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CHAPTER 3: LARGE SAMPLE THEORY
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Introduction
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• Why large sample theory

– studying small sample property is usually difficult

and complicated

– large sample theory studies the limit behavior of a

sequence of random variables, say Xn.

– example: X̄n → µ,
√
n(X̄n − µ)
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Modes of Convergence
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• Convergence almost surely

Definition 3.1 Xn is said to converge almost surely to

X, denoted by Xn →a.s. X, if there exists a set A ⊂ Ω

such that P (Ac) = 0 and for each ω ∈ A, Xn(ω) → X(ω)

in real space.
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• Equivalent condition

{ω : Xn(ω) → X(ω)}c

= ∪ϵ>0 ∩n {ω : sup
m≥n

|Xm(ω)−X(ω)| > ϵ}

⇒ Xn →a.s. X iff

P (sup
m≥n

|Xm −X| > ϵ) → 0
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• Convergence in probability

Definition 3.2 Xn is said to converge in probability to

X, denoted by Xn →p X, if for every ϵ > 0,

P (|Xn −X| > ϵ) → 0.
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• Convergence in moments/means

Definition 3.3 Xn is said to converge in rth mean to X,

denote by Xn →r X, if

E[|Xn−X|r] → 0 as n → ∞ for functions Xn, X ∈ Lr(P ),

where X ∈ Lr(P ) means
∫
|X|rdP < ∞.
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• Convergence in distribution

Definition 3.4 Xn is said to converge in distribution of

X, denoted by Xn →d X or Fn →d F (or L(Xn) → L(X)

with L referring to the “law” or “distribution”), if the

distribution functions Fn and F of Xn and X satisfy

Fn(x) → F (x) as n → ∞ for each continuity point x of F.
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• Uniform integrability

Definition 3.5 A sequence of random variables {Xn} is

uniformly integrable if

lim
λ→∞

lim sup
n→∞

E {|Xn|I(|Xn| ≥ λ)} = 0.
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• A note

– Convergence almost surely and convergence in

probability are the same as we defined in measure

theory.

– Two new definitions are

∗ convergence in rth mean

∗ convergence in distribution
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• “convergence in distribution”

– is very different from others

– example: a sequence X, Y,X, Y,X, Y, .... where X and

Y are N(0, 1); the sequence converges in distribution

to N(0, 1) but the other modes do not hold.

– “convergence in distribution” is important for

asymptotic statistical inference.
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• Relationship among different modes

Theorem 3.1 A. If Xn →a.s. X, then Xn →p X.

B. If Xn →p X, then Xnk
→a.s. X for some subsequence

Xnk
.

C. If Xn →r X, then Xn →p X.

D. If Xn →p X and |Xn|r is uniformly integrable, then

Xn →r X.

E. If Xn →p X and lim supn E|Xn|r ≤ E|X|r, then
Xn →r X.
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F. If Xn →r X, then Xn →r′ X for any 0 < r′ ≤ r.

G. If Xn →p X, then Xn →d X.

H. Xn →p X if and only if for every subsequence {Xnk
}

there exists a further subsequence {Xnk,l} such that

Xnk,l →a.s. X.

I. If Xn →d c for a constant c, then Xn →p c.
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Proof

A and B follow from the results in the measure theory.

Prove C. Markov inequality: for any increasing function g(·) and
random variable Y , P (|Y | > ϵ) ≤ E[ g(|Y |)

g(ϵ) ].

⇒P (|Xn −X| > ϵ) ≤ E[ |Xn−X|r
ϵr ] → 0.
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Prove D. It is sufficient to show that for any subsequence of {Xn},
there exists a further subsequence {Xnk

} such that

E|Xnk
−X|r → 0.

For any subsequence of {Xn}, from B, there exists a further

subsequence {Xnk
} such that Xnk

→a.s. X. For any ϵ, there exists

λ such that lim supnk
E[|Xnk

|rI(|Xnk
|r ≥ λ)] < ϵ.

Particularly, choose λ such that P (|X|r = λ) = 0

⇒ |Xnk
|rI(|Xnk

|r ≥ λ) →a.s. |X|rI(|X|r ≥ λ).

⇒ By the Fatou’s Lemma,

E[|X|rI(|X|r ≥ λ)] ≤ lim sup
nk

E[|Xnk
|rI(|Xnk

|r ≥ λ)] < ϵ.



CHAPTER 3 LARGE SAMPLE THEORY 18

⇒

E[|Xnk
−X|r]

≤ E[|Xnk
−X|rI(|Xnk

|r < 2λ, |X|r < 2λ)]

+E[|Xnk
−X|rI(|Xnk

|r ≥ 2λ, or , |X|r ≥ 2λ)]

≤ E[|Xnk
−X|rI(|Xnk

|r < 2λ, |X|r < 2λ)]

+2rE[(|Xnk
|r + |X|r)I(|Xnk

|r ≥ 2λ, or , |X|r ≥ 2λ)],

where the last inequality follows from the inequality

(x+ y)r ≤ 2r(max(x, y))r ≤ 2r(xr + yr), x ≥ 0, y ≥ 0.

When nk is large, the second term is bounded by

2 ∗ 2r {E[|Xnk
|rI(|Xnk

| ≥ λ)] + E[|X|rI(|X| ≥ λ)]} ≤ 2r+1ϵ.

⇒ lim supn E[|Xnk
−X|r] ≤ 2r+1ϵ.
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Prove E. It is sufficient to show that for any subsequence of {Xn},
there exists a further subsequence {Xnk

} such that

E[|Xnk
−X|r] → 0.

For any subsequence of {Xn}, there exists a further subsequence

{Xnk
} such that Xnk

→a.s. X. Define

Ynk
= 2r(|Xnk

|r + |X|r)− |Xnk
−X|r ≥ 0.

⇒ By the Fatou’s Lemma,∫
lim inf

nk

Ynk
dP ≤ lim inf

nk

∫
Ynk

dP.

It is equivalent to

2r+1E[|X|r] ≤ lim inf
nk

{2rE[|Xnk
|r] + 2rE[|X|r]− E[|Xnk

−X|r]} .
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Prove F. The Hölder inequality:∫
|f(x)g(x)|dµ ≤

{∫
|f(x)|pdµ(x)

}1/p {∫
|g(x)|pdµ(x)

}1/q

,

1

p
+

1

q
= 1.

Choose µ = P , f = |Xn −X|r′ , g ≡ 1 and p = r/r′, q = r/(r− r′) in

the Hölder inequality

⇒
E[|Xn −X|r

′
] ≤ E[|Xn −X|r]r

′/r → 0.
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Prove G. Xn →p X. If P (X = x) = 0, then for any ϵ > 0,

P (|I(Xn ≤ x)− I(X ≤ x)| > ϵ)

= P (|I(Xn ≤ x)− I(X ≤ x)| > ϵ, |X − x| > δ)

+P (|I(Xn ≤ x)− I(X ≤ x)| > ϵ, |X − x| ≤ δ)

≤ P (Xn ≤ x,X > x+ δ) + P (Xn > x,X < x− δ)

+P (|X − x| ≤ δ)

≤ P (|Xn −X| > δ) + P (|X − x| ≤ δ).

The first term converges to zero since Xn →p X.

The second term can be arbitrarily small if δ is small, since

limδ→0 P (|X − x| ≤ δ) = P (X = x) = 0.

⇒ I(Xn ≤ x) →p I(X ≤ x)

⇒ Fn(x) = E[I(Xn ≤ x)] → E[I(X ≤ x)] = F (x).
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Prove H. One direction follows from B.

To prove the other direction, use the contradiction. Suppose there

exists ϵ > 0 such that P (|Xn −X| > ϵ) does not converge to zero.

⇒ find a subsequence {Xn′} such hat P (|Xn′ −X| > ϵ) > δ for

some δ > 0.

However, by the condition, there exists a further subsequence Xn′′

such that Xn′′ →a.s. X then Xn′′ →p X from A. Contradiction!
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Prove I. Let X ≡ c.

P (|Xn − c| > ϵ) ≤ 1− Fn(c+ ϵ) + Fn(c− ϵ)

→ 1− FX(c+ ϵ) + F (c− ϵ) = 0.
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• Some counter-examples

(Example 1 ) Suppose that Xn is degenerate at a point

1/n; i.e., P (Xn = 1/n) = 1. Then Xn converges in

distribution to zero. Indeed, Xn converges almost surely.
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(Example 2 ) X1, X2, ... are i.i.d with standard normal

distribution. Then Xn →d X1 but Xn does not converge

in probability to X1.
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(Example 3 ) Let Z be a random variable with a uniform

distribution in [0, 1]. Let

Xn = I(m2−k ≤ Z < (m+ 1)2−k) when n = 2k +m

where 0 ≤ m < 2k. Then it is shown that Xn converges

in probability to zero but not almost surely. This

example is already given in the second chapter.
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(Example 4 ) Let Z be Uniform(0, 1) and let

Xn = 2nI(0 ≤ Z < 1/n). Then E[|Xn|r]] → ∞ but Xn

converges to zero almost surely.
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• Result for convergence in rth mean

Theorem 3.2 (Vitali’s theorem) Suppose that

Xn ∈ Lr(P ), i.e., ∥Xn∥r < ∞, where 0 < r < ∞ and

Xn →p X. Then the following are equivalent:

A. {|Xn|r} are uniformly integrable.

B. Xn →r X.

C. E[|Xn|r] → E[|X|r].
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• One sufficient condition for uniform integrability

– Liapunov condition: there exists a positive constant

ϵ0 such that lim supn E[|Xn|r+ϵ0 ] < ∞

E[|Xn|rI(|Xn|r ≥ λ)] ≤ E[|Xn|r+ϵ0 |]
λϵ0
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Integral inequalities
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• Young’s inequality

|ab| ≤ |a|p

p
+

|b|q

q
, a, b > 0,

where the equality holds if and only if a = b.

log x is concave:

log(
1

p
|a|p + 1

q
|b|q) ≥ 1

p
log |a|p + 1

q
log |b|.

Geometric interpretation (insert figure here):
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• Hölder inequality∫
|f(x)g(x)|dµ(x) ≤

{∫
|f(x)|pdµ(x)

} 1
p
{∫

|g(x)|qdµ(x)
} 1

q

.

– in the Young’s inequality, let

a = f(x)/ {
∫
|f(x)|pdµ(x)}1/p

b = g(x)/ {
∫
|g(x)|qdµ(x)}1/q.

– when µ = P and f = X(ω), g = 1, µs−t
r µr−s

t ≥ µr−t
s

where µr = E[|X|r] and r ≥ s ≥ t ≥ 0.

– when p = q = 2, obtain Cauchy-Schwartz inequality:∫
|f(x)g(x)|dµ(x) ≤

{∫
f(x)2dµ(x)

} 1
2
{∫

g(x)2dµ(x)
} 1

2

.
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• Minkowski’s inequality r > 1,

∥X + Y ∥r ≤ ∥X∥r + ∥Y ∥r.

– derivation:

E[|X + Y |r] ≤ E[(|X|+ |Y |)|X + Y |r−1]

≤ E[|X|r]1/rE[|X+Y |r]1−1/r+E[|Y |r]1/rE[|X+Y |r]1−1/r.

– ∥ · ∥r in fact is a norm in the linear space

{X : ∥X∥r < ∞}. Such a normed space is denoted as

Lr(P ).
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• Markov’s inequality

P (|X| ≥ ϵ) ≤ E[g(|X|)]
g(ϵ)

,

where g ≥ 0 is a increasing function in [0,∞).

– Derivation:

P (|X| ≥ ϵ) ≤ P (g(|X|) ≥ g(ϵ))

= E[I(g(|X|) ≥ g(ϵ))] ≤ E[
g(|X|)
g(ϵ)

].

– When g(x) = x2 and X replaced by X − µ, obtain

Chebyshev’s inequality:

P (|X − µ| ≥ ϵ) ≤ V ar(X)

ϵ2
.
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• Application of Vitali’s theorem

– Y1, Y2, ... are i.i.d with mean µ and variance σ2. Let

Xn = Ȳn.

– By the Chebyshev’s inequality,

P (|Xn − µ| > ϵ) ≤ V ar(Xn)

ϵ2
=

σ2

nϵ2
→ 0.

⇒ Xn →p µ.

– From the Liapunov condition with r = 1 and ϵ0 = 1,

|Xn − µ| satisfies the uniform integrability condition

⇒
E[|Xn − µ|] → 0.



CHAPTER 3 LARGE SAMPLE THEORY 36

Convergence in Distribution
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“Convergence in distribution is the most important mode

of convergence in statistical inference.”
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Equivalent conditions

Theorem 3.3 (Portmanteau Theorem) The following

conditions are equivalent.

(a). Xn converges in distribution to X.

(b). For any bounded continuous function g(·),
E[g(Xn)] → E[g(X)].

(c). For any open set G in R,

lim infn P (Xn ∈ G) ≥ P (X ∈ G).

(d). For any closed set F in R,

lim supn P (Xn ∈ F ) ≤ P (X ∈ F ).

(e). For any Borel set O in R with P (X ∈ ∂O) = 0 where

∂O is the boundary of O, P (Xn ∈ O) → P (X ∈ O).
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Proof

(a)⇒(b). Without loss of generality, assume |g(x)| ≤ 1. We choose

[−M,M ] such that P (|X| = M) = 0.

Since g is continuous in [−M,M ], g is uniformly continuous in

[−M,M ].

⇒ Partition [−M,M ] into finite intervals I1 ∪ ... ∪ Im such that

within each interval Ik, maxIk g(x)−minIk g(x) ≤ ϵ and X has no

mass at all the endpoints of Ik (why?).
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Therefore, if choose any point xk ∈ Ik, k = 1, ...,m,

|E[g(Xn)]− E[g(X)]|
≤ E[|g(Xn)|I(|Xn| > M)] + E[|g(X)|I(|X| > M)]

+|E[g(Xn)I(|Xn| ≤ M)]−
m∑

k=1

g(xk)P (Xn ∈ Ik)|

+|
m∑

k=1

g(xk)P (Xn ∈ Ik)−
m∑

k=1

g(xk)P (X ∈ Ik)|

+|E[g(X)I(|X| ≤ M)]−
m∑

k=1

g(xk)P (X ∈ Ik)|

≤ P (|Xn| > M) + P (|X| > M)

+2ϵ+

m∑
k=1

|P (Xn ∈ Ik)− P (X ∈ Ik)|.

⇒ lim supn |E[g(Xn)]− E[g(X)]| ≤ 2P (|X| > M) + 2ϵ. Let

M → ∞ and ϵ → 0.
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(b)⇒(c). For any open set G, define g(x) = 1− ϵ
ϵ+d(x,Gc) , where

d(x,Gc) is the minimal distance between x and Gc, infy∈Gc |x− y|.

For any y ∈ Gc, d(x1, G
c)− |x2 − y| ≤ |x1 − y| − |x2 − y| ≤ |x1 −x2|,

⇒ d(x1, G
c)− d(x2, G

c) ≤ |x1 − x2|.
⇒ |g(x1)− g(x2)| ≤ ϵ−1|d(x1, G

c)− d(x2, G
c)| ≤ ϵ−1|x1 − x2|.

⇒ g(x) is continuous and bounded.

⇒ E[g(Xn)] → E[g(X)].

Note 0 ≤ g(x) ≤ IG(x)

⇒
lim inf

n
P (Xn ∈ G) ≥ lim inf

n
E[g(Xn)] → E[g(X)].

Let ϵ → 0 ⇒ E[g(X)] converges to E[I(X ∈ G)] = P (X ∈ G).

(c)⇒(d). This is clear by taking complement of F .
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(d)⇒(e). For any O with P (X ∈ ∂O) = 0,

lim sup
n

P (Xn ∈ O) ≤ lim sup
n

P (Xn ∈ Ō) ≤ P (X ∈ Ō) = P (X ∈ O),

lim inf
n

P (Xn ∈ O) ≥ lim inf
n

P (Xn ∈ Oo) ≥ P (X ∈ Oo) = P (X ∈ O).

(e)⇒(a). Choose O = (−∞, x] with P (X ∈ ∂O) = P (X = x) = 0.
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• Counter-examples

– Let g(x) = x, a continuous but unbounded function.

Let Xn be a random variable taking value n with

probability 1/n and value 0 with probability

(1− 1/n). Then Xn →d 0. However, E[g(X)] = 1

does not converge to 0.

– The continuity at boundary in (e) is also necessary:

let Xn be degenerate at 1/n and consider

O = {x : x > 0}. Then P (Xn ∈ O) = 1 but Xn →d 0.
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Weak Convergence and Characteristic Functions
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Theorem 3.4 (Continuity Theorem) Let ϕn and ϕ

denote the characteristic functions of Xn and X

respectively. Then Xn →d X is equivalent to

ϕn(t) → ϕ(t) for each t.



CHAPTER 3 LARGE SAMPLE THEORY 46

Proof

To prove ⇒ direction, from (b) in Theorem 3.1,

ϕn(t) = E[eitXn ] → E[eitX ] = ϕ(t).

The proof of ⇐ direction consists of a few tricky constructions

(skipped).
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• One simple example X1, ..., Xn ∼ Bernoulli(p)

ϕX̄n
(t) = E[eit(X1+...+Xn)/n] = (1 = p+ peit/n)n

= (1− p+ p+ itp/n+ o(1/n))n → eitp.

Note the limit is the c.f. of X = p. Thus, X̄n →d p so X̄n

converges in probability to p.
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• Generalization to multivariate random vectors

– Xn →d X if and only if

E[exp{it ′Xn}] → E [exp{it ′X }], where t is any

k-dimensional constant

– Equivalently, t′Xn →d t
′X for any t

– to study the weak convergence of random vectors, we

can reduce to study the weak convergence of

one-dimensional linear combination of the random

vectors

– This is the well-known Cramér-Wold’s device
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Theorem 3.5 (The Cramér-Wold device) Random

vector Xn in Rk satisfy Xn →d X if and only

t′Xn →d t
′X in R for all t ∈ Rk.
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Properties of Weak Convergence
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Theorem 3.6 (Continuous mapping theorem)

Suppose Xn →a.s. X, or Xn →p X, or Xn →d X. Then

for any continuous function g(·), g(Xn) converges to

g(X) almost surely, or in probability, or in distribution.
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Proof

If Xn →a.s. X,⇒ g(Xn) →a.s g(X).

If Xn →p X, then for any subsequence, there exists a further

subsequence Xnk
→a.s. X. Thus, g(Xnk

) →a.s. g(X). Then

g(Xn) →p g(X) from (H) in Theorem 3.1.

To prove that g(Xn) →d g(X) when Xn →d X, use (b) of Theorem

3.1.
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• One remark

Theorem 3.6 concludes that g(Xn) →d g(X) if Xn →d X

and g is continuous. In fact, this result still holds if

P (X ∈ C(g)) = 1 where C(g) contains all the continuity

points of g. That is, if g’s discontinuity points take zero

probability of X, the continuous mapping theorem holds.
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Theorem 3.7 (Slutsky theorem) Suppose Xn →d X,

Yn →p y and Zn →p z for some constant y and z. Then

ZnXn + Tn →d zX + y.
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Proof

First show that Xn + Yn →d X + y.

For any ϵ > 0,

P (Xn + Yn ≤ x) ≤ P (Xn + Yn ≤ x, |Yn − y| ≤ ϵ) + P (|Yn − y| > ϵ)

≤ P (Xn ≤ x− y + ϵ) + P (|Yn − y| > ϵ).

⇒ lim supn FXn+Yn(x) ≤ lim supn FXn(x− y + ϵ) ≤ FX(x− y + ϵ).
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On the other hand,

P (Xn + Yn > x) = P (Xn + Yn > x, |Yn − y| ≤ ϵ) + P (|Yn − y| > ϵ)

≤ P (Xn > x− y − ϵ) + P (|Yn − y| > ϵ).

⇒
lim sup

n
(1− FXn+Yn(x)) ≤ lim sup

n
P (Xn > x− y − ϵ)

≤ lim sup
n

P (Xn ≥ x− y − 2ϵ) ≤ (1− FX(x− y − 2ϵ)).

⇒ FX(x− y − 2ϵ) ≤ lim infn FXn+Yn(x) ≤ lim supn FXn+Yn(x) ≤
FX(x+ y + ϵ).

⇒

FX+y(x−) ≤ lim inf
n

FXn+Yn(x) ≤ lim sup
n

FXn+Yn(x) ≤ FX+y(x).



CHAPTER 3 LARGE SAMPLE THEORY 57

To complete the proof,

P (|(Zn−z)Xn| > ϵ) ≤ P (|Zn−z| > ϵ2)+P (|Zn−z| ≤ ϵ2, |Xn| >
1

ϵ
).

⇒

lim sup
n

P (|(Zn − z)Xn| > ϵ) ≤ lim sup
n

P (|Zn − z| > ϵ2)

+ lim sup
n

P (|Xn| ≥
1

2ϵ
) → P (|X| ≥ 1

2ϵ
).

⇒ that (Zn − z)Xn →p 0.

Clearly zXn →d zX ⇒ ZnXn →d zX from the proof in the first

half.

Again, using the first half’s proof, ZnXn + Yn →d zX + y.
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• Examples

– Suppose Xn →d N(0, 1). Then by continuous

mapping theorem, X2
n →d χ

2
1.

– This example shows that g can be discontinuous in

Theorem 3.6. Let Xn →d X with X ∼ N(0, 1) and

g(x) = 1/x. Although g(x) is discontinuous at origin,

we can still show that 1/Xn →d 1/X, the reciprocal

of the normal distribution. This is because

P (X = 0) = 0. However, in Example 3.6 where

g(x) = I(x > 0), it shows that Theorem 3.6 may not

be true if P (X ∈ C(g)) < 1.
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– The condition Yn →p y, where y is a constant, is

necessary. For example, let Xn = X ∼ Uniform(0, 1).

Let Yn = −X so Yn →d −X̃, where X̃ is an

independent random variable with the same

distribution as X. However Xn + Yn = 0 does not

converge in distribution to X − X̃.
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– Let X1, X2, ... be a random sample from a normal

distribution with mean µ and variance σ2 > 0,
√
n(X̄n − µ) →d N(0, σ2),

s2n =
1

n− 1

n∑
i=1

(Xi − X̄n)
2 →a.s σ

2.

⇒ √
n(X̄n − µ)

sn
→d

1

σ
N(0, σ2) ∼= N(0, 1).

⇒ in large sample, tn−1 can be approximated by a

standard normal distribution.
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Representation of Weak Convergence
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Theorem 3.8 (Skorohod’s Representation

Theorem) Let {Xn} and X be random variables in a

probability space (Ω,A, P ) and Xn →d X. Then there

exists another probability space (Ω̃, Ã, P̃ ) and a sequence

of random variables X̃n and X̃ defined on this space such

that X̃n and Xn have the same distributions, X̃ and X

have the same distributions, and moreover, X̃n →a.s. X̃.
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• Quantile function

F−1(p) = inf{x : F (x) ≥ p}.

Proposition 3.1 (a) F−1 is left-continuous.

(b) If X has continuous distribution function F , then

F (X) ∼ Uniform(0, 1).

(c) Let ξ ∼ Uniform(0, 1) and let X = F−1(ξ). Then for

all x, {X ≤ x} = {ξ ≤ F (x)}. Thus, X has distribution

function F .
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Proof

(a) Clearly, F−1 is nondecreasing. Suppose pn increases to p then

F−1(pn) increases to some y ≤ F−1(p). Then F (y) ≥ pn so

F (y) ≥ p. ⇒ F−1(p) ≤ y ⇒ y = F−1(p).

(b) {X ≤ x} ⊂ {F (X) ≤ F (x)} ⇒ F (x) ≤ P (F (X) ≤ F (x)).

{F (X) ≤ F (x)− ϵ} ⊂ {X ≤ x} ⇒ P (F (X) ≤ F (x)− ϵ) ≤ F (x) ⇒
P (F (X) ≤ F (x)−) ≤ F (x).

Then if X is continuous, P (F (X) ≤ F (x)) = F (x).

(c) P (X ≤ x) = P (F−1(ξ) ≤ x) = P (ξ ≤ F (x)) = F (x).
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Proof

Let (Ω̃, Ã, P̃ ) be ([0, 1],B ∩ [0, 1], λ). Define X̃n = F−1
n (ξ),

X̃ = F−1(ξ), where ξ ∼ Uniform(0, 1). X̃n has a distribution Fn

which is the same as Xn.

For any t ∈ (0, 1) such that there is at most one value x such that

F (x) = t (it is easy to see t is the continuous point of F−1),

⇒ for any z < x, F (z) < t

⇒ when n is large, Fn(z) < t so F−1
n (t) ≥ z.

⇒ lim infn F
−1
n (t) ≥ z ⇒ lim infn F

−1
n (t) ≥ x = F−1(t).

From F (x+ ϵ) > t, Fn(x+ ϵ) > t so F−1
n (t) ≤ x+ ϵ.

⇒ lim supn F
−1
n (t) ≤ x+ ϵ ⇒ lim supn F

−1
n (t) ≤ x.

Thus F−1
n (t) → F−1(t) for almost every t ∈ (0, 1) ⇒ X̃n →a.s. X̃.
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• Usefulness of representation theorem

– For example, if Xn →d X and one wishes to show

some function of Xn, denote by g(Xn), converges in

distribution to g(X):

– see the diagram in Figure 2.
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• Alternative Proof for Slutsky Theorem

First, show (Xn, Yn) →d (X, y).

|ϕ(Xn,Yn)(t1, t2)− ϕ(X,y)(t1, t2)| = |E[eit1Xneit2Yn ]− E[eit1Xeit2y]|

≤ |E[eit1Xn(eit2Yn − eit2y)]|+ |eit2y||E[eit1Xn ]− E[eit1X ]|

≤ E[|eit2Yn − eit2y|] + |E[eit1Xn ]− E[eit1X ]| → 0.

Thus, (Zn, Xn) →d (z,X). Since g(z, x) = zx is continuous,

⇒ ZnXn →d zX.

Since (ZnXn, Yn) →d (zX, y) and g(x, y) = x+ y is continuous,

⇒ ZnXn + Yn →d zX + y.
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Summation of Independent R.V.s
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• Some preliminary lemmas

Proposition 3.2 (Borel-Cantelli Lemma) For any

events An,
∞∑
i=1

P (An) < ∞

implies P (An, i.o.) = P ({An} occurs infinitely often) = 0;

or equivalently, P (∩∞
n=1 ∪m≥n Am) = 0.

Proof

P (An, i.o) ≤ P (∪m≥nAm) ≤
∑
m≥n

P (Am) → 0, as n → ∞.
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• One result of the first Borel-cantelli lemma

If for a sequence of random variables, {Zn}, and for any

ϵ > 0,
∑

n P (|Zn| > ϵ) < ∞, then |Zn| > ϵ only occurs

finite times.

⇒ Zn →a.s. 0.
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Proposition 3.3 (Second Borel-Cantelli Lemma)

For a sequence of independent events A1, A2, ...,∑∞
n=1 P (An) = ∞ implies P (An, i.o.) = 1.

Proof Consider the complement of {An, i.o}.

P (∪∞
n=1 ∩m≥n Ac

m) = lim
n

P (∩m≥nA
c
m) = lim

n

∏
m≥n

(1− P (Am))

≤ lim sup
n

exp{−
∑
m≥n

P (Am)} = 0.
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• Equivalence lemma

Proposition 3.4 X1, ..., Xn are i.i.d with finite mean.

Define Yn = XnI(|Xn| ≤ n). Then

∞∑
n=1

P (Xn ̸= Yn) < ∞.
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Proof Since E[|X1|] < ∞,

∞∑
n=1

P (|X| ≥ n) =

∞∑
n=1

nP (n ≤ |X| < (n+ 1)) ≤
∞∑

n=1

E[|X|] < ∞.

From the Borel-Cantelli Lemma, P (Xn ̸= Yn, i.o) = 0.

For almost every ω ∈ Ω, when n is large enough, Xn(ω) = Yn(ω).
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Weak Law of Large Numbers
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Theorem 3.9 (Weak Law of Large Number) If

X,X1, ..., Xn are i.i.d with mean µ (so E[|X|] < ∞ and

µ = E[X]), then X̄n →p µ.
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Proof

Define Yn = XnI(−n ≤ Xn ≤ n). Let µ̄n =
∑n

k=1 E[Yk]/n.

P (|Ȳn − µ̄n| ≥ ϵ) ≤ V ar(Ȳn)
ϵ2 ≤

∑n

k=1
V ar(XkI(|Xk|≤k))

n2ϵ2 .

V ar(XkI(|Xk| ≤ k)) ≤ E[X2
kI(|Xk| ≤ k)]

= E[X2
kI(|Xk| ≤ k, |Xk| ≥

√
kϵ2)] + E[X2

kI(|Xk| ≤ k, |X| ≤
√
kϵ2)]

≤ kE[|Xk|I(|Xk| ≥
√
kϵ2)] + kϵ4,

⇒ P (|Ȳn − µn| ≥ ϵ) ≤
∑n

k=1
E[|X|I(|X|≥

√
kϵ2)]

nϵ2 + ϵ2 n(n+1)
2n2 . ⇒

lim supn P (|Ȳn − µn| ≥ ϵ) ≤ ϵ2 ⇒ Ȳn − µ̄n →p 0.

µ̄n → µ ⇒ Ȳn →p µ. From Proposition 3.4 and subsequence

arguments,

X̄nk →a.s. µ ⇒ Xn →p µ.
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Strong Law of Large Numbers
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Theorem 3.10 (Strong Law of Large Number) If

X1, ..., Xn are i.i.d with mean µ then X̄n →a.s. µ.
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Proof

Without loss of generality, we assume Xn ≥ 0 since if this is true,

the result also holds for any Xn by Xn = X+
n −X−

n .

Similar to Theorem 3.9, it is sufficient to show Ȳn →a.s. µ, where

Yn = XnI(Xn ≤ n).

Note E[Yn] = E[X1I(X1 ≤ n)] → µ so

n∑
k=1

E[Yk]/n → µ.

⇒ if we denote S̃n =
∑n

k=1(Yk − E[Yk]) and we can show

S̃n/n →a.s. 0, then the result holds.
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V ar(S̃n) =
n∑

k=1

V ar(Yk) ≤
n∑

k=1

E[Y 2
k ] ≤ nE[X2

1I(X1 ≤ n)].

By the Chebyshev’s inequality,

P (| S̃n

n
| > ϵ) ≤ 1

n2ϵ2
V ar(S̃n) ≤

E[X2
1I(X1 ≤ n)]

nϵ2
.

For any α > 1, let un = [αn].

∞∑
n=1

P (| S̃un

un
| > ϵ) ≤

∞∑
n=1

1

unϵ2
E[X2

1I(X1 ≤ un)] ≤
1

ϵ2
E[X2

1

∑
un≥X1

1

un
].

Since for any x > 0,
∑

un≥x{µn}−1 < 2
∑

n≥log x/ logα α−n ≤ Kx−1

for some constant K, ⇒
∞∑

n=1

P (| S̃un

un
| > ϵ) ≤ K

ϵ2
E[X1] < ∞,

⇒ S̃un/un →a.s. 0.
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For any k, we can find un < k ≤ un+1. Thus, since X1, X2, ... ≥ 0,

S̃un

un

un

un+1
≤ S̃k

k
≤

S̃un+1

un+1

un+1

un
.

⇒

µ/α ≤ lim inf
k

S̃k

k
≤ lim sup

k

S̃k

k
≤ µα.

Since α is arbitrary number larger than 1, let α → 1 and we obtain

limk S̃k/k = µ.
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Central Limit Theorems
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• Preliminary result of c.f.

Proposition 3.5 Suppose E[|X|m] < ∞ for some integer

m ≥ 0. Then

|ϕX(t)−
m∑
k=0

(it)k

k!
E[Xk]|/|t|m → 0, as t → 0.
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Proof

eitx =

m∑
k=1

(itx)k

k!
+

(itx)m

m!
[eitθx − 1],

where θ ∈ [0, 1].

⇒

|ϕX(t)−
m∑

k=0

(it)k

k!
E[Xk]|/|t|m ≤ E[|X|m|eitθX − 1|]/m! → 0,

as t → 0.
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• Simple versions of CLT

Theorem 3.11 (Central Limit Theorem) If

X1, ..., Xn are i.i.d with mean µ and variance σ2 then√
n(X̄n − µ) →d N(0, σ2).
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Proof

Denote Yn =
√
n(X̄n − µ).

ϕYn(t) =
{
ϕX1−µ(t/

√
n)
}n

.

⇒ ϕX1−µ(t/
√
n) = 1− σ2t2/2n+ o(1/n).

⇒

ϕYn(t) → exp{−σ2t2

2
}.
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Theorem 3.12 (Multivariate Central Limit

Theorem) If X1, ..., Xn are i.i.d random vectors in Rk

with mean µ and covariance Σ = E[(X − µ)(X − µ)′],

then
√
n(X̄n − µ) →d N(0,Σ).

Proof

Use the Cramér-Wold’s device.
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• Liaponov CLT

Theorem 3.13 (Liapunov Central Limit Theorem)

Let Xn1, ..., Xnn be independent random variables with

µni = E[Xni] and σ2
ni = V ar(Xni). Let µn =

∑n
i=1 µni,

σ2
n =

∑n
i=1 σ

2
ni. If

n∑
i=1

E[|Xni − µni|3]
σ3
n

→ 0,

then
∑n

i=1(Xni − µni)/σn →d N(0, 1).
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• Lindeberg-Feller CLT

Theorem 3.14 (Lindeberg-Fell Central Limit

Theorem) Let Xn1, ..., Xnn be independent random

variables with µni = E[Xni] and σ2
ni = V ar(Xni). Let

σ2
n =

∑n
i=1 σ

2
ni. Then both

∑n
i=1(Xni −µni)/σn →d N(0, 1)

and max {σ2
ni/σ

2
n : 1 ≤ i ≤ n} → 0 if and only if the

Lindeberg condition

1

σ2
n

n∑
i=1

E[|Xni−µni|2I(|Xni−µni| ≥ ϵσn)] → 0, for all ϵ > 0

holds.
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• Proof of Liapunov CLT using Theorem 3.14

1

σ2
n

n∑
i=1

E[|Xnk − µnk|2I(|Xnk − µnk| > ϵσn)]

≤ 1

ϵ3σ3
n

n∑
k=1

E[|Xnk − µnk|3].
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• Examples

– This is one example from a simple linear regression

Xj = α+ βzj + ϵj for j = 1, 2, ... where zj are known

numbers not all equal and the ϵj are i.i.d with mean

zero and variance σ2.

β̂n =
∑n

j=1Xj(zj − z̄n)/
∑n

j=1(zj − z̄n)
2

= β +
∑n

j=1 ϵj(zj − z̄n)/
∑n

j=1(zj − z̄n)
2.

Assume

max
j≤n

(zj − z̄n)
2/

n∑
j=1

(zj − z̄n)
2 → 0.

⇒
√
n

√∑n

j=1
(zj−z̄n)2

n
(β̂n − β) →d N(0, σ2).
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– The example is taken from the randomization test for

paired comparison. Let (Xj, Yj) denote the values of

jth pairs with Xj being the result of the treatment

and Zj = Xj − Yj. Conditional on |Zj| = zj,

Zj = |Zj|sgn(Zj) is independent taking values ±|Zj|
with probability 1/2, when treatment and control

have no difference. Conditional on z1, z2, ..., the

randomization t-test is the t-statistic
√
n− 1Z̄n/sz

where s2z is 1/n
∑n

j=1(Zj − Z̄n)
2. When

max
j≤n

z2j /
n∑

j=1

z2j → 0,

this statistic has an asymptotic normal distribution

N(0, 1).
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Delta Method
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Theorem 3.15 (Delta method) For random vector X

and Xn in Rk , if there exists two constant an and µ such

that an(Xn − µ) →d X and an → ∞, then for any

function g : Rk 7→ Rl such that g has a derivative at µ,

denoted by ∇g(µ)

an(g(Xn)− g(µ)) →d ∇g(µ)X.
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Proof

By the Skorohod representation, we can construct X̃n and X̃ such

that X̃n ∼d Xn and X̃ ∼d X (∼d means the same distribution) and

an(X̃n − µ) →a.s. X̃.

⇒
an(g(X̃n)− g(µ)) →a.s. ∇g(µ)X̃

⇒
an(g(Xn)− g(µ)) →d ∇g(µ)X
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• Examples

– Let X1, X2, ... be i.i.d with fourth moment and
s2n = (1/n)

∑n
i=1(Xi − X̄n)

2. Denote mk as the kth
moment of X1 for k ≤ 4. Note that
s2n = (1/n)

∑n
i=1X

2
i − (

∑n
i=1Xi/n)

2 and

√
n

[(
X̄n

(1/n)
∑n

i=1 X
2
i

)
−
(
m1

m2

)]

→d N

(
0,

(
m2 −m1 m3 −m1m2

m3 −m1m2 m4 −m2
2

))
,

the Delta method with g(x, y) = y − x2

⇒
√
n(s2n − V ar(X1)) →d N(0,m4 − (m2 −m2

1)
2).
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– Let (X1, Y1), (X2, Y2), ... be i.i.d bivariate samples

with finite fourth moment. One estimate of the

correlation among X and Y is

ρ̂n =
sxy√
s2xs

2
y

,

where sxy = (1/n)
∑n

i=1(Xi − X̄n)(Yi − Ȳn),

s2x = (1/n)
∑n

i=1(Xi − X̄n)
2 and

s2y = (1/n)
∑n

i=1(Yi − Ȳn)
2. To derive the large sample

distribution of ρ̂n, first obtain the large sample

distribution of (sxy, s
2
x, s

2
y) using the Delta method

then further apply the Delta method with

g(x, y, z) = x/
√
yz.
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– The example is taken from the Pearson’s Chi-square

statistic. Suppose that one subject falls into K

categories with probabilities p1, ..., pK , where

p1 + ...+ pK = 1. The Pearson’s statistic is defined as

χ2 = n
K∑
k=1

(
nk

n
− pk)

2/pk,

which can be treated as∑
(observed count− expected count)2/expected count.

Note
√
n(n1/n− p1, ..., nK/n− pK) has an asymptotic

multivariate normal distribution. Then we can apply

the Delta method to g(x1, ..., xK) =
∑K

i=1 x
2
k.
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U-statistics
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• Definition

Definition 3.6 A U-statistics associated with

h̃(x1, ..., xr) is defined as

Un =
1

r!
(
n
r

) ∑
β

h̃(Xβ1 , ..., Xβr),

where the sum is taken over the set of all unordered

subsets β of r different integers chosen from {1, ..., n}.
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• Examples

– One simple example is h̃(x, y) = xy. Then

Un = (n(n− 1))−1 ∑
i̸=j XiXj.

– Un = E[h̃(X1, ..., Xr)|X(1), ..., X(n)].

– Un is the summation of non-independent random

variables.

– If define h(x1, ..., xr) as (r!)
−1 ∑

(x̃1,...,x̃r) h̃(x̃1, ..., x̃r),

then h(x1, ..., xr) is permutation-symmetric

Un =
1(
n
r

) ∑
β1<...<βr

h(β1, ..., βr).

– h is called the kernel of the U-statistic Un.
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• CLT for U-statistics

Theorem 3.16 Let µ = E[h(X1, ..., Xr)]. If

E[h(X1, ..., Xr)
2] < ∞, then

√
n(Un − µ)−

√
n

n∑
i=1

E[Un − µ|Xi] →p 0.

Consequently,
√
n(Un − µ) is asymptotically normal with

mean zero and variance r2σ2, where, with

X1, ..., Xr, X̃1, ..., X̃r i.i.d variables,

σ2 = Cov(h(X1, X2, ..., Xr), h(X1, X̃2, ..., X̃r)).
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• Some preparation

– Linear space of r.v.:let S be a linear space of random

variables with finite second moments that contain the

constants; i.e., 1 ∈ S and for any X, Y ∈ S,
aX + bY ∈ Sn where a and b are constants.

– Projection: for random variable T , a random variable

S is called the projection of T on S if E[(T − S)2]

minimizes E[(T − S̃)2], S̃ ∈ S.
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Proposition 3.7 Let S be a linear space of random

variables with finite second moments. Then S is the

projection of T on S if and only if S ∈ S and for any

S̃ ∈ S, E[(T − S)S̃] = 0. Every two projections of T onto

S are almost surely equal. If the linear space S contains

the constant variable, then E[T ] = E[S] and

Cov(T − S, S̃) = 0 for every S̃ ∈ S.
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Proof For any S and S̃ in S,

E[(T − S̃)2] = E[(T − S)2] + 2E[(T − S)S̃] + E[(S − S̃)2].

⇒ if S satisfies that E[(T − S)S̃] = 0, then

E[(T − S̃)2] ≥ E[(T − S)2]. ⇒ S is the projection of T on S.

If S is the projection, for any constant α, E[(T − S − αS̃)2] is

minimized at α = 0. Calculate the derivative at α = 0 ⇒
E[(T − S)S̃] = 0.

If T has two projections S1 and S2, ⇒ E[(S1 − S2)
2] = 0. Thus,

S1 = S2, a.s. If the linear space S contains the constant variable,

choose S̃ = 1 ⇒ 0 = E[(T − S)S̃] = E[T ]− E[S]. Clearly,

Cov(T − S, S̃) = E[(T − S)S̃] = 0.
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• Equivalence with projection

Proposition 3.8 Let Sn be linear space of random

variables with finite second moments that contain the

constants. Let Tn be random variables with projections

Sn on to Sn. If V ar(Tn)/V ar(Sn) → 1 then

Zn ≡ Tn − E[Tn]√
V ar(Tn)

− Sn − E[Sn]√
V ar(Sn)

→p 0.
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Proof . E[Zn] = 0. Note that

V ar(Zn) = 2− 2
Cov(Tn, Sn)√

V ar(Tn)V ar(Sn)
.

Since Sn is the projection of Tn,

Cov(Tn, Sn) = Cov(Tn − Sn, Sn) + V ar(Sn) = V ar(Sn). We have

V ar(Zn) = 2(1−

√
V ar(Sn)

V ar(Tn)
) → 0.

By the Markov’s inequality, we conclude that Zn →p 0.
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• Conclusion

– if Sn is the summation of i.i.d random variables such

that (Sn − E[Sn])/
√
V ar(Sn) →d N(0, σ2), so is

(Tn − E[Tn])/
√
V ar(Tn). The limit distribution of

U-statistics is derived using this lemma.
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• Proof of CLT for U-statistics

Proof

Let X̃1, ..., X̃r be random variables with the same distribution as

X1 and they are independent of X1, ..., Xn. Denote Ũn by∑n
i=1 E[U − µ|Xi].

We show that Ũn is the projection of Un on the linear space

Sn =
{
g1(X1) + ...+ gn(Xn) : E[gk(Xk)

2] < ∞, k = 1, ..., n
}
, which

contains the constant variables. Clearly, Ũn ∈ Sn. For any

gk(Xk) ∈ Sn,

E[(Un − Ũn)gk(Xk)] = E[E[Un − Ũn|Xk]gk(Xk)] = 0.
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Ũn =
n∑

i=1

(
n−1
r−1

)(
n
r

) E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi]

=
r

n

n∑
i=1

E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi].

⇒

V ar(Ũn) =
r2

n2

n∑
i=1

E[(E[h(X̃1, ..., X̃r−1, Xi)− µ|Xi])
2]

=
r2

n
Cov(E[h(X̃1, ..., X̃r−1, X1)|X1], E[h(X̃1, ..., X̃r−1, X1)|X1])

=
r2

n
Cov(h(X1, X̃2, ..., X̃r), h(X1, X2..., Xr)) =

r2σ2

n
.
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Furthermore,

V ar(Un)

=

(
n

r

)−2 ∑
β

∑
β′

Cov(h(Xβ1 , ..., Xβr ), h(Xβ′
1
, ..., Xβ′

r
))

=

(
n

r

)−2 r∑
k=1

∑
β and β′ share k components

Cov(h(X1,X2, .., Xk, Xk+1, ..., Xr), h(X1, X2, ..., Xk, X̃k+1, ..., X̃r)).

⇒ V ar(Un) =
∑r

k=1
r!

k!(r−k)!
(n−r)(n−r+1)···(n−2r+k+1)

n(n−1)···(n−r+1) ck.

⇒ V ar(Un) =
r2

n Cov(h(X1, X2, ..., Xr), h(X1, X̃2, ..., X̃r)) +O( 1
n2 ).

⇒ V ar(Un)/V ar(Ũn) → 1.

⇒ Un−µ√
V ar(Un)

− Ũn√
V ar(Ũn)

→p 0.
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• Example

– In a bivariate i.i.d sample (X1, Y1), (X2, Y2), ..., one

statistic of measuring the agreement is called

Kendall’s τ -statistic

τ̂ =
4

n(n− 1)

∑∑
i<j

I {(Yj − Yi)(Xj −Xi) > 0} − 1.

⇒ τ̂ + 1 is a U-statistic of order 2 with the kernel

2I {(y2 − y1)(x2 − x1) > 0} .

⇒
√
n(τ̂n + 1− 2P ((Y2 − Y1)(X2 −X1) > 0)) has an

asymptotic normal distribution with mean zero.
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Rank Statistics
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• Some definitions

– X(1) ≤ X(2) ≤ ... ≤ X(n) is called order statistics

– The rank statistics, denoted by R1, ..., Rn are the

ranks of Xi among X1, ..., Xn. Thus, if all the X’s are

different, Xi = X(Ri).

– When there are ties, Ri is defined as the average of all

indices such that Xi = X(j) (sometimes called

midrank).

– Only consider the case that X’s have continuous

densities.
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• More definitions

– a rank statistic is any function of the ranks

– a linear rank statistic is a rank statistic of the special

form
∑n

i=1 a(i, Ri) for a given matrix (a(i, j))n×n.

– if a(i, j) = ciaj, then such statistic with form∑n
i=1 ciaRi

is called simple linear rank statistic: c and

a’s are called the coefficients and scores.
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• Examples

– In two independent sample X1, ..., Xn and Y1, ..., Ym, a

Wilcoxon statistic is defined as the summation of all

the ranks of the second sample in the pooled data

X1, ..., Xn, Y1, ..., Ym, i.e.,

Wn =
n+m∑
i=n+1

Ri.

Other choices for rank statistics: for instance, the van

der Waerden statistic
∑n+m

i=n+1Φ
−1(Ri).
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• Properties of rank statistics

Proposition 3.9 Let X1, ..., Xn be a random sample

from continuous distribution function F with density f .

Then

1. the vectors (X(1), ..., X(n)) and (R1, ..., Rn) are

independent;

2. the vector (X(1), ..., X(n)) has density n!
∏n

i=1 f(xi) on

the set x1 < ... < xn;

3. the variable X(i) has density(
n−1
i−1

)
F (x)i−1(1− F (x))n−if(x); for F the uniform

distribution on [0, 1], it has mean i/(n+ 1) and

variance i(n− i+ 1)/[(n+ 1)2(n+ 2)];
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4. the vector (R1, ..., Rn) is uniformly distributed on the

set of all n! permutations of 1, 2, ..., n;

5. for any statistic T and permutation r = (r1, ..., rn) of

1, 2, ..., n,

E[T (X1, ..., Xn)|(R1, .., Rn) = r] = E[T (X(r1), .., X(rn))];

6. for any simple linear rank statistic T =
∑n

i=1 ciaRi
,

E[T ] = nc̄nān, V ar(T ) =
1

n− 1

n∑
i=1

(ci−c̄n)
2

n∑
i=1

(ai−ān)
2.
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• CLT of rank statistics

Theorem 3.17 Let Tn =
∑n

i=1 ciaRi
such that

max
i≤n

|ai−ān|/

√√√√ n∑
i=1

(ai − ān)2 → 0, max
i≤n

|ci−c̄n|/

√√√√ n∑
i=1

(ci − c̄n)2 → 0.

Then (Tn − E[Tn])/
√
V ar(Tn) →d N(0, 1) if and only if

for every ϵ > 0,

∑
(i,j)

I

{
√
n

|ai − ān||ci − c̄n|√∑n
i=1(ai − ān)2

∑n
i=1(ci − c̄n)2

> ϵ

}

× |ai − ān|2|ci − c̄n|2∑n
i=1(ai − ān)2

∑n
i=1(ci − c̄n)2

→ 0.
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• More on rank statistics

– a simple linear signed rank statistic

n∑
i=1

aR+
i
sign(Xi),

where R+
1 , ..., R

+
n , absolute rank, are the ranks of

|X1|, ..., |Xn|.

– In a bivariate sample (X1, Y1), ..., (Xn, Yn),∑n
i=1 aRi

bSi
where (R1, ..., Rn) and (S1, ..., Sn) are

respective ranks of (X1, ..., Xn) and (Y1, ..., Yn).
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Martingales
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Definition 3.7 Let {Yn} be a sequence of random

variables and Fn be sequence of σ-fields such that

F1 ⊂ F2 ⊂ .... Suppose E[|Yn|] < ∞. Then the pairs

{(Yn,Fn)} is called a martingale if

E[Yn|Fn−1] = Yn−1, a.s.

{(Yn,Fn)} is a submartingale if

E[Yn|Fn−1] ≥ Yn−1, a.s.

{(Yn,Fn)} is a supmartingale if

E[Yn|Fn−1] ≤ Yn−1, a.s.
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• Some notes on definition

– Y1, ..., Yn are measurable in Fn. Sometimes, we say Yn

is adapted to Fn.

– One simple example: Yn = X1 + ...+Xn, where

X1, X2, ... are i.i.d with mean zero, and Fn is the

σ-filed generated by X1, ..., Xn.
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• Convex function of martingales

Proposition 3.9 Let {(Yn,Fn)} be a martingale. For

any measurable and convex function ϕ, {(ϕ(Yn),Fn)} is a

submartingale.
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Proof Clearly, ϕ(Yn) is adapted to Fn. It is sufficient to show

E[ϕ(Yn)|Fn−1] ≥ ϕ(Yn−1).

This follows from the well-known Jensen’s inequality: for any

convex function ϕ,

E[ϕ(Yn)|Fn−1] ≥ ϕ(E[Yn|Fn−1]) = ϕ(Yn−1).
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• Jensen’s inequality

Proposition 3.10 For any random variable X and any

convex measurable function ϕ,

E[ϕ(X)] ≥ ϕ(E[X]).
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Proof

Claim that for any x0, there exists a constant k0 such that for any

x, ϕ(x) ≥ ϕ(x0) + k0(x− x0).

By the convexity, for any x′ < y′ < x0 < y < x,

ϕ(x0)− ϕ(x′)

x0 − x′ ≤ ϕ(y)− ϕ(x0)

y − x0
≤ ϕ(x)− ϕ(x0)

x− x0
.

Thus, ϕ(x)−ϕ(x0)
x−x0

is bounded and decreasing as x decreases to x0.

Let the limit be k+0 ⇒ ϕ(x)−ϕ(x0)
x−x0

≥ k+0 . ⇒
ϕ(x) ≥ k+0 (x− x0) + ϕ(x0).
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Similarly,

ϕ(x′)− ϕ(x0)

x′ − x0
≤ ϕ(y′)− ϕ(x0)

y′ − x0
≤ ϕ(x)− ϕ(x0)

x− x0
.

Then ϕ(x′)−ϕ(x0)
x′−x0

is increasing and bounded as x′ increases to x0.

Let the limit be k−0 ⇒

ϕ(x′) ≥ k−0 (x
′ − x0) + ϕ(x0).

Clearly, k+0 ≥ k−0 . Combining those two inequalities,

ϕ(x) ≥ ϕ(x0) + k0(x− x0)

for k0 = (k+0 + k−0 )/2.

Choose x0 = E[X] then ϕ(X) ≥ ϕ(E[X]) + k0(X − E[X]).
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• Decomposition of submartingale

– Yn = (Yn − E[Yn|Fn−1]) + E[Yn|Fn−1]

– any submartingale can be written as the summation

of a martingale and a random variable predictable in

Fn−1.
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• Convergence of martingales

Theorem 3.18 (Martingale Convergence Theorem)

Let {(Xn,Fn)} be submartingale. If

K = supn E[|Xn|] < ∞, then Xn →a.s. X where X is a

random variable satisfying E[|X|] ≤ K.
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Corollary 3.1 If Fn is increasing σ-field and denote F∞

as the σ-field generated by ∪∞
n=1Fn, then for any random

variable Z with E[|Z|] < ∞, it holds

E[Z|Fn] →a.s. E[Z|F∞].
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• CLT for martingale

Theorem 3.19 (Martingale Central Limit

Theorem) Let (Yn1,Fn1), (Yn2,Fn2), ... be a martingale.

Define Xnk = Ynk − Yn,k−1 with Yn0 = 0 thus

Ynk = Xn1 + ...+Xnk. Suppose that∑
k

E[X2
nk|Fn,k−1] →p σ

2

where σ is a positive constant and that∑
k

E[X2
nkI(|Xnk| ≥ ϵ)|Fn,k−1] →p 0

for each ϵ > 0. Then∑
k

Xnk →d N(0, σ2).
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Some Notation
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• op(1) and Op(1)

– Xn = op(1) denotes that Xn converges in probability

to zero,

– Xn = Op(1) denotes that Xn is bounded in

probability; i.e.,

lim
M→∞

lim sup
n

P (|Xn| ≥ M) = 0.

– for a sequence of random variable {rn}, Xn = op(rn)

means that |Xn|/rn →p 0 and Xn = Op(rn) means

that |Xn|/rn is bounded in probability.
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• Algebra in op(1) and Op(1)

op(1) + op(1) = op(1) Op(1) +Op(1) = Op(1),

Op(1)op(1) = op(1) (1 + op(1))
−1 = 1 + op(1)

op(Rn) = Rnop(1) Op(Rn) = RnOp(1)

op(Op(1)) = op(1).

If a real function R(·) satisfies that R(h) = o(|h|p) as
h → 0, ⇒ R(Xn) = op(|Xn|p).

If R(h) = O(|h|p) as h → 0, ⇒ R(Xn) = Op(|Xn|p).
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