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e Basic concepts in set theory
— element, set, whole space ({2)
— power set: 2%: empty set: ()
— set relationship: A C B, N, A,, U A,, A, A— B

A—B=ANDKB"
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e Set operations
— properties: for any B, {A,},
BN{U Ant =Ua {BNA,}, BU{N A} =N {BUA,},
(U Ao} = NaAS, {NaAa} = UL AS. ((de Morgan law)
— partition of a set

ATUAUA3U... = A jU(Ay— AU (A3 — AU AU

— limsup, A > {U>_ A}
lim inf,, A = UOO >N ALt



CHAPTER 2 BASIC MEASURE THEORY

e Topology in the Fuclidean space

open set, closed set, compact set

properties: the union of any number of open sets is
open; A is closed if and only if for any sequence {x, }
in A such that z,, = =, £ must belong to A

only () and the whole real line are both open set and
closed

any open-set covering of a compact set has finite
number of open sets covering the compact set
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e Motivating example: counting measure

— ) = {Zlfl, L9, }

— a set function u#(A) is the number of points in A.

~ (a) p7(0) = 0;
(b) if Ay, Ag, ... are disjoint sets of 2, then

N# (Undy) = Z ,u# (An)-
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e Motivating example: Lebesgue measure
— Q= (—00,)

— how to measure the sizes of possibly any subsets in
R? a set function A7

— (a) A(0) = 0;
(b) for any disjoint sets Aq, Ao, ...,

)‘(UnAn) — Z )‘(An)

— assign the length to any est of B
U (a;, b;] U (—o0,bl U (a, ), disjoint intervals

— What about non-intervals? how about in R*?
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e Three components in defining a measure space
— the whole space, (2
— a collection of subsets whose sizes are measurable, A,

— a set function y assigns negative values (sizes) to each
set of A and satisfies properties (a) and (b)
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Field, o-filed
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e Some intuition
— A contains the sets whose sizes are measurable

— A should be closed under complement or union

11
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Definition 2.1 (fields, o-fields) A non-void class A of
subsets of () is called a:

(i) field or algebra if A, B € A implies that AUB € A
and A¢ € A; equivalently, A is closed under complements
and finite unions.

(ii) o-field or o-algebra if A is a field and Ay, As, ... € A
implies U2, A; € A; equivalently, A is closed under
complements and countable unions.
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e Properties of o-field

Proposition 2.1. (i) For a field A, 0,9 € A and if
Ay, A, e A N A € A
(ii) For a o-field A, if Ay, As, ... € A, then N2, A; € A.

13
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Proof
(i) Forany Ae A, Q=AUAc A

Ay, ..., A, e A
A = (U A9)C € A

(i) (M52, 4;)° = UZ, A5,

= Qc e A.

14
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e Fxamples of o-field
-~ A={0,Q} and 2? = {A: A C Q}
— By is a field but not a o-field
(a,0) = Uz, (a,0 = 1/n] & By

- A={A:Aisin R and A€ is countable}
A is closed under countable union but not

complement

15
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e Measure defined on a o-field

Definition 2.2 (measure, probability measure)

(i) A measure p is a function from a o-field A to [0, c0)
satisfying: p(0) = 0; p(UpZ An) = 3202, pu(Ay) for any
countable (finite) disjoint sets A, A, ... € A. The latter
is called the countable additivity.

(ii) Additionally, if u(Q2) = 1, p is a probability measure
and we usually use P instead of i to indicate a

probability measure.

16
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e Properties of measure

Proposition 2.2

(i) f {A,} C Aand A, C A+, for all n, then

(U2 An) = limy, o0 p1(An).

(ii)) f {A,} C A, u(A;) < oo and A, D A, for all n,
then p(N>;A,) = lim, o u(A,).

(iii) For any {A,} C A, u(U,A,) <3, u(A,) (countable
sub-additivity).

(iv) p(liminf, A,) = lim, (N2, A,) < liminf, u(A,)
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Proof

(1) ,LL(UzozlAn) = ,LL(Al U (AQ — Al) U ) == U Al) —|—,LL(A2 — Al) + ...

= lim, {pu(A1) + pu(As — Ay) + ... + u(A, — Ap—1)} = lim, u(A,).

(i)

(Mg An) = p(Ar) —p(Ar1 —Np2 1 Apn) = u(Ar) —u(UpZ, (A1NA7)).

A; N AS is increasing
the second term equals lim,, u(A; N AS) = u(Ar) — lim, u(Ay,).

(iii)
/L(UnAn) = hmn ,u(Al U...uU An) = hmn {Z?:l ,UJ(AZ — Uj<iAj)}
< limy, 350 p(4s) = 32, 1(An).

(iv) p(liminf,, A,) = lim, u(N, Ay,) < liminf, u(A,).

18
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e Measures space
a triplet (€2, A, p)
— set in A is called a measurable set

— If u = P is a probability measure, (2, 4, P) is a
probability measure space: probability sample and

probability event

— a measure [ is called o-finite if there exists a
countable sets { F,,} C A such that 2 = U, F,, and for

each F,,, u(F,) < oo.
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e Examples of measure space

— discrete measure:

— counting measure ¢¥ in any space, say R: it is not
o-finite.

20
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Measure Space Construction

21
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e T'wo basic questions
— Can we find a o-field containing all the sets of C?

— Can we obtain a set function defined for any set of
this o-field such that the set function agrees with p in

C?

22
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e Answer to the first question

Proposition 2.3 (i) Arbitrary intersections of fields
(o-fields) are fields (o-fields).

(ii) For any class C of subsets of ), there exists a minimal
o-field containing C and we denote it as o(C).

23
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Proof
(i) is obvious.
For (ii),
o(C) = Necaais o-fieldA

i.e., the intersection of all the o-fields containing C.

24
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e Answer to the second question

Theorem 2.1 (Caratheodory Extension Theorem)
A measure p on a field C can be extended to a measure
on the minimal o-field o(C). If y is o-finite on C, then
the extension is unique and also o-finite.

Construction

1 (A) =inf {Z/,L(AZ) :A; €C,AC UfolAz} :
i=1

25
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e Application to measure construction
— generate a o-field containing By: Borel o-field B
— extend A\ to B: the Lebesgue measure

— (R, B, \) is named the Borel measure space

— in R*, we obtain (RF, B¥, \F)

26



CHAPTER 2 BASIC MEASURE THEORY

e Other measure construction on B

F' is non-decreasing and right-continuous
a set function in By: Ap((a,b]) = F(b) — F(a)

measure extension Ar in B: Lebesque-Stieltjes

measure generated by F
the Lebesuge measure is a special case with F(x) = x

if I’ is a distribution function, this measure is a
probability measure in R

27
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e Completion after measure construction

— motivation: any subsets of a zero-measure set should

be given measure zero but may not be in A

— Completion: add these nuisance sets to A

28
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e Details of completion

— obtain another measure space (€2, A, 1)
A={AUN:Ac A,
N C B for some B € A such that u(B) = 0}
and (AU N) = u(A).

— the completion of the Borel measure space is the
Lebesgue measure space and the completed Borel
o-field is the o-field of Lebesque sets

— we always assume that a measure space is completed

29
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Measurable Function

30
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e Definition

Definition 2.3 (measurable function) Let X : Q — R
be a function defined on 2. X is measurable if for x € R,
the set {w € Q: X(w) < x} is measurable, equivalently,
belongs to A. Especially, if the measure space is a
probability measure space, X is called a random variable.

31
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e Property of measurable function

Proposition 2.4 If X is measurable, then for any
B e B, X '(B)={w: X(w) € B} is measurable.

32
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Proof
B*={B:B C R,X '(B) is measurable in A}

(—o0, x| € B*.

BeB*~X1(B)eA-X1(B)=0-X"1YB)ec A
then B¢ € B*.

B, B, ... c B* X_l(Bl),X_l(BQ),... cA
X_l(Bl U By U ) = X_l(Bl) U X_l(BQ) U...e A
BiUBsU... € B*.

B* is a o-field containing all intervals of the type (—oo, x|
B C B*.
For any Borel set B, X !(B) is measurable in A.

33
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e Construction of measurable function
— simple function: Y x;la, (W), A; €A

— the finite summation and the maximum of simple

functions are still simple functions

— any elementary functions of measurable functions are

measurable

34
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Proposition 2.5 Suppose that {X,} are measurable.
Then so are X; + Xo, X1 X5, X? and sup, X,,, inf,, X,,,
limsup, X,, and liminft,, X,.

35
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Proof

{(Xi+Xo<z}=Q-{X1+Xo >z} =
Q—Upeo {X1 >r}Nn{Xe >z —1r}, Q={ all rational numbers}.

(X <2} ={X1 <V} - {Xi < —Va}.
X1 Xy = {(X1 + X2)% — X2 — X212

{sup,, X;, <z} =N, {X, < z}.
{inf,, X,, <z} = {sup,(—X,) > —=x}.

{limsup,, X,, <z} = Nregr>0 Usl Ni>n { Xk < x+71}.
liminf,, X,, = —limsup,, (—X,,).

36
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e Approximating measurable function with simple

functions

Proposition 2.6 For any measurable tunction X > 0,
there exists an increasing sequence of simple functions
{X,} such that X,,(w) increases to X (w) as n goes to
infinity:.
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Proof
n27l g k1
Xp(w)= ) o H{on € X(w) < = =} +nl{X(w) > n}
k=0

X, 1s increasing over n.

if X(w) < n, then | X, (w) — X (w)] < 5=

X, (w) converges to X (w).

If X is bounded, sup,, | X, (w) — X (w)| < 2%

38
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Integration

39
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Definition 2.4 (i) For any simple function
X(w)=X" 214 (w), we define >°0 ; x;1u(A;) as the
integral of X with respect to measure u, denoted as
[ Xdpu.

(ii) For any X > 0, we define [ Xdu as

/Xd,u = sup /Ydu.

Y is simple function, 0 <Y < X

40
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(iii) For general X, let X+ = max(X,0) and
X~ =max(—X,0). Then X = X+ — X—. If one of
[ Xtdu, [ X du is finite, we define

/Xd,u: /XJFd,u—/X_d,u.

41
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e Some notes
— X is integrable if [ | X|dp = [ XTdu+ [ X~ du is finite

— the definition (ii) is consistent with (i) when X itself

is a simple function

— for a probability measure space and X is a random
variable, [ Xdu = F|X]

42
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e F'undamental properties of integration

Proposition 2.7 (i) For two measurable functions

X1 >0and Xo >0, if Xy < X, then | Xidp < [ Xodp.
(ii) For X > 0 and any sequence of simple functions Y,
increasing to X, [ Y, du — [ Xdpu.

43
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Proof

(i) For any simple function 0 <Y < X3, Y < Xs.

[Ydu < [ Xadu .
Take the supreme over all the simple functions less than X4

(ii) From (i), | Y, dp is increasing and bounded by [ Xdpu.

It suffices to show that for any simple function Z = > " | z;14, (w),
where {A;,1 <1 < m} are disjoint measurable sets and x; > 0,
such that 0 < 7 < X,

lim/Ynd,u > ZZEZILL(Az)
i=1

44
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We consider two cases.

Case 1.[ Zdu =>_", x;11(A;) is finite thus both z; and p(A;) are

finite.

Fix an e > 0, let A;, = A; N{w : Y, (w) > z; — €}.

to A; = p(A;,) increases to u(A;).
When n is large,
/ Yadp > (i — €)u(4y).
i=1

lim,, [Yodu > [ Zdu—€e>" pn(A;).
lim,, [ Y,du > [ Zdu by letting e approach 0.

A;,, Increases

45
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Case 2 suppose | Zdu = oo then there exists some i from
{1,...,m}, say 1, so that u(A;) = oo or r; = oo.

Choose any 0 < x < z1 and 0 <y < u(Ay).

Ay = A1 N{w : Y, (w) > x} increases to A;. n large enough,

(Ain) >y
lim,, [ Y,du > xy.

Letting ¢ — x1 and y — u(A1), conclude lim,, [ Y,du = cc.

lim,, [ Y,du > [ Zdu.

46
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e Lllementary properties

Proposition 2.8 Suppose [ Xdu, | Ydu and

[ Xdu+ [Ydu exit. Then

(1) (X +Y)dp = [ Xdu+ [Ydu, [cXdp=c[ Xdu;
(ii) X > 0 implies [ Xdu > 0; X > Y implies

[ Xdu > [Ydu; and X =Y a.e. implies that

J Xdp = JYdpu;

(iii) | X| <Y with Y integrable implies that X is
integrable; X and Y are integrable implies that X + Y is
integrable.

47
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e Calculation of integration by definition

"k k k+1
/Xd,u—lim{ > —,u(—SX<L
w| = 2t o

)+ (X ) .

48
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e Integration w.r.t counting measure or Lebesgue

measure

— [ gdp® =3 g(x;).

— continuous function g(z), [ gd\ is equal to the usual
Riemann integral [ g(x)dx

— (2, B, Ar), where F'is differentiable except
discontinuous points {x1, z, ...},

[ 9drr =3 glw) {F(w;) = F(ai=)} + [ g(x)f(x)dz,

where f(x) is the derivative of F'(x).

49
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Convergence Theorems

50
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e Monotone convergence theorem (MCT)

Theorem 2.2 If X, > 0 and X,, increases to X, then
[ X, dp — | Xdpu.

51
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Proof

Choose nonnegative simple function Xj,, increasing to X as
m — 00. Define Y,, = maxp<, Xin.

{Y,,} is an increasing series of simple functions

X <Y, < X,, so/and,u < /Ynd,u < /Xnd,u.
n— oo X <lim,Y, <X and

/Xkd,u < /li;bnYnd,u: li?gn/Yndu < liqgn‘/Xnd,u
k— oo, X <lim, Y, <X and

li]]gn/Xkdu < /limYnd,u < lim/Xnd,u.

The result holds.



CHAPTER 2 BASIC MEASURE THEORY

e Counter example

X,(x) = —I(x > n)/n in the Lebesgue measure space.
X, increases to zero but [ X, d\ = —oc0

53
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e Fatou’s Lemma

Theorem 2.3 If X,, > 0 then

/lim i%f Xpdp < lim i%f/Xndu.
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Proof

hmlan = Sup inf X,,.

n—1m=>n

{inf,,>, X, } increases to liminf, X,.

By the MCT,

/limiannd,u :lim/ inf X,,du <

m>n

/Xnd,u.

55
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e T'wo definitions in convergence

Definition 2.4 A sequence X,, converges almost
everywhere (a.e.) to X, denoted X,, —,.. X, if

Xp(w) = X(w) for all w € Q@ — N where u(N) = 0. If p is
a probability, we write a.e. as a.s. (almost surely). A
sequence X, converges in measure to a measurable
function X, denoted X,, —, X, if u(| X, — X| >€) =0
for all e > 0. If p is a probability measure, we say X,

converges in probability to X.
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e Properties of convergence

Proposition 2.9 Let {X,,}, X be finite measurable
functions. Then X,, —,. X if and only if for any ¢ > 0,

p(MpZy Umzn {| X — X[ = €}) = 0.
If 41(2) < 00, then X,, —,.. X if and only if for any € > 0,

W(Unzn {|Xm — X[ > €}) = 0.

57



CHAPTER 2 BASIC MEASURE THEORY 58

Proof

b

| =

0 X() = X (@)} = U Ui {w X (@) — X(@)] >

X,, —a.e X— the measure of the left-hand side is zero.
N2, Um>n {|Xm — X| > €} has measure zero.

For the other direction, choose € = 1/k for any k, then by countable
sub-additivity,

MU T3 U {0 [Xon @) = X (@) 2 1 D

< Zu(ﬂ%ozl UmZn {w : ‘Xm(w) — X(w)\ > %

Xn —a.e X.
When 1(§2) < oo, the latter holds by Proposition 2.2.
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e Relationship between two convergence modes

Proposition 2.10 Let X,, be finite a.e.

(i) If X,, =, X, then there exists a subsequence
X, —ae X.
(i) If p(Q2) < 0o and X,, =4, X, then X,, —, X.
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Proof

(i) Find (2%
P(|X,, —X|>27F) <27k
(Umzk {[Xn,, — X| > €}) < p(Unsk {1 Xn,, — X[ >27"})
<D sk 2 = 0.

Xn, —ra.e X.

(ii) is direct from the second part of Proposition 2.9.
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e Examples of convergence

— Let Xonypy=I(x € k/2",(k+1)/27)),0 < k < 2" in
the Lebesgue measure space. Then X,, —, 0 but does

not converge to zero almost everywhere.

— X, =nl(jz] >n) =4 0 but A(|X,,| > €) = 0.
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e Dominated Convergence Theorem (DCT)

Theorem 2.4 If | X,| <Y a.e. with Y integrable, and if
X, =, X (or X,, =4 X), then [|X,, — X|dyu — 0 and
lim [ X, dyu = | Xdu.
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Proof

Assume X,, —4. X. Define Z,, =2Y — |X,, — X|. Z, > 0 and
Z, — 2Y.

From the Fatou’s lemma,
/ZYdu < lim inf/(QY X, — X|)dp.

limsup,, [|X, — X|du <0.

If X,, —, X and the result does not hold for some subsequence of
X,,, by Proposition 2.10, there exits a further sub-sequence
converging to X almost surely. However, the result holds for this

further subsequence. Contradiction!
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e Interchange of integral and limit or derivative

Theorem 2.5 Suppose that X (w,t) is measurable for
each t € (a,b).

(i) If X(w,t) is a.e. continuous in t at ¢y, and

| X (w, )] <Y (w),a.e. for |t —tg] < d with Y integrable,
then

lim [ X(w,t)du = /X(w,to)d,u.

t—1o
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(ii) Suppose 2 X (w,t) exists for a.e. w, all t € (a,b) and
\%X(w,t)\ <Y(w),a.e. for all t € (a,b) with Y
integrable. Then

J 0
Q/X(wat)d,u— /&X(w,t)d,u.

65



CHAPTER 2 BASIC MEASURE THEORY

Proof

(i) follows from the DCT and the subsequence argument.

(i)

o /thd,u—}lbl_)r%

Then from the conditions and (

the integration.

D an.

/th+h — X (w,

, such a limit can be taken within
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Product of Measures

67
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e Definition
— Ql X QQ = {(wl,wg) T W € Ql,CUQ - QQ}
- ./41 X ./42 = O'({Al X AQ : Al = Al,AQ c ./42})

— (,ul X /LQ)(Al X Az) — ,ul(Al),ug(Ag) with its
extension to all sets in the A; x A,
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e Fxamples

- (RF=RX..XR,BX..xBAX..x)\
AX ..o x A=\
S 0={1,23.)
(R x Q,B x 2% X\ x u*)
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e Integration on the product measure space

— In calculus,
Jre f(w,y)dxdy = [, [, f(x,y)dydx = [, [, f(z,y)dzdy

— Do we have the same equality in the product measure
space”’
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Theorem 2.6 (Fubini-Tonelli Theorem) Suppose

that X : Qy x Qy - Ris A; X Ay measurable and X > 0.

Then
/ X (w1, ws)dpy is As measurable,
951

/ X (w1, ws)dus is A; measurable,
95!

/ X(wl,wz)d(,ul X ILLQ) — / { X(wl,wg)dug} d,ul
Ql><QQ Q1 Q2

= {/ X(wl,wg)dul}d,ug.
Qo 95
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e Conclusion from Theorem 2.6

— in general, X = X — X . Then the above results
hold for X and X—. Thus, if
Ja, xa, | X (wi,w2)|d(p1 X o) is finite, then the above
results hold.
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e One example

— let (2,2, ) be a counting measure space where
0 =1{1,2,3,...} and (R, B, \) be the Lebesgue

measure space

~ define f(x,y) = I(0 < v < y)exp{—y}; then

fla,y)d{u? x N} = /Q ([ flaydry)}dnt ()

OXR

= [ exp{—a}dyt( zexp{ ny=1/(e—1).
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Derivative of Measures

74
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e Motivation

— let (2, A, 1) be a measurable space and let X be a
non-negative measurable function on ¢

— a set function v as v(A) = [, Xdu = [ T4 Xdu for
cach A € A.

~ v is a measure on (2, A)

— observe X = dv/du
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e Absolute continuity

Definition 2.5 If for any A € A, u(A) = 0 implies that
v(A) = 0, then v is said to be absolutely continuous with
respect to u, and we write v << p. Sometimes it is also
sald that v is dominated by pu.
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e Fquivalent conditions

Proposition 2.11 Suppose v(§2) < co. Then v << p if
and only if for any € > 0, there exists a 0 such that
v(A) < € whenever pu(A) < 9.
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Proof

“ <" g clear.

To prove “=", suppose there exists € and a set A,, such that
v(Ay,) > e and p(A,) < n 2.

Since ) p(A,) < oo,

p(limsup A,) < S p(Ay) = 0.

m>n

p(limsup,, A,) = 0.

However, v(limsup,, A, ) = lim, v(Up,>n4y) > limsup,, v(A,) > €.

Contradiction!
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e Fixistence and uniqueness of the derivative

Theorem 2.7 (Radon-Nikodym theorem) Let

(2, A, 1) be a o-finite measure space, and let v be a
measurable on (€2, A) with ¥ << p. Then there exists a
measurable function X > 0 such that v(A) = [, Xdu for
all A € A. X is unique in the sense that if another
measurable function Y also satisfies the equation, then
X =Y, ae.
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e Transformation of integration using derivative

Proposition 2.13 Suppose v and p are o-finite measure
defined on a measure space (€2, 4) with v << u, and
suppose Z is a measurable function such that [ Zdv is

well defined. Then for any A € A,

/ZdV:/ Z@d,u.
A A du
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Proof
(i) If Z = I where B € A, then

d d
/Zdy:V(AﬂB):/ —Vd,u:/[B—Vd,u.
A AnB dp A dp

(ii) If Z > 0, find a sequence of simple function Z,, increasing to Z.
For Zy, [, Zndv = [, an—Zdu. Take limits on both sides and apply
the MCT.

(iii) For any Z, write Z = Z+ — Z~.
[Zdv=[Z%dv— [Z dv = fZJrg—Zdu—fZ_g—Zdu: fZg—Zdu.
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Induced Measure
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e Definition
— let X be a measurable function defined on (2, A, ).
— for any B € B, define ux(B) = u(X4(B))

— ux is called a measure induced by X: (R, B, ux).
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e Density function of X

— (R, B, v) is another measure space (often the counting

measure or the Lebesgue measure)

— suppose x 1s dominated by v with the derivative

— f =dux/dv is called the density of X with respect to
the dominating measure v
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e Comparison with usual density function
- (2, A, u) = (2, A, P) is a probability space
— X is a random variable

— if v is the counting measure, f(x) is in fact the
probability mass tunction of X

— if v is the Lebesgue measure, f(x) is the probability
density function of X
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e Integration using density

- Jo9(X(w))du(w) = [pg(z)dux(x) = [gg(z)f(z)dv(z)

— the integration of g(X) on the original measure space
() can be transformed as the integration of g(x) on R
with respect to the induced-measure pux and can be
further transformed as the integration of g(x) f(x)
with respect to the dominating measure v
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e Interpretation in probability space
— in probability space, E|g(X)| = [rg(x) f(x)dv(x)

— any expectations regarding random variable X can be
computed via its probability mass function (v is
counting measure) or density function (v is Lebesgue

measure)

— in statistical calculation, we do NOT need to specity
whatever probability measure space X is defined on,

while solely rely on f(x) and v.
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Probability Measure
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e A few important reminders

— a probability measure space (2,4, P) is a measure
space with P(Q2) = 1;

— random variable (or random vector in
multi-dimensional real space) X is any measurable

function;

— integration of X is equivalent to the expectation;
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— the density or the mass function of X is the
Radon-Nikydom derivative of the X-induced measure
with respect to the Lebesgue measure or the counting

measure in real space;

— using the mass function or density function,
statisticians unconsciously ignore the underlying
probability measure space (2, .4, P).
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e Cumulative distribution function revisited

— F(z) is a nondecreasing function with F'(—oo) =0
and F(oco) = 1;

— F(x) is right-continuous;

— Ap, the Lebesgue-Stieljes measure generated by F' is
exactly the same measure as the one induced by X,
i.e., Px.
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Conditional Probability
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e A simple motivation

— the conditional probability of an event A given
another event B has two possibilities:
P(A|B)=P(ANB)/P(B)

P(A[B?) = P(AN B°)/P(B°);

— equivalently, A given the event B is a measurable
function assigned to the o-field {0, B, B¢, Q},

P(A|B)Ip(w) + P(A|B)Ipe(w).
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e Definition of conditional probability
An event A given a sub-o-field N, P(A|R)

— it is a measurable and integrable function on (€2, V);

— for any G € N,

/G P(AR)P = P(ANG).
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e Existence and Uniqueness of Conditional Probability

Function

Theorem 2.8 The measurable function P(A|RX) exists
and is unique in the sense that any two functions
satistying the definition are the same almost surely.
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Proof

In (2,N, P), define a set function v on N such that
v(G) = P(ANG) for any G € N,

v is a measure and P(G) = 0 implies that v(G) =0 —v << P.

By the Radon-Nikodym theorem, there exits a N-measurable
function X such that v(G) = [, XdP.
X satisfies the properties (i) and (ii).

Suppose X and Y both are measurable in X and [, XdP = [,YdP
for any G € N. Choose choose G ={X —Y > 0} and
G={X-Y<0}= [|IX-Y|dP=0= X =Y, as.
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e Properties of conditional probability

Theorem 2.9 P(Q|X) =0, P(QR) =1 a.e. and
0< P(AN) <1

for each A € A. if Ay, A,, ... is finite or countable

sequence of disjoint sets in A, then

P(U,A,|N) = ZP A, R).
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Conditional Expectation
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e Definition
X given R, denoted E|X|N]
— E[X|N] is measurable in X and integrable;

— for any G € N, [, E[X|N|dP = [, XdP, equivalently;
E|EXIN|Ig] = F|X g, a.e.

— The existence and the uniqueness of E|X|N]| can be
shown similar to Theorem 2.8.
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e Properties of conditional expectation

Theorem 2.10 Suppose X, Y, X,, are integrable.

(i) If X =a a.s., then F|X|R] = a.

(ii) FlaX + bY|N] = aEF[X|N] 4+ b]Y|N].

(iii)) If X <Y a.s., then F|X|N] < FY|N].
WHMXNVJNMN

(v) If lim, X,, = X a.s., | X,| <Y and Y is integrable,
then lim,, F[X,|R] = [X\N].

(vi) If X is measurable in 8, F|XY|R] = X FE[Y|N]. (vii)
For two sub-o fields N; and Ny such that Ny C N,

E[EX[R:])[Ry] = EIX[N].

(viil) P(AR) = E[I4[N].
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Proof
(i)-(iv) be shown directly using the definition.

To prove (v), consider Z,, = sup,,,~.,, | Xm — X|. Z,, decreases to 0.
|EX, N — E[X|N]| < FE[Z,]N]. _E[Zn|N] decreases to a limit

Z > 0.

Remains to show Z = 0 a.s. Note E[Z,|R] < F[2Y|R] = by the

DCT, E[Z] = [ E[Z|N)dP < [ E[Z,[NJdP — 0. — Z =0 as.

For (vii), for any G € ¥y C N,
/ E[X|Ns]dP :/ XdP :/ E[X|N{]dP.
G G G

(viii) is clear from the definition of the conditional probability.
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To see (vi) holds, consider simple function first, X = > . x;Ip,
where B, are disjoint set in N. For any G € N,

/ (XY |N]dP = /XYdP sz/GDB
_Z%/

B[V NP = /XE Y INld.
GNB;
EIXYN = XE[Y|N].

For any X, a sequence of simple functions X,, converges to X and
| X,,| < |X]. Then

/XYdP /XEY\N

Note that | X, FE[Y|R]| = |E|X,Y|N]| < E[|XY|[X]. From the DCT,
Jo XYdP = |, XE[Y|XN]dP
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e Relation to classical conditional density

— N =0(Y): the o-field generated by the class
{{Y <y} :ye R} —P(X € B[R) =¢(B,Y)

= Jy<y P(X € BIR)dP = [ I(y < v0)9(B,y) fy(y)dy =
P(X € B,Y <)
= /I(y < yo)/Bf(xay)dxdy.

- 9(B,y)fy(y) = [p f(z,y)dz—P(X € B|N) =
Is f(zly)dx.

— the conditional density of X|Y = y is the density
function of the conditional probability measure
P(X € -|N) with respect to the Lebesgue measure.
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e Relation to classical conditional expectation

— EX|N] = ¢g(Y) for some measurable function g(-)

— JI(Y <yo) EIXIN|dP = [1(y < y0)9(y)fy(y)dy
= BIXI(Y <o)l = [ Iy < yo)of(z,y)dady

~g(y) = [z f(z,y)dx/ fy(y)

— E]XN] is the same as the classical conditional
expectation of X given Y =y
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READING MATERIALS: Lehmann and Casella,
Sections 1.2 and 1.3, Lehmann Testing Statistical

Hypotheses, Chapter 2 (Optional)



