CHAPTER 2: BASIC MEASURE THEORY

- Basic concepts in set theory
- element, set, whole space (Ω)
- power set: 2^{Ω}; empty set: \emptyset
- set relationship: $A \subseteq B, \cap_{\alpha} A_{\alpha}, \cup_{\alpha} A_{\alpha}, A^{c}, A-B$

$$
A-B=A \cap B^{c}
$$

- Set operations
- properties: for any $B,\left\{A_{\alpha}\right\}$,

$$
\begin{gathered}
B \cap\left\{\cup_{\alpha} A_{\alpha}\right\}=\cup_{\alpha}\left\{B \cap A_{\alpha}\right\}, \quad B \cup\left\{\cap_{\alpha} A_{\alpha}\right\}=\cap_{\alpha}\left\{B \cup A_{\alpha}\right\}, \\
\left\{\cup_{\alpha} A_{\alpha}\right\}^{c}=\cap_{\alpha} A_{\alpha}^{c}, \quad\left\{\cap_{\alpha} A_{\alpha}\right\}^{c}=\cup_{\alpha} A_{\alpha}^{c} . \quad(\text { de Morgan law) }
\end{gathered}
$$

- partition of a set

$$
A_{1} \cup A_{2} \cup A_{3} \cup \ldots=A_{1} \cup\left(A_{2}-A_{1}\right) \cup\left(A_{3}-A_{1} \cup A_{2}\right) \cup \ldots
$$

$-\limsup \sup _{n} A_{n}=\cap_{n=1}^{\infty}\left\{\cup_{m=n}^{\infty} A_{m}\right\}$
$\liminf _{n} A_{n}=\cup_{n=1}^{\infty}\left\{\cap_{m=n}^{\infty} A_{m}\right\}$.

- Topology in the Euclidean space
- open set, closed set, compact set
- properties: the union of any number of open sets is open; A is closed if and only if for any sequence $\left\{x_{n}\right\}$ in A such that $x_{n} \rightarrow x, x$ must belong to A
- only \emptyset and the whole real line are both open set and closed
- any open-set covering of a compact set has finite number of open sets covering the compact set
- Motivating example: counting measure
$-\Omega=\left\{x_{1}, x_{2}, \ldots\right\}$
- a set function $\mu^{\#}(A)$ is the number of points in A.
- (a) $\mu^{\#}(\emptyset)=0 ;$
(b) if A_{1}, A_{2}, \ldots are disjoint sets of Ω, then

$$
\mu^{\#}\left(\cup_{n} A_{n}\right)=\sum_{n} \mu^{\#}\left(A_{n}\right) .
$$

- Motivating example: Lebesgue measure
$-\Omega=(-\infty, \infty)$
- how to measure the sizes of possibly any subsets in R ? a set function λ ?
- (a) $\lambda(\emptyset)=0$;
(b) for any disjoint sets A_{1}, A_{2}, \ldots,

$$
\lambda\left(\cup_{n} A_{n}\right)=\sum_{n} \lambda\left(A_{n}\right)
$$

- assign the length to any est of \mathcal{B}_{0}

$$
\cup_{i=1}^{n}\left(a_{i}, b_{i}\right] \cup(-\infty, b] \cup(a, \infty), \quad \text { disjoint intervals }
$$

- What about non-intervals? how about in R^{k} ?
- Three components in defining a measure space
- the whole space, Ω
- a collection of subsets whose sizes are measurable, \mathcal{A},
- a set function μ assigns negative values (sizes) to each set of \mathcal{A} and satisfies properties (a) and (b)
- Some intuition
- \mathcal{A} contains the sets whose sizes are measurable
- \mathcal{A} should be closed under complement or union

Definition 2.1 (fields, σ-fields) A non-void class \mathcal{A} of subsets of Ω is called a:
(i) field or algebra if $A, B \in \mathcal{A}$ implies that $A \cup B \in \mathcal{A}$ and $A^{c} \in \mathcal{A}$; equivalently, \mathcal{A} is closed under complements and finite unions.
(ii) σ-field or σ-algebra if \mathcal{A} is a field and $A_{1}, A_{2}, \ldots \in \mathcal{A}$ implies $\cup_{i=1}^{\infty} A_{i} \in \mathcal{A}$; equivalently, \mathcal{A} is closed under complements and countable unions. \dagger

- Properties of σ-field

Proposition 2.1. (i) For a field $\mathcal{A}, \emptyset, \Omega \in \mathcal{A}$ and if $A_{1}, \ldots, A_{n} \in \mathcal{A}, \cap_{i=1}^{n} A_{i} \in \mathcal{A}$.
(ii) For a σ-field \mathcal{A}, if $A_{1}, A_{2}, \ldots \in \mathcal{A}$, then $\cap_{i=1}^{\infty} A_{i} \in \mathcal{A}$.

Proof

(i) For any $A \in \mathcal{A}, \Omega=A \cup A^{c} \in \mathcal{A} \Rightarrow \emptyset=\Omega^{c} \in \mathcal{A}$.
$A_{1}, \ldots, A_{n} \in \mathcal{A}$
$\Rightarrow \cap_{i=1}^{n} A_{i}=\left(\cup_{i=1}^{n} A_{i}^{c}\right)^{c} \in \mathcal{A}$.
(ii) $\left(\cap_{i=1}^{\infty} A_{i}\right)^{c}=\cup_{i=1}^{\infty} A_{i}^{c}$.

- Examples of σ-field
- $\mathcal{A}=\{\emptyset, \Omega\}$ and $2^{\Omega}=\{A: A \subset \Omega\}$
- \mathcal{B}_{0} is a field but not a σ-field

$$
(a, b)=\cup_{n=1}^{\infty}(a, b-1 / n] \notin \mathcal{B}_{0}
$$

$-\mathcal{A}=\left\{A: A\right.$ is in R and A^{c} is countable $\}$ \mathcal{A} is closed under countable union but not complement

- Measure defined on a σ-field

Definition 2.2 (measure, probability measure)
(i) A measure μ is a function from a σ-field \mathcal{A} to $[0, \infty)$
satisfying: $\mu(\emptyset)=0 ; \mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ for any countable (finite) disjoint sets $A_{1}, A_{2}, \ldots \in \mathcal{A}$. The latter is called the countable additivity.
(ii) Additionally, if $\mu(\Omega)=1, \mu$ is a probability measure and we usually use P instead of μ to indicate a probability measure.

- Properties of measure

Proposition 2.2

(i) If $\left\{A_{n}\right\} \subset \mathcal{A}$ and $A_{n} \subset A_{n+1}$ for all n, then $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(ii) If $\left\{A_{n}\right\} \subset \mathcal{A}, \mu\left(A_{1}\right)<\infty$ and $A_{n} \supset A_{n+1}$ for all n, then $\mu\left(\cap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(iii) For any $\left\{A_{n}\right\} \subset \mathcal{A}, \mu\left(\cup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)$ (countable sub-additivity).
(iv) $\mu\left(\liminf _{n} A_{n}\right)=\lim _{n} \mu\left(\cap_{k=n}^{\infty} A_{n}\right) \leq \liminf _{n} \mu\left(A_{n}\right)$

Proof

(i) $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\mu\left(A_{1} \cup\left(A_{2}-A_{1}\right) \cup \ldots\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}-A_{1}\right)+\ldots$.
$=\lim _{n}\left\{\mu\left(A_{1}\right)+\mu\left(A_{2}-A_{1}\right)+\ldots+\mu\left(A_{n}-A_{n-1}\right)\right\}=\lim _{n} \mu\left(A_{n}\right)$.

$$
\begin{equation*}
\mu\left(\cap_{n=1}^{\infty} A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{1}-\cap_{n=1}^{\infty} A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(\cup_{n=1}^{\infty}\left(A_{1} \cap A_{n}^{c}\right)\right) \tag{ii}
\end{equation*}
$$

$A_{1} \cap A_{n}^{c}$ is increasing
\Rightarrow the second term equals $\lim _{n} \mu\left(A_{1} \cap A_{n}^{c}\right)=\mu\left(A_{1}\right)-\lim _{n} \mu\left(A_{n}\right)$.
(iii)
$\mu\left(\cup_{n} A_{n}\right)=\lim _{n} \mu\left(A_{1} \cup \ldots \cup A_{n}\right)=\lim _{n}\left\{\sum_{i=1}^{n} \mu\left(A_{i}-\cup_{j<i} A_{j}\right)\right\}$
$\leq \lim _{n} \sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{n} \mu\left(A_{n}\right)$.
(iv) $\mu\left(\liminf _{n} A_{n}\right)=\lim _{n} \mu\left(\cap_{k=n}^{\infty} A_{n}\right) \leq \liminf _{n} \mu\left(A_{n}\right)$.

- Measures space
a triplet $(\Omega, \mathcal{A}, \mu)$
- set in \mathcal{A} is called a measurable set
- If $\mu=P$ is a probability measure, (Ω, \mathcal{A}, P) is a probability measure space: probability sample and probability event
- a measure μ is called σ-finite if there exists a countable sets $\left\{F_{n}\right\} \subset \mathcal{A}$ such that $\Omega=\cup_{n} F_{n}$ and for each $F_{n}, \mu\left(F_{n}\right)<\infty$.
- Examples of measure space
- discrete measure:

$$
\mu(A)=\sum_{\omega_{i} \in A} m_{i}, \quad A \in \mathcal{A} .
$$

- counting measure $\mu^{\#}$ in any space, say R : it is not σ-finite.
- Two basic questions
- Can we find a σ-field containing all the sets of \mathcal{C} ?
- Can we obtain a set function defined for any set of this σ-field such that the set function agrees with μ in \mathcal{C} ?
- Answer to the first question

Proposition 2.3 (i) Arbitrary intersections of fields (σ-fields) are fields (σ-fields).
(ii) For any class \mathcal{C} of subsets of Ω, there exists a minimal σ-field containing \mathcal{C} and we denote it as $\sigma(\mathcal{C})$.

Proof

(i) is obvious.

For (ii),

$$
\sigma(\mathcal{C})=\cap_{\mathcal{C} \subset \mathcal{A}, \mathcal{A}} \text { is } \sigma \text {-field } \mathcal{A}
$$

i.e., the intersection of all the σ-fields containing \mathcal{C}.

- Answer to the second question

Theorem 2.1 (Caratheodory Extension Theorem)
A measure μ on a field \mathcal{C} can be extended to a measure on the minimal σ-field $\sigma(\mathcal{C})$. If μ is σ-finite on \mathcal{C}, then the extension is unique and also σ-finite.
Construction

$$
\mu^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} \mu\left(A_{i}\right): A_{i} \in \mathcal{C}, A \subset \cup_{i=1}^{\infty} A_{i}\right\}
$$

- Application to measure construction
- generate a σ-field containing \mathcal{B}_{0} : Borel σ-field \mathcal{B}
- extend λ to \mathcal{B} : the Lebesgue measure
- $(R, \mathcal{B}, \lambda)$ is named the Borel measure space
- in R^{k}, we obtain $\left(R^{k}, \mathcal{B}^{k}, \lambda^{k}\right)$
- Other measure construction on \mathcal{B}
- F is non-decreasing and right-continuous
- a set function in $\mathcal{B}_{0}: \lambda_{F}((a, b])=F(b)-F(a)$
- measure extension λ_{F} in \mathcal{B} : Lebesgue-Stieltjes measure generated by F
- the Lebesuge measure is a special case with $F(x)=x$
- if F is a distribution function, this measure is a probability measure in R
- Completion after measure construction
- motivation: any subsets of a zero-measure set should be given measure zero but may not be in \mathcal{A}
- Completion: add these nuisance sets to \mathcal{A}
- Details of completion
- obtain another measure space $(\Omega, \overline{\mathcal{A}}, \bar{\mu})$

$$
\overline{\mathcal{A}}=\{A \cup N: A \in \mathcal{A},
$$

$N \subset B$ for some $B \in \mathcal{A}$ such that $\mu(B)=0\}$ and $\bar{\mu}(A \cup N)=\mu(A)$.

- the completion of the Borel measure space is the Lebesgue measure space and the completed Borel σ-field is the σ-field of Lebesgue sets
- we always assume that a measure space is completed

Measurable Function

- Definition

Definition 2.3 (measurable function) Let $X: \Omega \mapsto R$ be a function defined on Ω. X is measurable if for $x \in R$, the set $\{\omega \in \Omega: X(\omega) \leq x\}$ is measurable, equivalently, belongs to \mathcal{A}. Especially, if the measure space is a probability measure space, X is called a random variable.

- Property of measurable function

Proposition 2.4 If X is measurable, then for any $B \in \mathcal{B}, X^{-1}(B)=\{\omega: X(\omega) \in B\}$ is measurable.

Proof

$$
\mathcal{B}^{*}=\left\{B: B \subset R, X^{-1}(B) \text { is measurable in } \mathcal{A}\right\}
$$

$(-\infty, x] \in \mathcal{B}^{*}$.
$B \in \mathcal{B}^{*} \Rightarrow X^{-1}(B) \in \mathcal{A} \Rightarrow X^{-1}\left(B^{c}\right)=\Omega-X^{-1}(B) \in \mathcal{A}$ then $B^{c} \in \mathcal{B}^{*}$.
$B_{1}, B_{2}, \ldots \in \mathcal{B}^{*} \Rightarrow X^{-1}\left(B_{1}\right), X^{-1}\left(B_{2}\right), \ldots \in \mathcal{A} \Rightarrow$
$X^{-1}\left(B_{1} \cup B_{2} \cup \ldots\right)=X^{-1}\left(B_{1}\right) \cup X^{-1}\left(B_{2}\right) \cup \ldots \in \mathcal{A}$.
$\Rightarrow B_{1} \cup B_{2} \cup \ldots \in \mathcal{B}^{*}$.
$\Rightarrow \mathcal{B}^{*}$ is a σ-field containing all intervals of the type $(-\infty, x] \Rightarrow$ $\mathcal{B} \subset \mathcal{B}^{*}$.
For any Borel set $B, X^{-1}(B)$ is measurable in \mathcal{A}.

- Construction of measurable function
- simple function: $\sum_{i=1}^{n} x_{i} I_{A_{i}}(\omega), \quad A_{i} \in \mathcal{A}$
- the finite summation and the maximum of simple functions are still simple functions
- any elementary functions of measurable functions are measurable

Proposition 2.5 Suppose that $\left\{X_{n}\right\}$ are measurable. Then so are $X_{1}+X_{2}, X_{1} X_{2}, X_{1}^{2}$ and $\sup _{n} X_{n}, \inf _{n} X_{n}$, $\limsup _{n} X_{n}$ and $\liminf _{n} X_{n}$.

Proof

$$
\begin{aligned}
& \left\{X_{1}+X_{2} \leq x\right\}=\Omega-\left\{X_{1}+X_{2}>x\right\}= \\
& \Omega-\cup_{r \in Q}\left\{X_{1}>r\right\} \cap\left\{X_{2}>x-r\right\}, Q=\{\text { all rational numbers }\} \\
& \left\{X_{1}^{2} \leq x\right\}=\left\{X_{1} \leq \sqrt{x}\right\}-\left\{X_{1}<-\sqrt{x}\right\}
\end{aligned}
$$

$$
X_{1} X_{2}=\left\{\left(X_{1}+X_{2}\right)^{2}-X_{1}^{2}-X_{2}^{2}\right\} / 2
$$

$$
\left\{\sup _{n} X_{n} \leq x\right\}=\cap_{n}\left\{X_{n} \leq x\right\}
$$

$$
\left\{\inf _{n} X_{n} \leq x\right\}=\left\{\sup _{n}\left(-X_{n}\right) \geq-x\right\}
$$

$\left\{\limsup _{n} X_{n} \leq x\right\}=\cap_{r \in Q, r>0} \cup_{n=1}^{\infty} \cap_{k \geq n}\left\{X_{k}<x+r\right\}$.
$\liminf X_{n} X_{n}=-\limsup \operatorname{su}_{n}\left(-X_{n}\right)$.

- Approximating measurable function with simple functions

Proposition 2.6 For any measurable function $X \geq 0$, there exists an increasing sequence of simple functions $\left\{X_{n}\right\}$ such that $X_{n}(\omega)$ increases to $X(\omega)$ as n goes to infinity.

Proof

$$
X_{n}(\omega)=\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} I\left\{\frac{k}{2^{n}} \leq X(\omega)<\frac{k+1}{2^{n}}\right\}+n I\{X(\omega) \geq n\}
$$

$\Rightarrow X_{n}$ is increasing over n.
\Rightarrow if $X(\omega)<n$, then $\left|X_{n}(\omega)-X(\omega)\right|<\frac{1}{2^{n}}$.
$\Rightarrow X_{n}(\omega)$ converges to $X(\omega)$.

If X is bounded, $\sup _{\omega}\left|X_{n}(\omega)-X(\omega)\right|<\frac{1}{2^{n}}$

Definition 2.4 (i) For any simple function $X(\omega)=\sum_{i=1}^{n} x_{i} I_{A_{i}}(\omega)$, we define $\sum_{i=1}^{n} x_{i} \mu\left(A_{i}\right)$ as the integral of X with respect to measure μ, denoted as $\int X d \mu$.
(ii) For any $X \geq 0$, we define $\int X d \mu$ as

$$
\int X d \mu=\sup _{Y \text { is simple function, } 0 \leq Y \leq X} \int Y d \mu
$$

(iii) For general X, let $X^{+}=\max (X, 0)$ and $X^{-}=\max (-X, 0)$. Then $X=X^{+}-X-$. If one of $\int X^{+} d \mu, \int X^{-} d \mu$ is finite, we define

$$
\int X d \mu=\int X^{+} d \mu-\int X^{-} d \mu
$$

- Some notes
- X is integrable if $\int|X| d \mu=\int X^{+} d \mu+\int X^{-} d \mu$ is finite
- the definition (ii) is consistent with (i) when X itself is a simple function
- for a probability measure space and X is a random variable, $\int X d \mu \equiv E[X]$
- Fundamental properties of integration

Proposition 2.7 (i) For two measurable functions $X_{1} \geq 0$ and $X_{2} \geq 0$, if $X_{1} \leq X_{2}$, then $\int X_{1} d \mu \leq \int X_{2} d \mu$. (ii) For $X \geq 0$ and any sequence of simple functions Y_{n} increasing to $X, \int Y_{n} d \mu \rightarrow \int X d \mu$.

Proof

(i) For any simple function $0 \leq Y \leq X_{1}, Y \leq X_{2}$.
$\Rightarrow \int Y d \mu \leq \int X_{2} d \mu$.
Take the supreme over all the simple functions less than X_{1}
$\Rightarrow \int X_{1} d \mu \leq \int X_{2} d \mu$.
(ii) From (i), $\int Y_{n} d \mu$ is increasing and bounded by $\int X d \mu$.

It suffices to show that for any simple function $Z=\sum_{i=1}^{m} x_{i} I_{A_{i}}(\omega)$, where $\left\{A_{i}, 1 \leq i \leq m\right\}$ are disjoint measurable sets and $x_{i}>0$, such that $0 \leq Z \leq X$,

$$
\lim _{n} \int Y_{n} d \mu \geq \sum_{i=1}^{m} x_{i} \mu\left(A_{i}\right)
$$

We consider two cases.
Case 1. $\int Z d \mu=\sum_{i=1}^{m} x_{i} \mu\left(A_{i}\right)$ is finite thus both x_{i} and $\mu\left(A_{i}\right)$ are finite.

Fix an $\epsilon>0$, let $A_{\text {in }}=A_{i} \cap\left\{\omega: Y_{n}(\omega)>x_{i}-\epsilon\right\} . \Rightarrow A_{\text {in }}$ increases to $A_{i} \Rightarrow \mu\left(A_{\text {in }}\right)$ increases to $\mu\left(A_{i}\right)$.

When n is large,

$$
\begin{aligned}
& \qquad \int Y_{n} d \mu \geq \sum_{i=1}^{m}\left(x_{i}-\epsilon\right) \mu\left(A_{i}\right) . \\
& \Rightarrow \lim _{n} \int Y_{n} d \mu \geq \int Z d \mu-\epsilon \sum_{i=1}^{m} \mu\left(A_{i}\right) . \\
& \Rightarrow \lim _{n} \int Y_{n} d \mu \geq \int Z d \mu \text { by letting } \epsilon \text { approach } 0 .
\end{aligned}
$$

Case 2 suppose $\int Z d \mu=\infty$ then there exists some i from $\{1, \ldots, m\}$, say 1 , so that $\mu\left(A_{1}\right)=\infty$ or $x_{1}=\infty$.

Choose any $0<x<x_{1}$ and $0<y<\mu\left(A_{1}\right)$.
$A_{1 n}=A_{1} \cap\left\{\omega: Y_{n}(\omega)>x\right\}$ increases to $A_{1} . n$ large enough, $\mu\left(A_{1 n}\right)>y$
$\Rightarrow \lim _{n} \int Y_{n} d \mu \geq x y$.
\Rightarrow Letting $x \rightarrow x_{1}$ and $y \rightarrow \mu\left(A_{1}\right)$, conclude $\lim _{n} \int Y_{n} d \mu=\infty$.
$\Rightarrow \lim _{n} \int Y_{n} d \mu \geq \int Z d \mu$.

- Elementary properties

Proposition 2.8 Suppose $\int X d \mu, \int Y d \mu$ and $\int X d \mu+\int Y d \mu$ exit. Then
(i) $\int(X+Y) d \mu=\int X d \mu+\int Y d \mu, \quad \int c X d \mu=c \int X d \mu$;
(ii) $X \geq 0$ implies $\int X d \mu \geq 0 ; X \geq Y$ implies $\int X d \mu \geq \int Y d \mu$; and $X=Y$ a.e. implies that $\int X d \mu=\int Y d \mu ;$
(iii) $|X| \leq Y$ with Y integrable implies that X is integrable; X and Y are integrable implies that $X+Y$ is integrable.

- Calculation of integration by definition

$$
\int X d \mu=\lim _{n}\left\{\sum_{k=1}^{n 2^{n}-1} \frac{k}{2^{n}} \mu\left(\frac{k}{2^{n}} \leq X<\frac{k+1}{2^{n}}\right)+n \mu(X \geq n)\right\} .
$$

- Integration w.r.t counting measure or Lebesgue measure
$-\int g d \mu^{\#}=\sum_{i} g\left(x_{i}\right)$.
- continuous function $g(x), \int g d \lambda$ is equal to the usual Riemann integral $\int g(x) d x$
- $\left(\Omega, \mathcal{B}, \lambda_{F}\right)$, where F is differentiable except discontinuous points $\left\{x_{1}, x_{2}, \ldots\right\}$,
$\int g d \lambda_{F}=\sum_{i} g\left(x_{i}\right)\left\{F\left(x_{i}\right)-F\left(x_{i}-\right)\right\}+\int g(x) f(x) d x$,
where $f(x)$ is the derivative of $F(x)$.
- Monotone convergence theorem (MCT)

Theorem 2.2 If $X_{n} \geq 0$ and X_{n} increases to X, then $\int X_{n} d \mu \rightarrow \int X d \mu$.

Proof

Choose nonnegative simple function $X_{k m}$ increasing to X_{k} as $m \rightarrow \infty$. Define $Y_{n}=\max _{k \leq n} X_{k n}$.
$\Rightarrow\left\{Y_{n}\right\}$ is an increasing series of simple functions

$$
X_{k n} \leq Y_{n} \leq X_{n}, \quad \text { so } \int X_{k n} d \mu \leq \int Y_{n} d \mu \leq \int X_{n} d \mu
$$

$\Rightarrow n \rightarrow \infty X_{k} \leq \lim _{n} Y_{n} \leq X$ and

$$
\int X_{k} d \mu \leq \int \lim _{n} Y_{n} d \mu=\lim _{n} \int Y_{n} d \mu \leq \lim _{n} \int X_{n} d \mu
$$

$\Rightarrow k \rightarrow \infty, X \leq \lim _{n} Y_{n} \leq X$ and

$$
\lim _{k} \int X_{k} d \mu \leq \int \lim _{n} Y_{n} d \mu \leq \lim _{n} \int X_{n} d \mu
$$

The result holds.

- Counter example $X_{n}(x)=-I(x>n) / n$ in the Lebesgue measure space. X_{n} increases to zero but $\int X_{n} d \lambda=-\infty$
- Fatou's Lemma

Theorem 2.3 If $X_{n} \geq 0$ then

$$
\int \lim \inf _{n} X_{n} d \mu \leq \liminf _{n} \int X_{n} d \mu
$$

Proof

$$
\lim \inf _{n} X_{n}=\sup _{n=1}^{\infty} \inf _{m \geq n} X_{m}
$$

$\Rightarrow\left\{\inf _{m \geq n} X_{m}\right\}$ increases to $\liminf _{n} X_{n}$.

By the MCT,

$$
\int \lim \inf _{n} X_{n} d \mu=\lim _{n} \int \inf _{m \geq n} X_{m} d \mu \leq \int X_{n} d \mu
$$

- Two definitions in convergence

Definition 2.4 A sequence X_{n} converges almost everywhere (a.e.) to X, denoted $X_{n} \rightarrow_{\text {a.e. }} X$, if $X_{n}(\omega) \rightarrow X(\omega)$ for all $\omega \in \Omega-N$ where $\mu(N)=0$. If μ is a probability, we write a.e. as a.s. (almost surely). A sequence X_{n} converges in measure to a measurable function X, denoted $X_{n} \rightarrow_{\mu} X$, if $\mu\left(\left|X_{n}-X\right| \geq \epsilon\right) \rightarrow 0$ for all $\epsilon>0$. If μ is a probability measure, we say X_{n} converges in probability to X.

- Properties of convergence

Proposition 2.9 Let $\left\{X_{n}\right\}, X$ be finite measurable functions. Then $X_{n} \rightarrow_{\text {a.e. }} X$ if and only if for any $\epsilon>0$,

$$
\mu\left(\cap_{n=1}^{\infty} \cup_{m \geq n}\left\{\left|X_{m}-X\right| \geq \epsilon\right\}\right)=0
$$

If $\mu(\Omega)<\infty$, then $X_{n} \rightarrow_{\text {a.e. }} X$ if and only if for any $\epsilon>0$,

$$
\mu\left(\cup_{m \geq n}\left\{\left|X_{m}-X\right| \geq \epsilon\right\}\right) \rightarrow 0
$$

Proof

$\left\{\omega: X_{n}(\Omega) \rightarrow X(\omega)\right\}^{c}=\cup_{k=1}^{\infty} \cap_{n=1}^{\infty} \cup_{m \geq n}\left\{\omega:\left|X_{m}(\omega)-X(\omega)\right| \geq \frac{1}{k}\right\}$.
$X_{n} \rightarrow_{a . e} X \Rightarrow$ the measure of the left-hand side is zero.
$\Rightarrow \cap_{n=1}^{\infty} \cup_{m \geq n}\left\{\left|X_{m}-X\right| \geq \epsilon\right\}$ has measure zero.

For the other direction, choose $\epsilon=1 / k$ for any k, then by countable sub-additivity,

$$
\begin{aligned}
& \mu\left(\cup_{k=1}^{\infty} \cap_{n=1}^{\infty} \cup_{m \geq n}\left\{\omega:\left|X_{m}(\omega)-X(\omega)\right| \geq \frac{1}{k}\right\}\right) \\
\leq & \sum_{k} \mu\left(\cap_{n=1}^{\infty} \cup_{m \geq n}\left\{\omega:\left|X_{m}(\omega)-X(\omega)\right| \geq \frac{1}{k}\right\}\right)=0
\end{aligned}
$$

$$
\Rightarrow X_{n} \rightarrow_{\text {a.e. }} X
$$

When $\mu(\Omega)<\infty$, the latter holds by Proposition 2.2.

- Relationship between two convergence modes

Proposition 2.10 Let X_{n} be finite a.e.
(i) If $X_{n} \rightarrow_{\mu} X$, then there exists a subsequence $X_{n_{k}} \rightarrow_{\text {a.e }} X$.
(ii) If $\mu(\Omega)<\infty$ and $X_{n} \rightarrow_{\text {a.e. }} X$, then $X_{n} \rightarrow_{\mu} X$.

Proof

(i) Find n_{k}

$$
\begin{aligned}
& \quad P\left(\left|X_{n_{k}}-X\right| \geq 2^{-k}\right)<2^{-k} \\
& \Rightarrow \mu\left(\cup_{m \geq k}\left\{\left|X_{n_{m}}-X\right| \geq \epsilon\right\}\right) \leq \mu\left(\cup_{m \geq k}\left\{\left|X_{n_{m}}-X\right| \geq 2^{-k}\right\}\right) \\
& \leq \sum_{m \geq k} 2^{-m} \rightarrow 0 \\
& \Rightarrow X_{n_{k}} \rightarrow_{a . e} X .
\end{aligned}
$$

(ii) is direct from the second part of Proposition 2.9.

- Examples of convergence
- Let $X_{2^{n}+k}=I\left(x \in\left[k / 2^{n},(k+1) / 2^{n}\right)\right), 0 \leq k<2^{n}$ in the Lebesgue measure space. Then $X_{n} \rightarrow_{\lambda} 0$ but does not converge to zero almost everywhere.
$-X_{n}=n I(|x|>n) \rightarrow_{\text {a.e. }} 0$ but $\lambda\left(\left|X_{n}\right|>\epsilon\right) \rightarrow \infty$.
- Dominated Convergence Theorem (DCT)

Theorem 2.4 If $\left|X_{n}\right| \leq Y$ a.e. with Y integrable, and if $X_{n} \rightarrow_{\mu} X$ (or $X_{n} \rightarrow_{\text {a.e. }} X$), then $\int\left|X_{n}-X\right| d \mu \rightarrow 0$ and $\lim \int X_{n} d \mu=\int X d \mu$.

Proof

Assume $X_{n} \rightarrow_{\text {a.e }} X$. Define $Z_{n}=2 Y-\left|X_{n}-X\right| . Z_{n} \geq 0$ and $Z_{n} \rightarrow 2 Y$.
\Rightarrow From the Fatou's lemma,

$$
\begin{aligned}
& \int 2 Y d \mu \leq \lim \inf _{n} \int\left(2 Y-\left|X_{n}-X\right|\right) d \mu \\
& \Rightarrow \lim \sup _{n} \int\left|X_{n}-X\right| d \mu \leq 0
\end{aligned}
$$

If $X_{n} \rightarrow_{\mu} X$ and the result does not hold for some subsequence of X_{n}, by Proposition 2.10, there exits a further sub-sequence converging to X almost surely. However, the result holds for this further subsequence. Contradiction!

- Interchange of integral and limit or derivative

Theorem 2.5 Suppose that $X(\omega, t)$ is measurable for each $t \in(a, b)$.
(i) If $X(\omega, t)$ is a.e. continuous in t at t_{0} and $|X(\omega, t)| \leq Y(\omega)$, a.e. for $\left|t-t_{0}\right|<\delta$ with Y integrable, then

$$
\lim _{t \rightarrow t_{0}} \int X(\omega, t) d \mu=\int X\left(\omega, t_{0}\right) d \mu
$$

(ii) Suppose $\frac{\partial}{\partial t} X(\omega, t)$ exists for a.e. ω, all $t \in(a, b)$ and $\left|\frac{\partial}{\partial t} X(\omega, t)\right| \leq Y(\omega)$, a.e. for all $t \in(a, b)$ with Y integrable. Then

$$
\frac{\partial}{\partial t} \int X(\omega, t) d \mu=\int \frac{\partial}{\partial t} X(\omega, t) d \mu
$$

Proof

(i) follows from the DCT and the subsequence argument.
(ii)

$$
\frac{\partial}{\partial t} \int X(\omega, t) d \mu=\lim _{h \rightarrow 0} \int \frac{X(\omega, t+h)-X(\omega, t)}{h} d \mu
$$

Then from the conditions and (i), such a limit can be taken within the integration.

- Definition
$-\Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}\right\}$
- $\mathcal{A}_{1} \times \mathcal{A}_{2}=\sigma\left(\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\}\right)$
- $\left(\mu_{1} \times \mu_{2}\right)\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)$. with its extension to all sets in the $\mathcal{A}_{1} \times \mathcal{A}_{2}$
- Examples

$$
\begin{gathered}
-\left(R^{k}=R \times \ldots \times R, \mathcal{B} \times \ldots \times \mathcal{B}, \lambda \times \ldots \times \lambda\right) \\
\lambda \times \ldots \times \lambda \equiv \lambda^{k}
\end{gathered}
$$

$-\Omega=\{1,2,3 \ldots\}$

$$
\left(R \times \Omega, \mathcal{B} \times 2^{\Omega}, \lambda \times \mu^{\#}\right)
$$

- Integration on the product measure space
- In calculus,
$\int_{R^{2}} f(x, y) d x d y=\int_{x} \int_{y} f(x, y) d y d x=\int_{y} \int_{x} f(x, y) d x d y$
- Do we have the same equality in the product measure space?

Theorem 2.6 (Fubini-Tonelli Theorem) Suppose

 that $X: \Omega_{1} \times \Omega_{2} \rightarrow R$ is $\mathcal{A}_{1} \times \mathcal{A}_{2}$ measurable and $X \geq 0$. Then$$
\begin{gathered}
\int_{\Omega_{1}} X\left(\omega_{1}, \omega_{2}\right) d \mu_{1} \text { is } \mathcal{A}_{2} \text { measurable, } \\
\int_{\Omega_{2}} X\left(\omega_{1}, \omega_{2}\right) d \mu_{2} \text { is } \mathcal{A}_{1} \text { measurable } \\
\int_{\Omega_{1} \times \Omega_{2}} X\left(\omega_{1}, \omega_{2}\right) d\left(\mu_{1} \times \mu_{2}\right)=\int_{\Omega_{1}}\left\{\int_{\Omega_{2}} X\left(\omega_{1}, \omega_{2}\right) d \mu_{2}\right\} d \mu_{1} \\
=\int_{\Omega_{2}}\left\{\int_{\Omega_{1}} X\left(\omega_{1}, \omega_{2}\right) d \mu_{1}\right\} d \mu_{2} .
\end{gathered}
$$

- Conclusion from Theorem 2.6
- in general, $X=X^{+}-X^{-}$. Then the above results hold for X^{+}and X^{-}. Thus, if $\int_{\Omega_{1} \times \Omega_{2}}\left|X\left(\omega_{1}, \omega_{2}\right)\right| d\left(\mu_{1} \times \mu_{2}\right)$ is finite, then the above results hold.
- One example
- let $\left(\Omega, 2^{\Omega}, \mu^{\#}\right)$ be a counting measure space where $\Omega=\{1,2,3, \ldots\}$ and $(R, \mathcal{B}, \lambda)$ be the Lebesgue measure space
- define $f(x, y)=I(0 \leq x \leq y) \exp \{-y\}$; then

$$
\begin{aligned}
& \int_{\Omega \times R} f(x, y) d\left\{\mu^{\#} \times \lambda\right\}=\int_{\Omega}\left\{\int_{R} f(x, y) d \lambda(y)\right\} d \mu^{\#}(x) \\
& =\int_{\Omega} \exp \{-x\} d \mu^{\#}(x)=\sum_{n=1}^{\infty} \exp \{-n\}=1 /(e-1) .
\end{aligned}
$$

Derivative of Measures

- Motivation
- let $(\Omega, \mathcal{A}, \mu)$ be a measurable space and let X be a non-negative measurable function on Ω
- a set function ν as $\nu(A)=\int_{A} X d \mu=\int I_{A} X d \mu$ for each $A \in \mathcal{A}$.
- ν is a measure on (Ω, \mathcal{A})
- observe $X=d \nu / d \mu$
- Absolute continuity

Definition 2.5 If for any $A \in \mathcal{A}, \mu(A)=0$ implies that $\nu(A)=0$, then ν is said to be absolutely continuous with respect to μ, and we write $\nu \prec \prec \mu$. Sometimes it is also said that ν is dominated by μ.

- Equivalent conditions

Proposition 2.11 Suppose $\nu(\Omega)<\infty$. Then $\nu \prec \prec \mu$ if and only if for any $\epsilon>0$, there exists a δ such that $\nu(A)<\epsilon$ whenever $\mu(A)<\delta$.

Proof

" \Leftarrow " is clear.

To prove " \Rightarrow ", suppose there exists ϵ and a set A_{n} such that $\nu\left(A_{n}\right)>\epsilon$ and $\mu\left(A_{n}\right)<n^{-2}$.

Since $\sum_{n} \mu\left(A_{n}\right)<\infty$,

$$
\mu\left(\limsup _{n} A_{n}\right) \leq \sum_{m \geq n} \mu\left(A_{n}\right) \rightarrow 0
$$

$\Rightarrow \mu\left(\limsup \sup _{n} A_{n}\right)=0$.

However, $\nu\left(\lim \sup _{n} A_{n}\right)=\lim _{n} \nu\left(\cup_{m \geq n} A_{m}\right) \geq \lim \sup _{n} \nu\left(A_{n}\right) \geq \epsilon$.
Contradiction!

- Existence and uniqueness of the derivative Theorem 2.7 (Radon-Nikodym theorem) Let $(\Omega, \mathcal{A}, \mu)$ be a σ-finite measure space, and let ν be a measurable on (Ω, \mathcal{A}) with $\nu \prec \prec \mu$. Then there exists a measurable function $X \geq 0$ such that $\nu(A)=\int_{A} X d \mu$ for all $A \in \mathcal{A}$. X is unique in the sense that if another measurable function Y also satisfies the equation, then $X=Y$, a.e.
- Transformation of integration using derivative

Proposition 2.13 Suppose ν and μ are σ-finite measure defined on a measure space (Ω, \mathcal{A}) with $\nu \prec \prec \mu$, and suppose Z is a measurable function such that $\int Z d \nu$ is well defined. Then for any $A \in \mathcal{A}$,

$$
\int_{A} Z d \nu=\int_{A} Z \frac{d \nu}{d \mu} d \mu
$$

Proof

(i) If $Z=I_{B}$ where $B \in \mathcal{A}$, then

$$
\int_{A} Z d \nu=\nu(A \cap B)=\int_{A \cap B} \frac{d \nu}{d \mu} d \mu=\int_{A} I_{B} \frac{d \nu}{d \mu} d \mu .
$$

(ii) If $Z \geq 0$, find a sequence of simple function Z_{n} increasing to Z. For $Z_{n}, \int_{A} Z_{n} d \nu=\int_{A} Z_{n} \frac{d \nu}{d \mu} d \mu$. Take limits on both sides and apply the MCT.
(iii) For any Z, write $Z=Z^{+}-Z^{-}$.

$$
\int Z d \nu=\int Z^{+} d \nu-\int Z^{-} d \nu=\int Z^{+} \frac{d \nu}{d \mu} d \mu-\int Z^{-} \frac{d \nu}{d \mu} d \mu=\int Z \frac{d \nu}{d \mu} d \mu
$$

- Definition
- let X be a measurable function defined on $(\Omega, \mathcal{A}, \mu)$.
- for any $B \in \mathcal{B}$, define $\mu_{X}(B)=\mu\left(X^{-1}(B)\right)$
- μ_{X} is called a measure induced by $X:\left(R, \mathcal{B}, \mu_{X}\right)$.
- Density function of X
- (R, \mathcal{B}, ν) is another measure space (often the counting measure or the Lebesgue measure)
- suppose μ_{X} is dominated by ν with the derivative
- $f \equiv d \mu_{X} / d \nu$ is called the density of X with respect to the dominating measure ν
- Comparison with usual density function
- $(\Omega, \mathcal{A}, \mu)=(\Omega, \mathcal{A}, P)$ is a probability space
- X is a random variable
- if ν is the counting measure, $f(x)$ is in fact the probability mass function of X
- if ν is the Lebesgue measure, $f(x)$ is the probability density function of X
- Integration using density
$-\int_{\Omega} g(X(\omega)) d \mu(\omega)=\int_{R} g(x) d \mu_{X}(x)=\int_{R} g(x) f(x) d \nu(x)$
- the integration of $g(X)$ on the original measure space Ω can be transformed as the integration of $g(x)$ on R with respect to the induced-measure μ_{X} and can be further transformed as the integration of $g(x) f(x)$ with respect to the dominating measure ν
- Interpretation in probability space
- in probability space, $E[g(X)]=\int_{R} g(x) f(x) d \nu(x)$
- any expectations regarding random variable X can be computed via its probability mass function (ν is counting measure) or density function (ν is Lebesgue measure)
- in statistical calculation, we do NOT need to specify whatever probability measure space X is defined on, while solely rely on $f(x)$ and ν.
- A few important reminders
- a probability measure space (Ω, \mathcal{A}, P) is a measure space with $P(\Omega)=1$;
- random variable (or random vector in multi-dimensional real space) X is any measurable function;
- integration of X is equivalent to the expectation;
- the density or the mass function of X is the Radon-Nikydom derivative of the X-induced measure with respect to the Lebesgue measure or the counting measure in real space;
- using the mass function or density function, statisticians unconsciously ignore the underlying probability measure space (Ω, \mathcal{A}, P).
- Cumulative distribution function revisited
- $F(x)$ is a nondecreasing function with $F(-\infty)=0$ and $F(\infty)=1$;
- $F(x)$ is right-continuous;
- λ_{F}, the Lebesgue-Stieljes measure generated by F is exactly the same measure as the one induced by X, i.e., P_{X}.
- A simple motivation
- the conditional probability of an event A given another event B has two possibilities:

$$
\begin{aligned}
& P(A \mid B)=P(A \cap B) / P(B) \\
& P\left(A \mid B^{c}\right)=P\left(A \cap B^{c}\right) / P\left(B^{c}\right)
\end{aligned}
$$

- equivalently, A given the event B is a measurable function assigned to the σ-field $\left\{\emptyset, B, B^{c}, \Omega\right\}$,

$$
P(A \mid B) I_{B}(\omega)+P\left(A \mid B^{c}\right) I_{B^{c}}(\omega) .
$$

- Definition of conditional probability

An event A given a sub- σ-field $\aleph, P(A \mid \aleph)$

- it is a measurable and integrable function on (Ω, \aleph);
- for any $G \in \aleph$,

$$
\int_{G} P(A \mid \aleph) d P=P(A \cap G)
$$

- Existence and Uniqueness of Conditional Probability Function

Theorem 2.8 The measurable function $P(A \mid \aleph)$ exists and is unique in the sense that any two functions satisfying the definition are the same almost surely.

Proof

In (Ω, \aleph, P), define a set function ν on \aleph such that $\nu(G)=P(A \cap G)$ for any $G \in \aleph$.
$\Rightarrow \nu$ is a measure and $P(G)=0$ implies that $\nu(G)=0 \Rightarrow \nu \prec \prec P$.
\Rightarrow By the Radon-Nikodym theorem, there exits a \aleph-measurable function X such that $\nu(G)=\int_{G} X d P$.
$\Rightarrow X$ satisfies the properties (i) and (ii).

Suppose X and Y both are measurable in \aleph and $\int_{G} X d P=\int_{G} Y d P$ for any $G \in \aleph$. Choose choose $G=\{X-Y \geq 0\}$ and $G=\{X-Y<0\} \Rightarrow \int|X-Y| d P=0 \Rightarrow X=Y$, a.s.

- Properties of conditional probability

Theorem 2.9 $P(\emptyset \mid \aleph)=0, P(\Omega \mid \aleph)=1$ a.e. and

$$
0 \leq P(A \mid \aleph) \leq 1
$$

for each $A \in \mathcal{A}$. if A_{1}, A_{2}, \ldots is finite or countable sequence of disjoint sets in \mathcal{A}, then

$$
P\left(\cup_{n} A_{n} \mid \aleph\right)=\sum_{n} P\left(A_{n} \mid \aleph\right)
$$

- Definition X given \aleph, denoted $E[X \mid \aleph]$
- $E[X \mid \aleph]$ is measurable in \aleph and integrable;
- for any $G \in \aleph, \int_{G} E[X \mid \aleph] d P=\int_{G} X d P$, equivalently; $E\left[E[X \mid \aleph] I_{G}\right]=E\left[X I_{G}\right]$, a.e.
- The existence and the uniqueness of $E[X \mid \aleph]$ can be shown similar to Theorem 2.8.
- Properties of conditional expectation

Theorem 2.10 Suppose X, Y, X_{n} are integrable.
(i) If $X=a$ a.s., then $E[X \mid \aleph]=a$.
(ii) $E[a X+b Y \mid \aleph]=a E[X \mid \aleph]+b[Y \mid \aleph]$.
(iii) If $X \leq Y$ a.s., then $E[X \mid \aleph] \leq E[Y \mid \aleph]$.
(iv) $|E[X \mid \aleph]| \leq E[|X| \mid \aleph]$.
(v) If $\lim _{n} X_{n}=X$ a.s., $\left|X_{n}\right| \leq Y$ and Y is integrable, then $\lim _{n} E\left[X_{n} \mid \aleph\right]=E[X \mid \aleph]$.
(vi) If X is measurable in $\aleph, E[X Y \mid \aleph]=X E[Y \mid \aleph]$. (vii)

For two sub- σ fields \aleph_{1} and \aleph_{2} such that $\aleph_{1} \subset \aleph_{2}$,

$$
E\left[E\left[X \mid \aleph_{2}\right] \mid \aleph_{1}\right]=E\left[X \mid \aleph_{1}\right]
$$

(viii) $P(A \mid \aleph)=E\left[I_{A} \mid \aleph\right]$.

Proof

(i)-(iv) be shown directly using the definition.

To prove (v), consider $Z_{n}=\sup _{m \geq n}\left|X_{m}-X\right| . Z_{n}$ decreases to 0 .
$\Rightarrow\left|E\left[X_{n} \mid \aleph\right]-E[X \mid \aleph]\right| \leq E\left[Z_{n} \mid \aleph\right] . E\left[Z_{n} \mid \aleph\right]$ decreases to a limit
$Z \geq 0$.
Remains to show $Z=0$ a.s. Note $E\left[Z_{n} \mid \aleph\right] \leq E[2 Y \mid \aleph] \Rightarrow$ by the $\mathrm{DCT}, E[Z]=\int E[Z \mid \aleph] d P \leq \int E\left[Z_{n} \mid \aleph\right] d P \rightarrow 0 . \Rightarrow Z=0$ a.s.

For (vii), for any $G \in \aleph_{1} \subset \aleph_{2}$,

$$
\int_{G} E\left[X \mid \aleph_{2}\right] d P=\int_{G} X d P=\int_{G} E\left[X \mid \aleph_{1}\right] d P
$$

(viii) is clear from the definition of the conditional probability.

To see (vi) holds, consider simple function first, $X=\sum_{i} x_{i} I_{B_{i}}$ where B_{i} are disjoint set in \aleph. For any $G \in \aleph$,

$$
\begin{aligned}
& \int_{G} E[X Y \mid \aleph] d P=\int_{G} X Y d P=\sum_{i} x_{i} \int_{G \cap B_{i}} Y d P \\
& =\sum_{i} x_{i} \int_{G \cap B_{i}} E[Y \mid \aleph] d P=\int_{G} X E[Y \mid \aleph] d \\
& \Rightarrow E[X Y \mid \aleph]=X E[Y \mid \aleph]
\end{aligned}
$$

For any X, a sequence of simple functions X_{n} converges to X and $\left|X_{n}\right| \leq|X|$. Then

$$
\int_{G} X_{n} Y d P=\int_{G} X_{n} E[Y \mid \aleph] d P
$$

Note that $\left|X_{n} E[Y \mid \aleph]\right|=\left|E\left[X_{n} Y \mid \aleph\right]\right| \leq E[|X Y| \mid \aleph]$. From the DCT, $\int_{G} X Y d P=\int_{G} X E[Y \mid \aleph] d P$.

- Relation to classical conditional density
$-\aleph=\sigma(Y)$: the σ-field generated by the class

$$
\begin{gathered}
\{\{Y \leq y\}: y \in R\} \Rightarrow P(X \in B \mid \aleph)=g(B, Y) \\
-\int_{Y \leq y_{0}} P(X \in B \mid \aleph) d P=\int I\left(y \leq y_{0}\right) g(B, y) f_{Y}(y) d y= \\
P\left(X \in B, Y \leq y_{0}\right) \\
\quad=\int I\left(y \leq y_{0}\right) \int_{B} f(x, y) d x d y
\end{gathered}
$$

$$
-g(B, y) f_{Y}(y)=\int_{B} f(x, y) d x \Rightarrow P(X \in B \mid \aleph)=
$$

$$
\int_{B} f(x \mid y) d x
$$

- the conditional density of $X \mid Y=y$ is the density function of the conditional probability measure $P(X \in \cdot \mid \aleph)$ with respect to the Lebesgue measure.
- Relation to classical conditional expectation
- $E[X \mid \aleph]=g(Y)$ for some measurable function $g(\cdot)$
$-\int I\left(Y \leq y_{0}\right) E[X \mid \aleph] d P=\int I\left(y \leq y_{0}\right) g(y) f_{Y}(y) d y$
$=E\left[X I\left(Y \leq y_{0}\right)\right]=\int I\left(y \leq y_{0}\right) x f(x, y) d x d y$
$-g(y)=\int x f(x, y) d x / f_{Y}(y)$
- $E[X \mid \aleph]$ is the same as the classical conditional expectation of X given $Y=y$

READING MATERIALS: Lehmann and Casella, Sections 1.2 and 1.3, Lehmann Testing Statistical Hypotheses, Chapter 2 (Optional)

