
Statistical Analysis of Diffusion Tensors in Diffusion-weighted Magnetic

Resonance Image Data (Technical Details)
∗

Hongtu Zhu, Heping Zhang, Joseph G. Ibrahim, and Bradley S. Peterson

Abstract

In this technical report, we give detailed information about how to establish asymptotic

theory for one-step weighted least-squares estimates of tensors, estimated eigenvalues and

eigenvectors, and pseudo-likelihood ratio statistics. We establish the strong convergence

rate and asymptotic normality for the one-step weighted least-squares estimates of tensors.

We derive the first-order and second-order expansions of the eigenvalues and eigenvectors

of the estimated diffusion tensors. We also derive the asymptotic distributions of pseudo-

likelihood ratio statistics under the null hypotheses to classify tensor morphologies.
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1 Assumptions

The following assumptions are needed to facilitate the technical details, although they are not

the weakest possible conditions.

(C1) The errors ηi are independent and supi Eη2
i < ∞.

(C2) λmin(An) →∞.

(C3) θ∗ is an interior point of Θ and supi bi < ∞;

(C4) limC→∞ supi E[η2
i 1{|ηi| > C}] = 0 and infi E[η2

i ] > 0, where 1(·) denotes the indicator

function.

(C5) max1≤i≤n zT
i (An)−1zi → 0 as n →∞.

(C6) supi E[η4
i ] < ∞.

(C7)
∑n

i=1 zizT
i is always positive definite for n ≥ 7, and the distribution of (log S1, · · · , log Sn)

is absolutely continuous with respect to n−dimensional Lebesgue measure.

(C8) The three eigenvalues of D̂ are distinct with probability one.

(C9)
√

nvecs(D̂ − D) converges to a multivariate normal distribution with mean 0 and

covariance matrix ΣD.

(C10) Qn converges to a matrix Q, which satisfies 0 < λmin(Q) ≤ λmax(Q) < ∞, where

Qn = G
1/2
n,∗B−1

n,∗G
1/2
n,∗ and λmax(Q) denotes the maximum eigenvalue of Q.

Comments. Conditions (C1)-(C2) are sufficient and necessary conditions for θ̂LS to be

strongly consistency (Lai, Robbins, and Wei 1979; Chen, Hu, and Ying 1999). Condition

(C3) is a natural condition for diffusion tensor imaging, because diffusion tensor is associated

with the covariance matrix of a diffusion process and bi, the b factor, usually range from 0

to 3,000 s/mm2 (Kingsley 2006 a, b, c). Conditions (C4)-(C6) are standard conditions to

establish the asymptotic normality of θ̂LS for a linear heteroskedastic model (Eicker 1963;

White 1980). Condition (C7) is similar to the condition used for sample covariance matrix in

Okamoto (1973). Conditions (C1)-(C7) are sufficient conditions for Conditions (C8) and (C9).

Condition (C10) is required to ensure the asymptotic distributions of PLRT (i).
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2 Proof of Theorem 1

Lemma 1. Assume that

(D1)
∑n

i=1 zn,izT
n,i = I7, where zn,i is a 7× 1 vector;

(D2) |fn,i(θ)| ≤ C1||θ|| and |fn,i(θ1)− fn,i(θ2)| ≤ C2||θ1− θ2|| for all i = 1, · · · , n, where C1

and C2 are constants;

(D3) {εi : i = 1, · · · , n} is a sequence of independent random variables satisfying Eεi = 0

and supi E|εi| < ∞;

(D4) limn→∞ supi z
T
n,izn,i = 0 and supi Eε2i < ∞.

We have the following results.

(i) If assumptions (D1)-(D3) are true, then sup||θ||≤M |eT
k Wn(θ)el| → 0 in probability for

all k, l = 1, · · · , 7, where Wn(θ) =
∑n

i=1(zn,izT
n,i)fn,i(anθ)εi, limn→∞ an = 0 and ek is a 7 × 1

vector with the k−th component as one and zero otherwise;

(ii) If assumptions (D1)-(D4) are true, then sup||θ||≤M |eT
k W ′

n(θ)el| → 0 in probability for

all k, l = 1, · · · , 7, where W ′
n(θ) =

∑n
i=1(zn,izT

n,i)fn,i(θ)εi.

Proof of Lemma 1: The proof consists of two steps as follows:

Step 1: Wn(θ) (or W ′
n(θ)) converges to zero in probability for each ||θ|| ≤ M ;

Step 2: {Wn(θ) : n ≥ 1} (or {W ′
n(θ) : n ≥ 1}) is stochastically equicontinuous on ||θ|| ≤ M .

We prove Steps 1 and 2 for Wn(θ) as follows. For Step 1, let Bn =
∑n

i=1 |(eT
k zn,izT

n,iel)||εi|.

We have

EBn ≤ (sup
i

E|εi|)
n∑

i=1

|eT
k zn,izT

n,iel| ≤ 7(sup
i

E|εi|)

and supn≥1 EBn < ∞, which yields Bn = Op(1). Thus,

|(eT
k Wn(θ)el| ≤ anC1MBn = anOp(1) = op(1)

holds for any ||θ|| ≤ M . For Step 2, because |Wn(θ) − Wn(θ′)| ≤ C2an||θ − θ′||Bn and

Bn = Op(1), Lemma 1 (a) of Andrews (1992) yields the statement in Step 2.

We prove Steps 1 and 2 for W ′
n(θ) as follows. To check Step 1, we apply the weak law of

large numbers (Theorem 1 in Chow and Teicher 1988; p.338). We check the following three
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conditions stated as follows:

(i)
n∑

i=1

P{|Xn,i| ≥ ε} → 0 for ε > 0;

(ii)
n∑

i=1

Var(X2
n,i1{|Xn,i| < 1}) → 0; (iii)

n∑

i=1

E(Xn,i1{|Xn,i| < 1}) → 0;

where Xn,i = (eT
k zn,izT

n,iel)fn,i(θ)εi. Using the Mapkob and Cauchy-Schwartz inequality, we

can prove condition (i) by noting that

n∑

i=1

P{|Xn,i| ≥ ε} ≤ ε−2
n∑

i=1

E|Xn,i|2 ≤ ε−2C1M

n∑

i=1

(zT
n,izn,i)2E|εi|2 ≤ C sup

i
zT

n,izn,i,

where C and C1 are constants. Condition (ii) can be proved by noting that

n∑

i=1

Var(X2
n,i1{|Xn,i| < 1}) ≤

n∑

i=1

E|Xn,i|2 ≤ C sup
i

zT
n,izn,i.

To check condition (iii), we note that |∑n
i=1 E(Xn,i1{|Xn,i| < 1})| can be bounded by

∣∣∣∣∣
n∑

i=1

E(Xn,i1{|Xn,i| ≥ 1})
∣∣∣∣∣ ≤

n∑

i=1

zT
n,izn,iE

[
|εi|1{(max

j
zT

n,jzn,j)|εi| ≥ 1}
]

≤
n∑

i=1

zT
n,izn,i

√
E|εi|2

√
P{(max

j
zT

n,jzn,j)|εi| ≥ 1} ≤ (max
j

zT
n,jzn,j)C,

because E(Xn,i) = 0. To check Step 2, we can show that {W ′
n(θ) : n ≥ 1} is stochastically

equicontinuous on ||θ|| ≤ M by following the same reasoning for Wn(θ). This completes the

proof of Lemma 1.

Proof of Theorem 1: To prove Theorem 1 (a), we consider two different cases for θ̂(0) in Θ∗,δ′ :

a fixed θ̂(0) and a random θ̂(0).

We prove Theorem 1 (a) for the fixed θ̂(0) ∈ Θ∗,δ′ as follows. It follows from condition (C3)

that

0 < m = inf
i≥1,θ∈Θ∗,δ′

exp(2zT
i θ) ≤ sup

i≥1,θ∈Θ∗,δ′
exp(2zT

i θ) = M < ∞,

where Θ∗,δ′ = {θ : ||θ − θ∗|| ≤ δ′} for any δ′ > 0. Thus, for all θ ∈ Θ∗,δ′ , we have mAn ≤

Bn(θ) ≤ MAn and

mλmin(An) ≤ λmin(Bn(θ)) ≤ Mλmin(An). (1)
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By using (C1) and (C2), we can use equation (1) and Theorem 1 of Lai et al. (1979) to

infer, for any δ > 0 and θ ∈ Θ∗,δ′ , we have
(∑n

i=1 exp(2zT
i θ)zizT

i

)−1 ∑
i=1 exp(2zT

i θ)ziηi =

o
({

[log λmin(An)]1+δ/λmin(An)
}1/2

)
almost surely. See also Theorem 1 of Chen et al. (1999).

For the random θ̂(0), such as θ̂LS , we prove Theorem 1 (a) by showing that

sup
θ∈Θ∗,δ′

|| [Bn(θ)]−1
n∑

i=1

exp(2zT
i θ)ziηi|| = o

({
[log λmin(An)]1+δ/λmin(An)

}1/2
)

holds almost surely. It follows from equation (1) that it is sufficient to show that

sup
θ∈Θ∗,δ′

||A−1
n

n∑

i=1

exp(2zT
i θ)ziηi|| = o

({
[log λmin(An)]1+δ/λmin(An)

}1/2
)

, a.s. (2)

To prove (2), we mainly generalize the methods used in Lai et al. (1979), who proved

strong consistency of θ̂LS . Note that an extra term exp(2zT
i θ) appears with each εi. The proof

consists of three steps. We first show that

∞∑

i=1

ci exp(2zT
i θ)ηi converges a.s. for all sequences {ci} such that

n∑

i=1

c2
i < ∞. (3)

Second, we apply the same techniques used in Lai et al. (1979) to prove a general version of

Theorem 2 in Lai et al. (1979), in which we replace εi by exp(2zT
i θ)ηi for all i. Finally, we

apply a Chung-style uniform law of large numbers in Zaman (1989) to prove (2).

To avoid replicating the proof in Lai et al. (1979), we only show (3) as follows. Let

Sn(θ) =
∑n

i=1 ci exp(2zT
i θ)ηi, || · || is the common L2 norm, || · ||0 is the supremum norm:

||f ||0 = supθ∈Θ∗,δ′ |f(θ)|, and || · ||L is the Lipschitz norm given by

||f ||L = sup
θ∈Θ∗,δ′

|f(θ)|+ sup
θ,θ′∈Θ∗,δ′ :θ 6=θ′

|f(θ)− f(θ′)|||θ − θ′||−1.

We first show that the series of random function Sn(θ) converges uniformly in quadratic mean.

Under assumption (C1), we use the type 2 inequality (Araujo and Gine 1980; Zaman 1989) to

conclude that for any m,n,

E||Sn(θ)− Sm(θ)||20 ≤ C

n∑

i=m

E||ci exp(2zT
i θ)ηi||2L ≤ CM2 sup

i
(Eη2

i )
n∑

i=m

c2
i ,

where C is a constant. Thus, the series {Sn(θ) : n ≥ 1} is Cauchy in quadratic mean and

is convergent in quadratic mean. We can apply the Ito-Nisio lemma (Ito and Nisio 1968)
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to conclude that Sn(θ) converges uniformly to a limit function s(θ) ∈ {f(θ)|f : Θ∗,δ′ →

(−∞, +∞) and ||f ||0 < ∞} almost surely. This completes the proof of (3).

To prove Theorem 1 (b), we first prove that

[Gn(θ̂(k))]−1/2Bn(θ̂(k))(θ̂(k) − θ∗) = [Gn(θ∗)]−1/2
n∑

i=1

ωi,∗ziηi[1 + op(1)], (4)

and then we apply the Lindeberg-Feller Theorem to prove that [Gn(θ∗)]−1/2
∑n

i=1 ωi,∗ziηi con-

verges to N(0, σ2I7), where ωi,∗ = exp(zT
i θ∗).

Because [Gn(θ̂(k))]−1/2Bn(θ̂(k))(θ̂(k) − θ∗) can be written as

[Gn(θ̂(k))]−1/2Bn(θ̂(k))[Bn(θ̂(k−1))]−1
n∑

i=1

ω
(k−1)
i ziηi,

we can prove (4) by using the following steps:

||[Gn(θ̂(k))]−1Gn(θ∗)− I7||+ ||Bn(θ̂(k))[Bn(θ̂(k−1))]−1 − I7|| → 0 a.s., (5)

[Gn(θ∗)]−1/2
n∑

i=1

ω
(k−1)
i ziηi = [Gn(θ∗)]−1/2

n∑

i=1

ωi,∗ziηi[1 + op(1)]. (6)

It follows from Theorem 1 (a) and conditions (C2) and (C3) that (5) is true. Furthermore, by

using (C3) and Theorem 1 (a), we have that supi |ω(k−1)
i −ωi,∗| converges to zero almost surely.

Thus, (6) is proved, and so is (4). It follows from conditions (C1)-(C5) and the Lindeberg-Feller

Theorem that [Gn(θ∗)]−1/2
∑n

i=1 ωi,∗ziηi converges to N(0, I7) in distribution.

To prove Theorem 1 (c), let Tn(θ) = [Gn(θ∗)]−1/2Fn(θ)[Gn(θ∗)]−1/2 − I7. We note that

Tn(θ̂(k)) can be rewritten as

[Gn(θ∗)]−1/2
n∑

i=1

zizT
i exp(4zT

i θ∗)Eη2
i [exp(4zT

i ∆(k))ei(θ̂(k))2/Eη2
i − 1][Gn(θ∗)]−1/2,

where ∆(k) = θ̂(k) − θ∗. Now ei(θ̂(k))2 = η2
i − 2zT

i ∆(k)ηi + (zT
i ∆(k))2, Tn(θ̂(k)) can be written

as the sum of term (I), term (II), and term (III), where

term (I) =
n∑

i=1

zn,izT
n,i exp(4zT

i ∆(k))[η2
i − Eη2

i ]/Eη2
i ,

term (II) =
n∑

i=1

zn,izT
n,i exp(4zT

i ∆(k))[−2zT
i ∆(k)ηi]/Eη2

i ,
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term (III) =
n∑

i=1

zn,izT
n,i{exp(4zT

i ∆(k))(zT
i ∆(k))2/Eη2

i + exp(4zT
i ∆(k))− 1},

and zn,i = [Gn(θ∗)]−1/2zi exp(2zT
i θ∗)

√
Eη2

i . Because

sup
i
| exp(4zT

i ∆(k))(zT
i ∆(k))2/Eη2

i + exp(4zT
i ∆(k))− 1| ≤ C3||∆(k)||,

term (III) converges to zero almost surely. Applying Lemma 1 leads to the result that every

element of terms (I) and (II) converges to zero in probability.

3 Proof of Theorem 2

Proof of Theorem 2: We prove Theorem 2 (a) for θ̂LS as follows. The estimated eigenvalues

{m1,m2,m3} are the roots of

g(m) = |D̂−mI3| = m3 −m2I1(D̂) + mI2(D̂)− I3(D̂) = 0,

where I1(D̂) = trace[D̂], I3(D̂) = |D̂|, and

I2(D̂) = D̂11D̂22 + D̂11D̂33 + D̂22D̂33 − (D̂2
12 + D̂2

13 + D̂2
23).

Let d(D̂) be the discriminant of the polynomial g(m). We know (Okamoto, 1973) that

the eigenvalues of D̂ are distinct if and only if d(D̂) 6= 0.

Thus, it suffices to prove that d(D̂) 6= 0 holds with probability one. Because θ̂LS is a linear

combination of log Si and d(D̂) is a polynomial in the elements of D̂, d(D̂) is a polynomial

in the elements of {log S1, · · · , log Sn}, denoted as f(log S1, · · · , log Sn). Using the lemma in

Okamoto (1973), we only need to show that f(log S1, · · · , log Sn) is not identically zero. If we

set log Si = zT
i θ0∗, in which θ0∗ corresponds to a diffusion tensor with three distinct eigenvalues,

then f(zT
1 θ0∗, · · · , zT

nθ0∗) is not equal to zero. This proves Theorem 2 (a).

We prove Theorem 2 (b) in two steps. In Step 1, we consider any fixed θ̂(0) ∈ Θ∗,δ′ . Thus,

θ̂(1) = [
n∑

i=1

zizT
i exp(2zT

i θ̂(0))]−1
n∑

i=1

exp(2zT
i θ̂(0))zi log Si
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is a polynomial function of {log S1, · · · , log Sn}. Similar to the argument for Theorem 2 (a),

we can use the lemma in Okamoto (1973) to complete the proof of Theorem 2 (b).

In Step 2, we consider any random θ̂(0) ∈ Θ∗,δ′ . Note that θ̂(1) = [Bn(θ̂LS)]−1
∑n

i=1 exp(2zT
i θ̂LS)zi log Si.

Let D̂(1) be the diffusion tensor of θ̂(1) and let d(D̂(1)) be the discriminant of the polynomial

g(m) = |mI3 − D̂(1)| = 0. Thus, by using Fubini’s Theorem, we have P ({d(D̂(1)) = 0}|θ̂LS ∈

Θ∗,δ′) can be written as

∫
P ({d(D̂(1)) = 0}|θ̂LS = θ, θ̂LS ∈ Θ∗,δ′)p(θ̂LS = θ|θ̂LS ∈ Θ∗,δ′)dθ, (7)

where {d(D̂(1)) = 0} denotes the event d(D̂(1)) = 0, p(θ̂LS = θ|θ̂LS ∈ Θ∗,δ′) is the conditional

density function of θ̂LS given θ̂LS ∈ Θ∗,δ′ , and P ({d(D̂(1)) = 0}|θ̂LS = θ, θ̂LS ∈ Θ∗,δ′) is the

conditional probability of {d(D̂(1)) = 0} given θ̂LS = θ and θ̂LS ∈ Θ∗,δ′ . We note that θ̂LS is

a linear combination of {log Si : i = 1, · · · , n} and θ̂(1) given θ̂LS = θ is a linear function of

{log Si : i = 1, · · · , n}. It follows from Okamoto’s (1973) lemma that P ({d(D̂(1)) = 0}|θ̂LS =

θ, θ̂LS ∈ Θ∗,δ′) = 0 holds for almost every θ ∈ Θ∗,δ′ . Thus, P ({d(D̂(1)) = 0}|θ̂LS ∈ Θ∗,δ′) = 0.

4 Proof of Theorem 3

Proof of Theorem 3. For an isotropic tensor, we have Λ = λI3, Γ = I3, and CT
n = E. Recall

that Tn = λI3 + n−1/2Un, we have

Tn = CT
nMCn = CT

n (λI3 + n−1/2Hn)Cn = λI3 + n−1/2CT
nHnCn,

where Hn =
√

n(M − λI3). Thus, Un = CT
nHnCn, and Cn and Hn are uniquely de-

fined as continuous functions of Un with the proper ordering except on a set of probabil-

ity 0. Using a theorem due to Rubin (Anderson, 2003; Theorem 13.5.3), we can infer that

the limiting distribution of Hn and Cn is determined by CTHC = U and the distribu-

tion of U, in which H = diag(h1, h2, h3) and C = (cij) satisfy h1 > h2 > h3, cii > 0 for

i = 1, 2, 3, and CTC = I3×3. Note that the density of the distribution of U is proportional to

|ΣU|−1/2 exp{−1
2vecs(U)T Σ−1

U vecs(U)}. Using a result due to Hsu, P.L. (Deemer and Olkin,
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1951), we can obtain that the Jacobian of the transformation from U to H and C is propor-

tional to (h1 − h2)(h2 − h3)(h1 − h3). Thus, combining the above two results, we can obtain

the joint density of H and C as given in Theorem 3.

Because h1 ≥ h2 ≥ h3 are three eigenvalues of U, −h3 ≥ −h2 ≥ −h1 are the corresponding

eigenvalues of −U. Moreover, since U and −U follow the same distribution, h2 and −h2 follow

the same distribution. Thus, E(h2) = E(−h2), which yields that E(h2) = 0. Similarly, we

can show that E(h1 + h2 + h3) = 0. We can use the explicit form of p(h,C) to infer that

E(h1 − h2) > 0 and E(h2 − h3) > 0. Finally, we get E(h1) > E(h2) = 0 > E(h3).

5 Proof of Theorem 4

Proof of Theorem 4. We have Tn = Λ + n−1/2Un = CT
nMCn = CT

n (Λ + n−1/2Hn)Cn. Using

a matrix representation, we get



λ1I2 0

0T λ3


 + n−1/2




Un,11 Un,12

Un,21 Un,22


 =




CT
n,11 n−1/2FT

n,21

n−1/2FT
n,12 Cn,22


×




λ1I2 + n−1/2Hn,1 0

0T λ3 + n−1/2hn,3







Cn,11 n−1/2Fn,12

n−1/2Fn,21 Cn,22




=




λ1CT
n,11Cn,11 0

0T λ3C2
n,22


 + n−1/2 ×




CT
n,11Hn,1Cn,11 λ1CT

n,11Fn,12 + λ3FT
n,21Cn,22

λ1FT
n,12Cn,11 + λ3Cn,22Fn,21 C2

n,22hn,3


 + n−1Mn,

where Fn,12 =
√

nCn,12, Fn,21 =
√

nCn,21, and Mn is given by




Mn,11 Mn,12

Mn,21 Mn,22


 =




(λ3 + n−1/2hn,3)FT
n,21Fn,21 CT

n,11Hn,1Fn,12 + hn,3Cn,22FT
n,21

FT
n,12Hn,1Cn,11 + hn,3Cn,22Fn,21 λ1FT

n,12Fn,12 + n−1/2FT
n,12Hn,1Fn,12


 .
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Because CT
nCn = CnCT

n = I3, we know that



I2 0

0T 1


 =




CT
n,11Cn,11 0

0T C2
n,22


 + n−1/2 ×




0 CT
n,11Fn,12 + FT

n,21Cn,22

FT
n,12Cn,11 + Cn,22Fn,21 0


 + n−1




FT
n,21Fn,21 0

0T FT
n,12Fn,12


 .

This gives

CT
n,11Cn,11 = I2 − n−1FT

n,21Fn,21, Cn,11CT
n,11 = I2 − n−1Fn,12FT

n,12,

CT
n,11Fn,12 + FT

n,21Cn,22 = 0, and C2
n,22 = 1− n−1FT

n,12Fn,12.

Combining the above results, we get

Un,11 = CT
n,11Hn,1Cn,11 + n−1/2(Mn,11 − λ1FT

n,21Fn,21),

Un,12 = (λ1 − λ3)CT
n,11Fn,12 + n−1/2Mn,12,

and Un,22 = C2
n,22hn,3 + n−1/2(Mn,22 − λ3FT

n,12Fn,12). Furthermore, by following the same

reasoning in Theorem 13.5.1 of Anderson (2003) and Anderson (1963), it follows that

CT
n,11Hn,1Cn,11 = Un,11 + n−1/2(λ1 − λ3)FT

n,21Fn,21 + op(n−1/2),

hn,3 = Un,22 − (λ1 − λ3)n−1/2FT
n,12Fn,12 + op(n−1/2), (8)

C2
n,22 = 1− n−1FT

n,12Fn,12 + op(n−1),

CT
n,11Fn,12 = −FT

n,21Cn,22 = −FT
n,21 + op(n−1/2), and

CT
n,11Fn,12 = Op(1) = (Un,12 − n−1/2Mn,12)/(λ1 − λ3) + op(n−1/2).

The above results lead to Theorem 4 (a), (b), and (c). By using the transformation given by

h̃1 = −h2 and h̃2 = −h1, we can prove that E(h1 + h2) = 0 and E(h1) > 0 > E(h2).

By using CT
n = ΓTE, we obtain E = (e1, e2, e3) = ΓCT

n , which leads to

(e1, e2) = (v1,v2)CT
n,11 + n−1/2v3UT

n,12C
T
n,11/(λ1 − λ3) + op(n−1/2). (9)

9



Furthermore, by using (8), we have

√
n(e3 − v3) = (v1,v2)FT

n,21 − 0.5v3n
−1/2FT

n,12Fn,12 + op(n−1/2)

= −(v1,v2)[I2 − n−1/2(CT
n,11Hn,1Cn,11 −Un,22I2)(λ1 − λ3)−1]Un,12(λ1 − λ3)−1

− 0.5v3n
−1/2Un,21CT

n,11Cn,11Un,12/(λ1 − λ3)2 + op(n−1/2).

Using (9) and the results in Theorem 4 (a), (b), and (c), the proof of Theorem 4 (d) immediately

follows.

Proof of Corollaries 1 and 2. The technical arguments are similar to the proof of Theorem 4

and thus the details are omitted for brevity.

6 Proof of Theorem 5

Proof of Theorem 5: The key idea in deriving the asymptotic distributions of PLRT (i) is as

follows. After some algebraic and probabilistic manipulations, we get

`n(θ|θ̂LS)− `n(θ∗|θ̂LS) = θ̂(1)T Bn(θ̂LS)θ̂(1) − (θ − θ̂(1))T Bn(θ̂LS)(θ − θ̂(1)) (10)

= ZT
nQnZn − [Kn(θ − θ∗)− Zn]TQn[Kn(θ − θ∗)− Zn][1 + op(1)],

where Kn = G
−1/2
n,∗ Bn,∗, Qn = G

1/2
n,∗B−1

n,∗G
1/2
n,∗ , and Zn = C

−1/2
n,∗

∑n
i=1 ziηiωi,∗, in which Gn,∗ =

Gn(θ∗), Bn,∗ = Bn(θ∗), and ωi,∗ = exp(2zT
i θ∗). Thus, we establish a quadratic expansion of

`n(θ|θ̂LS) in θ about θ∗. Finally, we apply the asymptotic results in Andrews (2001) and Zhu

and Zhang (2006) to deriving the limiting distributions of PLRT (i).

It follows from Theorem 1 of Andrews (2001) that

max
θ∈Θ(j)

`n(θ|θ̂LS) = `n(θ∗|θ̂LS) + ZT
nQnZn − max

ω∈Ω(j)
[ω − Zn]TQn[ω − Zn][1 + op(1)], (11)

in which {Kn(θ−θ∗)/bn : n ≥ 1} locally approximates a cone Ω(j), where Kn = [Gn(θ∗)]−1/2Bn(θ∗),

bn → ∞, and bn ≤ Cλmin(Kn) ≤ C
√

λmin(An). The parameter spaces Θ(i) can be, respec-
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tively, written as

Θ(1) = {(log S0, λ) : log S0 ∈ R, D = λI3 ≥ 0},

Θ(2) = {(log S0, a, b, c, d) : log S0 ∈ R, D = a2I3 − a2 sin2(b)vvT }, and (12)

Θ(3) = {(log S0, a, b, c, d) : log S0 ∈ R, D = a2 sin2(b)I3 + a2[1− sin2(b)]vvT },

in which v = (cos(d), cos(c) sin(d), sin(c) sin(d))T . Therefore, we have

PLRT (j) = max
ω∈Ω(j)

[ω − Zn]TQn[ω − Zn] + op(1).

To derive the asymptotic distribution of PLRT (j), we only need to study the geometric struc-

ture of Ω(j) for j = 1, 2, 3.

For θ ∈ Θ(1), θ = G1ξ, where

ξ =




ξ1

ξ2


 and GT

1 =




1 0 0 0 0 0 0

0 1 0 0 1 0 1


 .

Thus, the isotropic hypotheses can be written as H
(1)
0 : θ = G1ξ, ξ ∈ R2 versus H

(1)
1 : θ ∈ Θ.

Because D has the form λI3 with λ > 0 under H
(1)
0 , we can get Ω(1) = {ω : ω = G1ξ, ξ ∈ R2}.

Finally, we obtain that PLRT (1) converges to X(1) = ZT [Q − QGT
1 (G1QGT

1 )−1G1Q]Z in

distribution.

For θ ∈ Θ(2), we consider two different cases of D = λ1I3 − (λ1 − λ3)v3vT
3 : λ1 − λ3 > 0

and λ1 = λ3. If λ1 > λ3, we define

ξT = (ξ1, ξ2, ξ3, ξ4, ξ5) = (S0, λ1,
√

λ1 − λ3vT
3 )

and ξ∗ is the true value under the null hypothesis H
(2)
0 . Thus, θ can be written as a function

of ξ as follow:

θ(ξ) = (ξ1, ξ2 − ξ2
3 ,−ξ3ξ4,−ξ5ξ3, ξ2 − ξ2

4 ,−ξ4ξ5, ξ2 − ξ2
5)

T .

Differentiating θ with respect to ξ, we can prove that the rank of ∂θ(ξ)/∂ξ evaluating at ξ∗

is 5, because ξ2
3,∗ + ξ2

4,∗ + ξ2
5,∗ = λ1 − λ3 > 0. Let G2 = ∂θ(ξ∗)/∂ξ, we get that Ω(2) = {ω :

11



ω = GT
2 ξ, ξ ∈ R5} and PLRT (2) converges to X(2) = ZT [Q − QGT

2 (G2QGT
2 )−1G2Q]Z in

distribution.

When λ1 = λ3 > 0, we cannot use the previous method since the rank of G2 is not full rank.

Thus, we introduce a new parametrization ξ = (S0, λ1, λ1 − λ3)T = (ξ1, ξ2, ξ3)T . Therefore,

the diffusion tensor can be written as D = ξ2I3 − ξ3eeT , where e = (e1, e2, e3)T and eeT = 1.

Hence, θ can be written as

θ(ξ|e) = (ξ1, ξ2 − ξ3e
2
1,−ξ3e1e2,−ξ3e1e3, ξ2 − ξ3e

2
2,−ξ3e2e3, ξ2 − ξ3e

2
3)

T .

Let Θ(2|e) = {θ : θ = θ(ξ|e)}. Differentiating θ(ξ|e) with respect to ξ for any given e,

it follows that the rank of G3(e) = ∂θ(ξ|e)/∂ξ is 3 and Θ(2|e) can be approximated by

Ω(2|e) = {ω : ω = G3(e)T ξ, ξ3 ∈ [0,∞)}. Finally, we have

PLRT (2) = sup
e:eT e=1,

sup
ω∈Ω(2|e)

[Zn − ω]TQn[Zn − ω] + op(1)

→L sup
e:eT e=1

ZT {Q−QG3(e)T [G3(e)QG3(e)T ]−1G3(e)Q}Z.

Similar to PLRT (2), we can establish the asymptotic distribution of PLRT (3).

7 Approximating X(i)

Because similar procedure can be developed for X(2) and X(3), we only give a procedure

for approximating X(1) as follows. First, X(1) can be written as ZT Σ(1)Z and Σ(1) =

Q − QGT
1 (G1QGT

1 )−1G1Q, in which Q is the limit of Qn, G1 is a matrix defined in the

proof of Theorem 5, and Z is a multivariate Gaussian random vector that has mean 0 and

covariance matrix I7. Second, we can construct a consistent estimate of Σ(1), Σ̂(1) = Q̂ −

Q̂GT
1 (G1Q̂GT

1 )−1G1Q̂, where Q̂ = Fn(θ̂(1))1/2Bn(θ̂(1))−1Fn(θ̂(1))1/2. Third, we can approx-

imate X(1) by a scaled χ2 distribution c1χ
2(ν1), where ν1 is the degree of freedom (Chou

et al. 1991). Fourth, we use the moment matching technique to match the mean and

variance of c1χ
2(ν1) with those of X(1) in order to estimate c1 and ν1. Finally, we have

c1 =
∑6

i=1 γ2
i /

∑6
i=1 γi and ν1 = (

∑6
i=1 γi)2/

∑6
i=1 γ2

i , where γi are eigenvalues of Σ̂(1).
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