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S

A simple, nonparametric two-sample test for equality of a given collection of quantiles
is developed which can be applied to a variety of empirical distribution functions, including
the Kaplan–Meier estimator, a self-consistent estimator for doubly-censored data and an
estimator for repeated measures data. The null hypothesis tested is that the quantiles are
equal but other aspects of the distributions may differ between the two samples. This
procedure can also be applied to quantile testing in group sequential clinical trials with
staggered patient entry. A simple simulation study demonstrates that the moderate sample
size properties of this procedure are reasonable.
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1. I

Populations can often be usefully compared in terms of quantiles. In children with cystic
fibrosis, the 10th percentiles of height and weight are important clinical boundaries
between healthy and possibly nutritionally compromised patients (Farrell et al., 1997).
Since the median height or weight is associated with normal growth status, it may be
meaningful with cystic fibrosis clinical trials to compare two treatment groups on the
basis of both the 10th and 50th percentiles of height and/or weight. In addition, censoring
or truncation can preclude estimation of entire distribution functions and an examin-
ation of a collection of quantiles is a reasonable alternative. Use of quantiles also offers
robustness against outliers.

Recently, several promising nonparametric two-sample median comparison procedures
for censored survival data have been developed. The earliest of these, proposed by Wang
& Hettmansperger (1990), requires either the two-sample shift model assumption or esti-
mation of the involved densities. To avoid density estimation, Su & Wei (1993) developed
a minimum dispersion statistic based on the Kaplan–Meier estimator; see also Basawa &
Koul (1988). The fact that Su & Wei’s statistic is easily computed and asymptotically chi-
squared is appealing, but their analytical approach cannot be directly applied to group
sequential clinical trials with staggered patient entry. Keaney & Wei (1994) manage to
solve this difficult problem by using an interesting extension of the resampling procedure
of Parzen, Wei & Ying (1994).

In this paper, we develop a nonparametric two-sample test for equality of a given
collection of quantiles which can be applied to a variety of empirical distribution functions,
including both the Kaplan–Meier estimator, Turnbull’s (1974) self-consistent survival esti-
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mator for doubly-censored data and an estimator for repeated measures data. For instance,
the collection of quantiles examined can consist of several interim estimates of the median,
or some other quantile, in a group sequential clinical trial setting involving two treatment
arms; or it can consist of several quantiles to be compared between two groups at one
analysis time, such as the 10th and 50th percentiles of height or weight. Under the null
hypothesis of equal quantiles, the proposed test statistic is asymptotically normal with a
covariance which can be consistently estimated. Not only does the proposed test procedure
provide an analytical alternative to the resampling method of Keaney & Wei (1994), but
it applies to more general censoring schemes and to a variety of empirical distribution
functions.

Although one-sample quantile estimation procedures for right-censored data have
been extensively studied (Brookmeyer & Crowley, 1982; Doss & Gill, 1992; Efron, 1981;
Emerson, 1982; Li et al., 1996; Padgett, 1986; Reid, 1981; Simon & Lee, 1982; Slud, Byar
& Green, 1984), we develop in § 2 one-sample results for empirical distribution estimators
which are sufficiently general to allow for double censoring and for several kinds of
empirical distribution estimator. Methods of density estimation are examined in § 3, while
§ 4 utilises the results of § 3 to formulate the proposed asymptotically distribution-free test
statistics. A simple simulation study of the proposed methods is given in § 5 to evaluate
moderate sample size properties.

2. D   

For a distribution function F : R. [0, 1], let F−1 : [0, 1].R be the usual inverse distri-
bution function defined by letting F−1( p)¬ inf{x : F(x)�p}. The estimators of F−1( p),
for a given p, which we shall use take the form FC−1 ( p), where FC : R. [0, 1] is an appro-
priate estimator of F. We shall require that F and FC satisfy the following conditions at
t=F−1( p) for some strictly positive, increasing, normalising sequence {c

n
, n�1} with

lim
n�2

c
n
=2.

Condition 1. Distribution function F has a density f in a neighbourhood of t such that
f is continuous at t and 0< f (t)<2.

Condition 2. As n�2, c
n
{FC (t)−F(t)} converges in distribution to a bounded random

variable with continuous distribution function.

Condition 3. For every e>0,

lim
d30

lim sup
n�2

prq sup
s:|t−s|<d

c
n
|FC (t)−F(t)−FC (s)+F(s) |>er=0.

Condition 1 is fairly standard (Serfling, 1980, p. 77), while Conditions 2 and 3 are not
quite so standard but will permit the greater generality we are seeking. Condition 1 with
the asymptotic stochastic equicontinuity in Condition 3 together yield sufficient continuity
of FC to allow the weak convergence of FC in Condition 2 to be carried through to FC−1( p).
Although Condition 3 appears difficult to verify, we will see in several examples given
later in this section that it is satisfied by a wide variety of distribution function estimators.

The following lemma allows us to establish an asymptotic equivalence between the
centred quantile estimator and the centred distribution function estimator.
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L 1. Suppose F satisfies Condition 1 and FC satisfies Conditions 2 and 3 at t=
F−1( p) for a specified pµ(0, 1). T hen

c
n
{FC−1( p)−F−1( p)}=−

c
n
[FC {F−1( p)}−p]

f {F−1( p)}
+o

p
(1).

The proof of Lemma 1 depends on the following lemma.

L 2. Assume the conditions of L emma 1 are satisfied, although Condition 2 is not
needed at this point, and let t¬F−1( p). T hen, for any compact K5R,

sup
uµK

|c
n
{FC (t+u/c

n
)−FC (t)}− f (t)u |=o

p
(1),

Proof. We have

|c
n
{FC (t+u/c

n
)−FC (t)}− f (t)u |∏c

n
|FC ( t+u/c

n
)−F(t+u/c

n
)−FC (t)+F(t) |

+|c
n
{F(t+u/c

n
)−F(t)}− f (t)u |,

and the result follows from Conditions 1 and 3 and the compactness of K. %

In fact, Lemma 2 gives a stronger result than necessary, but this stronger result will
prove useful later on.

Proof of L emma 1. Denote by I
{A}

the indicator of the event A. For each xµR,

I
{FC−1(p)∏x}=I

{FC(x)�p}
by the definition of FC−1. However, this implies that

I
{c
n
[FC−1(p)−F−1(p)]∏x}=I

{c
n
[FC{F−1(p)+x/c

n
}−p]�0} ; (1)

but

c
nCFC GF−1( p)+

x

c
n
H−pD= f{F−1( p)}x+c

n
[FC {F−1( p)}−p]+R

n
(x),

where R
n
(x) converges to zero in probability, as n�2, by Lemma 2. Condition 2 now

gives us that, for all n large enough, the right-hand side of (1) is equal to

I
{−c

n
[FC{F−1(p)}−p]∏xf{F−1(p)}}+o

p
(1),

and the result follows. %

Sometimes it is useful to modify a distribution function estimator slightly, for example
by connecting jump points.

Condition 4. For every e>0,

lim
d30

lim sup
n�2

prq sup
s:|t−s|<d

c
n
|FB (s)−FC (s) |>er=0.

It is fairly easy to show that, if at t=F−1( p), for pµ(0, 1), a modification FB of a
distribution function estimator FC satisfies Condition 4, then FB satisfies Conditions 2 and 3
if and only if FC satisfies Conditions 2 and 3. The following lemma shows us that Condition 4
is satisfied for a variety of modifications made by connecting jump points.

L 3. L et FC be a right-continuous, piecewise constant estimator of F, where F and
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FC satisfy Conditions 1, 2 and 3 at t=F−1( p) for a chosen pµ(0, 1); and let FB be the
modification of FC made by connecting adjacent jump points of F with straight lines. T hen
Condition 4 is satisfied.

Proof. By Condition 1, there exists a d>0 such that F is continuous and f is strictly
positive on ( t−2d, t+2d). Thus, for n large enough, the probability that a jump point of
FC occurs in both (t−2d, t−d) and (t+d, t+2d) can be made arbitrarily close to 1 by
Conditions 2 and 3. Hence

sup
s:|t−s|<d

c
n
|FB (s)−FC (s) |∏ sup

s:|t−s|<2d
c
n
|FC (s)−FC (s−) |,

and the result follows from reapplication of Condition 3. %

Example 1: Right-censored data. For right-censored data, the theory in Su & Wei (1993)
establishes the conclusions of our Lemma 1. However, we include it here for completeness
and also to establish the conclusions of Lemma 3 for the Kaplan–Meier estimator. Let
(T
i
, C

i
), for i=1, . . . , n, be independent pairs of failure and censoring times, where the

distribution function for T
i
is F. The data available in this setting are the pairs (X

i
, d
i
),

for i=1, . . . , n, where X
i
=T

i
mC

i
, d

i
=I

{X
i
=T

i
}
, and xmy is the minimum of x and y.

Let

Y9 (s)¬ ∑
n

i=1
I
{X
i
�s}

be the number at risk at time s, and assume that n−1Y9 (s) converges in probability, as
n�2, to p(s) uniformly on the interval [0, u], where u is larger than t=F−1( p) for a
chosen p. Let FC=1−SC , where SC is the usual Kaplan–Meier estimator.

If F is absolutely continuous and if p(s)>0, for all s in some neighbourhood of t, then
Theorem 6.3.1 of Fleming & Harrington (1991) yields weak convergence in the Skorohod
topology of nD{FC ( . )−F(.)} to a tight, continuous Gaussian process on the interval
[0, t+e], for some e>0. Thus, Conditions 1, 2 and 3 are satisfied. Gill (1980, Ch. 4)
shows, by use of a random time transform, that F need not be absolutely continuous,
except for our purposes we still need Condition 1 satisfied at t, and nD{FC ( . )−F(.)} still
converges weakly to a tight Gaussian process which is continuous in a neighbourhood of
t but need not be continuous over all of [0, t+e]. The results of Lemmas 1, 2 and 3 will
thus all follow, since FC is right-continuous and piecewise constant.

Example 2: Doubly-censored data. The distribution of quantiles estimated from doubly-
censored data has not been obtained in previous work. However, the results of Chang
(1990) establish the weak convergence results for a self-consistent estimator, FC , of the
distribution function for doubly-censored data; this is essentially Turnbull’s (1974) self-
consistent estimator. Doubly-censored data in this context arise from independent and
identically distributed triplets (X

i
, Y

i
, Z

i
), for i=1, . . . , n, where all random variables are

nonnegative and the X
i
, with distribution function F, are failure times of interest while Y

i
and Z

i
, with pr (Z

i
∏Y

i
)=1, are the double-censoring variables. We only observe X

i
if it

falls in the random interval [Z
i
, Y

i
]; otherwise, we know only whether X

i
<Z

i
or X

i
>Y

i
.

Thus the data we actually observe consist of the independent and identically distributed
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pairs (W
i
, d
i
), where W

i
= (X

i
mY

i
)lZ

i
,

d
i
=q1 if Z

i
∏X

i
∏Y

i
,

2 if X
i
>Y

i
,

3 if X
i
<Z

i
,

and where xly is the maximum of x and y.
If we assume F is continuous and satisfies Condition 1 at t=F−1( p), and if Chang’s

(1990) Conditions A1–A6 are appropriately satisfied, then Chang’s Theorem 3.1 yields
that nD{FC ( . )−F(.)} converges weakly in the Skorohod topology to a tight, continuous
Gaussian process, over an interval containing t+e, for some e>0. Thus Conditions 2
and 3 are satisfied. Chang’s Conditions A1–A6 are realistic and not difficult to verify in
practice, but they are somewhat tedious and we will omit them. An inspection of the
Fredholm integral equation which defines FC as given in § 2 of Chang (1990), where our
FC equals Chang’s 1−S(n)

X
, yields that FC is almost surely right-continuous and piecewise

constant, for all n sufficiently large. Thus the results of Lemmas 1, 2 and 3 follow.

Example 3: Repeated measures. When repeated measurements are taken from several
individuals, an empirical distribution function and quantile estimator can still be con-
structed but the dependence within individuals must be accounted for. Assume that n
independent and identically distributed individuals, each with m

i
repeated measures X

ij
,

for j=1, . . . , m
i
and i=1, . . . , n, are sampled, and that all X

ij
have common marginal

distribution F. If F is absolutely continuous in some neighbourhood of t, and if we assume
m
i
=m<2 for all individuals, it is straightforward to show that F and

FC (x)¬(mn)−1 ∑
n

i=1
∑
m

j=1
I
{x�X

ij
}

satisfy Conditions 1 and 2. The only difficult condition to satisfy here is Condition 3. To
see how this is done, note that FC can be written

FC (x)= ∑
m

j=1
m−1 Wn

i=1 I{x�Xij}
n

,

and that each of the m components are empirical distribution functions based on indepen-
dent and identically distributed data; thus the stochastic equicontinuity of the usual empiri-
cal distribution function carries over to FC . Similar results can be obtained when the m

i
are allowed to vary from individual to individual while restricting m

i
such that 1∏m

i
∏m

for some finite m.

3. K  

In this section, we develop kernel density estimators which are needed for estimating
the variance of the foregoing quantile statistics. The following lemma gives the main result
of this section.

L 4. Suppose F satisfies Condition 1 and FC satisfies Conditions 2 and 3 at t=
F−1( p) for a specified pµ(0, 1). Suppose also that K is a nonnegative kernel with bounded
total variation, L ebesgue integral 1 and compact support on R; that the window width b

n
is



914 M R. K

positive with b
n
=o

p
(1) and (c

n
b
n
)−1=O

p
(1); and that the estimator t

n
=t+o

p
(1). T hen

P
R

b−1
n

K Atn−x

b
n
B dFC (x)= f (t)+o

p
(1).

The proof of Lemma 4 depends on the following lemma.

L 5. Assume the conditions of L emma 4 are satisfied. Assume also that uNv are
real numbers. T hen

b−1
n qFC (tn−ub

n
)−FC ( t

n
−vb

n
)

v−u r= f (t)+o
p
(1).

Proof. We have

Kb−1n qFC ( tn−ub
n
)−FC (t

n
−vb

n
)

v−u r− f (t)K
∏

b−1
n

|v−u |
|FC (t

n
−ub

n
)−F(t

n
−ub

n
)−FC (t

n
−vb

n
)+F(t

n
−vb

n
) |

+ K b−1nv−u
{F(t

n
−ub

n
)−F(t

n
−vb

n
)}− f (t) K ,

where the first term on the right-hand side is o
p
(1), by Conditions 2 and 3, while the

second term converges to zero, as n�2, by Condition 1. %

Proof of L emma 4. Let the support of K be denoted by T 5R with U(T )¬inf (T ) and
V (T )¬sup(T ). The conditions on K ensure that, for every e>0, there exists an approxi-
mation K

e
composed of a finite linear combination of rectangular kernels each with

support on a subset of T such that sup
tµT |Ke

(t)−K(t) |∏e. Let K*
e

denote the rectangular
kernel K*

e
(x)={V (T )−U(T )}−1I

{xµ[U(T),V(T)]} . Then

K P
R

b−1
n

K Atn−x

b
n
B dFC (x)− f (t)K∏ K P

R

b−1
n

K
e Atn−x

b
n
B dFC (x)− f (t)K

+e{V (T )−U(T )} P
R

b−1
n

K*
e Atn−x

b
n
B dFC (x),

where Lemma 5 can be used to establish that the first term on the right-hand side is o
p
(1),

while the second term converges to e{V (T )−U(T )} f (t). The result now follows since e is
arbitrary. %

The minimum dispersion statistic of Su & Wei (1993) for right-censored data, discussed
in the Introduction, appears to permit two-sample inference on quantiles while bypassing
the need to estimate the density. However, this is not the case; as suggested by a referee,
it can be shown that the minimum dispersion statistic implicitly uses a kernel estimator
with window width O

p
(n−D). Such a window width satisfies the criteria given in Lemma 4

and would thus work, at least asymptotically, for any empirical distribution estimator
satisfying Conditions 2 and 3. An advantage of such an approach is that the choice of
kernel and window width would be automatic.

Let G be the distribution function for a second sample with corresponding empirical
distribution estimator GC satisfying Conditions 1, 2 and 3 at a chosen t=F−1( p)=G−1( p),
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under the null hypothesis of equal p-quantiles. Rather than utilise a generalisation of the
minimum dispersion statistic, one could simply use the density estimators

FC {GC−1 ( p)}−p

GC−1( p)−FC−1( p)
,

GC {FC−1 ( p)}−p

FC−1( p)−GC−1 ( p)
. (2)

These estimators thus have similar properties to the implicit density estimators associated
with minimum dispersion statistics in that they are automatic, have window widths O

p
(n−D )

and otherwise satisfy the criteria of Lemma 4. However, these window widths lead to
suboptimal convergence. Better choices, such as window widths of order O

p
(n−1/5), are

available for the usual independent and identically distributed data setting (Hall et al.,
1991; Silverman, 1986, Ch. 3).

4. M - 

4·1. General theory

We now present a general framework for multivariate two-sample quantile tests. In this
framework we have two independent samples, one containing information about the distri-
bution function F and the other containing information about the distribution function
G. We are interested in testing the null hypothesis

H0 :F−1( pj )=G−1 ( p
j
) (j=1, . . . , J ),

where p1 , . . . , pJ are not necessarily distinct. The statistics of interest to us are the quantile
pairs {FC−1

j
( p
j
), GC−1

j
( p
j
)} for j=1, . . . , J, where the distribution function estimators FC

j
,

for j=1, . . . , J, come from the sample corresponding to the distribution function F while
the estimators GC

j
, for j=1, . . . , J, come from the sample corresponding to G. If we have

a single distribution function estimator from each sample but are interested in testing
equality of J distinct quantiles, then FC1= . . .=FC

J
=FC and GC 1= . . .=GC

J
=GC but

p1 , . . . , pJ are distinct. If, on the other hand, we wish to construct group sequential bound-
aries for testing equality of a single quantile, F−1( p)=G−1 ( p), then p1= . . .=p

J
=p, but

the pairs {FC−1
j

( p), GC−1
j

( p)} come from data obtained at J different analysis times. Even
more complex settings are possible; for example, we could test equality of a collection of
quantiles at several different analysis times. We have the following corollary.

C 1. Assume H0 obtains and the following conditions are satisfied.
(i) We require that F, FC

j
, G and GC

j
satisfy Conditions 1, 2 and 3 at t=F−1( p

j
)=

G−1 ( p
j
), for j=1, . . . , J.

(ii ) T he chosen kernel density estimator f@
j

of f {F−1 ( p
j
)} and g@

j
of g{G−1 ( p

j
)} satisfy

the conditions of L emma 4, for j=1, . . . , J.
(iii ) T he vector of statistics (c

n
[FC1{F−1( p1 )}−p1], . . . , cn[FCJ{F−1( pJ )}−p

J
])T is asymp-

totically a zero-mean Gaussian process with covariance matrix W=(w
jk

). Also, the
vector of statistics (c

n
[GC 1{G−1 ( p1 )}−p1], . . . , cn[GC J{G−1 ( p

J
)}−p

J
])T is asymptoti-

cally a zero-mean Gaussian process with covariance matrix C=(c
jk

). Furthermore,
these vectors are asymptotically independent.

(iv) T he covariance estimator WC=(w@
jk

) is consistent for W; and the covariance estimator
CC=(c@

jk
) is consistent for C.

T hen the vector of statistics (c
n
{FC−1

1
( p1)−GC−1

1
( p1)}, . . . , cn{FC−1J ( p

J
)−GC−1

J
( p
J
)})T is

asymptotically a zero-mean Gaussian process with covariance matrix Y=(y
jk

), where Y can
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be consistently estimated by YC = (y@
jk

), where, for each j and k,

y@
jk
¬

w@
jk

f@
j
f@
k
+

c@
jk

g@
j
g@
k
.

The proof is an immediate consequence of Lemmas 1 and 4.

4·2. Examining a collection of quantiles

As illustrated by the height and weight example given in the Introduction, it is sometimes
useful to compare two populations in terms of a finite collection of quantile probabilities.
It is known that Canadian and U.S. cystic fibrosis patients differ in many ways (Lai et al.,
1998), but if the 10th and 50th percentiles are in agreement the same diagnostic boundaries
distinguishing small, an indication of potential malnutrition, and normal-sized patients
from other patients could be utilised in both countries.

Let FC and GC be the distribution function estimates from samples 1 and 2, respectively.
After selecting the J quantile probabilities to be compared ( p1 , . . . , pJ), let FC

j
( p
j
)¬FC ( p

j
)

and GC
j
( p
j
)¬GC ( p

j
), for j=1, . . . , J. The methods of § 4·1 can now be readily applied to

this setting, provided we can obtain the necessary covariance estimators WC and CC . To
illustrate this in a simple setting, assume that FC and GC are the usual empirical distribution
function estimators for independent and identically distributed observations; essentially,
Example 1 from § 2 is applicable for each sample if we assume no censoring. Let n1 be
the sample size associated with FC , and let n2 be the sample size associated with GC , with
n¬n1+n2 and c

n
¬nD. Assume that n1/n converges to an element in (0, 1), that

Condition 1 is satisfied at the points F−1( p
j
), for j=1, . . . , J, for both F and G, and that

the null hypothesis H0 : F−1( p
j
)=G−1 ( p

j
), for j=1, . . . , J, obtains.

In this setting, w@
jk
=n( p

j
mp

k
−p

j
p
k
)/n1 and c@

jk
=n( p

j
mp

k
−p

j
p
k
)/n2 are consistent esti-

mators of w
jk

and c
jk

, respectively; and Conditions 2 and 3 are readily satisfied for FC and
GC at the chosen quantiles. To estimate the densities, we could either use O

p
(n−D ) window

estimators of the form given in (2), or optimal-order estimators such as the O
p
(n−1/5 )

window estimators

f@
j
¬ P

R

n1/5
1

QC−1
F

K qFC−1j ( p
j
)−x

n−1/5
1

QC
F
r dFC (x), (3)

g@
j
¬ P

R

n1/5
2

QC−1
G

K qGC−1j ( p
j
)−x

n−1/5
2

QC
G
r dGC (x), (4)

where QC
F

and QC
G

are twice the estimated interquartile ranges of F and G, respectively,
and where the kernel is triangular:

K(x)=qx+1 if xµ[−1, 0],

1−x if xµ(0, 1],

0 if |x |>1.

Corollary 1 now gives all that is necessary to obtain an asymptotically chi-squared statistic
with J degrees of freedom for testing H0 .

Now consider the slightly more complex setting of Example 3, where the data for each
sample consist of independent and identically distributed clusters of fixed size m. Let n1
be the number of clusters in the sample with marginal distribution F, labelled as sample 1,
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and let n2 be the number of clusters in the sample with marginal distribution G, labelled
as sample 2, with n=n1+n2 and c

n
=nD, and with n1/n converging to an element in (0, 1)

as before. Also let the data in sample 1 be X
il

for l=1, . . . , m and i=1, . . . , n1 , and the
data in sample 2 be Y

il
for l=1, . . . , m and i=1, . . . , n2 . As in Example 3, we will use the

empirical distribution estimators

FC (x)= (mn1 )−1 ∑
n
1

i=1
∑
m

l=1
I
{x�X

il
}
, GC (x)= (mn2 )−1 ∑

n
2

i=1
∑
m

j=1
I
{x�Y

ij
}
.

We have previously demonstrated that Conditions 2 and 3 can be easily satisfied for FC
and GC , thus establishing part (i) of Corollary 1; and it is not difficult to establish part (ii)
for the repeated measures analogue of the kernel density estimators given in 3 and 4. Part
(iii) is also easily established, and the covariance estimators

w@
jk
=n×n−1

1
∑
n
1

i=1 ACm−1 ∑
m

l=1
I
{FC−1(p

j
)�X

il
}
−FC {FC−1 ( p

j
)}D

×Cm−1 ∑
m

l=1
I
{FC−1(p

k
)�X

il
}
−FC {FC−1( p

k
)}DB ,

c@
jk
=n×n−1

2
∑
n
2

i=1 ACm−1 ∑
m

l=1
I
{GC−1(p

j
)�Y

il
}
−GC {GC−1( p

j
)}D

×Cm−1 ∑
m

l=1
I
{GC−1(p

k
)�Y

il
}
−GC {GC−1( p

k
)}DB

readily satisfy part (iv). Hence Corollary 1 again gives all that is necessary to obtain an
asymptotically chi-squared statistic with J degrees of freedom for testing H0 .

4·3. Group sequential clinical trials with staggered entry

We now consider two-arm survival clinical trials with possibly staggered entry of
patients and several interim analyses. This is the setting considered by Keaney & Wei
(1994). We will assume that the two arms are statistically independent. In this context, if
Conditions 1, 2 and 3 are satisfied for each arm separately, and if the assumptions of
Corollary 1 are satisfied, then the methods of § 4·1 can be applied directly. We will assume
that testing the equality of a single quantile, with quantile probability p, is of interest. For
now, we will focus on the first arm only. Let the distribution function for this arm be F,
and assume that Condition 1 is satisfied for F at t=j¬F−1( p). The notation of Example 1
of § 2 needs to be extended to allow for multiple interim analyses.

Suppose we have K<2 interim analyses with altogether n independent and identically
distributed subjects. The data available in this setting are the pairs (X

ij
, d
ij
), for i=1, . . . , n

and j=1, . . . , K, where X
ij
=T

i
mC

ij
, d
ij
=I

{X
ij
=T

i
}
, T

i
is the true failure time for individ-

ual i, and where C
ij

is the effective censoring time for subject i and interim analysis j. All
time is measured from enrolment; hence, if individual i has not been enrolled by the jth
interim analysis, then C

ij
=0. This censoring notation incorporates random loss-to-

follow-up as well as several other censoring schemes. We will also assume that the infor-
mation is cumulative over j, in the sense that C

ij
∏C

ik
for all 1∏ j<k∏K and i=1, . . . , n.

Let N
ij
(t)¬I

{X
ij
∏t,d

ij
=1} and Y

ij
( t)¬I

{X
ij
�t} , and define

N9 j (t)¬ ∑
n

i=1
N
ij
(t), Y9 j (t)¬ ∑

n

i=1
Y
ij
( t).
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Let SC
j

be the Kaplan–Meier estimator at interim analysis j, for FC
j
=1−SC

j
, and

j@
j
¬FC−1

j
( p). We will also assume, as in § 2, that n−1Y9 j (t) converges in probability, as

n�2, to p
j
(t) uniformly on the interval [0, u], where u is larger than j. From the results

presented in Example 1, it is clear that, if p1(t)>0, for all t in some neighbourhood of j,
then FC

j
satisfies Conditions 2 and 3 for j=1, . . . , K. Thus the only remaining work to be

done before the results of § 4·2 can be utilised is to establish joint asymptotic normality
of (nD{FC1(j)−p}, . . . , nD{FC

K
(j)−p})T , and to develop a consistent estimator of the associ-

ated covariance matrix. This is accomplished in the following lemma.

L 6. Assume that p1( t)>0 for all t in some neighbourhood of j, which implies the
same for p2 , . . . , p

K
. T hen

(i ) (nD{FC1 (j)−p}, . . . , nD{FC
K
(j)−p})T is asymptotically a zero-mean Gaussian process

with covariance matrix W=(w
jk

), where

w
jk
=qw

kk
if j∏k,

w
jj

if j>k,

for j=1, . . . , K and k=1, . . . , K;
(ii ) the estimator WC , with diagonal elements

w@
jj
¬SC 2

j
(j@
j
) P j@j

0

dN9 j( t)
{Y9 j (t)−DN9 j (t)}Y9 j (t)

,

and oV -diagonal elements

w@
jk
=qw@

kk
if j<k,

w@
jj

if j>k,

for j=1, . . . , K and k=1, . . . , K, is consistent for W.

Proof. As pointed out by a referee, the Kaplan–Meier estimator is an efficient score
statistic, and the results of Theorem 1 of Scharfstein, Tsiatis & Robins (1997) can be
applied to obtain part (i). To obtain part (ii), we can apply the martingale calculations
given in § 3·2, especially p. 104, of Fleming & Harrington (1991) to establish that, for all
t in a neighbourhood of j for which p

j
(t)>0, the variance of nD{FC

j
(t)−F(t)} can be

consistently estimated by

VC (t)¬SC 2
j
(t) P t

0

ndN9 j (s)
{Y9 j (s)−DN9 j (s)}Y9 j(s)

.

The result now follows from the consistency of j@
j
and the continuity of VC ( t) in a neighbour-

hood of j. %

If a statistically independent second sample with failure time distribution function G
and sample size n* also satisfies Conditions 1, 2 and 3 as well as the assumptions of
Lemma 6, then all of the assumptions of Corollary 1 will be satisfied and the results of
§ 4·1 will follow, provided n/(n+n*) converges to an element in (0, 1).

5. A  

The following small simulation study is meant to demonstrate that the moderate sample
size properties of the proposed chi-squared statistic for examining a collection of quantiles
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are reasonable. We examine the statistical test proposed in § 4·2 for the collection of
quantiles consisting of the 25th and 75th percentiles in both the independent and repeated
measures data settings. Three different distributions are examined, denoted by D1 , D2 and
D3. Of these, D1 is a mixture distribution, having a 1

3
probability of being a positive

exponential with standard deviation 1 and having a 2
3

probability of being a negative
exponential with standard deviation 2; a random variable with distribution D2 is simply
the negative of a random variable with distribution D1 ; and a random variable with
distribution D3 is simply a random variable with distribution D2 minus the constant 1·674.
The 25th and 75th percentiles of D1 are −0·940 and 0·087; the 25th and 75th percentiles
of D2 are −0·087 and 0·940; and the 25th and 75th percentiles of D3 are the same as the
corresponding percentiles of D1 .

To evaluate type I error and power for moderate sample sizes in the independent data
setting, we generated 5000 pairs of samples for small, n1=n2=20, and large, n1=n2=
200, samples for three different scenarios. Kernel estimators were used with both the
O
p
(n−1/5 ) window width of (3) and (4) as well as the O

P
(n−D ) window width of (2). In the

first scenario, both samples in the pairs were generated from the D1 distribution; for the
second scenario, the first sample of each pair was generated from the D1 distribution while
the second sample was generated from the D3 distribution. The first scenario allows us to
evaluate the type I error when the two distributions being compared are identical, while
the second scenario allows us to evaluate the type I error when the 25th and 75th percen-
tiles match but the densities do not. In both scenarios, the null hypothesis of equal 25th
and 75th quantiles obtains. For the third scenario, the D1 and D2 distributions were
compared to get some idea of power under an alternative hypothesis.

For each pair of samples generated, the statistical test proposed in § 4·2 was computed
and compared against the a=0·05 level critical value for a chi-squared distribution with
2 degrees of freedom. We used 5000 replications to ensure that our Monte Carlo error
for estimating a probability in the region of 0·05 is about 0·003= (0·05×0·95/5000)D. For
the quantile estimates, we utilised the modified empirical distribution function made by
connecting jump points as presented in Lemma 3.

This entire procedure was duplicated for repeated measures data with cluster sizes of
4. To generate each cluster, the 4 elements of the cluster either shared the same random
variable, with probability 1

3
, or consisted of 4 independent and identically distributed

random variables, with probability 2
3
, where all random variables had the same distri-

bution. In this setting, each cluster contains the same amount of information as two
independent random variables; for this reason, the small sample size scenarios used
n1=n2=10 independent clusters per group while the large sample size scenarios used
n1=n2=100 independent clusters per group. The results of this simulation study are
summarised in Table 1.

Under the null hypothesis, this test procedure tends to be conservative for kernel window
widths of O

p
(n−D ) yet less conservative for window widths of O

p
(n−1/5) when sample sizes

are small. However, this conservatism goes away with increasing sample size. It also
appears that conservatism under the null hypothesis is associated with a decrease in power
under the alternative hypothesis. The use of the more optimal window width really does
seem to improve the small-sample performance. The reason for the generally better per-
formance under the D1 versus D3 scenario is unclear, but it may be because the information
for the least informative comparison between quantiles is greater in the D1 versus D3
comparison than in the D1 versus D1 comparison.

While the results of this simulation study are encouraging, it is unclear whether or not
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Table 1. Simulated power for tests of size a=0·05 based on 5000 repli-
cations

Independent data Repeated measures

Distributions Kernel Sample size Simulated Sample size Simulated
compared window length per group power per group power

D1 versus D1 O
p
(n−1/5 ) 20 0·030 10 0·025

200 0·044 100 0·035

O
p
(n−1/2 ) 20 0·001 10 0·007

200 0·026 100 0·025

D1 versus D3 O
p
(n−1/5 ) 20 0·060 10 0·047

200 0·052 100 0·053

O
p
(n−1/2 ) 20 0·004 10 0·008

200 0·034 100 0·030

D1 versus D2 O
p
(n−1/5 ) 20 0·558 10 0·516

200 1·000 100 1·000

O
p
(n−1/2 ) 20 0·305 10 0·347

200 1·000 100 1·000

the bootstrap approach of Keaney & Wei (1994) for right-censored data may be more
effective in small clinical trials than the analytical method proposed in § 4·3. A careful
simulation comparison of these two approaches, building upon the results of § 4·3, along
with additional analytical insights, would be of great practical value.
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