
ARTICLE

Estimating Odds Ratios in Genome Scans:
An Approximate Conditional Likelihood Approach

Arpita Ghosh,1 Fei Zou,1,2,3 and Fred A. Wright1,2,3,*

In modern whole-genome scans, the use of stringent thresholds to control the genome-wide testing error distorts the estimation process,

producing estimated effect sizes that may be on average far greater in magnitude than the true effect sizes. We introduce a method, based

on the estimate of genetic effect and its standard error as reported by standard statistical software, to correct for this bias in case-control

association studies. Our approach is widely applicable, is far easier to implement than competing approaches, and may often be applied

to published studies without access to the original data. We evaluate the performance of our approach via extensive simulations for

a range of genetic models, minor allele frequencies, and genetic effect sizes. Compared to the naive estimation procedure, our approach

reduces the bias and the mean squared error, especially for modest effect sizes. We also develop a principled method to construct

confidence intervals for the genetic effect that acknowledges the conditioning on statistical significance. Our approach is described

in the specific context of odds ratios and logistic modeling but is more widely applicable. Application to recently published data sets

demonstrates the relevance of our approach to modern genome scans.
Introduction

In genetic studies, it is widely recognized that the control

of genome-wide error requires the use of stringent thresh-

olds for significance testing. For genome-wide linkage

scans, standard LOD significance thresholds in the range

3.0 to 4.0 correspond to point-wise p values in the range

10�4 to 10�5, depending on the model and study design.1

For modern genome-wide association scans (GWASs),

100,000 to 1 million SNP markers may be genotyped,

and control of family-wise error or false discovery rates typ-

ically requires point-wise significance thresholds in the

range 10�7 to 10�8.2–4 The use of such stringent thresholds

is offset somewhat by the belief that GWAS offer greater

power than linkage studies for detecting complex disease

genes.5 Nonetheless, the application of stringent thresh-

olds distorts the inferential process, producing estimates

of disease risk effect sizes that may be, on average, far

greater in magnitude than the true effect.1,2,6–16 This phe-

nomenon has been described as a form of ‘‘winner’s curse’’

by Zöllner and Pritchard16 and others, or as a form of re-

gression to the mean,15 and has profound importance for

genome scans. Although the problem has been described

as primarily an issue of bias, we demonstrate below that

the variance of risk estimates can also be greatly inflated

by the selection procedure. Moreover, standard confidence

intervals for risk estimates will have very poor coverage

properties, although this issue seems to have received less

attention.

Consider a genome association scan for a complex dis-

ease in which ten genomic regions contain disease genes,

and each region has a 20% chance of meeting genome-

wide significance. Assuming independence of regions, the

genome scan has respectable power 1 � (1 � 0.2)10 ¼ 0.89
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to achieve significance in at least one region. However,

a repeated genome scan of equal size will have power of

only 0.2 for any one region and thus probably not result

in ‘‘replication’’ of the first study. A follow-up study might

focus on a single significant region, with fewer markers and

paying a lower penalty for multiple comparisons. But if the

results of the initial genome scan are used as a guide, the

follow-up study is likely to be underpowered, by relying

on an inflated estimate of locus disease risk.

As a statistical phenomenon, the winner’s curse should

not be confused with additional sources of bias, including

variations due to genotyping technologies, or heterogene-

ity of patient populations from which samples are

drawn.12,17,18 The winner’s curse is investigated in detailed

simulations elsewhere,8,9,13–16 including a recent paper by

Garner,8 who clarified that the bias can be understood

predominantly through the behavior of Wald statistics

for log-odds ratios.

Although the bias is simple to understand and to docu-

ment, reducing or eliminating it may be nontrivial. Zöllner

and Pritchard16 have described a likelihood approach that

requires maximization over numerous parameters, includ-

ing genotype frequencies and penetrance parameters,

along with conditioning on declared statistical signifi-

cance. Their procedure reduces the bias in risk estimation

but cannot be performed with standard statistical software.

Yu et al.15 have recently applied bootstrapping to correct

for significance bias. Both of these bias correction ap-

proaches are technically feasible for genome scans, but

they would be highly computationally intensive in that

setting.

We describe our alternative approach for estimating ge-

netic effects in terms of odds ratios, which have numerous

advantages that have made them standard for analysis of
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case-control designs.19 A crucial advantage for case-control

studies is that the odds ratio (OR) may be estimated consis-

tently, whether the study design is prospective or retro-

spective,20 and the OR has an interpretation distinct

from nuisance parameters such as genotype frequencies.

Moreover, in logistic models, the OR retains interpretabil-

ity in the presence of covariates, and such a retention is

increasingly important for complex disease investigations.

In this paper, we introduce a method to correct for sig-

nificance bias in disease association studies, by using

an approximate conditional likelihood. The approach is

directly based on the log(OR) estimate and its standard

error as reported by standard statistical software and applies

to dominant, recessive, or additive genetic models. No mod-

ification is necessary when covariates such as population-

stratification variables have also been fit in the model. The

approach may even be applied to published results without

access to the original data. In addition, we develop a method

to construct accurate confidence intervals for the OR.

We illustrate the performance of our approach via exten-

sive simulations of a disease SNP analyzed by logistic re-

gression. The simulations cover a range of models, disease

allele frequencies, and OR values. Compared to naive OR

estimation, our approach provides greatly reduced bias

and mean squared error, particularly for the modest effect

sizes likely to be encountered in complex diseases. In addi-

tion, our confidence-interval procedure provides coverage

that is accurate or slightly conservative. Performing simu-

lations for OR values near the null presents a challenge

because significant results are very rare when applying

genome-wide thresholds. We thus employ a screening

approach in which a deterministic trend statistic is used

to identify data sets potentially significant in logistic

regression.

Material and Methods

We assume a genetic model with one parameter for the effect of

disease genotype, which includes recessive, dominant, and addi-

tive models. We use b ¼ logðORÞ to denote the true loge odds ratio

for disease risk conferred by a referent genotype, or for the contri-

bution of each allele in an additive model. A single locus test

statistic for disease association can be expressed as an estimate

for b divided by an estimate for its standard error,

Z ¼ b̂

SÊ
�
b̂
�, (1)

which is compared to the asymptotic null distribution N(0,1). We

will refer to b̂ and SÊðb̂Þ as naive estimators because they are ob-

tained from standard statistical procedures without acknowledg-

ing selection based on significance. For our problem, we wish to

estimate b only when the SNP is significant in two-sided testing,

i.e., jzj > c for a value c corresponding to genome-wide signifi-

cance. By explicitly considering this selection, below we obtain

three new estimators and a confidence interval procedure. Our

approach offers marked improvements over b̂ and standard confi-

dence intervals. Our exposition includes mathematical and moti-
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vational details that we believe will considerably demystify the

problem, which has until now appeared more obscure and

complex than necessary. The performance of our new estimators

is described in subsection Simulations.

Significance Bias
When logistic regression is used to test for genetic association, the

Wald statistic for genetic effect assumes the specific form of (1),

with numerator and denominator obtained from maximum likeli-

hood and the information matrix.20–22 However, the essence of

our approach applies to a wide variety of testing procedures, for

which the key requirements typically hold: (1) asymptotically nor-

mality of b̂ and (2) consistency of the standard error estimate, so

that SÊðb̂Þ=SEðb̂Þ/1. Expressing the test statistic in the form of

Equation (1) provides a straightforward illustration of significance

bias and points the way toward corrected estimation procedures.

Related test statistics that are based on maximum likelihood ratios

or efficient scores, or that are directly based on contingency tables,

are all asymptotically equivalent to (1) for local departures from

the null hypothesis H0 : b ¼ 0,23 although this asymptotic equiva-

lence is not necessary to apply our approach. The remainder of this

subsection is similar to Garner,8 but our explicit and expanded

treatment provides the grounds for later development.

For large samples, SÊðb̂Þ does not vary markedly in repeated data

realizations. Thus, the estimate b̂ and its statistical significance are

highly correlated,8 and the problem can be restated as single-

parameter estimation for a truncated normal distribution. To see

this, we define m ¼ b=SÊðb̂Þ, with Z _� Nðm,1Þ. Our use of this ap-

proximation follows from the standard result Z � m ¼ ðb̂� bÞ=
SÊðb̂Þ/

D
Nð0,1Þ for increasing sample size.24 The statistical proce-

dures to follow are developed entirely within this ‘‘m version’’ of

the problem, which has been greatly simplified by the variance

standardization.

Our naive estimate of m is m̂ ¼ z, and the expectation can be

shown analytically to be

EmðZj jZ j > cÞ ¼ mþ fðc � mÞ � fðc þ mÞ
Fð�c þ mÞ þFð�c � mÞ, (2)

where f and F are the density and cumulative distribution func-

tion of a standard normal, respectively (see Appendix A). This is

the two-sided rejection version of a result given by Garner.8 As

we detail in the Results, the bias can be substantial in realistic set-

tings. In the special case of the null hypothesis m ¼ 0, it is clear from

Equation (2) that the naive estimate z is unbiased because the two-

sided testing procedure is equally likely to falsely declare positive or

negative risk (i.e., a protective effect of the referent genotype). It is

not clear that the lack of bias for naive estimation under the null has

been fully appreciated (e.g., Figure 2 in Zöllner and Pritchard16 does

not display the exact null value). However, this lack of bias requires

averaging over rejections for both positive and negative z. In any

significant data set, m̂ must be less than �c or greater than c and

so will be far from the truth under the null. In other words, the

lack of bias under the null is offset by very large variance.

An Approximate Conditional Likelihood
The approximating distribution of Z suggests a correspondingly

approximate likelihood for m,

LðmÞ ¼ pmðzÞ ¼ fðz� mÞ: (3)

The likelihood applies generally to a wide variety of testing pro-

cedures, eliminating any nuisance parameters that have been
erican Journal of Human Genetics 82, 1064–1074, May 2008 1065



included in the modeling, including stratification variables, clini-

cal covariates, or the effects of other SNP genotypes. It is easy to

show that the maximum-likelihood estimate (MLE) is m̂ ¼ z. A

standard approach to likelihood testing for H0 : m ¼ 0 (Ref. 24)

involves comparing the maximum log-likelihood ratio LLR ¼
2 logðLðm̂Þ=Lð0ÞÞ to a c2

1 density. It is also simple to show that

here LLR ¼ z2, so in terms of both estimation and testing, the like-

lihood simply recapitulates the initial Equation (1). The advantage

to Equation (3), however, is that it provides a simple and transpar-

ent approach to handle the conditioning. Acknowledging the

event that the SNP is declared statistically significant, we have

the conditional likelihood

LcðmÞ ¼ pmðzj jZ j > cÞ ¼ pmðzÞ
PmðjZ j > cÞ ¼

fðz� mÞ
Fð�c þ mÞ þ Fð�c � mÞ:

(4)

Under Equation (4), the relationship between numerator and de-

nominator is such that, for a given z, it is quite possible that the

most likely value for m is in the interval [�c, c], even though z itself

is conditioned to be outside that range.

By using this conditional approximate likelihood, we now

derive improved estimators of m. For any proposed value of m,

we can convert back to the desired log-odds ratio by using

b ¼ m SÊðb̂Þ, where SÊðb̂Þ is obtained from standard approaches

(i.e., does not consider the significance selection). One remarkable

feature of our approach is that we can apply it to published sum-

mary results. To do so, we require only the significance threshold

c, b̂, and SÊðb̂Þ. The standard error, if not provided directly, can be

inferred from c, b̂, and any one of the following: z, the p value, or

an unconditional OR confidence interval.

The Conditional MLE
With the conditional likelihood, the maximum likelihood princi-

ple suggests the MLE estimator,

~m1 ¼ arg max
m

LcðmÞ,

which can be obtained with numerical maximization for any z

and c (hereafter ‘‘~’’ will signify estimates based on the conditional

likelihood). Note that in this setting, the conditional maximum-

likelihood estimate provides no guarantee of unbiasedness or effi-

ciency, a fact that does not appear to have been considered by

other investigators. We have already applied large-sample assump-

tions in constructing the conditional likelihood (4), but as we

show below, other estimators can provide reduced bias or mean-

squared error for certain ranges of m, and therefore b.

Motivated by bias reduction, one might attempt to directly cor-

rect the bias in m̂ by solving for m in the equation EmðZj jZj> cÞ ¼ z.

Such an estimator has intuitive appeal, representing the value of

m for which, after conditioning on significance, we would have

expected to observe z. Perhaps surprisingly, this ‘‘bias-correction’’

estimator in fact turns out to be ~m1. To see this, we take the deriv-

ative of the conditional likelihood with respect to m, for which the

identity L0cð~m1Þ ¼ 0 implies

z ¼ ~m1 þ
fðc � ~m1Þ � fðc þ ~m1Þ

Fð�c þ ~m1Þ þ Fð�c � ~m1Þ
: (5)

Comparing Equation (2) to (5) implies that the bias-correction

estimator and ~m1 are the same. Similar estimators have been exam-

ined in the context of sequential clinical trials, in which effect

parameters are estimated only after a stopping boundary has
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been reached.25 Despite its secondary motivation as a bias-correc-

tion estimator, the conditional MLE ~m1 is not in fact unbiased

because of nonlinearity in the bias of the naive estimator m̂.

Moreover, in this setting the conditional MLE has no special

optimality properties, and other estimators may be reasonable.

Nonetheless, we will show that ~m1 is markedly improved over

the naive estimator, both in terms of bias and mean squared error.

The Mean of the Normalized Conditional Likelihood
The motivation to reduce mean squared error (MSE) suggests

another, perhaps less obvious estimator,

~m2 ¼
ðN
�N

mLcðmÞdm

�ðN
�N

LcðmÞdm, (6)

which is easily calculated numerically. ~m2 is the mean of the ran-

dom variable following the distribution LcðmÞ, normalized to be

a proper density. ~m2 has favorable MSE properties when averaged

across a wide range of m. This fact follows from an interpretation

of ~m2 as a posterior mean in a Bayesian treatment of the problem

with a flat prior on m.26 However, ~m2 is considered here as an

entirely frequentist estimate, with bias and error examined at

each value of m and judged accordingly. For jzj near the boundary

c, ~m2 typically represents a less aggressive shrinkage toward 0 com-

pared to ~m1.

A Compromise Estimator
In the treatment below, we will see that the conditional likelihood

is typically skewed, and so ~m1 and ~m2 can differ appreciably for cer-

tain values of z. ~m2 can show greater MSE than ~m1 for m near zero

but is more favorable for m away from zero. Thus, as a practical

compromise, we also examine the estimator

~m3 ¼
�
~m1 þ ~m2

��
2,

which balances the strengths of ~m1 versus ~m2.

Illustrations of the Conditional Likelihood
Figure 1 illustrates the conditional and unconditional likelihoods

assuming an illustrative constant threshold c ¼ 5.0. Figures 1A–1C

correspond to z ¼ 5.2, 5.33, and 6.0, respectively. For each panel,

the unconditional likelihood is centered and maximized at z (indi-

cated by a dot on each plot). For Figure 1A, in which z is only

slightly above the threshold, the conditional likelihood is in con-

trast shifted aggressively toward zero (~m1 ¼ 0:66, ~m2 ¼ 2:53, and

~m3 ¼ 1:60). When z is well above the threshold (z¼ 6.0; Figure 1C),

this shift is much smaller (~m1 ¼ 5:48, ~m2 ¼ 4:94, and ~m3 ¼ 5:21).

For an intermediate z (Figure 1B), the shift is intermediate. Note

that our estimates are obtained here for the m version of the prob-

lem, and the conversion b ¼ m SÊðb̂Þmust be performed before the

results are interpreted on the log-odds scale.

As desired, the conditional likelihood shows a clear shift toward

zero. But why is the shift so extreme, e.g., when z ¼ 5.2? Such a z

value (which is equivalent to m̂) has already met genome-wide

multiple-testing correction for statistical significance, but a shrink-

age from m̂ ¼ 5:2 to ~m1 ¼ 0:66 (for example) will effect a corre-

sponding proportional reduction in the log-odds ratio. Thus, it

seems our proposed estimation procedures can often adjust the

estimated effect size to be practically insignificant. To see why

the result is reasonable, consider that the conditional likelihood,

as a frequentist construction, makes no judgment about the prior

plausibility of various values of m. When presented with a value z
2008



for each m, it considers only the chance that z would have arisen,

given that jzj > c. Figure 1D presents the (truncated normal) con-

ditional densities for z under m ¼ 0.66 and m ¼ 5.2. These m values

were chosen because they represent the conditional and uncondi-

tional MLEs when z ¼ 5.2. Note that these curves are conditional

densities for z, not likelihoods. However, for a fixed value of z, the

relative heights of the two curves reflect the conditional likeli-

hoods for the two competing values of m. From the curves, we

can see the value z ¼ 5.2 is 2.773 more likely to arise when m ¼
0.66 than when m ¼ 5.2. Expressed in another way, when m values

are truly of large magnitude, then z tends to overshoot the thresh-

old c by a greater amount than was observed here for z¼ 5.2. Thus,

in this instance, we would conclude that m is not likely to be of

large magnitude.

Our three proposed estimators can be easily computed numeri-

cally, and simple R and Excel programs to do so are available at our

website. By using the threshold c ¼ 5.0 for illustration, we have

calculated the conditional expectations and MSEs for the three es-

timators, shown in Figures 2A and 2B. The three corrected estima-

tors provide dramatically reduced bias compared to the naive esti-

mator for much of the range of m. For m ¼ 0, by symmetry all

estimators are unbiased. For jmj considerably larger than c, all

methods will give estimators near z and will be nearly unbiased.

The corrected estimators tend to undercorrect for small m and over-

correct for large m. The conditional MLE ~m1 can be viewed as a first-

order attempt to correct the bias, whereas z occupies the same

range whether m is small or large. In a sense, the corrected estimate

splits the difference between the two extremes, leading to the

observed pattern.

The MSE for m̂ ¼ z is extremely large for m near zero, as predicted.

MSEs for the corrected estimators are considerably smaller in the

range of small to moderate m. As described above, these estimators

Figure 1. Behavior of the Uncondi-
tional and Conditional Likelihoods for m

Unconditional and conditional likelihoods
of m are presented for (A) z ¼ 5.2, (B) z ¼
5.33, and (C) z¼ 6. The location of the ob-
served z is indicated by a black dot on each
plot. The conditional likelihood changes
considerably for small changes in z near c.
For larger z, the conditional likelihood
approaches the unconditional likelihood.
Likelihoods for m < �c are negligible and
not shown. (D) shows conditional densities
of z for m ¼ 0.66 and m ¼ 5:2, with the
relative likelihoods highlighted for a fixed
value z ¼ 5.2.

are easily converted to the corresponding

improved log(OR) estimators ~b1, ~b2, and
~b3. Moreover, for large samples, the bias

and MSE properties for m will predomi-

nantly carry over to real data, essentially

with a rescaling of the axes to convert m

to b.

Conditional Confidence Intervals
Proper interpretation of the corrected m es-

timates requires an understanding of esti-

mation error, conditioned on statistical

significance. Standard confidence interval (CI) procedures fail in

this setting. For example, after conditioning on significance,

a standard 95% CI for m cannot contain 0, for otherwise it would

not have been significant. Thus, when m ¼ 0 the standard CI pro-

cedure has zero conditional coverage probability. Zöllner and

Pritchard16 addressed this issue by using a standard maximum

likelihood ratio approach applied to the conditional likelihood.

In our setting, a 1� h CI created in this manner would consist

of all m values such that 2logðLcð~m1Þ=LcðmÞÞ% q1�h, where q1�h is

the 1� h quantile of a c2
1 density. However, we have shown via

numerical integration that in the m version of the problem, the

true coverage probability of this CI procedure can exhibit markedly

conservative or anticonservative departures from 1� h, depending

on the true m. Approaches that use the second derivative at ln Lcð~m1Þ
to estimate the error variance also fail. The difficulty arises because

the conditional MLE is not normally distributed nor is the shape of

LcðmÞ approximately normal for a realized data set.

To create confidence intervals with correct conditional cover-

age, we return to the original Neymanian concept of a confidence

region,23,27 a concept that can always be applied when the dis-

tribution of a test statistic is known for each value of the unknown

parameter. Let Aðm,1� hÞ be an acceptance region depending on m

such that PmðZ ˛ Aðm,1� hÞjjZj > cÞ ¼ 1� h. Given an observed z,

the confidence region consists of all values m such that

z ˛ Aðm,1� hÞ. It is straightforward to show that this approach

gives exact coverage probability 1� h for any m. Among possible

acceptance regions, we choose Aðm,1� hÞ as the interval between

the h=2 and 1� h=2 quantiles of the conditional density

pmðzjjZj > cÞ. Note that, although we have presented three com-

peting point estimates for m, our procedure yields only a single

CI. Figure 2C shows the upper and lower confidence limits for

our CI procedure for each z. Note that for jzj near c, the confidence
The American Journal of Human Genetics 82, 1064–1074, May 2008 1067



interval can contain m ¼ 0. This does not contradict the statistical

significance—the intent of the procedure is to obtain correct cov-

erage for any m (including m ¼ 0) after conditioning on signifi-

cance. The conversion of the confidence limits to the b scale is

ðmlowerSÊðb̂Þ, mupperSÊðb̂ÞÞ. Although our procedure is guaranteed

correct conditional coverage in the idealized m setting, our CI for

b relies on large-sample normality assumptions for b̂. Thus, we

investigate empirical coverage of our procedure in the Results.

Simulations
To describe our simulations, we begin with basic notation for dis-

ease association studies. We let y denote the disease status (0 ¼
control, 1¼ case) for an individual and x denote the SNP genotype

predictor value. For a biallelic SNP with major allele A and minor

allele a, x is defined as follows for genetic models with respect to a:

recessive additive dominant

x ¼

8<
:

0, AA
0, Aa
1, aa

x ¼

8<
:

0, AA
1, Aa
2, aa

x ¼

8<
:

0, AA
1, Aa
1, aa:

We assume the logistic model for a randomly sampled individual

in the population

logðPðY ¼ 1 j xÞ=ð1� PðY ¼ 1 j xÞÞÞ ¼ aþ bx,

for some a, and b is the log-odds ratio for a unit increase in x. Rather

than specify a directly, it is more interpretable to solve for a for

a specified allele frequency and disease prevalence p. The marginal

frequency of x is denoted p(x) and is easily calculated from Hardy-

Weinberg assumptions. With fixed disease prevalence, the identity

Figure 2. Estimators and Confidence
Intervals for m with Significance Thresh-
old c ¼ 5
(A) The expectation of naive estimator m̂

shows substantial bias and (B) very large
mean squared error for much of the range
of m, whereas the corrected estimators
have lower bias and MSE (C) shows upper
and lower confidence bounds for m as
a function of the observed statistic z.

p ¼
P

x
expðaþ bxÞ

1þ expðaþ bxÞ pðxÞ was used

for calculating a. Finally, solving for the

genotype probabilities conditioned on

case-control status yields

PðX ¼ x jY ¼ 1Þ ¼ pðxÞ
p

expðaþ bxÞ
1þ expðaþ bxÞ,

PðX ¼ x jY ¼ 0Þ ¼ pðxÞ
1� p

1

1þ expðaþ bxÞ:

A standard result is that logistic model-

ing for b applies even when the data are

sampled retrospectively.20

Each data set was simulated and ana-

lyzed in R v.2.5.1. We will denote the

total sample size n ¼ ncases þ ncontrols and

ncases ¼ ncontrols throughout. Most simula-

tions consisted of n ¼ 1000. This sample

size is relatively small for a genome scan

and was intentionally chosen to emphasize any departures from

normality or difficulties in estimating SEðb̂Þ. We also examined

larger sample sizes for several of the setups to examine the effect of

sample size on bias, MSE, and confidence coverage. We assumed a

disease prevalence of 0.01 throughout—the retrospective sampling

is not very sensitive to this specification. We examined b ranging

from �0.7 ðORz0:5Þ to 0.7 ðORz2:0Þ. This range corresponds to

biological plausibility for complex disease11 and ensures that

simulations span the range from low power to high power. For

simplicity, we used c ¼ 5.0, corresponding to a single p value of

5.7 3 10�7, near the genome-wide threshold considered by

others.2–4

For recessive models, we considered MAF values of 0.25 and

0.5—lower values created small expected cell counts that were

problematic for sample sizes of 500 in each group. For the additive

and dominant models, we considered minor allele frequency

(MAF) values of 0.05, 0.1, 0.25, and 0.5. A single setup consisted

of the genetic model, MAF, and b, and sufficient simulations

were performed for each setup so that 1000 significant data sets

were obtained. Setups with b ¼ 0 required on the order of 109 to

1011 simulations for this rarified threshold. We sped up the analy-

sis by first applying a chi-square test (Cochran-Armitage trend test

for the additive model) to the data sets, which can be obtained

without iterative maximization. The chi-square statistic was

determined to have a close correspondence to z2 obtained from

the more computationally intensive logistic regression, and a

chi-square statistic R24 was determined to capture essentially all

data sets with z2 R c2 ¼ 25. Data sets meeting the chi-square crite-

rion were analyzed via logistic regression in R glm. For data sets

achieving final significance as determined by logistic regression,
1068 The American Journal of Human Genetics 82, 1064–1074, May 2008



Figure 3. Expectations and Mean Squared Errors for the Three Genetic Models under MAF ¼ 0.25
The corrected estimators show greatly improved performance for much of the range of b. The left panels correspond to the recessive
model, the middle panels correspond to the additive model, and the right panels correspond to the dominant model. The top row shows
expected values for the naive and conditional likelihood estimators versus b. The bottom row shows mean squared errors for the estima-
tors. The y axes are rescaled to highlight details—the MSE is considerably larger for the recessive model because of scarcity of the risk
homozygotes.
b̂ and SÊðb̂Þ were used for obtaining ~b1, ~b2, ~b3, and conditional

confidence intervals.

Results

In all scenarios described here, expectations and mean-

squared errors are calculated conditional on significance,

i.e., jzj > c.

Bias

The top row of Figure 3 plots the means for each of the na-

ive and corrected estimators versus b (with corresponding

OR values) for all models, with MAF ¼ 0.25. The naive es-

timator shows very large bias, especially for moderate b. All

of the corrected estimators show dramatically reduced bias

across most of the range examined. For each model, the

corrected estimates tend to undercorrect for small (magni-

tude) b while overcorrecting for large b. All of the methods

become nearly unbiased for large b, as they must, because

the conditional and unconditional likelihoods are nearly

identical when jzj is well beyond c. In terms of bias, ~b1 per-

forms best among the corrected estimates for small b. How-
The Am
ever, the overcorrection of the conditional MLE can be sub-

stantial for moderate to large b, especially for the recessive

model. ~b2 shrinks the estimates toward zero less dramati-

cally, resulting in undercorrection for a larger part of the

range of b. ~b3 strikes a balance between the other two cor-

rected estimates and has much improved bias for moderate

b under the recessive model. All estimators are effectively

unbiased for b ¼ 0. A subtle asymmetry in the plots for pos-

itive and negative logðORÞ, most evident in the recessive

model, occurs because MAF < 0.5 and, for a fixed preva-

lence, the logistic intercept a depends on b.

Mean Squared Error

The corresponding MSE values for the estimators are

shown in the bottom row of Figure 3. The naive estimator

b̂ exhibits extremely large MSE for most b values examined.

For b ¼ 0, this is due to high variance, whereas for moder-

ate b, the naive estimator has low variance but high bias.

The corrected estimators show dramatically improved

MSE for b in the interval [�0.3, 0.3] (OR ranging from

0.74 to 1.35) that encompasses the bulk of significant asso-

ciations thus far for complex diseases.3,4 The MSEs of ~b1

and ~b2 are predominantly complementary. At b ¼ 0, the
erican Journal of Human Genetics 82, 1064–1074, May 2008 1069



Figure 4. Mean Square Errors of the Estimators versus b for MAF Values Ranging from 0.05 to 0.5
The additive model is assumed, with n¼ 1000. The MSEs drop for larger MAF, but the relative performance of the estimators is maintained.
MSE ð~b1Þ is fairly low, whereas MSE ð~b2Þ peaks. For larger

magnitude b, the roles reverse. As expected, ~b3 exhibits

a more even MSE across the range, and represents a reason-

able choice for stable error characteristics. For the additive

and dominant models, b̂ exhibits very low MSE for large b.

This phenomenon is not as attractive as it appears, essen-

tially resulting from a boundary effect in which b̂ is nearly

constant because z is just barely significant. In particular,

for b outside of the plotted range, MSE ðb̂Þ rises again to

the varðb̂Þ value encountered in the unconditional setting.

The empirical bias and MSE observed in our simulations

essentially follow the results from the m version of the esti-

mation problem, with a rescaling of the axes to convert m

to b. Our empirical results for the remaining MAF values
1070 The American Journal of Human Genetics 82, 1064–1074, May
are plotted in Figure S1 available online and predomi-

nantly follow the results described for MAF¼ 0.25. Figure 4

shows a portion of these results for the additive model, in

which the MSE is shown to drop for all estimators as the

MAF increases. This occurs because for small MAF, the

MSE is largely driven by the heterozygote genotype counts,

which increase with the MAF. The key point of Figure 4 is

that the relative advantages of the corrected estimators are

preserved across a wide range of MAF values.

Confidence Coverage

Figure 5 presents the estimated coverage probabilities of

95% and 90% CIs with MAF ¼ 0.25 for the three models.

The top row shows the results for n ¼ 1000. The coverage
Figure 5. Estimates of the CI Coverage Probability Plotted against b for the Three Genetic Models, MAF ¼ 0.25
Black dots correspond to 95% CIs; gray dots correspond to 90% CIs. The dashed curves represent coverage of standard 95% CIs that do not
acknowledge the significance selection. The top row shows n¼ 1000 (500 cases and 500 controls). The bottom row shows n¼ 2000 (1000
cases and 1000 controls). Coverage is close to nominal, except for regions of overcoverage in the recessive model because of small cell
counts (note that the y axis range begins at 0.7). For all models, the coverage will approach the nominal value as the sample size increases
further.
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is close to the nominal level for almost all the setups, ex-

cept for conservativeness near b ¼ 0 for the recessive

model. The coverage of the naive confidence intervals is

also depicted in the figure, dropping dramatically out of

the axis range to zero coverage for b of small magnitude.

For n ¼ 2000, the coverage of the proposed procedure

improves further, with a region of modest overcoverage

for recessive models. Results for other MAF values are sim-

ilar, and are presented in Figure S2.

Sample Sizes, Thresholds, and Covariates

Our setup conditions represent a wide range of realistic sce-

narios but cannot represent all situations and complicating

factors. Fortunately, the large-sample behavior of the con-

structed approximate likelihood provides considerable ro-

bustness for our conclusions. Figure S3 shows the results

of increasing sample size for several realistic b values for

the additive model when MAF ¼ 0.25. The bias and MSE

for all the estimators are reduced as the sample size increases.

For each sample size, the corrected estimators show superior

bias and MSE compared to the naive estimator.

In maximum-likelihood settings, the distribution of the

Wald test statistic is predominantly driven by b=SEðb̂Þ. This

is also true for our conditional likelihood, because b=SEðb̂Þ
determines the noncentrality of the z statistic. For a fixed ra-

tio ncases : ncontrols, the standard error is proportional to 1=
ffiffiffi
n
p

.

Thus, for the setups in Figure 3 and Figure S1, a doubling of

the sample size ton¼2000 (for example, and assuming cases

and controls remain in the same ratio) would produce qual-

itatively similar results, with perhaps a slight improvement

for the corrected estimates as the normality approximation

improves. Moreover, we can make the results quantitatively

comparable by appropriate rescaling. For example, for any

value b for n ¼ 1000, the comparable results for n ¼ 2000

should correspond to b0 ¼ b
ffiffiffi
2
p

. Figure S4A demonstrates

an empirical example of this effective rescaling equivalence

for the additive model, MAF ¼ 0.25. Thus, the conclusions

from our simulations extend to larger sample sizes.

Similarly, variations on the threshold c do not have

much impact. A value of c ¼ 5.5 would be considered

quite conservative for genome scans, corresponding

to Bonferroni control of family-wise error at 0.05 for

1.3 million SNPs. Empirical investigation requires many

more simulations to achieve significance, but we find that

the qualitative behavior of the estimators is unchanged

(Figure S4B).

Finally, we simulated an example in which the additive

model is fit (MAF ¼ 0.25), and the logistic regression in-

cludes an additional continuous covariate [distributed

N(0,1), one fitted regression coefficient] and a discrete cova-

riate [distributed Binomial(2,0.05), two fitted coefficients].

The covariates were independent of case-control status

and the test-locus genotype. The Wald statistic is relatively

insensitive to inclusion of these extra parameters, and the

relative change in degrees of freedom quite minimal.

Accordingly, the results for our corrected estimators are

virtually unchanged compared to the model without cova-
The Am
riates (Figure S4C—only ~b1 is shown). Covariate consider-

ations are increasingly important in genome scans, for

example to control for confounding population stratifi-

cation.

Analyses of Published Data Sets

Table 1 illustrates our reanalysis of an association study

with a modest number of SNPs, as well as two GWASs, all

of which had been analyzed with additive models. We be-

gin with a brief description of the three studies, followed

by our reanalysis. Yu et al.15 examined the lymphoma re-

sults described in Wang et al.,18 with 48 SNPs and a p value

threshold 0.1/48 z 0.002. The standard OR results were

compared to bootstrap bias-corrected15 results, as well as

the results from a larger pooled analysis involving seven

studies.28 The SNPs rs1800629 and rs909253 were found

to be significant, with ORs 1.54 and 1.40, respectively.

Todd et al.3 list four significant SNPs resulting from two

type 1 diabetes (T1D [MIM 222100]) GWAS studies, high-

lighting for especial consideration those SNPs with p value

less than 5 3 10�7. In addition, the authors conducted

a larger case-control follow-up study to confirm these re-

sults. Scott et al.4 performed numerous analyses of several

type 2 diabetes (T2D [MIM 125853]) data sets (FUSION,

DGI, and WTCCC/UKT2D). We consider here only the

SNPs reported by the T2D authors using the declared

genome-wide significance threshold (p < 5 3 10�8) for

the combined analysis of all studies.

With only the published odds ratios, p values, and stated

significance thresholds, we produced bias-corrected odds

ratios for all of these studies. Our corrected b estimates are

exponentiated so that odds ratios were obtained: For exam-

ple, O~R1 ¼ exp ð~b1Þ. For the two lymphoma SNPs (Table 1,

top section), the p values are slightly above the threshold,

and our bias-corrected estimates shrink the naive OR esti-

mates markedly. Our estimated values match well with

the bootstrap-corrected values obtained by Yu et al.,15 as

well as the pooled analysis results from Rothman et al.28

For the four T1D SNPs (Table 1, middle section), our anal-

ysis results in noticeably less extreme OR estimates (Table 1,

middle section) than those reported by Todd et al.3 The cor-

rected ORs and CIs for the most extreme SNP, rs17696736,

are only slightly changed from the published estimated of

1.37 because the result is so extreme (p ¼ 7.27 3 10�14).

However, the follow-up study obtained a considerably

lower value (OR ¼ 1.16), with the 95% CI not overlapping

the earlier estimates, thereby suggesting possible heteroge-

neity in population sampling. For the two least significant

T1D SNPs among those considered, the corrected ORs

show a more substantial change. It is worth noting that

the OR estimate corresponding to the SNP rs12708716

was shrunk from 0.77 to ~0.82 by our methods, whereas

the estimated OR from the follow-up study was 0.83. We

also note that for the four significant T1D SNPs, as well as

an additional three SNPs approaching significance (Table

1 of Todd et al.3), the follow-up study always gave a less ex-

treme OR estimate than the initial studies. This result is
erican Journal of Human Genetics 82, 1064–1074, May 2008 1071



Table 1. Original versus Corrected Odds-Ratio Estimates for Three Published Genetic Association Studies

Study SNP

Minor Allele

Frequency p Value

Reported OR,a

(95% CI)

Bootstrapb

Estimates

Bias-Corrected Estimatesc Biasc-

Corrected

(95% CI)

Follow-Upd OR,

(95% CI)O~R1 O~R2 O~R3

Association Study of Lymphoma, Wang et al.18 (318 Cases and 766 Controls)

rs1800629 0.217 5.7 3 10�4 1.54 1.29 1.08 1.25 1.16 (0.94,1.85) 1.29

rs909253 0.358 7.4 3 10�4 1.4 1.18 1.06 1.18 1.12 (0.95,1.56) 1.16

GWAS of T1D, Todd et al.3 (2000 Cases and 3000 Controls)

rs17696736 0.423 7.27 3 10�14 1.37 (1.27,1.49) - 1.37 1.36 1.37 (1.25,1.49) 1.16 (1.09,1.23)

rs2292239 0.34 1.49 3 10�9 1.3 (1.20,1.42) - 1.26 1.23 1.25 (1.08,1.42) 1.28 (1.20,1.36)

rs12708716 0.322 1.28 3 10�8 0.77 (0.70,0.84) - 0.82 0.84 0.83 (0.71,1.00) 0.83 (0.78,0.89)

rs2542151 0.163 8.4 3 10�8 1.33 (1.20,1.49) - 1.04 1.15 1.09 (0.99,1.44) 1.29 (1.19,1.40)

GWAS of T2D, Scott et al.4 (9521 Cases and 12183 Controls)

rs7903146 0.18 1.0 3 10�48 1.37 (1.31,1.43) - 1.37 1.37 1.37 (1.31,1.43)

rs4402960 0.30 8.9 3 10�16 1.14 (1.11,1.18) - 1.14 1.14 1.14 (1.10,1.18)

rs10811661 0.85 7.8 3 10�15 1.2 (1.14,1.25) - 1.2 1.2 1.2 (1.14,1.26)

rs8050136 0.38 1.3 3 10�12 1.17 (1.12,1.22) - 1.17 1.16 1.16 (1.10,1.22)

rs5219 0.46 6.7 3 10�11 1.14 (1.10,1.19) - 1.13 1.11 1.12 (1.05,1.19)

rs7754840 0.36 4.1 3 10�11 1.12 (1.08,1.16) - 1.11 1.1 1.11 (1.05,1.16)

rs1111875 0.52 5.7 3 10�10 1.13 (1.09,1.17) - 1.1 1.09 1.1 (1.00,1.17)

a Standard OR values as reported.
b Bootstrap correction reported in Ref. 15.
c Correction method proposed in this paper.
d Replication or other follow-up result for the SNP.
strong empirical evidence for significance bias and showed

that corrected OR approaches are needed.

The bottom portion of Table 1 gives the results for the

combined T2D studies. All of the p values are considerably

beyond the significance threshold, and so the corrected es-

timates are nearly unchanged from the original estimates.

This phenomenon is hopeful, in the sense that with very

large studies, OR estimates can be attained that will not

be shrunk to irrelevance by corrected OR estimates.

Discussion

We have presented an approach that greatly reduces signif-

icance bias for odds ratios in genome association scans and

that is much simpler than competing approaches. We fa-

vor the use of ~b3 as a general-purpose estimator with fairly

uniform MSE as a function of b. However, all of the three

corrected estimators have greatly superior performance

compared to the naive estimator. Although developed for

case-control applications, our methodology is an effective

blueprint to perform inference whenever a Wald-like statis-

tic has been used to declare significance. Thus, the general

approach can be used in numerous other settings, includ-

ing regression-based quantitative-trait association analy-

ses. Our results are qualitatively similar to those of other

investigators15,16 (e.g., see bias curves similar to ours in Fig-

ure 2 of Zöllner and Pritchard16). Additional comparisons

to these approaches should be performed in future work,

although comparison is complicated by differing genetic

models. To our knowledge, our approach is the only
1072 The American Journal of Human Genetics 82, 1064–1074, May
method that can perform bias correction based only on

published summary tables.

The widespread application of conditional likelihood es-

timators in genome scans will no doubt be discouraging to

genetic investigators, who may expend considerable time

and expense only to find that a significant SNP is estimated

to have a very weak effect. Nonetheless, we view this pro-

cess as healthy and necessary for the genetics community,

in particular to tamp down expectations that significant

findings will be easily replicated. The use of our estimators

may also have an additional benefit of discouraging exces-

sive massaging of data and trying various test procedures

to achieve genome-wide significance. If a SNP suddenly

becomes significant after numerous data manipulation

procedures have been applied, its z statistic is likely to be

only slightly above the threshold c. Thus, as we observed

in the m version of the problem, the conditional-likelihood

estimator will be dramatically shrunk toward the null.

Thus, the estimated SNP effect size will be very modest,

as is appropriate here for a likely spurious finding.

Our current approach does not explicitly consider multi-

stage or other sequential designs, in which SNPs meeting

a loose standard of significance are used for further testing

in a follow-up sample. However, for multistage designs in

which almost all SNPs that will eventually be declared sig-

nificant are carried forward to later stages, the approach

may be used directly. Also, our results technically hold for

a SNP randomly selected from those achieving the signifi-

cance threshold, and thus an additional bias may be antic-

ipated for the most highly significant SNPs among a collec-

tion of significant SNPs. Although we believe this second
2008



source of bias is much less than that produced by signifi-

cance selection, it is the subject of continuing investigation.

Our rejection-sampling scheme was feasible, but it re-

quired a massive number of simulations to provide accu-

rate results. Future work in this area may benefit from

the practical development of importance sampling or

related computational techniques to provide flexible and

accurate simulations conditioned on significance.

Appendix A

Derivation of the Conditional Mean for the Naive

Estimator

EðZ jjZ j > cÞ ¼ K�1
h Ð�c

�N
zfðz� mÞdzþ

ÐN

c
zfðz� mÞdz

i
,

where K ¼ Fð�c þ mÞ þ Fð�c � mÞ
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h Ð�c�m

�N
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i
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Supplemental Data

Four figures are available at http://www.ajhg.org/.
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Note Added in Proof
While this paper was in press, a paper by Zhong, H. and Prentice,

R.L. proposed a similar methodology, with some differences in ap-

proaches to point and interval estimation: Zhong, H. and Prentice,

R.L. (2008). Bias-reduced estimators and confidence intervals

for odds ratios in genome-wide association studies. Biostatistics,

in press.
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