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Summary: In linkage analysis, it is often necessary to include covariates such as age or weight to

increase power or avoid spurious false positive findings. However, if a covariate term in the model is

specified incorrectly (e.g., a quadratic term misspecified as a linear term), then the inclusion of the

covariate may adversely affect power and accuracy of the identification of Quantitative Trait Loci

(QTL). Furthermore, some covariates may interact with each other in a complicated fashion. We

implement semiparametric models for single and multiple QTL mapping. Both mapping methods

include an unspecified function of any covariate found or suspected to have a more complex than

linear but unknown relationship with the response variable. They also allow for interactions among

different covariates. This analysis is performed in a Bayesian inference framework using Markov

chain Monte Carlo. The advantages of our methods are demonstrated via extensive simulations and

real data analysis.
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1. Introduction

Unlike monogenic traits where success in associating genotype to phenotype is assured,

complex traits pose significantly greater challenges. Parametric genetic mapping using ex-

perimental populations, such as backcrosses, F2 intercross or Recombinant Inbred Lines

(RIL) have been well developed during the past 15 years (see Doerge et al., 1997 for an

introduction to QTL mapping in inbred line crosses). Many excellent open source software

packages, such as QTLCart (Basten et al., 1999), MapManager (Manly and Olson, 1999),

MapMaker (Lincoln et al., 1993), and R/qtl (Broman et al., 2003) are freely available on-line.

These QTL mapping packages often model the effects of non-genetic covariates linearly, for

example,

y = µ + βx + ζt + e, (1)

where y is the measured quantitative trait; t is the non-genetic covariate; x is the genetic

factor, and e is the random error term. However, in practice, the QTL position is unknown,

resulting in missing x (missing for all individuals).

Although most available QTL mapping methods only map one or a few QTL at a time

and are not efficient for complex trait mapping, recently multiple QTL have been mapped

simultaneously by treating QTL mapping as a large-scale variable selection problem: for

example, for a backcross population and with q potential QTL positions (selected grid of

positions across the genome), where q is in the hundreds or thousands and typically (much)

larger than the sample size, there are 2q possible main effect models. Variable selection

methods are needed that are capable of selecting variables that are not necessarily all

individually important but rather together important. By treating multiple quantitative

trait locus (QTL) mapping as a model/variable selection problem (Broman and Speed, 2002),

forward and step-wise selection procedures have been proposed to search for multiple QTL.

Although simple, these methods have their limitations, such as uncertainty about the number
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of QTL, the sequential model building that makes it unclear how to assess the significance of

the associated tests, etc. Bayesian QTL mapping methods (Satagopan, 1996; Sillanpää and

Arjas, 1998; Stephens and Fisch, 1998; Yi and Xu, 2000, 2001; Hoeschele, 2007) have been

developed, in particular, for the detection of multiple QTL by treating the number of QTL

as a random variable and by specifically modeling it using reversible jump Markov chain

Monte Carlo (MCMC) (Green, 1995). Due to the variable dimensionality of the parameter

spaces associated with different models (different numbers of QTL), care must be taken in

determining the acceptance probability for such changes in dimension, which in practice may

not be handled correctly (Ven, 2004). To avoid this problem, another leading approach to

variable selection in QTL analysis implemented by MCMC is based on the composite model

space framework (Godsill, 2001, 2003) and has been introduced to genetic mapping by Yi

(2004). Bayesian variable selection methods such as reversible jump MCMC (Green, 1995)

and stochastic search variable selection (SSVS) (George and McCulloch, 1993) are special

cases of this framework. A modification that treats (variance) hyperparameters as unknown

was recently found to produce a better mixing MCMC sampler for multiple QTL mapping

(Yi et al., 2007). Recently, Yi and Xu (2008) have developed a Bayesian LASSO (Tibshirani,

1996) for QTL mapping.

In some studies, however, the relationship between y and t may not be linear. In their

study of the metabolic syndrome, McQueen et al (2003) have found a nonlinear effect

of alcohol consumption on the quantitative traits they investigated. Incorrect modeling

of the covariate effect may adversely affect power and accuracy of QTL identification.

Semiparametric regression modeling, where ζt in (1) is replaced by an unspecified function

η(t), has attracted considerable attention in the statistical literature. When x is observed,

model (1) reduces to the semiparametric regression model, which is well investigated in the

spline literature as well as in the kernel regression literature. Examples for spline regression
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include Wahba (1984), Heckman (1986), Chen (1988), Speckman (1988), Cuzick (1992),

Hastie and Loader (1993) and Mays (1995) while examples for kernel regression include

Härdle (1990), Wand and Jones (1995), and Fan (1992). Spline regression requires a penalty

weight to balance between goodness-of-fit and complexity. To account for the non-linear effect

of the alcohol consumption, McQueen et al. (2003) categorized the alcohol consumption into

five non-overlapping groups in their linear regression analysis, which is essentially a special

form of spline regression, so-called local polynomial regression. Kernel regression, on the

other hand, needs a bandwidth to determine the degree of localness and smoothness of η. The

choice of a bandwidth, and not the choice of a kernel function, is critical for the performance

of the nonparametric fit (Härdle, 1990). Bayesian approaches to semiparametric regression

have also been developed. Bayesian nonparametric methods achieve flexibility by putting

priors on distribution spaces, corresponding to infinitely dimensional parameterizations. The

leading Bayesian methods include Dirichlet process (Müller, et al. 1996), splines (Smith and

Kohn, 1996; Denison et al., 1998; DiMatteo et al., 2001), wavelets (Abramovich et al., 1998)

and Gaussian process (Neal, 1997, 1996). Gaussian process priors date back to at least

O
′

Hagan (1978) and have a large support in the space of all smooth functions through an

appropriate choice for the covariance kernel. Gaussian process is particularly flexible for curve

estimation because of their flexible sample path shapes. Wahba (1978) has shown that for an

appropriate choice of the covariance kernel of the Gaussian process, the Bayesian estimator

is a smoothing spline. However, Gaussian process better suited for modeling with multiple

(even many) covariates than the smoothing spline approach.

Applying spline regression and kernel regression techniques to semiparametric interval QTL

mapping is challenging, especially when mapping multiple QTL, due to the missing QTL

genotypes. The Bayesian approach, however, is very flexible in handling missing data. In this

paper, we propose novel Bayesian methods for interval QTL mapping of a single QTL and
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of multiple QTL which incorporate an unspecified function of a single covariate or multiple

covariates using a Gaussian process prior. The rest of the paper is organized as follows. We

first introduce the underlying semiparametric QTL model for single QTL mapping and the

general development of the Markov Chain Monte Carlo (MCMC) sampler in Section 2. We

then develop semiparametric multiple QTL mapping in Section 3. Simulation results are

presented in Sections 4.1 amd 4.2, and the analysis of a real data set is presented in Section

4.3. We end the paper with comments and conclusions in Section 5.

2. Single QTL Mapping

Quantitative traits are usually controlled by both genetic and environmental factors, such as

diet and exposure to chemical toxicities. When studying natural populations, like humans,

it is difficult to separate environmental and genetic effects. With experimental organisms,

uniform genetic backgrounds and controlled breeding schemes can avoid environmental vari-

ability which may obscure genetic effects. It is considerably easier to map quantitative

traits with experimental populations than with natural populations. For this reason, crosses

between completely inbred lines are often used for detecting QTL. QTL line-cross analysis

has been widely applied in the plant sciences. It has also been used successfully in a number

of animal species, such as mice and rats (Stoehr et al., 2000; Lan et al., 2001). Because of

the homology between humans and rodents, animal models are extremely useful in helping

us to understand human diseases.

The backcross (BC) and F2 intercross are two of the most popular mapping populations in

QTL studies. Suppose two inbred parents (P1 and P2) differ in some quantitative traits. At

each locus, we label the allele of parent P1 as a and the allele of P2 as A. An F1 generation is

completely heterozygous with genotype Aa at all loci, receiving one allele from each parent.

Thus, there is no segregation in F1 individuals. A BC population is generated when F1 is

crossed back with one of its parents, for example, P2. At each locus, every BC individual
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has equal probability of 1/2 to be Aa or AA, respectively. Thus there is segregation in BC

since BC individuals are no longer genetically identical at each locus. Similarly, crossing F1

individuals generates an F2 population in which each individual has probability 1/4, 1/2 and

1/4 of being aa, Aa and AA, respectively. The combination of the two alleles in an individual

is a genotype, and the genotypes can be determined at a number of loci, called marker loci

(or genetic markers), throughout the genome. These loci are often not the functional loci

(QTL) that we wish to identify and whose genotypes can generally not be measured but

rather inferred (with some uncertainty) from the genotypes at nearby markers.

The QTL data available include the trait values or phenotypes (the dependent variable)

yi (i = 1, · · · , n), the discrete marker genotypes mij (i = 1, · · · , n, j = 1, · · · , m), and an

additional covariate ti (i = 1, · · · , n), where n is sample size (the number of individuals) and

m is the number of genetic markers. The genotypes at a putative QTL may be denoted by

{bb, Bb, bb} to distinguish the QTL genotypes from the marker genotypes {aa, Aa, AA}.

The single QTL model assumes that there is only one QTL affecting the trait according

to the linear regression model in Equation (1). If the QTL genotypes are observed, QTL

mapping is a simple linear regression problem. However, in practice, the QTL position is

rarely known and the genotypes are typically unobserved, resulting in all missing xis. The idea

behind interval mapping (Lander and Botstein, 1989) is that at any putative QTL position

located in an interval between two marker loci (typically on an evenly spaced, genome-wide

grid), we can compute the probabilities of the unobserved QTL genotypes for each individual

given its genotypes at the pair of closest flanking marker loci (see chapter 15 of Lynch and

Walsh, 1998). The distribution of the quantitative trait given the marker genotypes thus

follows a finite mixture model. Under this model, the null (alternative) hypothesis for a

putative QTL position is that its genotypes do not (do) affect the phenotype of interest. The

null hypothesis is evaluated via the likelihood ratio, and a plot of likelihood ratios versus
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putative QTL positions is called a log-likelihood (ratio) profile. In any region where the

profile exceeds a (genome-wide) significance threshold, a QTL is declared at the position

with the highest log-likelihood ratio.

When a parametric model is specified incorrectly, estimation bias can result, and the

incorrect or inefficient modeling of the covariate effect may adversely affect the power and

precision of the QTL identification. To alleviate this problem, we propose a semiparametric

model of the form

yi = βxi + η(ti) + ei, i = 1, · · · , n, (2)

where xi is the indicator of the QTL genotype (e.g., with values -1 and 1 depending on

whether the QTL genotype is Aa or AA in a backcross population); β is the effect of the

QTL; η(t) is an arbitrary function with no particular parametric form specified, and ei is

the error term with independent distribution N(0, σ2
e). Note that here ti can be a scalar

corresponding to a single covariate or a vector representing multiple covariates.

As all our inference is performed conditional on the marker genotypes, i.e. on M = {mij},

we suppress this conditioning notation for the remainder of the paper. In Bayesian analysis, a

prior distribution of the unobserved variables is combined with the likelihood of the observed

data to obtain a posterior distribution of the unknown variables. Since the QTL position, λ,

and therefore, the QTL genotypes are unknown, the unobserved variables of model (2) are

η, λ, x = {xi}
n
i=1, β and σ2

e . Below we describe in detail some of the prior and conditional

posterior distributions.

2.1 Prior Specifications.

2.1.1 Gaussian process prior for covariate function. A prior probability density

p(η|t) is induced by using a Gaussian process. A Gaussian process is a stochastic process

such that each finite dimensional distribution is multivariate normal. Thus any Gaussian
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process is specified by its mean function and covariance kernel. A wide array of functions

can be derived as sample paths of a Gaussian process.

Let t1, t2, · · · , tk be the set of distinct covariate values and dj the number of occurrences of

tj, j = 1, · · · , k. A Gaussian process on domain T is a random, real valued function η(t) such

that all possible finite dimensional distributions (η(t1), · · · , η(tk))
T are multivariate normal,

with E(η(tj)) = µ(tj) and cov(η(tj1), η(tj2)) = σ(tj1, tj2) for j1, j2 = 1, · · · , k. The fixed

real valued function µ(t) is known as the mean function, and the function σ(t, t′) is known

as the covariance kernel, which must satisfy the condition that the resulting k × k matrix

Σ with (i, j)th element equal to σ(ti, tj) is positive definite. Smoothness of the covariance

kernel essentially controls the smoothness of the sample paths of η. For an appropriate choice

of the covariate kernel, a Gaussian process has a large support in the space of all smooth

functions (Abrahamsen, 1997; Mackay, 1998).

To specify a Gaussian process prior with µ = {µ(tj)}
k
j=1 and Σ, one may consider some

parametric forms for the functional parameters while putting priors on the hyper-parameters.

To build the prior around a parametric family, we consider

µ(t; α) = α1f1(t) + · · · + αlfl(t), (3)

where l is a fixed integer, and {f1, · · · , fl} are known (for example polynomial) functions in t

with the scaled hyper-parameters α = {αj}
l
j=1 unknown. Such a class of parametric families

covers a wide variety of functions with appropriate choice of fj(t). For the covariance kernel,

consider the simplest parametric form σ(t, t′) = σ0(t, t
′)/τ for unknown hyper-parameters

τ > 0, and known kernel σ0, such as, σ0(t, t
′) = exp{−(t − t′)2}. There are many other

types of kernel functions that can be applied (see Mackay, 1998 for details). Note that the

posterior mean of η almost interpolates the data as τ → 0, while the posterior distribution

is concentrated near the prior mean function as τ → ∞. Clearly τ controls the smoothness

of η.
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In practice, reasonable choices of conjugate prior distributions for τ and α are an inverse

Gamma distribution on τ and an independent l-variate normal distribution on α. Specifically,

we consider the following hierarchical model

τ ∼ inverse Gamma(a, b),

α ∼ N(α0, Γ),

η|α, τ ∼ Gaussian process(µ,Σ0/τ) (4)

where Σ0 is the k × k matrix with element (j1, j2) equal to σ0(tj1; tj2).

2.1.2 Priors for the remaining parameters. The prior on the QTL position, λ,

is non-informative with a uniform distribution over the entire genome. Given λ, for each

individual i, the probability of its QTL genotype is a function of the genotypes of the two

markers flanking λ and of the locations of the two flanking markers, and it is denoted by

p(xi|miL(λ), miR(λ), dL(λ), dR(λ), λ), where miL(λ) and miR(λ) are the genotypes of the

markers to the left and right of locus λ, respectively; dL(λ) and dR(λ) are the locations of

the flanking markers (see chapter 15 of Lynch and Walsh, 1998 for detailed calculations).

QTL effect and error variance are assumed to be independent a priori with noninformative

priors p(β) ∝ 1 and p(σ2
e) ∝ 1/σ2

e . The choice of these priors is due to their computational

simplicity and our lack of knowledge on these parameters. If prior data is available, more

informative priors can be employed.

2.2 MCMC algorithm for posterior computation. Note that given the nonparametric

component η, (2) becomes a linear model with yi replaced by yi−η(ti). Given the parameters

of the genetic component (β, x), model (2) reduces to a traditional nonparametric model if yi

is replaced by yi−βxi. Below we present the MCMC algorithm for the posterior computation,

which is largely based on the Gibbs sampling approach.

First we initialize parameters and hyperparameters σ2
e , τ , β, λ, a and b. Then we perform

the following updating steps many times:
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Step 1. Sample η: Conditional on η, the yi’s are independent normal random variables with

variance σ2
e and mean βxi + η(ti). Let Uj be the average of all yi − βxi for those individuals

whose corresponding covariate value is tj, j = 1 · · · , k and U = {Uj}
k
j=1. Further, let D be a

diagonal matrix with diagonal element i equal to di/σ
2
e . Then the conditional distribution of

η is k-variate normal η|y, α, β, τ ∼ Nk(µ
?,Σ?), where Σ? = (D + Σ−1)−1 and mean vector

µ? = Σ?D(U − µ) + µ.

Step 2. Sample α and τ : Let F be the k × l matrix with the (j, r)th element equal to

fr(tj). Since y affects the distributions of α and τ only through η, we have the following

conditional posterior distributions:

α|τ, η,y = α|τ, η ∼ N(α?
0, Γ

?),

τ |α, η,y = τ |α, η ∼ inverse Gamma(a∗, b∗),

where Γ∗ = (τF TΣ−1
0 F + Γ−1)−1, α∗

0 = τΓ∗F TΣ−1
0 (η − Fα0) + α0, a

∗ = a + k/2 and

b∗ = b + (η − Fα)TΣ−1
0 (η − Fα)/2.

Step 3. Sample β from its conditional posterior distribution, which is normal

N
(
∑n

i=1
xi{yi−η(ti ;α)}
∑n

i=1
x2

i

, σ2
e

∑n

i=1
x2

i

)

.

Step 4. Sample σ2
e from the inverse Gamma distribution with parameters n/2 and

∑n
i=1{yi−

βxi − η(ti; α)}2/2.

Step 5. Sample QTL position λ and QTL genotypes x jointly in a Metropolis-Hastings

step detailed below. A new QTL position λ∗ and new QTL genotypes x∗
i , i = 1, . . . , n are

proposed jointly by first sampling λ∗ from a uniform proposal distribution centered on the

current λ, U [λ − δ, λ + δ), where δ is prespecified to yield a desirable acceptance rate (say

20-40%), and q(λ∗|λ) is the density of this distribution (it needs a slight modification when

λ is located near the end of a chromosome). Given the new position λ∗, the QTL genotypes
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x∗
i are sampled directly from their fully conditional posterior distributions

q(x∗
i | λ∗)

def
=

p(yi|x
∗
i , β, η(ti)) · p(x∗

i |miL(λ∗), miR(λ∗), dL(λ∗), dR(λ∗), λ∗)
∑

h∈{−1,+1} p(yi|h, β, η(ti)) · p(h|miL(λ∗), miR(λ∗), dL(λ∗), dR(λ∗), λ∗)
,

where p(yi|xi, β, η(ti)) follows from equation (2), i.e., p(yi|xi, β, η(ti)) ∝ exp{−(yi − βxi −

η(ti))
2/(2σ2

e)}. The sampled new position and QTL genotypes are accepted jointly with a

probability equal to min(1,γ), where

γ =
p(λ∗, x∗|y, β, η)

p(λ, x|y, β, η)

q(λ)
∏n

i=1 q(xi | λ)

q(λ∗)
∏n

i=1 q(x∗
i | λ∗)

The ratio of the joint posteriors of QTL position and genotypes evaluated at the proposed

and current values is

p(λ∗, x∗|y, β, η)

p(λ, x|y, β, η)
=

n
∏

i=1

p(yi|x
∗
i , β, η(ti)) · p(x∗

i |miL(λ∗), miR(λ∗), dL(λ∗), dR(λ∗), λ∗)

p(yi|xi, β, η(ti)) · p(xi|miL(λ), miR(λ), dL(λ), dR(λ), λ)
.

Consequently, γ is simplified as

γ =
n
∏

i=1

∑

h∈{−1,+1} p(yi|h, β, η(ti)) · p(h|miL(λ∗), miR(λ∗), dL(λ∗), dR(λ∗), λ∗)
∑

h∈{−1,+1} p(yi|h, β, η(ti)) · p(h|miL(λ), miR(λ), dL(λ), dR(λ), λ)

q(λ)

q(λ∗)
.

One iteration or cycle of our MCMC sampler consists of steps 1 to 5. When the chain

converges to its stationary distribution, the sampled values of all parameters are from their

joint posterior distribution. Likewise, the samples of any single parameter represent the

marginal posterior distribution of this parameter.

3. Multiple QTL Mapping

We now extend the single QTL model to a multiple QTL model, or

yi =
q
∑

j=1

βjxij + η(ti) + ei, i = 1, · · · , n, (5)

where xij is the indicator of the genotype of the ith individual at the jth putative QTL; q

is the total number of QTL; βj is the effect of the jth QTL; η(t) and ei are defined as for

model (2) in the previous section.

For multiple Bayesian QTL interval mapping, we follow Wang et al. (2005) and assume (at

most) one QTL within each marker interval. That is, in this paper, we assume q in model
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(5) equals the number of marker intervals. When marker intervals are short, it is reasonable

to make this assumption. For intervals that are not short enough to meet this assumption,

we can further divide them into sub-intervals with pseudo-markers. Similar to the single

QTL mapping, here the QTL positions, λ = {λj}
q
j=1, and therefore, the QTL genotypes

X = {xj}
q
j=1 (with xj = {xij}

n
i=1) are unknown. Therefore, the unobserved variables of

model (5) are function η, error variance σ2
e , QTL positions λ, QTL genotypes X, and QTL

effects, β = {βj}
q
j=1.

3.1 Prior Specifications

The priors of η and σ2
e are unchanged from the single QTL mapping.

The prior specifications of λ and X are: For each j ∈ {1, · · · , q}, jth QTL position λj

has a uniform prior distribution over the entire jth interval, and the λjs are independent of

each other. Conditional on λj, QTL genotype xij of the ith individual at the jth QTL has

conditional probability p(xij|miL(λj), miR(λj), dL(λj), dR(λj), λj).

For QTL selection, we employ the SSVS method (George and McCulloch 1993). The SSVS

approach imposes a normal mixture prior on the regression parameters β and uses latent

variables to identify subset choices. Specifically, the latent variables γj (γj = 0 or 1), are

introduced and the normal mixture prior are represented by

βj|γj ∼ (1 − γj)N(0, σ2) + γjN(0, c2
jσ

2)

with P (γj = 1) = 1−P (γj = 0) = pj. The promising subsets of predictors can be identified by

applying Bayesian multiple comparison rules that use the posterior probabilities p(γj = 1|y)

(e.g., Müller et al., 1996). Setting σ2(> 0) small ensures that if γj = 0, βj could be ”safely”

claimed to be 0. While setting cj large (cj > 1 always) makes sure that if γj = 1, a non-

zero estimate of βj will be included in the model. Such mixture model results in a normal

posterior distribution of βj, allowing the use of the Gibbs sampler.
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3.2 Posterior computation.

The MCMC steps for sampling η, α, τ and σ2
e are identical to those in Section 3 if we replace

yi − βxi (i = 1, · · · , n) by yi −
∑

j βjxij in all corresponding posterior updates. Therefore,

below we concentrate on the updates for the remaining parameters. Let θ be the vector

containing all the unknown parameters and let θ−z be vector of θ after removing parameter

z.

Sample βj and γj(j = 1, · · · , q): Sample βj from its conditional posterior distribution,

which is normal

βj|y, θ−βj
∼ N

(

β̂j,
σ2

e

xT
j xj + σ2

e/σ
2
j

)

, j = 1, · · · , q,

where β̂j = xT
j w/(xT

j xj +σ2
e/σ

2
j ), w = {wi}

n
i=1, with wi = yi−η(ti)−Σj′ 6=jβj′xij′, and σj = σ

or cjσ depending on whether γj = 0 or γj = 1. The conditional distribution of γj does not

depend on y and is of the form

p(γj = 1|θ−γj
) =

cj

cj +
pj

1−pj
exp

{

β2

j

2σ2

(

1 − 1
c2
j

)} .

Sample QTL positions: λj is sampled via Metropolis-Hastings approach since there is no

closed form for the conditional posterior probability density of a QTL position. We first sam-

ple a new position λ?
j uniformly from the neighborhood of λj, [max{λj−δ, dL(λj)}, min{λj +

δ, dR(λj)}] with δ being a tuning parameter (set to 2 cM in subsequent simulations). Then,

λ∗
j will be accepted or rejected according to the probability min(1, α), where

α =
n
∏

i=1

p(xij|miL(λj)
∗, miR(λ∗

j), dL(λ∗
j), dR(λ∗

j), λ
∗
j)

p(xij|miL(λj), miR(λj), dL(λj), dR(λj), λj)

q(λj)

q(λ∗
j)

.

If neither λj nor λ?
j is within δ distance away from the ends of the interval, q(λ?

j) = q(λj) =

1/(2δ). However, if λj or/and λ?
j are within δ distance from one end of the interval , then

q(λ?
j) = 1/[min{λ∗

j + δ, dR(λ∗
j)} − max{λ∗

j − δ, dL(λ∗
j)}], or/and

q(λj) = 1/[min{λj + δ, dR(λj)} − max{λj − δ, dL(λj)}].

Sample QTL genotypes: The QTL genotype xij(i = 1, 2, · · · , n; j = 1, 2, · · · , q) is updated
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one individual and one locus at a time, based on flanking marker information. Specifically,

xij is sampled from the conditional probability distribution pij(x), for x = ±1, which equals

p(yi|x, β, xi(−j), η(ti)) · p(x|miL(λj), miR(λj), dL(λj), dR(λj), λj)
∑

h∈{−1,+1} p(yi|h, β, xi(−j), η(ti)) · p(x|miL(λj), miR(λj), dL(λj), dR(λj), λj)
,

where

xi(−j) = (xi1, · · · , xi(j−1), xi(j+1), · · · , xiq)

and

p(yi|x, β, xi(−j), η(ti)) ∝ exp



−
1

2σ2
e

{yi − η(ti) − βjx −
q
∑

j′ 6=j

βj′xij′}2



 .

One iteration or cycle of our MCMC sampler consists of steps 1 to 7 and produces a sample

from the joint posterior after completing the burn-in period.

4. Simulations and Real Data Analysis

4.1 Simulation I

We perform simulations to evaluate the small sample performance of the proposed semipara-

metric Bayesian interval QTL mapping method. Backcross populations of size 100, 300, 500

and 1000 individuals were simulated, with a single large chromosome of genetic length 10

Morgan. This genome was covered by 101 evenly spaced markers (100 marker intervals, each

10 centi-Morgan (cM) long). A single QTL was located at position λ = 155 cM with an effect

of β = 1. The residual variance was σ2
e = 1. The covariate values were sampled from the

uniform distribution [0, 10), and the unknown function was η(t) = sin(t), η(t) = 3sin(t/3),

or η(t) = 5sin(t/5).

For the analysis, we chose the following mean and covariance function for the Gaussian

process prior of η:

µ(t; α) = α1 + α2t, and σ0(t, t
′) = exp{−(t − t′)2}.

with the priors on αis being improper uniform. That is, p(αi) ∝ 1. For initializations, we set
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σ(0)
e to some value equal to or less than the overall variance of the trait (response variable),

we set τ (0) = 1, β(0) = 0, and λ(0) was chosen by randomly selecting a position in the genome.

Conditional on λ(0), the initial genotype of each individual was generated conditional on the

genotypes at the two markers flanking the QTL position. Lastly, we set a = 0.1 and b = 0.1

to specify a proper but vague prior for τ . We investigated and ensured that our posterior

distribution is proper given the improper priors employed here, in particular for α and σ2
e .

For the analysis of the simulated and the real (see below) data, the MCMC sampler was run

for a total of 25,000 cycles. The first 5000 cycles were discarded as burn-in, and the remainder

of the chain was thinned by keeping one out of every ten samples, resulting in a total of 2000

samples for post-MCMC analysis. Several convergence checks were performed, including the

Convergence Diagnosis and Output Analysis (CODA) by Best, Cowles and Vines (1995)

and two convergence diagnostic tests by Geweke (1992) and Gelman and Rubin (1992). All

analyses indicated convergence of our MCMC samplers.

The posterior mean estimates of QTL position and effect are summarized in Table 1 for

the backcross of size 500 and η(t) = sin(t), along with the true parameter values, showing

that estimates and true values were in very good agreement. Figure 1 compares the true

and the estimated unknown functions of the covariate, where the estimate is evaluated at

grid points equally spaced between [0,10] with the increment of 0.05, and the posterior mean

is given at each point, for sample sizes n of 100, 300, 500 and 1000 and for η(t) = sin(t).

The figure supports the result in Neal (1996) about the consistency of the semiparametric

estimator in the context of neural networks. As we increased the sample size, the estimated

function became closer to the true function and is expected to converge to the true function

as the sample size approaches infinity.

[Table 1 about here.]

[Figure 1 about here.]
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Table 2 provides comparisons between the linear regression model and our semiparametric

model for the three different η functions and for sample size n=300. The estimates from

the semiparametric analysis agree well with the true values for all three functions, while the

results from the linear parametric model are quite different. The estimated residual variances

from linear model are much larger than the true values, while the QTL effect is underesti-

mated and its estimated position is rather inaccurate. In contrast, our semiparametric model

provides the flexibility to fit the data well.

[Table 2 about here.]

For further comparison, we simulated two additional cow weight datasets based on a

simple linear growth model and a well-known generalized logistic function for modeling the

growth curve (Richards, 1959). The linear growth model is η(t) = 187.459 + 2.682t, while

the generalized logistic function is

η(t) = −243 +
968

{1 + 0.15e−0.01955(t−20.1)}
1/0.15

.

We set QTL effect β = 3 and σ2
e = 9 so that the phenotypic variations due to the QTL,

the covariate and the random error are roughly balanced. All other simulation parameters

(including the marker data and QTL position) were the same as before (sample size n = 500).

The simulated responses are plotted against covariate time in Figure 2. Table 3 presents

the posterior summaries of the analysis of the two data sets. For the data set simulated

with the linear function, the estimates from the semiparametric and linear regression models

are very similar. But for the data set simulated with the generalized logistic function, the

semiparametric method produces again more accurate results.

[Figure 2 about here.]

[Table 3 about here.]
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4.2 Simulation II

We simulated a backcross population with 10 chromosomes, each containing 12 evenly spaced

markers (11 intervals of length 20 centiMorgan). Four QTLs were located at the center of

chromosomes 1, 3, 5, and 7 with effects 0.5, -0.5, 0.5, and -0.5 respectively. A total of 500

individuals were sampled. The covariate function was of the form η(t) = 5(1−2t2) sin(2t1),

therefore two (interacting) variables t1 and t2 were simulated, where t1 was continuous and

sampled from the uniform distribution U [0, 10), while t2 was binary 0/1 and sampled with

equal probability 0.5.

For the prior on η, we have mean µ(t; α) = α1 +α2t1 +α3t2 +α4t1t2, and covariance kernel

σ0(t; t
′) = exp[−{(t1−t′1)

2+(t2−t′2)
2}]. As before, the prior distribution for the αs is improper

uniform. The prior for τ is again an inverse gamma distribution and is independent of α’s.

The lower panel of Figure 3 shows the posterior mean for the probability of each interval

containing a QTL. For comparison, we also performed linear regression analysis by setting

the covariance kernel of η to 0. The linear model results are given in the upper panel of

Figure 3. Clearly the semiparametric model performed better than the parametric model.

[Figure 3 about here.]

4.3 Real data analysis

In addition to the simulations, we tested our method on a real mouse study of obesity, a major

risk factor for type II diabetes. To genetically dissect a polygenic mouse model of obesity-

driven type II diabetes, Reifsnyder et al. (2000) outcrossed the obese, diabetes-prone, NZO

(New Zealand Obese)/HlLt strain to the relatively lean NON (Nonobese Nondiabetic)/Lt

strain, and then reciprocally backcrossing obese F1 mice to the lean NON/Lt parental strain.

They measured the body weights of 203 backcross males. The total number of markers is 85

with average distance between adjacent markers of 20.5 cM. In addition, inguinal, gonadal,

retroperitoneal and mesenteric fat pad weights have also been measured (the data set can be
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downloaded at http://cgd.jax.org/nav/qtlarchive1.htm). Following Stylianou et al. (2006),

we first calculated the total fat pad weight as the mesenteric fat pad weight plus twice the

sum of the inguinal, gonadal, and retroperitoneal fat pad weights. The lean body weight

(LBwt) is defined as the difference between the total body weight and the total weight of the

fat pads. In their QTL analysis of the mesenteric fat pad weight (MFPwt), Stylianou et al.

(2006) adjusted for the effect of LBwt. We applied our semiparametric single and multiple

Bayesian QTL mapping methods to the MFPwt using LBwt as a covariate. Both analyses

strongly suggest a single QTL on chromosome 4 (Figure 4, panels (b) and (d)). The estimated

function of LBwt on mesenteric fat pad weight is presented in Figure 4(a) and is nearly linear.

For comparison, we performed parametric multiple Bayesian QTL mapping, which includes

a linear effect of LBwt. This analysis also identified a single QTL on chromosome 4 (Figure

4(c)). Hence, as in our simulations, the semiparametric and parametric mapping methods

yield very similar results when the relationship between covariate and trait is (nearly) linear,

although the posterior probability for QTL presence was reduced for the semiparametric

method, relative to the parametric analysis (Figure 4 (c) and (d)).

[Figure 4 about here.]

5. Discussion

We have proposed efficient and robust Bayesian semiparametric, single and multiple interval

QTL mapping, which allows for an unknown function of non-genetic covariates. The covari-

ates may have a non-linear relationship with the response and/or interact with each other in

a complex way. A Gaussian process is used as the prior for the unknown function. This prior

does not require any assumptions like monotonicity or additivity. A hierarchical scheme to

construct a prior around a parametric family has been described. We specified the Gaussian

process prior via the simple, hierarchical model in Equation (4), and we used approximately
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uninformative default prior for the hyperparameters: Flat priors for the location parameters

(αis), and an inverse Gamma(0.1,0.1) prior for the precision parameter τ , which controls the

smoothness of the sample paths of the unknown function. The method performed well on

simulated and real datasets. The software and simulated data are available at the website:

http://www.bios.unc.edu/~fzou/semiparam/index.html.

One of our reasons for choosing the Gaussian process is its ability to deal with multiple

covariates. With the Gaussian process, we can specify a simple function as in Equation

(3), and use the extra layer of randomness represented by Equation (4) to fine tune the

curve to fit the data. Alternatively fitting a spline function to η(t) will not require the extra

randomness of Equation (4). However, the drawback of the spline approach is its inflexibility

in handling high-dimensional covariates. This is important for a substantial extension of our

method. Essentially all parametric multiple QTL mapping method assume additive QTL

action, or incorporate at most two-locus interactions, but no higher-order interactions. How

to accommodate a large number of potential QTL with possibly higher-order interactions and

interactions with environmental covariates in multiple QTL mapping remains a challenging

problem. Our current work focuses on extending our semiparametric Gaussian process model

to unknown functions including not only non-genetic covariates but also multiple putative

QTL, with variable selection.

6. Acknowledgements

The authors wish to thank the Editor, Associate editor and two Referees for their helpful

comments and suggestions, which have led to a great improvement of this article. This

research was partially supported by NIH grants GM074175 (F.Z and H. H.) and CA79949

(H. Z.).



Gaussian Process Based Bayesian Semiparametric Quantitative Trait Loci Interval Mapping 19

References

Abrahamsen, P. (1997). A review of Gaussian random fields and correlation functions.

Technical Report 917, Norwegian Computing Center, Oslo.

Abramovich, F., Sapatinas, T. and Silverman, B. W. (1998). Wavelet thresholding via a

Bayesian approach. Journal of the Royal Statistical Society, Series B 60, 725-749.

Basten, C. J., Weir, B. S., and Zeng, Z. B. (1999). QTL Cartographer: a reference manual and

tutorial for QTL mapping. Department of Statistics, North Carolina State University.

Best, N. C. , Cowles, M. K. , and Vines, S. K. (1995). CODA manual version 0.30. MRC

Biostatistics Unit, Cambridge, UK.

Broman, K. W., Speed, T. P. (2002). A model selection approach for the identification of

quantitative trait loci in experimental crosses (with discussion). Journal of the Royal

Statistical Society, Series B 64, 641-656, 731-775.

Broman, K. W., Wu, H., Sen, S., and Churchill, G. A. (2003). R/qtl: QTL mapping in

experimental crosses. Bioinformatics 19, 889-890.

Chen, H. (1988). Convergence rates for parametric components in a partly linear model.

Ann. Statist. 16, 136-146.

Cuzick, J. (1992). Semiparametric additive regression. Journal of the Royal Statistical

Society, Series B 54, 831-843.

Denison, D. G. T., Mallick, B. K. and Smith, A. F. M. (1998). Automatic Bayesian curve

fitting. Journal of the Royal Statistical Society Series B 60, 333-350.

DiMatteo, I., Genovese, C. R. and Kass, R. (2001). Bayesian curve fitting with free-knot

splines. Biometrika 88, 1055-1071.

Doerge, R. W., Zeng, Z. B., and Weir, B. S. (1997). Statistical issues in the search for genes

affecting quantitative traits in experimental populations. Statistical Science. 12, 195-219.

Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American Statistical



20 Biometrics, 000 0000

Association 87, 998-1004.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple

sequences. Statistical Science 7, 457-72.

George, E. I., and McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal

of the American Statistical Association 88: 881-889.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating

posterior moments. Bayesian Statistics, 4 (ed. J. M. Bernardo, J. O. Berger, A. P. Dawid,

and A. F. M. Smith), Clarendon Press, Oxford, UK.

Godsill, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for

model uncertainty. Journal of Computational and Graphical Statistics 10, 230-248.

Godsill, S. J. (2003). Proposal densities, and product space methods, in Highly Structured

Stochastic Systems. Oxford University Press.

Green, P. J. (1995). Reversible jump Markov Chain Monte Carlo computation and Bayesian

model determination. Biometrika 82, 711-732.
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Figure 1. Convergence of estimator to the true function (η(t) = sin(t)) with increasing
sample size (n = 100, 300, 500 and 1000). True functions are in bold. The dashed line is
the posterior mean of the unknown function. The dotted lines represent the 95% confidence
band of the estimator.
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Figure 2. (a) Simulated cow weight against weeks based on the generalized logistic growth
curve. (b) Simulated cow weight against weeks based on the linear growth curve.
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Figure 4. Bayesian analysis of the backcross mesenteric fat pad data. (a) Scatter plot of
LBwt vs MFPwt. The solid line represents the estimated curve from the semiparametric
single QTL mapping method. (b) Marginal posterior distribution of the QTL position based
on the single QTL mapping model described in Section 2. (c) and (d) Posterior probability
of QTL presence in each marker interval for the parametric and semiparametric multiple
QTL mapping methods, respectively. Dashed lines separate the chromosomes.



28 Biometrics, 000 0000

Table 1

Posterior mean parameter estimates for the data simulated Data with sample size n = 500 and true covariate
function η(t) = sin(t)

True Value Posterior Mean SD P5 P95

QTL Position (cM) 155 155.52 0.90 153.97 156.99

QTL Effect 1 0.98 0.05 0.90 1.06

Residual Variance 1 0.99 0.07 0.88 1.12

SD, standard deviation of the estimated effect; P5 and P95, the fifth and ninety-fifth percentiles of the posterior

distribution, respectively.
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Table 2

Comparison between parameter estimates obtained with the linear parametric analysis and the semiparametric
analysis (values in parentheses are for the linear parametric model)

η(t) = sin(t)

True Value Posterior Mean SD P5 P95

QTL Position 155 cM 151.86(153.18) 4.40(9.10) 143.40(144.65) 157.22(158.53)

QTL Effect 1 0.90(0.85) 0.13(0.15) 0.68(0.61) 1.12(1.09)

Residual Variance 1 1.07(1.47) 0.22(0.28) 0.77(1.09) 1.46(1.98)

η(t) = 3 sin(t/3)

True Value Posterior Mean SD P5 P95

QTL Position 155 cM 151.80(299.51) 4.44(245.13) 143.27(71.80) 157.23(848.23)

QTL Effect 1 0.89(0.44) 0.13(0.41) 0.68(-0.30) 1.12(1.06)

Residual Variance 1 1.09(5.52) 0.23(0.98) 0.78(4.17) 1.49(7.26)

η(t) = 5 sin(t/5)

True Value Posterior Mean SD P5 P95

QTL Position 155 cM 151.64(448.29) 4.33(284.40) 143.50(61.65) 157.13(937.22)

QTL Effect 1 0.90(0.21) 0.13(0.52) 0.67(-0.64) 1.12(1.05)

Residual Variance 1 1.10(13.11) 0.23(2.27) 0.77(9.99) 1.50(17.16)
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Table 3

Comparison between the linear parametric model and the semiparametric model (values in parentheses are from the
linear parametric model)

η(t) = generalized logistic(t)

True Value Posterior Mean SD P5 P95

QTL Position 155 cM 155.03(153.13) 1.69(3.87) 152.98(145.77) 156.82(157.78)

QTL Effect 3 2.97(2.70) 0.16(0.43) 2.70(1.94) 3.22(3.37)

Residual Variance 9 8.40(68.25) 0.75(5.08) 7.34(60.73) 9.72(77.42)

η(t) = linear(t)

True Value Posterior Mean SD P5 P95

QTL Position 155 cM 155.41(155.41) 0.87(0.87) 153.94(153.96) 156.86(156.81)

QTL Effect 3 2.98(2.94) 0.15(0.15) 2.73(2.69) 3.21(3.17)

Residual Variance 9 9.29(9.80) 0.63(1.09) 8.30(8.47) 10.36(11.88)


