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Genome-wide Multiple Loci Mapping

With the assumption of no interaction and linearity of allelic effects, we

employ an additive linear model:

yi = b0 +

p∑
j=1

xijbj + ei, (1)

where yi (i = 1, ..., n) is the trait value of individual i, ei ∼ N(0, σ2
0) is

the residual error, and xij is the genotype of the j-th marker of

individual i. For example, xij = 0, 1, 2 for genotype AA, AB, and BB.

Note n < p, and the majority of the bjs are actually 0. The objective of

multiple loci mapping is to identify the correct subset model, i.e., to

identify those js, such that bj 6= 0, and estimate those bj .
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Genome-wide Multiple Loci Mapping

Experimental cross of inbred strains

• Thousands of markers, hundreds of samples.

• High correlations among markers’ genotype profiles. One marker

may be significantly correlated with 2/3 of the markers in the same

chromosome.

Genome-wide association studies in human

• Millions of markers, thousands of samples.

• Nearby markers have correlated genotype profiles. Length of linkage

disequilibrium regions are limited.

We will focus on experimental cross of inbred strains.
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Correlations of marker genotype profiles in experimental cross

Within one chromosome

Correlation

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00

Between chromosomes

Correlation

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2 0.3

0
50

00
0

15
00

00

multiple loci mapping 4



Correlations of marker genotype profiles in experimental cross
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Existing Methods: Marginal regression and step-wise selection

• Marginal regression

– Multiple testing correction by permutation p-value [Churchill and

Doerge 1994]

• Forward regression

– Multiple testing correction by conditional permutation,

conditioning on the markers included in the model [Doerge and

Churchill 1996]

• Forward-backward regression

– Broman et al. proposed a model selection criterion named pLOD

(also known as BICδ), which is implemented within a framework

of forward-backward regression. The threshold of pLOD is

estimated by permutations [Manichaikul et al 2008].
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Existing Methods: Bayesian shrinkage methods

bj ∼ N(0, σ2
j ), j = 1, ..., p.

• Bayesian t [Tipping 2001; Yi and Xu 2008]

p(σ2
j |δ, τ) = inv-Gamma(δ, τ) =

τ δ

Γ(δ)
(σ2
j )−1−δ exp(−τ/σ2

j ).

The unconditional prior of bj is a Student’s t distribution.

• Bayesian Lasso [Park and Casella 2008; Yi and Xu 2008]

p(σ2
j |κ2/2) = Exp(κ2/2) =

κ2

2
exp

(
−κ

2

2
σ2
j

)
.

The unconditional prior of bj is a double exponential distribution:

p(bj) =
κ

2
e−κ|bj |
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Existing Methods: Bayesian model selection methods

• The reversible jump MCMC method [Rihard and Green 1997]

• The stochastic search variable selection (SSVS) method [George and

McCulloch 1993]

One example is the composite model space approach (CMSA)

implemented in R/qtlbim [Yi 2004].

Existing Methods: Penalized regression

Adaptive Lasso extends Lasso by using different penalization parameters

for different regression coefficients and has variable selection consistency

[Zou 2006]. However, the adaptive Lasso requires consistent initial

estimates of the regression coefficients, which are generally not available

when n < p.
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A Bayesian interpretation of the adaptive Lasso

p(b0) ∝ 1, p(σ2
0) ∝ 1/σ2

0 ,

p(bj |κj) =
1

2κj
exp

(
−|bj |
κj

)
,

p(κj |δ, τ) = inv-Gamma(κj ; δ, τ) =
τ δ

Γ(δ)
κ−1−δj exp

(
− τ

κj

)
,

where δ > 0 and τ > 0 are two hyperparameters. The posterior

distribution is sampled by a Gibbs sampler.

A similar approach has been proposed [Griffin and Brown 2007], where

p(κ2j |δ, τ) = inv-Gamma(κj ; δ, τ). An efficient implementation is

available as HyperLasso [Hoggart et al 2008].
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Compare the Bayesian Lasso and the Bayesian Adaptive Lasso
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Unconditional prior for the BAL: f(x; τ, δ) = τδδ
2 (|x|+ τ)−1−δ.

Unconditional prior for the Bayesian Lasso f(x;κ) = 1
2κ exp (−|x|/κ).
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Iterative Adaptive Lasso (IAL)

Because no point mass at zero is specified in the Bayesian shrinkage

methods (including the BAL), the samples of the regression coefficients

would not be exactly zero, so that the Bayesian shrinkage methods do

not automatically select variables.

However, if we look for the mode of the posterior distribution, it could

be exactly zero. This leads to the following ECM algorithm [Meng and

Rubin 1993]: the iterative adaptive Lasso.

1. Initialization: We initialize bj(0 ≤ j ≤ p) with zero, initialize σ2
e by

variance of y, and initialize κj(1 ≤ j ≤ p) with τ/(1 + δ).

2. Conditional Maximization (CM) step:

(a) Update b0 by its posterior mode,

b0 = (1/n)
n∑
i=1

yi − p∑
j=1

xijbj

 .
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(b) For j = 1, ..., p, update bj by its posterior mode (see Web

Appendix B),
bj = 0 if −σ2

j /κj ≤ b̄j ≤ σ2
j /κj

bj = b̄j − σ2
j /κj if b̄j > σ2

j /κj

bj = b̄j + σ2
j /κj if b̄j < −σ2

j /κj

,

where

σ2
j =

σ2
e∑n

i=1 x
2
ij

, b̄j =

(
n∑
i=1

x2ij

)−1 n∑
i=1

xij

yi − b0 −∑
k 6=j

xikbk


3. Expectation (E) step:

With the updated bj ’s, recalculate the residual sum of squares, rss,

and

(a) Update σ2
e : σ2

e = rss/n.

(b) Update κj : κj = (|bj |+ τ)/(1 + δ).
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Example of IAL updates: Independent QTL
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Example of IAL updates: QTL linked in coupling
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Example of IAL updates: QTL linked in repulsion
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Iterative Adaptive Lasso (IAL), how to choose δ and τ

Theorem 1. Assume the penalization parameters of the IAL satisfy

(1 + δ)/τ = O(n1/2+d), where 0 < d < 1/2. Denote the coefficient

estimates in the t-th iteration as b̂(t). Let X−j be X without the j-th

column and let b̃
(t+1)
−j be the coefficient estimates (expect bj) before

estimating b̂
(t+1)
j .

(i) If b̂
(t)
j = 0 and xj⊥y|X−jb̃(t+1)

−j , then p(b̂
(t+1)
j = 0)→ 1.

(ii) If ∃ c > 0, s.t. |corr(xj ,y|b̃(t+1)
−j )| > c, then p(b̂

(t+1)
j 6= 0)→ 1.
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Iterative Adaptive Lasso (IAL), how to choose δ and τ

Theorem 1 only provides the magnitude of (1 + δ)/τ . In practice, we

selected δ and τ by the following BIC criterion followed by a backward

filtering.

BICτ,δ = log(rss/n) +
log(n)

n
dfτ,δ

where dfτ,δ is the number of nonzero coefficients.

The backward filtering start from the covariate with the smallest

coefficient, compare the model with/without this covariate by ANOVA

test. The test p-value can be set as 0.05/pE , where pE is the effective

number of independent genotype profiles.
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Simulation setup We simulate 20 chromosomes of length 90 cM, with

100 markers per chromosome (using function sim.map in R/qtl). Then

we simulate genotype data of the 360 F2 mice, and randomly select

1200 markers as markers with “observed genotype profiles”.
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Results Evaluation: Definition of True Discovery

For each of the true QTL, we check whether any SNP in the final model

satisfies the following three criteria:

1. it is located on the same chromosome as the QTL

2. it has the same effect direction (sign of the coefficient) as the QTL

3. the r2 between this SNP and the QTL is bigger than 0.8.

If there is no such SNP, there is no true discovery for this QTL.

If there is at least one such SNP, the SNP with the highest r2 is

recorded as the true discovery of the QTL. The other SNPs are referred

to as linked false discoveries.
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Un-linked QTL
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QTL linked in coupling
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QTL linked in repulsion
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Bayesian Lasso
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Figure 1: The largest coefficients from 100 simulations in situation 2
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Un-linked QTL
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QTL linked in coupling
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QTL linked in repulsion
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Application in eQTL studies

genes w/o eQTL genes w/ at least one eQTL
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Application in eQTL studies

eQTL Location
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Application in eQTL studies
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