Bayesian QTL Mapping

Fei Zou
Department of Biostatistics

Gillings School of Global Public Health University of North Carolina-Chapel Hill
fzou@bios.unc.edu

Bayesian QTL Mapping

- One gene one trait
- very unlikely
- Most traits have a significant environmental exposure component
- The vast majority of biological traits are caused by complex polygenic interactions
- also context dependent

Bayesian QTL Mapping

- Single QTL Mapping
- Single marker analysis (Sax, 1923 Genetics)
- Interval mapping: Lander \& Botstein (1989, Genetics)

Multiple QTL mapping

- Composite interval mapping (Zeng 1993 PNAS, 1994 Genetics; Jansen \& Stam, 1994 Genetics)
- Multiple interval mapping (Kao et al., 1999 Genetics)
- Bayesian analysis (Satagopan et al., 1997 Genetics)

Bayesian QTL Mapping

- Most complicated traits are caused by multiple (potentially interacting) genes, which also interact with environment stimuli
- Single QTL interval mapping
- Ghost QTL (Lander \& Botstein 1989)
- Low power

Bayesian QTL Mapping

- Bayesian methods (Stephens and Fisch 1998 Biometrics; Sillanpaa and Arjas 1998 Genetics; Yi and Xu 2002 Genetic Research, and Yi et al. 2003 Genetics): treat the number of QTLs as a parameter by using reversible jump Markov chain Monte Carlo (MCMC) of Green (1995 Biometrika)
- change of dimensionality, the acceptance probability for such dimension change, which in practice, may not be handled correctly (Ven 2004 Genetics)

Bayesian QTL Mapping

- Alternative, multiple QTL mapping can be viewed as a variable selection problem
- Forward and step-wise selection procedures (Broman and Speed 2002 JRSSB)
- LASSO, etc
- Bayesian QTL mapping
- Xu (2003 Genetics), Wang et al (2005 Genetics) Huang et al (2007 Genetics): Bayesian shrinkage
- Yi et al (2003 Genetics): stochastic search variable selection (SSVS) of George and McCulloch (1993 JASA)
- Yi (2004 Genetics): composite model space of Godsill (2001 J. Comp. Graph. Stat)
- Software: R/qtlbim by Yi's group

Bayesian QTL Mapping

- Limitations of existing QTL mapping methods
- do not model covariates at all or only model covariate effect linearly
- do not model interactions at all or model only lower order interactions, such as two way interactions

Bayesian QTL Mapping

- The multiple QTL mapping is a very large variable selection problem: for p potential genes, with p being in the hundreds or thousands, there are 2^{p} possible main effect models, $2\binom{p}{2}$ possible two-way interactions and $2\binom{p}{k}$ possible higher order $(k>2)$ interactions.

Semiparmetric QTL Mapping: Non-linear Covariate Effect

- Goal: allow arbitrary covariate effect in QTL Mapping model
- Semiparametric model:

$$
y_{i}=\sum_{j} \beta_{j} x_{i j}+\eta\left(t_{i}\right)+e_{i}, \quad i=1, \cdots n \quad \text { with } e_{i} \sim N\left(0, \sigma^{2}\right)
$$

- Funtion η is unspecified and t_{i} is a scalar or a vector of covariates
- Deifne $\tilde{x}_{j}=\left(x_{1 j}, \cdots, x_{n j}\right)^{\prime}$ and $\mathbf{x}_{i}=\left(x_{i 1}, \cdots, x_{i p}\right)^{\prime}$

Existing Semi/non-parametric Methods

- Dirichlet process (Muller et al. 1996)
- Splines (Smith and Kohn 1996; Denison et al. 1998 and DiMatteo et al. 2001)
- Wavelets (Abramovich et al. 1998 JRSSB)
- Kernel models (Feng et al 2007)
- Gaussian process (Neal 1997; 1996)
- Gaussian process priors have a large support in the space of all smooth functions through an appropriate choice of covariance kernel.
- Gaussian process is flexible for curve estimation because of their flexible sample path shapes
- Gaussian process related to smoothing spline somehow (Wahba 1978 JRSSB)

Semiparmetric QTL Mapping: Non-linear Covariate Effect

- Model

$$
y_{i}=\sum_{j} \beta_{j} x_{i j}+\eta\left(t_{i}\right)+e_{i}, \quad i=1, \cdots n \quad \text { with } e_{i} \sim N\left(0, \sigma^{2}\right)
$$

- The unobserved variables are: function η, error variane σ^{2} and the QTL effects $\boldsymbol{\beta}=\left\{\beta_{j}\right\}$

Gaussian Process Prior on η

- A Gaussian process where all possible finite dimensional distributions $\boldsymbol{\eta}=\left(\eta\left(t_{1}\right), \ldots, \eta\left(t_{n}\right)\right)^{\prime}$ follow a multivariate normal with $E\left(\eta\left(t_{i}\right)\right)=\mu\left(t_{i}\right)$ and $\operatorname{cov}\left(\eta\left(t_{i}\right), \eta\left(t_{j}\right)\right)=\sigma\left(t_{i}, t_{j}\right)$ where
$\mu(t ; \alpha)=\alpha_{1} f_{1}(t)+\cdots+\alpha_{I} f_{l}(t)$ and $\sigma\left(t_{i}, t_{j}\right)=\frac{1}{\tau} \exp \left(-\rho\left(t_{i}-t_{j}\right)^{2}\right)$
- τ controls the smoothness of η : when $\tau \rightarrow 0$, the posterior mean of η almost interpolates the data while centered around the prior mean function if $\tau \rightarrow \infty$.

Prior Specifications

- On $\boldsymbol{\beta}=\left\{\beta_{j}\right\}$: follow SSVS idea such that $P\left(\gamma_{j}=1\right)=1-P\left(\gamma_{j}=0\right)=p_{j}$ $\beta_{i} \mid \gamma_{j} \sim\left(1-\gamma_{j}\right) N\left(0, \sigma_{0}^{2}\right)+r_{j} N\left(0,{ }_{j}^{2} \sigma_{0}^{2}\right)$
- we also put hyper priors on τ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{l}\right)$ as $\tau \sim$ inverse-Gamma $\left(a_{\tau}, b_{\tau}\right)$ and $\alpha \sim N\left(\alpha_{0}, \Gamma\right)$

Conditional Probability

- Define $\boldsymbol{\Sigma}=\tau \operatorname{Var}(\boldsymbol{\eta})$, i.e., prior of $\boldsymbol{\eta}$ is $N(\boldsymbol{\mu}, \boldsymbol{\Sigma} / \tau)$.
- Define \mathbf{M} as a $k \times I$ matrix with the (i, j) th element equal to $\mu_{j}\left(t_{i}\right)$.
- Then the conditional posterior distributions are
- $\beta_{j} \mid \mathbf{y}, \boldsymbol{\theta}_{-\beta_{j}} \sim N\left(\hat{\beta}_{j}, \frac{\sigma^{2}}{\mathbf{x}_{j}^{\prime} \mathbf{x}_{j}+\sigma^{2} / \sigma_{j}^{2}}\right)$ [exercise: find $\hat{\beta}_{j}$]
- $p\left(\gamma_{j}=1 \mid \theta_{-\gamma_{j}}\right)=\frac{c_{j}}{c_{j}+\frac{p_{j}}{1-p_{j}} \exp \left\{\frac{\beta_{j}^{2}}{2 \sigma_{1}^{2}}\left(1-\frac{1}{c_{j}^{2}}\right)\right\}}$
- $\boldsymbol{\eta} \mid \boldsymbol{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \tau \sim N\left(\boldsymbol{\mu}^{\star}, \boldsymbol{\Sigma}^{\star}\right)$
-
where $\boldsymbol{\theta}$ is the vector of all unknown parameters, $\sigma_{j}=c_{j}^{\gamma_{j}} \sigma_{0}$, $\boldsymbol{\mu}^{\star}=\boldsymbol{\Sigma}^{\star} \mathbf{D}(\mathbf{U}-\boldsymbol{\mu})+\boldsymbol{\mu}, \boldsymbol{\Sigma}^{\star}=\left(\mathbf{D}+\boldsymbol{\Sigma}^{-1}\right)^{-1}$, $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right) / \sigma^{2}$ with $d_{j}=\#$ of subjects that have covariates equal to t_{j} and $\mathbf{U}=\left\{u_{j}\right\}$ with $u_{j}=$ average of $y_{i}-\sum_{j} \beta_{j} x_{i j}$ for those samples whose covariate equals t_{j}.

Bayesian Model: Simulation Results

- See lecture4 ppt file

Semiparmetric QTL Mapping II: Multiple Interacting QTLs

- Goal: map multiple potentially interacting QTLs without specifically model all potential main and higher order interaction effects
- Semiparametric model:

$$
y_{i}=\eta\left(x_{i 1}, \cdots, x_{i p}\right)+e_{i}, \quad i=1, \cdots, n \text { with } e_{i} \sim N\left(0, \sigma^{2}\right)
$$

- Again function η is unspecified
- very flexible
- $\eta\left(x_{i 1}, \cdots, x_{i p}\right)=x_{i 1}+x_{i 3}$, or $x_{i 1} x_{i 3}$ or $x_{i 1}+x_{i 4} x_{i 5} x_{i 6} \ldots \ldots$

Semiparmetric QTL Mapping II: Multiple Interacting QTLs

- Again Gaussian process prior is placed on η function such that
- $E\left(\eta_{i}\right)=0$
- $\operatorname{cov}\left(\eta_{i}, \eta_{k}\right)=\frac{1}{\tau} \exp \left[-\sum_{j} \rho_{j}\left(x_{i j}-x_{k j}\right)^{2}\right]$ where $\eta_{i}=\eta\left(x_{i 1}, \cdots, \eta_{i p}\right)$ and let $\boldsymbol{\eta}=\left\{\eta_{i}\right\}$.
- Hyperparameters ρ_{j} related to length scales $\frac{1}{\sqrt{\rho_{j}}}$ which characterize the distance in that particular direction over which η is expected to vary significantly.
- When $\rho_{j}=0, \eta$ is expected to be an essentially constant function of that input variable j, which is therefore deemed irrelevant (Mackay 1998).

Semiparmetric QTL Mapping II: Multiple Interacting QTLs

- The original papers on the Gaussian process (Mackay 1998; Neal 1997) did not view this method as an approach for variable selection and imposed a Gamma prior on the ρ_{j} parameters. However, ρ_{j} does provide information about the relevance of any QTL with value near zero indicating an irrelevant QTL.
- For variable selection purpose, we can impose the following mixture priors on ρ_{j} based on latent variable γ_{j} :
- $P\left(\gamma_{j}=1\right)=p_{j}$
- $\tau_{j}\left(=1 / \rho_{j}\right) \sim\left(1-\gamma_{j}\right) \operatorname{Ga}\left(\frac{\alpha_{0}}{2}, \frac{\alpha_{0}}{2 \mu_{0}}\right)+\gamma_{j} \operatorname{Ga}\left(\frac{\alpha_{1}}{2}, \frac{\alpha_{1}}{2 \mu_{1}}\right)$

Semiparmetric QTL Mapping II: Multiple Interacting QTLs

- No closed posterior form for τ_{j} s and we resort to Metropolis-Hastings algorithm
- Direct use of MH is not very efficient for our model and it would explore region of hight probability by an very inefficient random walk
- hybrid MC method was proposed (Neal 1993,1996: Rasmussen 1996; Barber et al 1997) and we adopt this approach
- hybird approach merges the MH algorithm with sampling techniques called dynamic simulation based on a "energy" function
- Not computationally feasible for GWAS data where millions of genotypes available on thousands of samples
- deterministic algorithms to replace MCMC sampling, such as conjugate gradient optimization technique for maximum-a-posterior estimates?

Semiparmetric QTL Mapping: Extensions

- A) non-genetic factors, $\mathbf{z}_{i}=\left(z_{i 1}, \cdots, z_{i q}\right)$ can be also inluded into η
$y_{i}=\eta\left(x_{i 1}, \cdots, x_{i p}, z_{i 1}, \cdots, z_{i q}\right)+e_{i}, \quad i=1, \cdots, n$ with $e_{i} \sim N\left(0, \sigma^{2}\right)$
- B) longitudinal data
$y_{i j}=\eta\left(x_{i 1}, \cdots, x_{i p}, t_{i j}\right)+e_{i j}$ with
$\mathbf{e}=\left(e_{i 1}, \cdots, e_{i, k_{i}}\right) \sim N\left(0, \boldsymbol{\Sigma}_{i}\right)$. We have considered cases where
- $\boldsymbol{\Sigma}_{i}$ is known up to certain parameters
- $\boldsymbol{\Sigma}_{l}$ is unknown and modelled vai the deomposition method of Chen and Dunson (2003, Biometrics)

