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Set Theory and Topology in Real Space
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• Basic concepts in set theory

– element, set, whole space (Ω)

– power set: 2Ω; empty set: ∅

– set relationship: A ⊆ B, ∩αAα, ∪αAα, A
c, A−B

A−B = A ∩Bc
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• Set operations

– properties: for any B, {Aα},

B ∩ {∪αAα} = ∪α {B ∩Aα} , B ∪ {∩αAα} = ∩α {B ∪Aα} ,

{∪αAα}c = ∩αA
c
α, {∩αAα}c = ∪αA

c
α. ( de Morgan law)

– partition of a set

A1∪A2∪A3∪ ... = A1∪ (A2−A1)∪ (A3−A1∪A2)∪ ...

– lim supn An = ∩∞
n=1 {∪∞

m=nAm}
lim infn An = ∪∞

n=1 {∩∞
m=nAm} .
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• Topology in the Euclidean space

– open set, closed set, compact set

– properties: the union of any number of open sets is

open; A is closed if and only if for any sequence {xn}
in A such that xn → x, x must belong to A

– only ∅ and the whole real line are both open set and

closed

– any open-set covering of a compact set has finite

number of open sets covering the compact set
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Measure Space
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• Motivating example: counting measure

– Ω = {x1, x2, ...}

– a set function µ#(A) is the number of points in A.

– (a) µ#(∅) = 0;

(b) if A1, A2, ... are disjoint sets of Ω, then

µ#(∪nAn) =
∑
n

µ#(An).
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• Motivating example: Lebesgue measure

– Ω = (−∞,∞)

– how to measure the sizes of possibly any subsets in

R? a set function λ?

– (a) λ(∅) = 0;

(b) for any disjoint sets A1, A2, ...,

λ(∪nAn) =
∑
n

λ(An)

– assign the length to any est of B0

∪n
i=1(ai, bi] ∪ (−∞, b] ∪ (a,∞), disjoint intervals

– What about non-intervals? how about in Rk?
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• Three components in defining a measure space

– the whole space, Ω

– a collection of subsets whose sizes are measurable, A,

– a set function µ assigns negative values (sizes) to each

set of A and satisfies properties (a) and (b)
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Field, σ-filed
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• Some intuition

– A contains the sets whose sizes are measurable

– A should be closed under complement or union
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Definition 2.1 (fields, σ-fields) A non-void class A of

subsets of Ω is called a:

(i) field or algebra if A,B ∈ A implies that A ∪B ∈ A
and Ac ∈ A; equivalently, A is closed under complements

and finite unions.

(ii) σ-field or σ-algebra if A is a field and A1, A2, ... ∈ A
implies ∪∞

i=1Ai ∈ A; equivalently, A is closed under

complements and countable unions. †
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• Properties of σ-field

Proposition 2.1. (i) For a field A, ∅,Ω ∈ A and if

A1, ..., An ∈ A, ∩n
i=1Ai ∈ A.

(ii) For a σ-field A, if A1, A2, ... ∈ A, then ∩∞
i=1Ai ∈ A.



CHAPTER 2 BASIC MEASURE THEORY 14

Proof

(i) For any A ∈ A, Ω = A ∪Ac ∈ A ⇒∅ = Ωc ∈ A.

A1, ..., An ∈ A
⇒∩n

i=1 Ai = (∪n
i=1A

c
i )

c ∈ A.

(ii) (∩∞
i=1Ai)

c = ∪∞
i=1A

c
i .
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• Examples of σ-field

– A = {∅,Ω} and 2Ω = {A : A ⊂ Ω}

– B0 is a field but not a σ-field

(a, b) = ∪∞
n=1(a, b− 1/n] /∈ B0

– A = {A : A is in R and Ac is countable}
A is closed under countable union but not

complement
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• Measure defined on a σ-field

Definition 2.2 (measure, probability measure)

(i) A measure µ is a function from a σ-field A to [0,∞)

satisfying: µ(∅) = 0; µ(∪∞
n=1An) =

∑∞
n=1 µ(An) for any

countable (finite) disjoint sets A1, A2, ... ∈ A. The latter

is called the countable additivity.

(ii) Additionally, if µ(Ω) = 1, µ is a probability measure

and we usually use P instead of µ to indicate a

probability measure.
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• Properties of measure

Proposition 2.2

(i) If {An} ⊂ A and An ⊂ An+1 for all n, then

µ(∪∞
n=1An) = limn→∞ µ(An).

(ii) If {An} ⊂ A, µ(A1) < ∞ and An ⊃ An+1 for all n,

then µ(∩∞
n=1An) = limn→∞ µ(An).

(iii) For any {An} ⊂ A, µ(∪nAn) ≤
∑

n µ(An) (countable

sub-additivity).

(iv) µ(lim infn An) = limn µ(∩∞
k=nAn) ≤ lim infn µ(An)
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Proof
(i) µ(∪∞

n=1An) = µ(A1 ∪ (A2 −A1)∪ ...) = µ(A1) + µ(A2 −A1) + ....

= limn {µ(A1) + µ(A2 −A1) + ...+ µ(An −An−1)} = limn µ(An).

(ii)

µ(∩∞
n=1An) = µ(A1)−µ(A1−∩∞

n=1An) = µ(A1)−µ(∪∞
n=1(A1∩Ac

n)).

A1 ∩Ac
n is increasing

⇒ the second term equals limn µ(A1 ∩Ac
n) = µ(A1)− limn µ(An).

(iii)

µ(∪nAn) = limn µ(A1 ∪ ... ∪An) = limn {
∑n

i=1 µ(Ai − ∪j<iAj)}
≤ limn

∑n
i=1 µ(Ai) =

∑
n µ(An).

(iv) µ(lim infn An) = limn µ(∩∞
k=nAn) ≤ lim infn µ(An).
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• Measures space

a triplet (Ω,A, µ)

– set in A is called a measurable set

– If µ = P is a probability measure, (Ω,A, P ) is a

probability measure space: probability sample and

probability event

– a measure µ is called σ-finite if there exists a

countable sets {Fn} ⊂ A such that Ω = ∪nFn and for

each Fn, µ(Fn) < ∞.
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• Examples of measure space

– discrete measure:

µ(A) =
∑
ωi∈A

mi, A ∈ A.

– counting measure µ# in any space, say R: it is not

σ-finite.
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Measure Space Construction
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• Two basic questions

– Can we find a σ-field containing all the sets of C?

– Can we obtain a set function defined for any set of

this σ-field such that the set function agrees with µ in

C?
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• Answer to the first question

Proposition 2.3 (i) Arbitrary intersections of fields

(σ-fields) are fields (σ-fields).

(ii) For any class C of subsets of Ω, there exists a minimal

σ-field containing C and we denote it as σ(C).
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Proof

(i) is obvious.

For (ii),

σ(C) = ∩C⊂A,A is σ-fieldA,

i.e., the intersection of all the σ-fields containing C.
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• Answer to the second question

Theorem 2.1 (Caratheodory Extension Theorem)

A measure µ on a field C can be extended to a measure

on the minimal σ-field σ(C). If µ is σ-finite on C, then
the extension is unique and also σ-finite.

Construction

µ∗(A) = inf

{ ∞∑
i=1

µ(Ai) : Ai ∈ C, A ⊂ ∪∞
i=1Ai

}
.
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• Application to measure construction

– generate a σ-field containing B0: Borel σ-field B

– extend λ to B: the Lebesgue measure

– (R,B, λ) is named the Borel measure space

– in Rk, we obtain (Rk,Bk, λk)
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• Other measure construction on B

– F is non-decreasing and right-continuous

– a set function in B0: λF ((a, b]) = F (b)− F (a)

– measure extension λF in B: Lebesgue-Stieltjes
measure generated by F

– the Lebesuge measure is a special case with F (x) = x

– if F is a distribution function, this measure is a

probability measure in R
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• Completion after measure construction

– motivation: any subsets of a zero-measure set should

be given measure zero but may not be in A

– Completion: add these nuisance sets to A
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• Details of completion

– obtain another measure space (Ω, Ā, µ̄)

Ā = {A ∪N : A ∈ A,

N ⊂ B for some B ∈ A such that µ(B) = 0}

and µ̄(A ∪N) = µ(A).

– the completion of the Borel measure space is the

Lebesgue measure space and the completed Borel

σ-field is the σ-field of Lebesgue sets

– we always assume that a measure space is completed
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Measurable Function



CHAPTER 2 BASIC MEASURE THEORY 31

• Definition

Definition 2.3 (measurable function) Let X : Ω 7→ R

be a function defined on Ω. X is measurable if for x ∈ R,

the set {ω ∈ Ω : X(ω) ≤ x} is measurable, equivalently,

belongs to A. Especially, if the measure space is a

probability measure space, X is called a random variable.
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• Property of measurable function

Proposition 2.4 If X is measurable, then for any

B ∈ B, X−1(B) = {ω : X(ω) ∈ B} is measurable.
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Proof

B∗ =
{
B : B ⊂ R,X−1(B) is measurable in A

}
(−∞, x] ∈ B∗.

B ∈ B∗⇒X−1(B) ∈ A⇒X−1(Bc) = Ω−X−1(B) ∈ A
then Bc ∈ B∗.

B1, B2, ... ∈ B∗⇒X−1(B1), X
−1(B2), ... ∈ A ⇒

X−1(B1 ∪B2 ∪ ...) = X−1(B1) ∪X−1(B2) ∪ ... ∈ A.

⇒ B1 ∪B2 ∪ ... ∈ B∗.

⇒ B∗ is a σ-field containing all intervals of the type (−∞, x] ⇒
B ⊂ B∗.

For any Borel set B, X−1(B) is measurable in A.
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• Construction of measurable function

– simple function:
∑n

i=1 xiIAi
(ω), Ai ∈ A

– the finite summation and the maximum of simple

functions are still simple functions

– any elementary functions of measurable functions are

measurable
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Proposition 2.5 Suppose that {Xn} are measurable.

Then so are X1 +X2, X1X2, X
2
1 and supn Xn, infn Xn,

lim supn Xn and lim infn Xn.
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Proof

{X1 +X2 ≤ x} = Ω− {X1 +X2 > x} =

Ω− ∪r∈Q {X1 > r} ∩ {X2 > x− r} , Q={ all rational numbers}.

{
X2

1 ≤ x
}
= {X1 ≤

√
x} − {X1 < −

√
x}.

X1X2 =
{
(X1 +X2)

2 −X2
1 −X2

2

}
/2

{supn Xn ≤ x} = ∩n {Xn ≤ x} .
{infn Xn ≤ x} = {supn(−Xn) ≥ −x} .

{lim supn Xn ≤ x} = ∩r∈Q,r>0 ∪∞
n=1 ∩k≥n {Xk < x+ r} .

lim infn Xn = − lim supn(−Xn).
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• Approximating measurable function with simple

functions

Proposition 2.6 For any measurable function X ≥ 0,

there exists an increasing sequence of simple functions

{Xn} such that Xn(ω) increases to X(ω) as n goes to

infinity.
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Proof

Xn(ω) =

n2n−1∑
k=0

k

2n
I{ k

2n
≤ X(ω) <

k + 1

2n
}+ nI {X(ω) ≥ n}

⇒ Xn is increasing over n.

⇒ if X(ω) < n, then |Xn(ω)−X(ω)| < 1
2n .

⇒ Xn(ω) converges to X(ω).

If X is bounded, supω |Xn(ω)−X(ω)| < 1
2n
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Integration



CHAPTER 2 BASIC MEASURE THEORY 40

Definition 2.4 (i) For any simple function

X(ω) =
∑n

i=1 xiIAi
(ω), we define

∑n
i=1 xiµ(Ai) as the

integral of X with respect to measure µ, denoted as∫
Xdµ.

(ii) For any X ≥ 0, we define
∫
Xdµ as∫

Xdµ = sup
Y is simple function, 0 ≤ Y ≤ X

∫
Y dµ.
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(iii) For general X, let X+ = max(X, 0) and

X− = max(−X, 0). Then X = X+ −X−. If one of∫
X+dµ,

∫
X−dµ is finite, we define∫

Xdµ =
∫

X+dµ−
∫
X−dµ.
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• Some notes

– X is integrable if
∫
|X|dµ =

∫
X+dµ+

∫
X−dµ is finite

– the definition (ii) is consistent with (i) when X itself

is a simple function

– for a probability measure space and X is a random

variable,
∫
Xdµ ≡ E[X]
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• Fundamental properties of integration

Proposition 2.7 (i) For two measurable functions

X1 ≥ 0 and X2 ≥ 0, if X1 ≤ X2, then
∫
X1dµ ≤

∫
X2dµ.

(ii) For X ≥ 0 and any sequence of simple functions Yn

increasing to X,
∫
Yndµ →

∫
Xdµ.
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Proof

(i) For any simple function 0 ≤ Y ≤ X1, Y ≤ X2.

⇒
∫
Y dµ ≤

∫
X2dµ .

Take the supreme over all the simple functions less than X1

⇒
∫
X1dµ ≤

∫
X2dµ.

(ii) From (i),
∫
Yndµ is increasing and bounded by

∫
Xdµ.

It suffices to show that for any simple function Z =
∑m

i=1 xiIAi(ω),

where {Ai, 1 ≤ i ≤ m} are disjoint measurable sets and xi > 0,

such that 0 ≤ Z ≤ X,

lim
n

∫
Yndµ ≥

m∑
i=1

xiµ(Ai).
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We consider two cases.

Case 1.
∫
Zdµ =

∑m
i=1 xiµ(Ai) is finite thus both xi and µ(Ai) are

finite.

Fix an ϵ > 0, let Ain = Ai ∩ {ω : Yn(ω) > xi − ϵ} . ⇒ Ain increases

to Ai ⇒ µ(Ain) increases to µ(Ai).

When n is large, ∫
Yndµ ≥

m∑
i=1

(xi − ϵ)µ(Ai).

⇒ limn

∫
Yndµ ≥

∫
Zdµ− ϵ

∑m
i=1 µ(Ai).

⇒ limn

∫
Yndµ ≥

∫
Zdµ by letting ϵ approach 0.
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Case 2 suppose
∫
Zdµ = ∞ then there exists some i from

{1, ...,m}, say 1, so that µ(A1) = ∞ or x1 = ∞.

Choose any 0 < x < x1 and 0 < y < µ(A1).

A1n = A1 ∩ {ω : Yn(ω) > x} increases to A1. n large enough,

µ(A1n) > y

⇒ limn

∫
Yndµ ≥ xy.

⇒ Letting x → x1 and y → µ(A1), conclude limn

∫
Yndµ = ∞.

⇒ limn

∫
Yndµ ≥

∫
Zdµ.
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• Elementary properties

Proposition 2.8 Suppose
∫
Xdµ,

∫
Y dµ and∫

Xdµ+
∫
Y dµ exit. Then

(i)
∫
(X + Y )dµ =

∫
Xdµ+

∫
Y dµ,

∫
cXdµ = c

∫
Xdµ;

(ii) X ≥ 0 implies
∫
Xdµ ≥ 0; X ≥ Y implies∫

Xdµ ≥
∫
Y dµ; and X = Y a.e. implies that∫

Xdµ =
∫
Y dµ;

(iii) |X| ≤ Y with Y integrable implies that X is

integrable; X and Y are integrable implies that X + Y is

integrable.
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• Calculation of integration by definition∫
Xdµ = lim

n

{
n2n−1∑
k=1

k

2n
µ(

k

2n
≤ X <

k + 1

2n
) + nµ(X ≥ n)

}
.
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• Integration w.r.t counting measure or Lebesgue

measure

–
∫
gdµ# =

∑
i g(xi).

– continuous function g(x),
∫
gdλ is equal to the usual

Riemann integral
∫
g(x)dx

– (Ω,B, λF ), where F is differentiable except

discontinuous points {x1, x2, ...},∫
gdλF =

∑
i

g(xi) {F (xi)− F (xi−)}+
∫

g(x)f(x)dx,

where f(x) is the derivative of F (x).
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Convergence Theorems



CHAPTER 2 BASIC MEASURE THEORY 51

• Monotone convergence theorem (MCT)

Theorem 2.2 If Xn ≥ 0 and Xn increases to X, then∫
Xndµ →

∫
Xdµ.
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Proof

Choose nonnegative simple function Xkm increasing to Xk as

m → ∞. Define Yn = maxk≤n Xkn.

⇒ {Yn} is an increasing series of simple functions

Xkn ≤ Yn ≤ Xn, so

∫
Xkndµ ≤

∫
Yndµ ≤

∫
Xndµ.

⇒ n → ∞ Xk ≤ limn Yn ≤ X and∫
Xkdµ ≤

∫
lim
n

Yndµ = lim
n

∫
Yndµ ≤ lim

n

∫
Xndµ

⇒ k → ∞, X ≤ limn Yn ≤ X and

lim
k

∫
Xkdµ ≤

∫
lim
n

Yndµ ≤ lim
n

∫
Xndµ.

The result holds.
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• Counter example

Xn(x) = −I(x > n)/n in the Lebesgue measure space.

Xn increases to zero but
∫
Xndλ = −∞
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• Fatou’s Lemma

Theorem 2.3 If Xn ≥ 0 then∫
lim inf

n
Xndµ ≤ lim inf

n

∫
Xndµ.
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Proof

lim inf
n

Xn =
∞
sup
n=1

inf
m≥n

Xm.

⇒ {infm≥n Xm} increases to lim infn Xn.

By the MCT,∫
lim inf

n
Xndµ = lim

n

∫
inf
m≥n

Xmdµ ≤
∫

Xndµ.
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• Two definitions in convergence

Definition 2.4 A sequence Xn converges almost

everywhere (a.e.) to X, denoted Xn →a.e. X, if

Xn(ω) → X(ω) for all ω ∈ Ω−N where µ(N) = 0. If µ is

a probability, we write a.e. as a.s. (almost surely). A

sequence Xn converges in measure to a measurable

function X, denoted Xn →µ X, if µ(|Xn −X| ≥ ϵ) → 0

for all ϵ > 0. If µ is a probability measure, we say Xn

converges in probability to X.
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• Properties of convergence

Proposition 2.9 Let {Xn}, X be finite measurable

functions. Then Xn →a.e. X if and only if for any ϵ > 0,

µ(∩∞
n=1 ∪m≥n {|Xm −X| ≥ ϵ}) = 0.

If µ(Ω) < ∞, then Xn →a.e. X if and only if for any ϵ > 0,

µ(∪m≥n {|Xm −X| ≥ ϵ}) → 0.
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Proof

{ω : Xn(Ω) → X(ω)}c = ∪∞
k=1∩∞

n=1∪m≥n

{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
.

Xn →a.e X⇒ the measure of the left-hand side is zero.

⇒ ∩∞
n=1 ∪m≥n {|Xm −X| ≥ ϵ} has measure zero.

For the other direction, choose ϵ = 1/k for any k, then by countable

sub-additivity,

µ(∪∞
k=1 ∩∞

n=1 ∪m≥n

{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
)

≤
∑
k

µ(∩∞
n=1 ∪m≥n

{
ω : |Xm(ω)−X(ω)| ≥ 1

k

}
) = 0.

⇒ Xn →a.e. X.

When µ(Ω) < ∞, the latter holds by Proposition 2.2.
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• Relationship between two convergence modes

Proposition 2.10 Let Xn be finite a.e.

(i) If Xn →µ X, then there exists a subsequence

Xnk
→a.e X.

(ii) If µ(Ω) < ∞ and Xn →a.e. X, then Xn →µ X.
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Proof

(i) Find nk

P (|Xnk
−X| ≥ 2−k) < 2−k.

⇒µ(∪m≥k {|Xnm
−X| ≥ ϵ}) ≤ µ(∪m≥k

{
|Xnm

−X| ≥ 2−k
}
)

≤
∑

m≥k 2
−m → 0.

⇒Xnk
→a.e X.

(ii) is direct from the second part of Proposition 2.9.
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• Examples of convergence

– Let X2n+k = I(x ∈ [k/2n, (k + 1)/2n)), 0 ≤ k < 2n in

the Lebesgue measure space. Then Xn →λ 0 but does

not converge to zero almost everywhere.

– Xn = nI(|x| > n) →a.e. 0 but λ(|Xn| > ϵ) → ∞.
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• Dominated Convergence Theorem (DCT)

Theorem 2.4 If |Xn| ≤ Y a.e. with Y integrable, and if

Xn →µ X (or Xn →a.e. X), then
∫
|Xn −X|dµ → 0 and

lim
∫
Xndµ =

∫
Xdµ.
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Proof

Assume Xn →a.e X. Define Zn = 2Y − |Xn −X|. Zn ≥ 0 and

Zn → 2Y .

⇒ From the Fatou’s lemma,∫
2Y dµ ≤ lim inf

n

∫
(2Y − |Xn −X|)dµ.

⇒ lim supn
∫
|Xn −X|dµ ≤ 0.

If Xn →µ X and the result does not hold for some subsequence of

Xn, by Proposition 2.10, there exits a further sub-sequence

converging to X almost surely. However, the result holds for this

further subsequence. Contradiction!
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• Interchange of integral and limit or derivative

Theorem 2.5 Suppose that X(ω, t) is measurable for

each t ∈ (a, b).

(i) If X(ω, t) is a.e. continuous in t at t0 and

|X(ω, t)| ≤ Y (ω), a.e. for |t− t0| < δ with Y integrable,

then

lim
t→t0

∫
X(ω, t)dµ =

∫
X(ω, t0)dµ.
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(ii) Suppose ∂
∂t
X(ω, t) exists for a.e. ω, all t ∈ (a, b) and

| ∂
∂t
X(ω, t)| ≤ Y (ω), a.e. for all t ∈ (a, b) with Y

integrable. Then

∂

∂t

∫
X(ω, t)dµ =

∫ ∂

∂t
X(ω, t)dµ.
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Proof

(i) follows from the DCT and the subsequence argument.

(ii)
∂

∂t

∫
X(ω, t)dµ = lim

h→0

∫
X(ω, t+ h)−X(ω, t)

h
dµ.

Then from the conditions and (i), such a limit can be taken within

the integration.
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Product of Measures
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• Definition

– Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}

– A1 ×A2 = σ({A1 × A2 : A1 ∈ A1, A2 ∈ A2})

– (µ1 × µ2)(A1 × A2) = µ1(A1)µ2(A2). with its

extension to all sets in the A1 ×A2
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• Examples

– (Rk = R× ...×R,B × ...× B, λ× ...× λ)

λ× ...× λ ≡ λk

– Ω = {1, 2, 3...}

(R× Ω,B × 2Ω, λ× µ#)
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• Integration on the product measure space

– In calculus,∫
R2 f(x, y)dxdy =

∫
x

∫
y f(x, y)dydx =

∫
y

∫
x f(x, y)dxdy

– Do we have the same equality in the product measure

space?
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Theorem 2.6 (Fubini-Tonelli Theorem) Suppose

that X : Ω1 ×Ω2 → R is A1 ×A2 measurable and X ≥ 0.

Then ∫
Ω1

X(ω1, ω2)dµ1 is A2 measurable,∫
Ω2

X(ω1, ω2)dµ2 is A1 measurable,∫
Ω1×Ω2

X(ω1, ω2)d(µ1 × µ2) =
∫
Ω1

{∫
Ω2

X(ω1, ω2)dµ2

}
dµ1

=
∫
Ω2

{∫
Ω1

X(ω1, ω2)dµ1

}
dµ2.
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• Conclusion from Theorem 2.6

– in general, X = X+ −X−. Then the above results

hold for X+ and X−. Thus, if∫
Ω1×Ω2

|X(ω1, ω2)|d(µ1 × µ2) is finite, then the above

results hold.
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• One example

– let (Ω, 2Ω, µ#) be a counting measure space where

Ω = {1, 2, 3, ...} and (R,B, λ) be the Lebesgue

measure space

– define f(x, y) = I(0 ≤ x ≤ y) exp{−y}; then∫
Ω×R

f(x, y)d{µ# × λ} =
∫
Ω
{
∫
R
f(x, y)dλ(y)}dµ#(x)

=
∫
Ω
exp{−x}dµ#(x) =

∞∑
n=1

exp{−n} = 1/(e− 1).
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Derivative of Measures



CHAPTER 2 BASIC MEASURE THEORY 75

• Motivation

– let (Ω,A, µ) be a measurable space and let X be a

non-negative measurable function on Ω

– a set function ν as ν(A) =
∫
AXdµ =

∫
IAXdµ for

each A ∈ A.

– ν is a measure on (Ω,A)

– observe X = dν/dµ
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• Absolute continuity

Definition 2.5 If for any A ∈ A, µ(A) = 0 implies that

ν(A) = 0, then ν is said to be absolutely continuous with

respect to µ, and we write ν ≺≺ µ. Sometimes it is also

said that ν is dominated by µ.
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• Equivalent conditions

Proposition 2.11 Suppose ν(Ω) < ∞. Then ν ≺≺ µ if

and only if for any ϵ > 0, there exists a δ such that

ν(A) < ϵ whenever µ(A) < δ.
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Proof

“ ⇐′′ is clear.

To prove “⇒′′, suppose there exists ϵ and a set An such that

ν(An) > ϵ and µ(An) < n−2.

Since
∑

n µ(An) < ∞,

µ(lim sup
n

An) ≤
∑
m≥n

µ(An) → 0.

⇒ µ(lim supn An) = 0.

However, ν(lim supn An) = limn ν(∪m≥nAm) ≥ lim supn ν(An) ≥ ϵ.

Contradiction!
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• Existence and uniqueness of the derivative

Theorem 2.7 (Radon-Nikodym theorem) Let

(Ω,A, µ) be a σ-finite measure space, and let ν be a

measurable on (Ω,A) with ν ≺≺ µ. Then there exists a

measurable function X ≥ 0 such that ν(A) =
∫
AXdµ for

all A ∈ A. X is unique in the sense that if another

measurable function Y also satisfies the equation, then

X = Y , a.e.
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• Transformation of integration using derivative

Proposition 2.13 Suppose ν and µ are σ-finite measure

defined on a measure space (Ω,A) with ν ≺≺ µ, and

suppose Z is a measurable function such that
∫
Zdν is

well defined. Then for any A ∈ A,∫
A
Zdν =

∫
A
Z
dν

dµ
dµ.
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Proof

(i) If Z = IB where B ∈ A, then∫
A

Zdν = ν(A ∩B) =

∫
A∩B

dν

dµ
dµ =

∫
A

IB
dν

dµ
dµ.

(ii) If Z ≥ 0, find a sequence of simple function Zn increasing to Z.

For Zn,
∫
A
Zndν =

∫
A
Zn

dν
dµdµ. Take limits on both sides and apply

the MCT.

(iii) For any Z, write Z = Z+ − Z−.∫
Zdν =

∫
Z+dν −

∫
Z−dν =

∫
Z+ dν

dµdµ−
∫
Z− dν

dµdµ =
∫
Z dν

dµdµ.
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Induced Measure
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• Definition

– let X be a measurable function defined on (Ω,A, µ).

– for any B ∈ B, define µX(B) = µ(X−1(B))

– µX is called a measure induced by X: (R,B, µX).
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• Density function of X

– (R,B, ν) is another measure space (often the counting

measure or the Lebesgue measure)

– suppose µX is dominated by ν with the derivative

– f ≡ dµX/dν is called the density of X with respect to

the dominating measure ν
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• Comparison with usual density function

– (Ω,A, µ) = (Ω,A, P ) is a probability space

– X is a random variable

– if ν is the counting measure, f(x) is in fact the

probability mass function of X

– if ν is the Lebesgue measure, f(x) is the probability

density function of X
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• Integration using density

–
∫
Ω g(X(ω))dµ(ω) =

∫
R g(x)dµX(x) =

∫
R g(x)f(x)dν(x)

– the integration of g(X) on the original measure space

Ω can be transformed as the integration of g(x) on R

with respect to the induced-measure µX and can be

further transformed as the integration of g(x)f(x)

with respect to the dominating measure ν
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• Interpretation in probability space

– in probability space, E[g(X)] =
∫
R g(x)f(x)dν(x)

– any expectations regarding random variable X can be

computed via its probability mass function (ν is

counting measure) or density function (ν is Lebesgue

measure)

– in statistical calculation, we do NOT need to specify

whatever probability measure space X is defined on,

while solely rely on f(x) and ν.
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Probability Measure
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• A few important reminders

– a probability measure space (Ω,A, P ) is a measure

space with P (Ω) = 1;

– random variable (or random vector in

multi-dimensional real space) X is any measurable

function;

– integration of X is equivalent to the expectation;
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– the density or the mass function of X is the

Radon-Nikydom derivative of the X-induced measure

with respect to the Lebesgue measure or the counting

measure in real space;

– using the mass function or density function,

statisticians unconsciously ignore the underlying

probability measure space (Ω,A, P ).
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• Cumulative distribution function revisited

– F (x) is a nondecreasing function with F (−∞) = 0

and F (∞) = 1;

– F (x) is right-continuous;

– λF , the Lebesgue-Stieljes measure generated by F is

exactly the same measure as the one induced by X,

i.e., PX .
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Conditional Probability
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• A simple motivation

– the conditional probability of an event A given

another event B has two possibilities:

P (A|B) = P (A ∩B)/P (B)

P (A|Bc) = P (A ∩Bc)/P (Bc);

– equivalently, A given the event B is a measurable

function assigned to the σ-field {∅, B,Bc,Ω},

P (A|B)IB(ω) + P (A|Bc)IBc(ω).
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• Definition of conditional probability

An event A given a sub-σ-field ℵ, P (A|ℵ)

– it is a measurable and integrable function on (Ω,ℵ);

– for any G ∈ ℵ,∫
G
P (A|ℵ)dP = P (A ∩G).
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• Existence and Uniqueness of Conditional Probability

Function

Theorem 2.8 The measurable function P (A|ℵ) exists
and is unique in the sense that any two functions

satisfying the definition are the same almost surely.
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Proof

In (Ω,ℵ, P ), define a set function ν on ℵ such that

ν(G) = P (A ∩G) for any G ∈ ℵ.

⇒ ν is a measure and P (G) = 0 implies that ν(G) = 0 ⇒ν ≺≺ P .

⇒ By the Radon-Nikodym theorem, there exits a ℵ-measurable

function X such that ν(G) =
∫
G
XdP.

⇒ X satisfies the properties (i) and (ii).

Suppose X and Y both are measurable in ℵ and
∫
G
XdP =

∫
G
Y dP

for any G ∈ ℵ. Choose choose G = {X − Y ≥ 0} and

G = {X − Y < 0} ⇒
∫
|X − Y |dP = 0 ⇒ X = Y , a.s.
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• Properties of conditional probability

Theorem 2.9 P (∅|ℵ) = 0, P (Ω|ℵ) = 1 a.e. and

0 ≤ P (A|ℵ) ≤ 1

for each A ∈ A. if A1, A2, ... is finite or countable

sequence of disjoint sets in A, then

P (∪nAn|ℵ) =
∑
n

P (An|ℵ).
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Conditional Expectation
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• Definition

X given ℵ, denoted E[X|ℵ]

– E[X|ℵ] is measurable in ℵ and integrable;

– for any G ∈ ℵ,
∫
G E[X|ℵ]dP =

∫
G XdP, equivalently;

E [E[X|ℵ]IG] = E[XIG], a.e.

– The existence and the uniqueness of E[X|ℵ] can be

shown similar to Theorem 2.8.
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• Properties of conditional expectation

Theorem 2.10 Suppose X, Y,Xn are integrable.

(i) If X = a a.s., then E[X|ℵ] = a.

(ii) E[aX + bY |ℵ] = aE[X|ℵ] + b[Y |ℵ].
(iii) If X ≤ Y a.s., then E[X|ℵ] ≤ E[Y |ℵ].
(iv) |E[X|ℵ]| ≤ E[|X||ℵ].
(v) If limn Xn = X a.s., |Xn| ≤ Y and Y is integrable,

then limn E[Xn|ℵ] = E[X|ℵ].
(vi) If X is measurable in ℵ, E[XY |ℵ] = XE[Y |ℵ]. (vii)
For two sub-σ fields ℵ1 and ℵ2 such that ℵ1 ⊂ ℵ2,

E [E[X|ℵ2]|ℵ1] = E[X|ℵ1].

(viii) P (A|ℵ) = E[IA|ℵ].
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Proof

(i)-(iv) be shown directly using the definition.

To prove (v), consider Zn = supm≥n |Xm −X|. Zn decreases to 0.

⇒|E[Xn|ℵ]− E[X|ℵ]| ≤ E[Zn|ℵ]. E[Zn|ℵ] decreases to a limit

Z ≥ 0.

Remains to show Z = 0 a.s. Note E[Zn|ℵ] ≤ E[2Y |ℵ] ⇒ by the

DCT, E[Z] =
∫
E[Z|ℵ]dP ≤

∫
E[Zn|ℵ]dP → 0. ⇒ Z = 0 a.s.

For (vii), for any G ∈ ℵ1 ⊂ ℵ2,∫
G

E[X|ℵ2]dP =

∫
G

XdP =

∫
G

E[X|ℵ1]dP.

(viii) is clear from the definition of the conditional probability.
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To see (vi) holds, consider simple function first, X =
∑

i xiIBi

where Bi are disjoint set in ℵ. For any G ∈ ℵ,∫
G

E[XY |ℵ]dP =

∫
G

XY dP =
∑
i

xi

∫
G∩Bi

Y dP

=
∑
i

xi

∫
G∩Bi

E[Y |ℵ]dP =

∫
G

XE[Y |ℵ]d.

⇒ E[XY |ℵ] = XE[Y |ℵ].

For any X, a sequence of simple functions Xn converges to X and

|Xn| ≤ |X|. Then ∫
G

XnY dP =

∫
G

XnE[Y |ℵ]dP.

Note that |XnE[Y |ℵ]| = |E[XnY |ℵ]| ≤ E[|XY ||ℵ]. From the DCT,∫
G
XY dP =

∫
G
XE[Y |ℵ]dP.
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• Relation to classical conditional density

– ℵ = σ(Y ): the σ-field generated by the class

{{Y ≤ y} : y ∈ R} ⇒P (X ∈ B|ℵ) = g(B, Y )

–
∫
Y≤y0

P (X ∈ B|ℵ)dP =
∫
I(y ≤ y0)g(B, y)fY (y)dy =

P (X ∈ B, Y ≤ y0)

=
∫

I(y ≤ y0)
∫
B
f(x, y)dxdy.

– g(B, y)fY (y) =
∫
B f(x, y)dx⇒P (X ∈ B|ℵ) =∫

B f(x|y)dx.

– the conditional density of X|Y = y is the density

function of the conditional probability measure

P (X ∈ ·|ℵ) with respect to the Lebesgue measure.
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• Relation to classical conditional expectation

– E[X|ℵ] = g(Y ) for some measurable function g(·)

–
∫
I(Y ≤ y0)E[X|ℵ]dP =

∫
I(y ≤ y0)g(y)fY (y)dy

= E[XI(Y ≤ y0)] =
∫
I(y ≤ y0)xf(x, y)dxdy

– g(y) =
∫
xf(x, y)dx/fY (y)

– E[X|ℵ] is the same as the classical conditional

expectation of X given Y = y
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READING MATERIALS : Lehmann and Casella,

Sections 1.2 and 1.3, Lehmann Testing Statistical

Hypotheses, Chapter 2 (Optional)


