CHAPTER 2: BASIC MEASURE THEORY

Set Theory and Topology in Real Space

- Basic concepts in set theory
 - element, set, whole space (Ω)
 - power set: 2^{Ω} ; empty set: \emptyset
 - set relationship: $A \subseteq B, \cap_{\alpha} A_{\alpha}, \cup_{\alpha} A_{\alpha}, A^{c}, A B$

$$A - B = A \cap B^c$$

• Set operations

- properties: for any
$$B$$
, $\{A_{\alpha}\}$,
 $B \cap \{\cup_{\alpha} A_{\alpha}\} = \cup_{\alpha} \{B \cap A_{\alpha}\}, \quad B \cup \{\cap_{\alpha} A_{\alpha}\} = \cap_{\alpha} \{B \cup A_{\alpha}\},$
 $\{\cup_{\alpha} A_{\alpha}\}^{c} = \cap_{\alpha} A_{\alpha}^{c}, \quad \{\cap_{\alpha} A_{\alpha}\}^{c} = \cup_{\alpha} A_{\alpha}^{c}.$ (de Morgan law)

– partition of a set

$$A_1 \cup A_2 \cup A_3 \cup \ldots = A_1 \cup (A_2 - A_1) \cup (A_3 - A_1 \cup A_2) \cup \ldots$$

$$-\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \left\{ \bigcup_{m=n}^{\infty} A_m \right\}$$
$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \left\{ \bigcap_{m=n}^{\infty} A_m \right\}.$$

- Topology in the Euclidean space
 - open set, closed set, compact set
 - properties: the union of any number of open sets is open; A is closed if and only if for any sequence $\{x_n\}$ in A such that $x_n \to x$, x must belong to A
 - only \emptyset and the whole real line are both open set and closed
 - any open-set covering of a compact set has finite number of open sets covering the compact set

Measure Space

• Motivating example: counting measure

$$- \Omega = \{x_1, x_2, ...\}$$

– a set function $\mu^{\#}(A)$ is the number of points in A.

- (a)
$$\mu^{\#}(\emptyset) = 0;$$

(b) if A_1, A_2, \dots are disjoint sets of Ω , then

$$\mu^{\#}(\cup_n A_n) = \sum_n \mu^{\#}(A_n).$$

• Motivating example: Lebesgue measure

 $-\Omega = (-\infty, \infty)$

- how to measure the sizes of possibly any subsets in R? a set function λ ?

- (a)
$$\lambda(\emptyset) = 0;$$

(b) for any disjoint sets $A_1, A_2, ...,$
 $\lambda(\cup_n A_n) = \sum_n \lambda(A_n)$

– assign the length to any est of
$$\mathcal{B}_0$$

 $\bigcup_{i=1}^{n} (a_i, b_i] \cup (-\infty, b] \cup (a, \infty)$, disjoint intervals

- What about non-intervals? how about in \mathbb{R}^k ?

- Three components in defining a measure space
 - the whole space, Ω
 - a collection of subsets whose sizes are measurable, \mathcal{A} ,
 - a set function μ assigns negative values (sizes) to each set of \mathcal{A} and satisfies properties (a) and (b)

- Some intuition
 - \mathcal{A} contains the sets whose sizes are measurable
 - \mathcal{A} should be closed under complement or union

Definition 2.1 (fields, σ -fields) A non-void class \mathcal{A} of subsets of Ω is called a:

(i) field or algebra if $A, B \in \mathcal{A}$ implies that $A \cup B \in \mathcal{A}$ and $A^c \in \mathcal{A}$; equivalently, \mathcal{A} is closed under complements and finite unions.

(ii) σ -field or σ -algebra if \mathcal{A} is a field and $A_1, A_2, \ldots \in \mathcal{A}$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$; equivalently, \mathcal{A} is closed under complements and countable unions. \dagger • Properties of σ -field

Proposition 2.1. (i) For a field $\mathcal{A}, \emptyset, \Omega \in \mathcal{A}$ and if $A_1, ..., A_n \in \mathcal{A}, \bigcap_{i=1}^n A_i \in \mathcal{A}$. (ii) For a σ -field \mathcal{A} , if $A_1, A_2, ... \in \mathcal{A}$, then $\bigcap_{i=1}^\infty A_i \in \mathcal{A}$.

\mathbf{Proof}

(i) For any $A \in \mathcal{A}, \ \Omega = A \cup A^c \in \mathcal{A} \Rightarrow \emptyset = \Omega^c \in \mathcal{A}.$

$$A_1, \dots, A_n \in \mathcal{A}$$

$$\Rightarrow \bigcap_{i=1}^n A_i = (\bigcup_{i=1}^n A_i^c)^c \in \mathcal{A}.$$

(ii) $(\bigcap_{i=1}^{\infty} A_i)^c = \bigcup_{i=1}^{\infty} A_i^c.$

• Examples of σ -field

$$-\mathcal{A} = \{\emptyset, \Omega\} \text{ and } 2^{\Omega} = \{A : A \subset \Omega\}$$

 $-\mathcal{B}_0$ is a field but not a σ -field

$$(a,b) = \bigcup_{n=1}^{\infty} (a,b-1/n] \notin \mathcal{B}_0$$

- $\mathcal{A} = \{A : A \text{ is in } R \text{ and } A^c \text{ is countable}\}$ $\mathcal{A} \text{ is closed under countable union but not complement}$

• Measure defined on a σ -field

Definition 2.2 (measure, probability measure) (i) A measure μ is a function from a σ -field \mathcal{A} to $[0, \infty)$ satisfying: $\mu(\emptyset) = 0$; $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ for any countable (finite) disjoint sets $A_1, A_2, \ldots \in \mathcal{A}$. The latter is called the *countable additivity*. (ii) Additionally, if $\mu(\Omega) = 1$, μ is a *probability measure* and we usually use P instead of μ to indicate a probability measure. • Properties of measure

Proposition 2.2 (i) If $\{A_n\} \subset \mathcal{A}$ and $A_n \subset A_{n+1}$ for all n, then $\mu(\bigcup_{n=1}^{\infty}A_n) = \lim_{n\to\infty}\mu(A_n).$ (ii) If $\{A_n\} \subset \mathcal{A}, \ \mu(A_1) < \infty$ and $A_n \supset A_{n+1}$ for all n, then $\mu(\bigcap_{n=1}^{\infty}A_n) = \lim_{n\to\infty}\mu(A_n).$ (iii) For any $\{A_n\} \subset \mathcal{A}, \ \mu(\bigcup_n A_n) \leq \sum_n \mu(A_n) \ (countable sub-additivity).$ (iv) $\mu(\liminf_n A_n) = \lim_n \mu(\bigcap_{k=n}^{\infty}A_n) \leq \liminf_n \mu(A_n)$

Proof

(i)
$$\mu(\bigcup_{n=1}^{\infty}A_n) = \mu(A_1 \cup (A_2 - A_1) \cup ...) = \mu(A_1) + \mu(A_2 - A_1) + ...$$

= $\lim_{n \to \infty} \{\mu(A_1) + \mu(A_2 - A_1) + ... + \mu(A_n - A_{n-1})\} = \lim_{n \to \infty} \mu(A_n).$

(ii)

$$\mu(\bigcap_{n=1}^{\infty} A_n) = \mu(A_1) - \mu(A_1 - \bigcap_{n=1}^{\infty} A_n) = \mu(A_1) - \mu(\bigcup_{n=1}^{\infty} (A_1 \cap A_n^c)).$$

$$A_1 \cap A_n^c \text{ is increasing}$$

$$\Rightarrow \text{ the second term equals } \lim_n \mu(A_1 \cap A_n^c) = \mu(A_1) - \lim_n \mu(A_n).$$

(iii)

$$\mu(\cup_{n}A_{n}) = \lim_{n} \mu(A_{1} \cup ... \cup A_{n}) = \lim_{n} \left\{ \sum_{i=1}^{n} \mu(A_{i} - \bigcup_{j < i}A_{j}) \right\}$$

$$\leq \lim_{n} \sum_{i=1}^{n} \mu(A_{i}) = \sum_{n} \mu(A_{n}).$$

(iv) $\mu(\liminf_n A_n) = \lim_n \mu(\bigcap_{k=n}^{\infty} A_n) \le \liminf_n \mu(A_n).$

- Measures space
- a triplet $(\Omega, \mathcal{A}, \mu)$
 - set in \mathcal{A} is called a *measurable set*
 - If $\mu = P$ is a probability measure, (Ω, \mathcal{A}, P) is a probability measure space: probability sample and probability event
 - a measure μ is called σ -finite if there exists a countable sets $\{F_n\} \subset \mathcal{A}$ such that $\Omega = \bigcup_n F_n$ and for each F_n , $\mu(F_n) < \infty$.

- Examples of measure space
 - discrete measure:

$$\mu(A) = \sum_{\omega_i \in A} m_i, \quad A \in \mathcal{A}.$$

– counting measure $\mu^{\#}$ in any space, say R: it is not σ -finite.

Measure Space Construction

- Two basic questions
 - Can we find a σ -field containing all the sets of C?
 - Can we obtain a set function defined for any set of this σ -field such that the set function agrees with μ in C?

• Answer to the first question

Proposition 2.3 (i) Arbitrary intersections of fields $(\sigma$ -fields) are fields $(\sigma$ -fields).

(ii) For any class \mathcal{C} of subsets of Ω , there exists a minimal σ -field containing \mathcal{C} and we denote it as $\sigma(\mathcal{C})$.

\mathbf{Proof}

(i) is obvious.

For (ii),

$$\sigma(\mathcal{C}) = \cap_{\mathcal{C} \subset \mathcal{A}, \mathcal{A} \text{ is } \sigma\text{-field}} \mathcal{A},$$

i.e., the intersection of all the σ -fields containing C.

• Answer to the second question

Theorem 2.1 (Caratheodory Extension Theorem) A measure μ on a field C can be extended to a measure on the minimal σ -field $\sigma(C)$. If μ is σ -finite on C, then the extension is unique and also σ -finite.

Construction

$$\mu^*(A) = \inf\left\{\sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathcal{C}, A \subset \bigcup_{i=1}^{\infty} A_i\right\}$$

- Application to measure construction
 - generate a σ -field containing \mathcal{B}_0 : Borel σ -field \mathcal{B}
 - extend λ to \mathcal{B} : the Lebesgue measure
 - $-(R, \mathcal{B}, \lambda)$ is named the Borel measure space
 - in \mathbb{R}^k , we obtain $(\mathbb{R}^k, \mathcal{B}^k, \lambda^k)$

- Other measure construction on \mathcal{B}
 - -F is non-decreasing and right-continuous
 - a set function in \mathcal{B}_0 : $\lambda_F((a, b]) = F(b) F(a)$
 - measure extension λ_F in \mathcal{B} : Lebesgue-Stieltjes measure generated by F
 - the Lebesuge measure is a special case with F(x) = x
 - if F is a distribution function, this measure is a probability measure in R

- Completion after measure construction
 - motivation: any subsets of a zero-measure set should be given measure zero but may not be in \mathcal{A}
 - Completion: add these nuisance sets to ${\cal A}$

- Details of completion
 - obtain another measure space $(\Omega, \overline{\mathcal{A}}, \overline{\mu})$

 $\bar{\mathcal{A}} = \{ A \cup N : A \in \mathcal{A},$

 $N \subset B$ for some $B \in \mathcal{A}$ such that $\mu(B) = 0$ } and $\overline{\mu}(A \cup N) = \mu(A)$.

- the completion of the Borel measure space is the *Lebesgue measure space* and the completed Borel σ -field is the σ -field of *Lebesgue sets*
- we always assume that a measure space is completed

Measurable Function

• Definition

Definition 2.3 (measurable function) Let $X : \Omega \mapsto R$ be a function defined on Ω . X is *measurable* if for $x \in R$, the set $\{\omega \in \Omega : X(\omega) \leq x\}$ is measurable, equivalently, belongs to \mathcal{A} . Especially, if the measure space is a probability measure space, X is called a *random variable*.

• Property of measurable function

Proposition 2.4 If X is measurable, then for any $B \in \mathcal{B}, X^{-1}(B) = \{\omega : X(\omega) \in B\}$ is measurable.

Proof

$$\mathcal{B}^* = \left\{ B : B \subset R, X^{-1}(B) \text{ is measurable in } \mathcal{A} \right\}$$
$$(-\infty, x] \in \mathcal{B}^*.$$

$$B \in \mathcal{B}^* \Rightarrow X^{-1}(B) \in \mathcal{A} \Rightarrow X^{-1}(B^c) = \Omega - X^{-1}(B) \in \mathcal{A}$$

then $B^c \in \mathcal{B}^*$.

$$B_1, B_2, \dots \in \mathcal{B}^* \Rightarrow X^{-1}(B_1), X^{-1}(B_2), \dots \in \mathcal{A} \Rightarrow$$
$$X^{-1}(B_1 \cup B_2 \cup \dots) = X^{-1}(B_1) \cup X^{-1}(B_2) \cup \dots \in \mathcal{A}.$$
$$\Rightarrow B_1 \cup B_2 \cup \dots \in \mathcal{B}^*.$$

 $\Rightarrow \mathcal{B}^*$ is a σ -field containing all intervals of the type $(-\infty, x] \Rightarrow \mathcal{B} \subset \mathcal{B}^*$. For any Borel set $B, X^{-1}(B)$ is measurable in \mathcal{A} .

- Construction of measurable function
 - simple function: $\sum_{i=1}^{n} x_i I_{A_i}(\omega), \quad A_i \in \mathcal{A}$
 - the finite summation and the maximum of simple functions are still simple functions
 - any elementary functions of measurable functions are measurable

Proposition 2.5 Suppose that $\{X_n\}$ are measurable. Then so are $X_1 + X_2, X_1X_2, X_1^2$ and $\sup_n X_n$, $\inf_n X_n$, $\limsup_n X_n$ and $\liminf_n X_n$.

Proof

$$\{X_1 + X_2 \le x\} = \Omega - \{X_1 + X_2 > x\} = \Omega - \{X_1 + X_2 > x\} = \Omega - \bigcup_{r \in Q} \{X_1 > r\} \cap \{X_2 > x - r\}, Q = \{ \text{ all rational numbers} \}.$$

$$\{X_1^2 \le x\} = \{X_1 \le \sqrt{x}\} - \{X_1 < -\sqrt{x}\}.$$

$$X_1 X_2 = \left\{ (X_1 + X_2)^2 - X_1^2 - X_2^2 \right\} / 2$$

$$\left\{\sup_{n} X_{n} \leq x\right\} = \bigcap_{n} \left\{X_{n} \leq x\right\}.$$

$$\left\{\inf_{n} X_{n} \leq x\right\} = \left\{\sup_{n} (-X_{n}) \geq -x\right\}.$$

$$\{\limsup_n X_n \le x\} = \bigcap_{r \in Q, r > 0} \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} \{X_k < x+r\}.$$
$$\liminf_n X_n = -\limsup_n (-X_n).$$

• Approximating measurable function with simple functions

Proposition 2.6 For any measurable function $X \ge 0$, there exists an increasing sequence of simple functions $\{X_n\}$ such that $X_n(\omega)$ increases to $X(\omega)$ as n goes to infinity.

Proof

$$X_n(\omega) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} I\{\frac{k}{2^n} \le X(\omega) < \frac{k+1}{2^n}\} + nI\{X(\omega) \ge n\}$$

 $\Rightarrow X_n$ is increasing over n.

$$\Rightarrow$$
 if $X(\omega) < n$, then $|X_n(\omega) - X(\omega)| < \frac{1}{2^n}$.

 $\Rightarrow X_n(\omega)$ converges to $X(\omega)$.

If X is bounded, $\sup_{\omega} |X_n(\omega) - X(\omega)| < \frac{1}{2^n}$

Integration

Definition 2.4 (i) For any simple function $X(\omega) = \sum_{i=1}^{n} x_i I_{A_i}(\omega)$, we define $\sum_{i=1}^{n} x_i \mu(A_i)$ as the *integral* of X with respect to measure μ , denoted as $\int X d\mu$. (ii) For any $X \ge 0$, we define $\int X d\mu$ as

$$\int X d\mu = \sup_{\substack{Y \text{ is simple function, } 0 \le Y \le X}} \int Y d\mu$$

(iii) For general X, let
$$X^+ = \max(X, 0)$$
 and
 $X^- = \max(-X, 0)$. Then $X = X^+ - X^-$. If one of
 $\int X^+ d\mu$, $\int X^- d\mu$ is finite, we define
 $\int X d\mu = \int X^+ d\mu - \int X^- d\mu$.

• Some notes

- X is integrable if $\int |X| d\mu = \int X^+ d\mu + \int X^- d\mu$ is finite
- the definition (ii) is consistent with (i) when X itself is a simple function
- for a probability measure space and X is a random variable, $\int X d\mu \equiv E[X]$

• Fundamental properties of integration

Proposition 2.7 (i) For two measurable functions $X_1 \ge 0$ and $X_2 \ge 0$, if $X_1 \le X_2$, then $\int X_1 d\mu \le \int X_2 d\mu$. (ii) For $X \ge 0$ and any sequence of simple functions Y_n increasing to X, $\int Y_n d\mu \to \int X d\mu$.

Proof

(i) For any simple function $0 \le Y \le X_1, Y \le X_2$. $\Rightarrow \int Y d\mu \le \int X_2 d\mu$. Take the supreme over all the simple functions less than X_1

 $\Rightarrow \int X_1 d\mu \le \int X_2 d\mu.$

(ii) From (i), $\int Y_n d\mu$ is increasing and bounded by $\int X d\mu$.

It suffices to show that for any simple function $Z = \sum_{i=1}^{m} x_i I_{A_i}(\omega)$, where $\{A_i, 1 \leq i \leq m\}$ are disjoint measurable sets and $x_i > 0$, such that $0 \leq Z \leq X$,

$$\lim_{n} \int Y_n d\mu \ge \sum_{i=1}^m x_i \mu(A_i).$$

We consider two cases.

Case $1.\int Z d\mu = \sum_{i=1}^{m} x_i \mu(A_i)$ is finite thus both x_i and $\mu(A_i)$ are finite.

Fix an $\epsilon > 0$, let $A_{in} = A_i \cap \{\omega : Y_n(\omega) > x_i - \epsilon\}$. $\Rightarrow A_{in}$ increases to $A_i \Rightarrow \mu(A_{in})$ increases to $\mu(A_i)$.

When n is large,

$$\int Y_n d\mu \ge \sum_{i=1}^m (x_i - \epsilon) \mu(A_i).$$

$$\Rightarrow \lim_{n \to \infty} \int Y_n d\mu \ge \int Z d\mu - \epsilon \sum_{i=1}^m \mu(A_i).$$

$$\Rightarrow \lim_{n \to \infty} \int Y_n d\mu \ge \int Z d\mu \text{ by letting } \epsilon \text{ approach } 0.$$

Case 2 suppose $\int Z d\mu = \infty$ then there exists some *i* from $\{1, ..., m\}$, say 1, so that $\mu(A_1) = \infty$ or $x_1 = \infty$.

Choose any $0 < x < x_1$ and $0 < y < \mu(A_1)$.

$$A_{1n} = A_1 \cap \{ \omega : Y_n(\omega) > x \} \text{ increases to } A_1. \ n \text{ large enough}, \\ \mu(A_{1n}) > y \\ \Rightarrow \lim_n \int Y_n d\mu \ge xy.$$

 \Rightarrow Letting $x \to x_1$ and $y \to \mu(A_1)$, conclude $\lim_n \int Y_n d\mu = \infty$.

 $\Rightarrow \lim_n \int Y_n d\mu \ge \int Z d\mu.$

• Elementary properties

Proposition 2.8 Suppose $\int X d\mu$, $\int Y d\mu$ and $\int Xd\mu + \int Yd\mu$ exit. Then (i) $\int (X+Y)d\mu = \int Xd\mu + \int Yd\mu$, $\int cXd\mu = c \int Xd\mu$; (ii) $X \ge 0$ implies $\int X d\mu \ge 0$; $X \ge Y$ implies $\int X d\mu \geq \int Y d\mu$; and X = Y a.e. implies that $\int X d\mu = \int Y d\mu;$ (iii) $|X| \leq Y$ with Y integrable implies that X is integrable; X and Y are integrable implies that X + Y is integrable.

• Calculation of integration by definition

$$\int X d\mu = \lim_{n} \left\{ \sum_{k=1}^{n2^{n-1}} \frac{k}{2^{n}} \mu(\frac{k}{2^{n}} \le X < \frac{k+1}{2^{n}}) + n\mu(X \ge n) \right\}.$$

• Integration w.r.t counting measure or Lebesgue measure

$$-\int g d\mu^{\#} = \sum_{i} g(x_i).$$

- continuous function g(x), $\int g d\lambda$ is equal to the usual Riemann integral $\int g(x) dx$
- $(\Omega, \mathcal{B}, \lambda_F)$, where F is differentiable except discontinuous points $\{x_1, x_2, ...\}$,

$$\int g d\lambda_F = \sum_i g(x_i) \left\{ F(x_i) - F(x_i) \right\} + \int g(x) f(x) dx,$$

where f(x) is the derivative of F(x).

Convergence Theorems

• Monotone convergence theorem (MCT)

Theorem 2.2 If $X_n \ge 0$ and X_n increases to X, then $\int X_n d\mu \to \int X d\mu$.

\mathbf{Proof}

Choose nonnegative simple function X_{km} increasing to X_k as $m \to \infty$. Define $Y_n = \max_{k \le n} X_{kn}$.

 $\Rightarrow \{Y_n\}$ is an increasing series of simple functions

$$X_{kn} \le Y_n \le X_n$$
, so $\int X_{kn} d\mu \le \int Y_n d\mu \le \int X_n d\mu$.

$$\Rightarrow n \to \infty \ X_k \le \lim_n Y_n \le X \text{ and}$$
$$\int X_k d\mu \le \int \lim_n Y_n d\mu = \lim_n \int Y_n d\mu \le \lim_n \int X_n d\mu$$
$$\Rightarrow k \to \infty, \ X \le \lim_n Y_n \le X \text{ and}$$

$$\lim_{k} \int X_{k} d\mu \leq \int \lim_{n} Y_{n} d\mu \leq \lim_{n} \int X_{n} d\mu.$$

The result holds.

• Counter example

 $X_n(x) = -I(x > n)/n$ in the Lebesgue measure space. X_n increases to zero but $\int X_n d\lambda = -\infty$

• Fatou's Lemma

Theorem 2.3 If $X_n \ge 0$ then $\int \liminf_n X_n d\mu \le \liminf_n \int X_n d\mu.$

Proof

$$\liminf_{n} X_n = \sup_{n=1}^{\infty} \inf_{m \ge n} X_m.$$

 $\Rightarrow \{\inf_{m \ge n} X_m\}$ increases to $\liminf_n X_n$.

By the MCT,

$$\int \liminf_{n} X_n d\mu = \lim_{n} \int \inf_{m \ge n} X_m d\mu \le \int X_n d\mu.$$

• Two definitions in convergence

Definition 2.4 A sequence X_n converges almost everywhere (a.e.) to X, denoted $X_n \rightarrow_{a.e.} X$, if $X_n(\omega) \rightarrow X(\omega)$ for all $\omega \in \Omega - N$ where $\mu(N) = 0$. If μ is a probability, we write a.e. as a.s. (almost surely). A sequence X_n converges in measure to a measurable function X, denoted $X_n \rightarrow_{\mu} X$, if $\mu(|X_n - X| \ge \epsilon) \rightarrow 0$ for all $\epsilon > 0$. If μ is a probability measure, we say X_n converges in probability to X.

• Properties of convergence

Proposition 2.9 Let $\{X_n\}$, X be finite measurable functions. Then $X_n \rightarrow_{a.e.} X$ if and only if for any $\epsilon > 0$,

$$\mu(\bigcap_{n=1}^{\infty} \bigcup_{m \ge n} \{ |X_m - X| \ge \epsilon \}) = 0.$$

If $\mu(\Omega) < \infty$, then $X_n \to_{a.e.} X$ if and only if for any $\epsilon > 0$,

$$\mu(\bigcup_{m\geq n} \{ |X_m - X| \geq \epsilon \}) \to 0.$$

Proof

 \Rightarrow

$$\left\{\omega: X_n(\Omega) \to X(\omega)\right\}^c = \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{m \ge n} \left\{\omega: |X_m(\omega) - X(\omega)| \ge \frac{1}{k}\right\}.$$

 $X_n \rightarrow_{a.e} X \Rightarrow$ the measure of the left-hand side is zero. $\Rightarrow \cap_{n=1}^{\infty} \bigcup_{m>n} \{ |X_m - X| \ge \epsilon \}$ has measure zero.

For the other direction, choose $\epsilon = 1/k$ for any k, then by countable sub-additivity,

$$\mu(\bigcup_{k=1}^{\infty} \cap_{n=1}^{\infty} \bigcup_{m \ge n} \left\{ \omega : |X_m(\omega) - X(\omega)| \ge \frac{1}{k} \right\})$$
$$\leq \sum_k \mu(\bigcap_{n=1}^{\infty} \bigcup_{m \ge n} \left\{ \omega : |X_m(\omega) - X(\omega)| \ge \frac{1}{k} \right\}) = 0.$$
$$\Rightarrow X_n \to_{a.e.} X.$$
When $\mu(\Omega) < \infty$, the latter holds by Proposition 2.2.

Relationship between two convergence modes
Proposition 2.10 Let X_n be finite a.e.
(i) If X_n →_μ X, then there exists a subsequence X_{nk} →_{a.e} X.
(ii) If μ(Ω) < ∞ and X_n →_{a.e.} X, then X_n →_μ X.

\mathbf{Proof}

(i) Find n_k

$$P(|X_{n_k} - X| \ge 2^{-k}) < 2^{-k}.$$

$$\Rightarrow \mu(\bigcup_{m \ge k} \{ |X_{n_m} - X| \ge \epsilon \}) \le \mu(\bigcup_{m \ge k} \{ |X_{n_m} - X| \ge 2^{-k} \})$$

$$\le \sum_{m \ge k} 2^{-m} \to 0.$$

 $\Rightarrow X_{n_k} \to_{a.e} X.$

(ii) is direct from the second part of Proposition 2.9.

- Examples of convergence
 - Let $X_{2^n+k} = I(x \in [k/2^n, (k+1)/2^n)), 0 \le k < 2^n$ in the Lebesgue measure space. Then $X_n \to_{\lambda} 0$ but does not converge to zero almost everywhere.

$$-X_n = nI(|x| > n) \to_{a.e.} 0 \text{ but } \lambda(|X_n| > \epsilon) \to \infty.$$

• Dominated Convergence Theorem (DCT)

Theorem 2.4 If $|X_n| \leq Y$ a.e. with Y integrable, and if $X_n \rightarrow_{\mu} X$ (or $X_n \rightarrow_{a.e.} X$), then $\int |X_n - X| d\mu \rightarrow 0$ and $\lim \int X_n d\mu = \int X d\mu$.

Proof

Assume $X_n \rightarrow_{a.e} X$. Define $Z_n = 2Y - |X_n - X|$. $Z_n \ge 0$ and $Z_n \rightarrow 2Y$.

 \Rightarrow From the Fatou's lemma,

$$\int 2Y d\mu \le \liminf_n \int (2Y - |X_n - X|) d\mu$$

 $\Rightarrow \limsup_n \int |X_n - X| d\mu \le 0.$

If $X_n \to_{\mu} X$ and the result does not hold for some subsequence of X_n , by Proposition 2.10, there exits a further sub-sequence converging to X almost surely. However, the result holds for this further subsequence. Contradiction!

• Interchange of integral and limit or derivative

Theorem 2.5 Suppose that $X(\omega, t)$ is measurable for each $t \in (a, b)$. (i) If $X(\omega, t)$ is a.e. continuous in t at t_0 and $|X(\omega, t)| \leq Y(\omega), a.e.$ for $|t - t_0| < \delta$ with Y integrable, then

$$\lim_{t \to t_0} \int X(\omega, t) d\mu = \int X(\omega, t_0) d\mu.$$

(ii) Suppose
$$\frac{\partial}{\partial t}X(\omega,t)$$
 exists for a.e. ω , all $t \in (a,b)$ and $|\frac{\partial}{\partial t}X(\omega,t)| \leq Y(\omega), a.e.$ for all $t \in (a,b)$ with Y integrable. Then

$$\frac{\partial}{\partial t}\int X(\omega,t)d\mu = \int \frac{\partial}{\partial t}X(\omega,t)d\mu.$$

\mathbf{Proof}

(i) follows from the DCT and the subsequence argument.

(ii)

$$\frac{\partial}{\partial t}\int X(\omega,t)d\mu = \lim_{h\to 0}\int \frac{X(\omega,t+h) - X(\omega,t)}{h}d\mu.$$

Then from the conditions and (i), such a limit can be taken within the integration. Product of Measures

• Definition

$$-\Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) : \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}$$

$$-\mathcal{A}_1 \times \mathcal{A}_2 = \sigma(\{A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\})$$

- $(\mu_1 \times \mu_2)(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$. with its extension to all sets in the $\mathcal{A}_1 \times \mathcal{A}_2$

• Examples

$$-(R^{k} = R \times ... \times R, \mathcal{B} \times ... \times \mathcal{B}, \lambda \times ... \times \lambda)$$
$$\lambda \times ... \times \lambda \equiv \lambda^{k}$$

$$-\Omega = \{1, 2, 3...\}$$
$$(R \times \Omega, \mathcal{B} \times 2^{\Omega}, \lambda \times \mu^{\#})$$

- Integration on the product measure space
 - In calculus, $\int_{R^2} f(x,y) dx dy = \int_x \int_y f(x,y) dy dx = \int_y \int_x f(x,y) dx dy$
 - Do we have the same equality in the product measure space?

Theorem 2.6 (Fubini-Tonelli Theorem) Suppose that $X : \Omega_1 \times \Omega_2 \to R$ is $\mathcal{A}_1 \times \mathcal{A}_2$ measurable and $X \ge 0$. Then

$$\int_{\Omega_1} X(\omega_1, \omega_2) d\mu_1 \text{ is } \mathcal{A}_2 \text{ measurable,}$$
$$\int_{\Omega_2} X(\omega_1, \omega_2) d\mu_2 \text{ is } \mathcal{A}_1 \text{ measurable,}$$
$$\int_{\Omega_1 \times \Omega_2} X(\omega_1, \omega_2) d(\mu_1 \times \mu_2) = \int_{\Omega_1} \left\{ \int_{\Omega_2} X(\omega_1, \omega_2) d\mu_2 \right\} d\mu_1$$
$$= \int_{\Omega_2} \left\{ \int_{\Omega_1} X(\omega_1, \omega_2) d\mu_1 \right\} d\mu_2.$$

- Conclusion from Theorem 2.6
 - in general, $X = X^+ X^-$. Then the above results hold for X^+ and X^- . Thus, if $\int_{\Omega_1 \times \Omega_2} |X(\omega_1, \omega_2)| d(\mu_1 \times \mu_2)$ is finite, then the above results hold.

• One example

- let
$$(\Omega, 2^{\Omega}, \mu^{\#})$$
 be a counting measure space where
 $\Omega = \{1, 2, 3, ...\}$ and $(R, \mathcal{B}, \lambda)$ be the Lebesgue
measure space

- define
$$f(x, y) = I(0 \le x \le y) \exp\{-y\}$$
; then

$$\int_{\Omega \times R} f(x, y) d\{\mu^{\#} \times \lambda\} = \int_{\Omega} \{\int_{R} f(x, y) d\lambda(y)\} d\mu^{\#}(x)$$

$$= \int_{\Omega} \exp\{-x\} d\mu^{\#}(x) = \sum_{n=1}^{\infty} \exp\{-n\} = 1/(e-1).$$

Derivative of Measures

• Motivation

- let $(\Omega, \mathcal{A}, \mu)$ be a measurable space and let X be a non-negative measurable function on Ω
- a set function ν as $\nu(A) = \int_A X d\mu = \int I_A X d\mu$ for each $A \in \mathcal{A}$.
- $-\nu$ is a measure on (Ω, \mathcal{A})
- observe $X = d\nu/d\mu$

• Absolute continuity

Definition 2.5 If for any $A \in \mathcal{A}$, $\mu(A) = 0$ implies that $\nu(A) = 0$, then ν is said to be *absolutely continuous* with respect to μ , and we write $\nu \prec \prec \mu$. Sometimes it is also said that ν is *dominated* by μ .

• Equivalent conditions

Proposition 2.11 Suppose $\nu(\Omega) < \infty$. Then $\nu \prec \prec \mu$ if and only if for any $\epsilon > 0$, there exists a δ such that $\nu(A) < \epsilon$ whenever $\mu(A) < \delta$.

\mathbf{Proof}

" \Leftarrow " is clear.

To prove " \Rightarrow ", suppose there exists ϵ and a set A_n such that $\nu(A_n) > \epsilon$ and $\mu(A_n) < n^{-2}$.

Since
$$\sum_{n} \mu(A_n) < \infty$$
,
 $\mu(\limsup_{n} A_n) \le \sum_{m \ge n} \mu(A_n) \to 0$

 $\Rightarrow \mu(\limsup_n A_n) = 0.$

However, $\nu(\limsup_n A_n) = \lim_n \nu(\bigcup_{m \ge n} A_m) \ge \limsup_n \nu(A_n) \ge \epsilon$. Contradiction!

• Existence and uniqueness of the derivative

Theorem 2.7 (Radon-Nikodym theorem) Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space, and let ν be a measurable on (Ω, \mathcal{A}) with $\nu \prec \prec \mu$. Then there exists a measurable function $X \ge 0$ such that $\nu(A) = \int_A X d\mu$ for all $A \in \mathcal{A}$. X is unique in the sense that if another measurable function Y also satisfies the equation, then X = Y, a.e.

• Transformation of integration using derivative

Proposition 2.13 Suppose ν and μ are σ -finite measure defined on a measure space (Ω, \mathcal{A}) with $\nu \prec \prec \mu$, and suppose Z is a measurable function such that $\int Z d\nu$ is well defined. Then for any $A \in \mathcal{A}$,

$$\int_{A} Z d\nu = \int_{A} Z \frac{d\nu}{d\mu} d\mu.$$

Proof

(i) If $Z = I_B$ where $B \in \mathcal{A}$, then

$$\int_{A} Z d\nu = \nu(A \cap B) = \int_{A \cap B} \frac{d\nu}{d\mu} d\mu = \int_{A} I_{B} \frac{d\nu}{d\mu} d\mu.$$

(ii) If $Z \ge 0$, find a sequence of simple function Z_n increasing to Z. For Z_n , $\int_A Z_n d\nu = \int_A Z_n \frac{d\nu}{d\mu} d\mu$. Take limits on both sides and apply the MCT.

(iii) For any Z, write
$$Z = Z^+ - Z^-$$
.
$$\int Z d\nu = \int Z^+ d\nu - \int Z^- d\nu = \int Z^+ \frac{d\nu}{d\mu} d\mu - \int Z^- \frac{d\nu}{d\mu} d\mu = \int Z \frac{d\nu}{d\mu} d\mu.$$

Induced Measure

• Definition

- let X be a measurable function defined on $(\Omega, \mathcal{A}, \mu)$.
- for any $B \in \mathcal{B}$, define $\mu_X(B) = \mu(X^{-1}(B))$
- μ_X is called a *measure induced by* X: (R, \mathcal{B}, μ_X) .

• Density function of X

- (R, \mathcal{B}, ν) is another measure space (often the counting measure or the Lebesgue measure)
- suppose μ_X is dominated by ν with the derivative
- $f \equiv d\mu_X/d\nu$ is called the density of X with respect to the dominating measure ν

- Comparison with usual density function
 - $-(\Omega, \mathcal{A}, \mu) = (\Omega, \mathcal{A}, P)$ is a probability space
 - -X is a random variable
 - if ν is the counting measure, f(x) is in fact the probability mass function of X
 - if ν is the Lebesgue measure, f(x) is the probability density function of X

- Integration using density
 - $-\int_{\Omega} g(X(\omega))d\mu(\omega) = \int_{R} g(x)d\mu_X(x) = \int_{R} g(x)f(x)d\nu(x)$
 - the integration of g(X) on the original measure space Ω can be transformed as the integration of g(x) on Rwith respect to the induced-measure μ_X and can be further transformed as the integration of g(x)f(x)with respect to the dominating measure ν

- Interpretation in probability space
 - in probability space, $E[g(X)] = \int_R g(x)f(x)d\nu(x)$
 - any expectations regarding random variable X can be computed via its probability mass function (ν is counting measure) or density function (ν is Lebesgue measure)
 - in statistical calculation, we do NOT need to specify whatever probability measure space X is defined on, while solely rely on f(x) and ν .

Probability Measure

- A few important reminders
 - a probability measure space (Ω, \mathcal{A}, P) is a measure space with $P(\Omega) = 1$;
 - random variable (or random vector in multi-dimensional real space) X is any measurable function;
 - integration of X is equivalent to the expectation;

- the density or the mass function of X is the Radon-Nikydom derivative of the X-induced measure with respect to the Lebesgue measure or the counting measure in real space;
- using the mass function or density function, statisticians unconsciously ignore the underlying probability measure space (Ω, \mathcal{A}, P) .

- Cumulative distribution function revisited
 - F(x) is a nondecreasing function with $F(-\infty) = 0$ and $F(\infty) = 1$;
 - F(x) is right-continuous;
 - λ_F , the Lebesgue-Stieljes measure generated by F is exactly the same measure as the one induced by X, i.e., P_X .

Conditional Probability

• A simple motivation

- the conditional probability of an event A given another event B has two possibilities: $P(A|B) = P(A \cap B)/P(B)$ $P(A|B^c) = P(A \cap B^c)/P(B^c);$
- equivalently, A given the event B is a measurable function assigned to the σ -field { $\emptyset, B, B^c, \Omega$ },

 $P(A|B)I_B(\omega) + P(A|B^c)I_{B^c}(\omega).$

• Definition of conditional probability

An event A given a sub- σ -field \aleph , $P(A|\aleph)$

- it is a measurable and integrable function on (Ω, \aleph) ;
- for any $G \in \aleph$,

$$\int_{G} P(A|\aleph)dP = P(A \cap G).$$

• Existence and Uniqueness of Conditional Probability Function

Theorem 2.8 The measurable function $P(A|\aleph)$ exists and is unique in the sense that any two functions satisfying the definition are the same almost surely.

Proof

In (Ω, \aleph, P) , define a set function ν on \aleph such that $\nu(G) = P(A \cap G)$ for any $G \in \aleph$.

 $\Rightarrow \nu$ is a measure and P(G) = 0 implies that $\nu(G) = 0 \Rightarrow \nu \prec \prec P$.

⇒ By the Radon-Nikodym theorem, there exits a \aleph -measurable function X such that $\nu(G) = \int_G X dP$. ⇒ X satisfies the properties (i) and (ii).

Suppose X and Y both are measurable in \aleph and $\int_G X dP = \int_G Y dP$ for any $G \in \aleph$. Choose choose $G = \{X - Y \ge 0\}$ and $G = \{X - Y < 0\} \Rightarrow \int |X - Y| dP = 0 \Rightarrow X = Y$, a.s. • Properties of conditional probability Theorem 2.9 $P(\emptyset|\aleph) = 0, P(\Omega|\aleph) = 1$ a.e. and $0 \le P(A|\aleph) \le 1$

for each $A \in \mathcal{A}$. if $A_1, A_2, ...$ is finite or countable sequence of disjoint sets in \mathcal{A} , then

$$P(\bigcup_n A_n | \aleph) = \sum_n P(A_n | \aleph).$$

Conditional Expectation

• Definition

- X given \aleph , denoted $E[X|\aleph]$
 - $E[X|\aleph]$ is measurable in \aleph and integrable;
 - for any $G \in \aleph$, $\int_G E[X|\aleph]dP = \int_G XdP$, equivalently; $E[E[X|\aleph]I_G] = E[XI_G], a.e.$
 - The existence and the uniqueness of $E[X|\aleph]$ can be shown similar to Theorem 2.8.

• Properties of conditional expectation

Theorem 2.10 Suppose X, Y, X_n are integrable. (i) If X = a a.s., then $E[X|\aleph] = a$. (ii) $E[aX + bY|\aleph] = aE[X|\aleph] + b[Y|\aleph].$ (iii) If $X \leq Y$ a.s., then $E[X|\aleph] \leq E[Y|\aleph]$. (iv) $|E[X|\aleph]| \leq E[|X||\aleph].$ (v) If $\lim_{n \to \infty} X_n = X$ a.s., $|X_n| \leq Y$ and Y is integrable, then $\lim_{n} E[X_n | \aleph] = E[X | \aleph].$ (vi) If X is measurable in \aleph , $E[XY|\aleph] = XE[Y|\aleph]$. (vii) For two sub- σ fields \aleph_1 and \aleph_2 such that $\aleph_1 \subset \aleph_2$,

$$E\left[E[X|\aleph_2]|\aleph_1\right] = E[X|\aleph_1].$$

(viii) $P(A|\aleph) = E[I_A|\aleph].$

Proof

(i)-(iv) be shown directly using the definition.

To prove (v), consider $Z_n = \sup_{m \ge n} |X_m - X|$. Z_n decreases to 0. $\Rightarrow |E[X_n|\aleph] - E[X|\aleph]| \le E[Z_n|\aleph]$. $E[Z_n|\aleph]$ decreases to a limit $Z \ge 0$. Prometry to show Z = 0 and Note $E[Z_n|\aleph] \le E[2V|\aleph] \Rightarrow$ by the

Remains to show Z = 0 a.s. Note $E[Z_n|\aleph] \le E[2Y|\aleph] \Rightarrow$ by the DCT, $E[Z] = \int E[Z|\aleph] dP \le \int E[Z_n|\aleph] dP \to 0. \Rightarrow Z = 0$ a.s.

For (vii), for any $G \in \aleph_1 \subset \aleph_2$,

$$\int_{G} E[X|\aleph_2]dP = \int_{G} XdP = \int_{G} E[X|\aleph_1]dP.$$

(viii) is clear from the definition of the conditional probability.

To see (vi) holds, consider simple function first, $X = \sum_i x_i I_{B_i}$ where B_i are disjoint set in \aleph . For any $G \in \aleph$,

$$\int_{G} E[XY|\aleph]dP = \int_{G} XYdP = \sum_{i} x_{i} \int_{G \cap B_{i}} YdP$$
$$= \sum_{i} x_{i} \int_{G \cap B_{i}} E[Y|\aleph]dP = \int_{G} XE[Y|\aleph]d.$$
$$Z[\aleph] - XE[Y|\aleph]$$

 $\Rightarrow E[XY|\aleph] = XE[Y|\aleph].$

For any X, a sequence of simple functions X_n converges to X and $|X_n| \leq |X|$. Then

$$\int_{G} X_n Y dP = \int_{G} X_n E[Y|\aleph] dP.$$

Note that $|X_n E[Y|\aleph]| = |E[X_n Y|\aleph]| \le E[|XY||\aleph]$. From the DCT, $\int_G XYdP = \int_G XE[Y|\aleph]dP.$ • Relation to classical conditional density

$$- \aleph = \sigma(Y): \text{ the } \sigma \text{-field generated by the class} \\ \{ \{Y \le y\} : y \in R \} \Rightarrow P(X \in B | \aleph) = g(B, Y) \end{cases}$$

 $-\int_{Y \le y_0} P(X \in B | \aleph) dP = \int I(y \le y_0) g(B, y) f_Y(y) dy = P(X \in B, Y \le y_0)$

$$= \int I(y \le y_0) \int_B f(x, y) dx dy.$$

- $-g(B,y)f_Y(y) = \int_B f(x,y)dx \Rightarrow P(X \in B|\aleph) = \int_B f(x|y)dx.$
- the conditional density of X|Y = y is the density function of the conditional probability measure $P(X \in \cdot | \aleph)$ with respect to the Lebesgue measure.

- Relation to classical conditional expectation
 - $E[X|\aleph] = g(Y) \text{ for some measurable function } g(\cdot)$ $\int I(Y \le y_0) E[X|\aleph] dP = \int I(y \le y_0) g(y) f_Y(y) dy$ $= E[XI(Y \le y_0)] = \int I(y \le y_0) x f(x, y) dx dy$

$$-g(y) = \int x f(x, y) dx / f_Y(y)$$

- $E[X|\aleph]$ is the same as the classical conditional expectation of X given Y = y READING MATERIALS: Lehmann and Casella, Sections 1.2 and 1.3, Lehmann Testing Statistical Hypotheses, Chapter 2 (Optional)