example, if X,, —; X and one wishes to show

some function of X,,, denote by ¢(X,), converges in
distribution to g(X):

— see the diagram in Figure 2.
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2%
Slovohod s < 5“4 S“o\
Represontodion o

2. 0 L

l

JE& —3 &)
Slls 8L

9(211) - Qa.s. 268:)
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e Alternative Proof for Slutsky Theorem
First, show (X,,Y,) =4 (X, y).

[D(x, vy (t1st2) = d(x gyt t2)| = | Bl Fret=in] — Ble™ % e2Y]]
< |E[€it1Xn(eit2Yn _ eit20Y]| 4 [eit2¥| | Bl Xn] — B[]
< Bl — o] + B[] - B[] 0.
Thus, (Z,, X,) =4 (2, X). Since g(z,x) = zx is continuous,

Zn Xy —q 2X.

Since (Z,Xn, Yn) —a (2X,y) and g(x,y) = x + y is continuous,

IinXpn +Yn —a2X +y.
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Summation of Independent R.V.s
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e Some preliminary lemmas

Proposition 3.2 (Borel-Cantelli Lemma) For any

events A,,,

S P

implies P(A,,i.0.) = P({A,} occurs infinitely often) = 0;

or equivalently, P(N>%; Upsn Am) = 0.
Proof

P(A,,i.0) < P(Up>ndp) < Z P(A as n — o0.

m>n
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e One result of the first Borel-cantelli lemma

If for a sequence of random variables, {Z,}, and for any
e >0,>, P(|Z,] >¢€) < oo, then |Z,| > € only occurs
finite times.

Zn —a.s. 0.
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Proposition 3.3 (Second Borel-Cantelli Lemma)

For a sequence of independent events A;, A,, ...,
>~ | P(A,) = oo implies P(A,,i.0.) = 1.

n=1

Proof Consider the complement of {4,,,i.0}.

P(Up2 ) Nimzn AS,) = 1im P(Nm>nAS,) =lim [ (1 - P(4))

m>n

< lim sup exp{— Z P(A,,)} =0.

m>n
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e Fquivalence lemma

Proposition 3.4 X, ..., X,, are i.i.d with finite mean.
Define Y,, = X, I1(|X,,| <n). Then

i P(X,#Y,) < .
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Proof Since E[|X]] < oo,

f:P(|X|Zn ZnPn<\X\<n+1 gi E[X]] <
n=1 n=1 n=1

From the Borel-Cantelli Lemma, P(X,, # Y,,i.0) = 0.

For almost every w € €, when n is large enough, X, (w)

Y, (w).
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Weak Law of Large Numbers
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Theorem 3.9 (Weak Law of Large Number) If
X, X1,..., X, are i.i.d with mean pu (so E[|X|] < oo and
1 = E[X]), then X,, —, p.
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Proof

Define Y,, = X, I(—n < X,, <n). Let i, = >, E[Yk]/n.

P(IT, — fin] > €) < YortTa) < Zuamy VoG ISR,

n2e?

Var(X,I(|Xg| < k) < B[X;I(|Xk| < k)]
E[X2I(|1Xk| < k,|X3| > VE®)] + E[X2I(| Xk| < k, | X| < VEe)]
< EE[|XiI(| X% > VEe?)] + ke,

Y o BUXIT(IX[>VEe)] n(n+1)
P(|Yn — pn| > €) < &= 3 + € N2

- ne

limsup,, P(|Yn — pin| > €) < €2 = Y, — fin, —p 0.

fy, — 1 — Yy, —, . From Proposition 3.4 and subsequence

arguments,

Xnk —a.s. W Xn _>p M-
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Strong Law of Large Numbers
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Theorem 3.10 (Strong Law of Large Number) If
Xy, ..., X, are i.i.d with mean p then X,, —,. /.

79



CHAPTER 3 LARGE SAMPLE THEORY

Proof

Without loss of generality, we assume X,, > 0 since if this is true,
the result also holds for any X,, by X,, = X;F — X .

Similar to Theorem 3.9, it is sufficient to show Y,, —,.s. 1, Where
Y, = X, I(X, <n).

Note EY,]| = F[X11(X1 <n)] = pso

Y EYi]/n— p.

if we denote S,, = >_1_,(Yx — E[Y3]) and we can show
gn/n —a.s. 0, then the result holds.
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Var(S Z Var(Yy) <> E[Y2] <nE[X2I(X; <n)).
k=1 k=1

By the Chebyshev’s inequality,

~

Sn 1
P22 > €) <

Var(gn) <

n2e?

For any a > 1, let u,, = [a"].
ZP

Since for any x>0, 32, ~ {tn} ™" <23 si0g0/10ga @ T < Ko7t
for some constant K,

o

1
E[X2] (X1 < un)] < B (X2 Z

n=1 ’U,n>X]_ n

S.. K
ZP "|>e S B[X1] <

gun /un —a.s. 0.

81



CHAPTER 3 LARGE SAMPLE THEORY

For any k, we can find u,, < k < uy,y1. Thus, since X, Xo,... > 0,

~ ~ ~

Sun Un < Sk Sun_|_1 Un+1

< <
Up Upni1 k Un4+1  Unp
S S
p/a < liminf 2k < lim sup 2k < pua.

Since « is arbitrary number larger than 1, let @« — 1 and we obtain
limk gk/k — .
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Central Limit Theorems
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e Preliminary result of c.f.

Proposition 3.5 Suppose E||X|™] < oo for some integer
m > 0. Then
m 1 )k

ox(t) - 3

k=0

E[X®|/|t|™ = 0, ast — 0.
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Proof

it 1]7

e

e 30 (i)t (it)"

x
k! m)!
k=1

where 6 € [0, 1].

ox(t) = 3 S BLxH| /™ < EIXI™ X~ 1])/ml 0,

as t — 0.
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e Simple versions of CLT

Theorem 3.11 (Central Limit Theorem) If
X4, ..., X, are i.i.d with mean p and variance o? then

\/E(Xn _ :u) —d N(07 O2>'
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Proof
Denote Y,, = /n(X,, — p).
by, (1) = {ox,-u(t/vn)}".
O, u(t/ V) = 1 — 6% /20 + of1/n).

242
by, (1) = exp{~ T},
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Theorem 3.12 (Multivariate Central Limit
Theorem) If X, ..., X, are i.i.d random vectors in R”

with mean p and covariance ¥ = E[(X — u)(X — p)'],
then /n(X,, — u) —q¢ N(0,2).

Proof

Use the Cramér-Wold’s device.
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e Liaponov CLT

Theorem 3.13 (Liapunov Central Limit Theorem)
Let X,1, ..., X,, be independent random variables with
i = E[X,;] and 02, = Var(X,;). Let pw, = Y71 fins,

o2 =" o 1If

nt

ZE ,UmH s 0,

1=1 n

then > (Xni — pini)/0n —a N(0, 1).
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e Lindeberg-Feller CLT

Theorem 3.14 (Lindeberg-Fell Central Limit
Theorem) Let X1, ..., X,,, be independent random
variables with p,; = F[X,;| and 02, = Var(X,;). Let

o2 =" 02, Then both Y7 (X,i — ptni)/0n —a N(0,1)
and max {02,/02 : 1 <i <n} — 0 if and only if the
Lindeberg condition

% ZE[|XM—,LLM\2](|XM-—,LLM| > eop,)] — 0, forall e >0

n =1

holds.
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e Proof of Liapunov CLT using Theorem 3.14

1 n

S Bl Xk = ik P Xt = o] > e0)
n =1
1 & 3
< 3,3 Z EHXnk — Nnk‘ ]
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e Fixamples

— This is one example from a simple linear regression
X; =a+ Bz;+¢€;for j =1,2, ... where z; are known
numbers not all equal and the ¢; are 1.1.d with mean

zero and variance o2,

Bfn = Z?:I Xj(zj — zn)/ Z;’L:l(zj — Zn)°
=P+ 251 € (25 — Zn)/ Z?:l(zj — Zn)?.

Assume

n
max(z; — Z,)°/ Y (2 — zn)” — 0.
j=n =1

\/ﬁ\/Z?:1(Zj_zn)2 (Bn — B) —d N(Ov 0-2)'
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— The example is taken from the randomization test for
paired comparison. Let (X;,Y,) denote the values of
Jth pairs with X; being the result of the treatment
and Z;, = X, —Y,. Conditional on |Z,| = z,,

Z; =1Z;|sgn(Z;) is independent taking values +|Z;|
with probability 1/2, when treatment and control
have no difference. Conditional on 21, 25, ..., the
randomization t-test is the t-statistic vn — 12, /s,
where 52 is 1/n >0 (Z; — Z,)?. When

this statistic has an asymptotic normal distribution
N(0,1).
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Delta Method
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Theorem 3.15 (Delta method) For random vector X

and X,, in R* | if there exists two constant a,, and j such
that a, (X, — u) —¢ X and a, — oo, then for any
function ¢ : R* — R' such that ¢ has a derivative at p,

denoted by Vg(u)

an(9(Xn) — g(1)) —a Vg(u)X.
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Proof

By the Skorohod representation, we can construct X,, and X such
that X,, ~q¢ X, and X ~q X (~g means the same distribution) and
afn(Xn T ,U) _>a.s. X

~

an(g(Xn) —g(p) —as. Vg(pu)X

an(9(Xn) — g(1)) —a Vg(u)X
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e Fxamples

— Let X1, X5, ... be i.i.d with fourth moment and
s2 = (1/n) Y™ (X; — X,,)%. Denote m;, as the kth
moment of Xy for £ < 4. Note that
sp = (1/n) Xy X7 — (X111 Xi/n)® and

Xn m1
l(am s xe) - o)l
—>dN<O,< mo — MMy mB_mlT;Q))’
mg — 1112 myg — My
the Delta method with g(z,y) = y — z°
Vn(s? —Var(Xy)) —q N(0,my — (mg — m?3)?).
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— Let (X1,Y1),(X5,Y5),... be i.i.d bivariate samples
with finite fourth moment. One estimate of the
correlation among X and Y is

A Szy
Pn = ;
\/ 5252
where s,, = (1/n) P (X = X))V =Y,
s2=(1/n)3" (X; — X,)? and
s2 = (1/n) X1, (Y; — Y,)?. To derive the large sample
dlstrlbutlon of On, first obtain the large sample

distribution of (sgy, s3,s;) using the Delta method
then further apply the Delta method with

9(x,y,2) = x/\/yz.
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— The example is taken from the Pearson’s Chi-square
statistic. Suppose that one subject falls into K
categories with probabilities pq, ..., px, where
p1 + ...+ px = 1. The Pearson’s statistic is defined as

which can be treated as

> (observed count — expected count)?/expected count.
Note v/n(ny/n — p1,...,nx/n — px) has an asymptotic
multivariate normal distribution. Then we can apply
the Delta method to g(z1,...,1x) = >, T5.
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U-statistics
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e Definition
Definition 3.6 A U-statistics associated with
h(xy,...,x,) is defined as

U = S (X X,
10

where the sum is taken over the set of all unordered
subsets [ of r different integers chosen from {1,...,n}.
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e Fixamples

~ One simple example is A(z,y) = zy. Then
Un = (n(n— 1)) Zisy Xi X
~ Up = E[MX1, o, X)X 1), o0y Xy
— U, is the summation of non-independent random

variables.

— If define h(xq,...,z,) as (r!)~! 2.

T1yeees@y) h(ﬂfl,...,l’?«),
then h(xq,...,x,) is permutation-symmetric

1
Un: T Z h(/Bl’...76r)-
(*)

r B1<...<Byr

— h is called the kernel of the U-statistic U,,.
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e CLT for U-statistics

Theorem 3.16 Let = E|h(Xy, ..., X,)|. If
E[h(X1, ..., X,)?] < 0o, then

ViU = ) = VS BlU, — ulXi] 5, 0

Consequently, /n(U,, — p) is asymptotically normal with

mean zero and variance r?c?%, where, with

X1, .0 X, Xy, ... X, i.i.d variables,

~

0'2 — CO’U(h(Xl, XQ, ceny Xr); ]’L(Xl, Xz, 7Xr))
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e Some preparation

— Linear space of r.v.:let S be a linear space of random
variables with finite second moments that contain the
constants; i.e., 1 € § and for any X,Y € S,
aX +bY € S, where a and b are constants.

— Projection: for random variable 7', a random variable
S is called the projection of T on S if E[(T — S)?]
minimizes E[(T — S)?],S € S.
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Proposition 3.7 Let S be a linear space of random
variables with finite second moments. Then S is the
projection of 7" on & if and only if S € § and for any

S eS8, E[(T—8)S] =0. Every two projections of T' onto
S are almost surely equal. If the linear space & contains
the constant variable, then FE|T| = E|[S] and

Cov(T — S,S) =0 for every S € S.
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Proof For any S and S in S,

E[(T —8)} = E[(T — S)!]+ 2E[(T — S)S] + E|[(S — 5)2].

~

if S satisfies that E[(T — 5)S] = 0, then
E[(T — S)?] > E[(T — S)?]. — S is the projection of T on S.

If S is the projection, for any constant o, E[(T — S — a5)?] is

minimized at a = 0. Calculate the derivative at « = 0

~

E[(T - $)S] = 0.

If T has two projections S; and Ss, = E[(S; — S2)?] = 0. Thus,
S1 = S5, a.s. If the linear space S contains the constant variable,

~

choose S =1 — 0= E[(T — S)S] = E[T] — E[S]. Clearly,
Cov(T — S,5) = E[(T — 5)S] = 0.



CHAPTER 3 LARGE SAMPLE THEORY 107

e Fquivalence with projection

Proposition 3.8 Let §,, be linear space of random
variables with finite second moments that contain the
constants. Let 7;, be random variables with projections

Sp on to S,. If Var(T,)/Var(S,) — 1 then
_ T —E[T,]  S.— [Sn]

\/ Var(T,) \/ Var(S

>p 0.




CHAPTER 3 LARGE SAMPLE THEORY

Proof . E[Z,] = 0. Note that

Cov(T,, Sy)
\/Va,r War(S,)

Var(Z,) =2 —

Since S,, is the projection of T,

Cov(Ty,,S,) = Cov(T,, — Sn,Sn) + Var(S,) = Var(S,). We have

B Var(Sn),
Var(Z,) =2(1 — \/Var(Tn)) > 0.

By the Markov’s inequality, we conclude that Z,, —, 0.
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e Conclusion

— it S,, is the summation of i.i.d random variables such
that (S, — E[Sn])/\/Var(Sn) —q4 N(0,07), so is

(T,, — ET,])/ \/ Var(T,). The limit distribution of
U-statistics is derived using this lemma.
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e Proof of CLT for U-statistics
Proof

Let X1, ..., X, be random variables with the same distribution as
X7 and they are independent of X, ..., X,,. Denote U, by

> iy BlU — plXi).

We show that U, is the projection of U,, on the linear space
Sp=1{g1(X1) + ... + gn(Xy) : Elge(X)?] < 00,k =1,...,n}, which
contains the constant variables. Clearly, U,, € S,,. For any

gr(Xk) € Sy,

~

E[(Un — Un)gi(X1)] = BIE[U, — Un| Xi]gu (X)) = 0.
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n n—1
U, = (Tgl)E[h(Xl,... X, 1, X;) — plX5]
~ ()
r mn
EZE Xl;--- r— 17X>_M|X’&]
> 2
Var(Un) = mZE WKty X1, X,) — | X2])?]
2
r ~ ~ ~ ~
= —Cov(B[h(Xy, ... Xo1, X1)| X1, B[A(X1, ., Xpo1, X1) | X3))
2 2 2

= L Cov(h(X1, Xay oo, X)), H(X 1, Xooy X)) = —
n n
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Furthermore,

Var(Uy)

—2
n
_ () SN Covlh(Xpy ooy X, ) h(Xsr s oo X))
BB

-2 T
n
k=1 3 and 8’ share k components

~

Cov(h(X1, Xa, .., Xi, Xit1, oo Xo), (X1, Xo, oo, Xi, Xioa1, oo X)),

r rl n—r)(n—r+1)---(n—2r+k+1
Var(Un) = _1— k!(rlk)! ( )é(n—l)--)-(n(—r—l—l) >Ck

Var(U,) = ©=Cov(h(X1, Xa, ..., X,), h(X1, Xa, ..., X)) + O(5).

~

Var(U,)/Var(U,) — 1.
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e Lixample

— In a bivariate i.i.d sample (X1, Y)), (X5, Ys),..., one
statistic of measuring the agreement is called
Kendall’s T-statistic

7= ZZI{Y Y)(X; — X;) >0} — 1.

n(n—l vy

7 + 1 is a U-statistic of order 2 with the kernel

21 {(y2 — y1)(w2 — 1) > 0}

\/ﬁ(’f’n +1— ZP((}/Q — Yl)(XQ — Xl) > O)) has an
asymptotic normal distribution with mean zero.
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Rank Statistics
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e Some definitions
- Xa) < X < ... < X(y) 18 called order statistics

— The rank statistics, denoted by Ry, ..., R, are the
ranks of X; among X, ..., X,,. Thus, if all the X'’s are
different, X; = X(Ri)-

— When there are ties, R; is defined as the average of all
indices such that X; = X(;) (sometimes called
midrank).

— Only consider the case that X’s have continuous
densities.
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e More definitions

— a rank statistic is any function of the ranks
— a linear rank statistic is a rank statistic of the special
form Y0 ; a(i, R;) for a given matrix (a(7,7))nxn-

— if a(¢, j) = ¢;a4, then such statistic with form
~_ciap, 1s called simple linear rank statistic: ¢ and

a’s are called the coefficients and scores.
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e Fixamples

— In two independent sample X, ..., X,, and Y7,....Y,,, a
Wilcoxon statistic is defined as the summation of all
the ranks of the second sample in the pooled data
X1, ....X,, Y1,....Y,,, ie.,

n-+m

LV%:: :E: }%.

1=n—+1

Other choices for rank statistics: for instance, the van
der Waerden statistic -7 ®71(R;).
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e Properties of rank statistics

Proposition 3.9 Let X1, ..., X,, be a random sample
from continuous distribution function F' with density f.
Then

1. the vectors (X, ..., X)) and (R4, ..., R,) are
independent;

2. the vector (X(y), ..., X(»)) has density n![[;—; f(z;) on
the set 1 < ... < x,;

3. the variable X(;) has density
(n_1>F(5’7)i_1(1 — F(x))" " f(z); for F the uniform

i—1
distribution on |0, 1], it has mean i/(n 4+ 1) and

variance i(n — i+ 1)/[(n + 1)*(n + 2)];
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4. the vector (Ry, ..., R,) is uniformly distributed on the
set of all n! permutations of 1,2, ..., n;

5. for any statistic T" and permutation r = (rq, ..., r,) of
1,2,...,n,

E[T(Xl, ceny Xn)’(Rl, ey Rn) — 7”] = E[T(X(rl), ey X(Tn))];

6. for any simple linear rank statistic T'= >, c;ag,,

1 n n

> (ci—cn)? ) (ai—a,)°.

E|T| = népa,, Var(T) = 1
N —
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e CLT of rank statistics
Theorem 3.17 Let T}, = >, c;ar, such that

n n

rirlgaqic \az-—c_zn|/\ Z(ai —an)? — 0, I?gaqi( \cz-—(_:n\/\ Z(C@ — )% — 0.

Then (T, — E[T,.])//Var(T,) —4 N(0,1) if and only if
for every € > 0,
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e More on rank statistics

— a simple linear signed rank statistic

Z AR+ Slgn(XZ) )

1=1

where R, ..., Rt, absolute rank, are the ranks of
| X1, ..y | X0

— In a bivariate sample (X1, Y7), ..., (X,, Y2),
> 1 ag.bs, where (Ry, ..., R,) and (51, ..., S,) are
respective ranks of (X1,..., X,) and (Y1, ...,Y,).
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Martingales
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Definition 3.7 Let {Y,,} be a sequence of random
variables and F,, be sequence of o-fields such that
F1 C Fy C ... Suppose E|[|Y,|] < oco. Then the pairs
{(Y,,, Fn)} is called a martingale if

E\Y | Fu1l =Y, 1, a.s.
{(Yy, Fn)} is a submartingale if

E\Y,|Fu1l 2 Y, 1, a.s.
{(Y,, Fn)} is a supmartingale if

E\Y,|Fu1l <Y1, a.s.
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e Some notes on definition

- Y3, ..., Y, are measurable in F,,. Sometimes, we say Y,
1s adapted to F,,.

— One simple example: Y,, = X; + ... + X,,, where
X1, Xo, ... are 1.1.d with mean zero, and F,, is the
o-filed generated by X4, ..., X,,.
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e Convex function of martingales

Proposition 3.9 Let {(Y,, F,)} be a martingale. For
any measurable and convex function ¢, {(¢(Y,), Fn)} is a

submartingale.
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Proof Clearly, ¢(Y,,) is adapted to F,. It is sufficient to show

E[Qb(Yn)’-Fn—l] > Qb(Yn—l)-

This follows from the well-known Jensen’s inequality: for any

convex function ¢,
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e Jensen’s inequality

Proposition 3.10 For any random variable X and any

convex measurable function ¢,

Elp(X)] > o(E£[X]).
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Proof

Claim that for any x(, there exists a constant ky such that for any
x, () > d(xo) + ko(x — 20).

By the convexity, for any 2’ < v/ <z <y < =z,

Blao) — Ox') _ d(y) — dlzo) _ d(x) — Blzo)

To — — Yy — To - T — Xo

Thus, ¢(mgz:i§xo) is bounded and decreasing as x decreases to xg.
Let the limit be ki — £@)=¢lro) > g+

r—XQ

d(x) > kg (x — z0) + B(z0).
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Similarly,

6(a') = dla) _ $y) = dlan) _ $(x) = dlzo)

x' — xg Yy — xg T — Xg

/
Then ¢(xx2_iémo) is increasing and bounded as z’ increases to z.

Let the limit be kj

d(x") > ky (2" — 20) + ¢(20).

Clearly, kaL > ko . Combining those two inequalities,

¢(z) > ¢(xo) + ko(z — o)
for ko = (kg + kg )/2.

Choose z¢g = E[X] then ¢(X) > ¢(F[X]) + ko(X — E[X]).
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e Decomposition of submartingale
Y, = (Yn — E[Yn‘fn—l]) + E[Yn‘fn—l]

— any submartingale can be written as the summation

of a martingale and a random variable predictable in

Fn-1-
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e Convergence of martingales

Theorem 3.18 (Martingale Convergence Theorem)
Let {(X,,, Fn)} be submartingale. If

K =sup, F||X,|] < oo, then X,, =, X where X is a
random variable satisfying F[|X|] < K.
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Corollary 3.1 If F,, is increasing o-field and denote F

as the o-field generated by U>2,F,,, then for any random
variable Z with El||Z]|] < oo, it holds

E|Z|Fo] —as. E|Z]F].
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e CLT for martingale

Theorem 3.19 (Martingale Central Limit
Theorem) Let (Y1, Fn1), (Yoo, Fn2), ... be a martingale.
Define X, = Y, — Yo x—1 with Y0 = 0 thus

Y. = X1 + ... + X,1. Suppose that

> BlX | Fapa] —p 0
k

where o is a positive constant and that

ZE[X?Lk](‘Xnk‘ > 6)‘~Fn,k—1] —p 0
k

for each € > 0. Then
ZXnk: —d N(07 02)'
k
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Some Notation
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e 0,(1) and O,(1)

— X, = 0,(1) denotes that X,, converges in probability

to zero,

— X, = O,(1) denotes that X,, is bounded in
probability; i.e.,

lim limsup P(|X,| > M) = 0.

M — o0 n

— for a sequence of random variable {r,}, X,, = 0,(r,)
means that |X,|/r, —, 0 and X,, = O,(r,) means
that | X,|/r, is bounded in probability.
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e Algebra in o0,(1) and O,(1)

0p(1) +0p(1) = 0p(1) Op(1) + Op(1) = Op(1),
Op(1)0p(1) = 0p(1) (14 0,(1))"" =1+ 0,(1)
0p(Fn) = Rnop(1) Op(Rn) = RnOp(1)
0p(Op(1)) = 0p(1).

If a real function R(-) satisfies that R(h) = o(|h|?) as
h— 0, = R(X,) = 0,(|Xn|P).

If R(h) = O(|h]?) as h — 0, = R(X,) = O, (|X.|").



CHAPTER 3 LARGE SAMPLE THEORY 137

READING MATERIALS: Lehmann and Casella, Section
1.8, Ferguson, Part 1, Part 2, Part 3 12-15



