
Bayesian QTL Mapping

Fei Zou
Department of Biostatistics

Gillings School of Global Public Health
University of North Carolina-Chapel Hill

fzou@bios.unc.edu



Bayesian QTL Mapping

One gene one trait

very unlikely

Most traits have a significant environmental exposure
component

The vast majority of biological traits are caused by complex
polygenic interactions

also context dependent



Bayesian QTL Mapping

Single QTL Mapping

Single marker analysis (Sax, 1923 Genetics)
Interval mapping: Lander & Botstein (1989, Genetics)

Multiple QTL mapping

Composite interval mapping (Zeng 1993 PNAS, 1994 Genetics;
Jansen & Stam, 1994 Genetics)
Multiple interval mapping (Kao et al., 1999 Genetics)
Bayesian analysis (Satagopan et al., 1997 Genetics)



Bayesian QTL Mapping

Most complicated traits are caused by multiple (potentially
interacting) genes, which also interact with environment
stimuli

Single QTL interval mapping

Ghost QTL (Lander & Botstein 1989)
Low power



Bayesian QTL Mapping

Bayesian methods (Stephens and Fisch 1998 Biometrics;
Sillanpaa and Arjas 1998 Genetics; Yi and Xu 2002 Genetic
Research, and Yi et al. 2003 Genetics): treat the number of
QTLs as a parameter by using reversible jump Markov chain
Monte Carlo (MCMC) of Green (1995 Biometrika)

change of dimensionality, the acceptance probability for such
dimension change, which in practice, may not be handled
correctly (Ven 2004 Genetics)



Bayesian QTL Mapping

Alternative, multiple QTL mapping can be viewed as a
variable selection problem

Forward and step-wise selection procedures (Broman and
Speed 2002 JRSSB)
LASSO, etc
Bayesian QTL mapping

Xu (2003 Genetics), Wang et al (2005 Genetics) Huang et al
(2007 Genetics): Bayesian shrinkage
Yi et al (2003 Genetics): stochastic search variable selection
(SSVS) of George and McCulloch (1993 JASA)
Yi (2004 Genetics): composite model space of Godsill (2001
J. Comp. Graph. Stat)
Software: R/qtlbim by Yi’s group



Bayesian QTL Mapping

Limitations of existing QTL mapping methods

do not model covariates at all or only model covariate effect
linearly
do not model interactions at all or model only lower order
interactions, such as two way interactions



Bayesian QTL Mapping

The multiple QTL mapping is a very large variable selection
problem: for p potential genes, with p being in the hundreds
or thousands, there are 2p possible main effect models,

2

 p
2


possible two-way interactions and 2

 p
k


possible

higher order (k > 2) interactions.



Semiparmetric QTL Mapping: Non-linear Covariate Effect

Goal: allow arbitrary covariate effect in QTL Mapping model

Semiparametric model:

yi =
∑

j βjxij + η(ti ) + ei , i = 1, · · · n with ei ∼ N(0, σ2)

Funtion η is unspecified and ti is a scalar or a vector of
covariates

Deifne x̃j = (x1j , · · · , xnj)
′

and xi = (xi1, · · · , xip)
′



Existing Semi/non-parametric Methods

Dirichlet process (Muller et al. 1996)

Splines (Smith and Kohn 1996; Denison et al. 1998 and
DiMatteo et al. 2001)

Wavelets (Abramovich et al. 1998 JRSSB)

Kernel models (Feng et al 2007)

Gaussian process (Neal 1997; 1996)

Gaussian process priors have a large support in the space of all
smooth functions through an appropriate choice of covariance
kernel.
Gaussian process is flexible for curve estimation because of
their flexible sample path shapes
Gaussian process related to smoothing spline somehow (Wahba
1978 JRSSB)



Semiparmetric QTL Mapping: Non-linear Covariate Effect

Model

yi =
∑

j βjxij + η(ti ) + ei , i = 1, · · · n with ei ∼ N(0, σ2)

The unobserved variables are: function η, error variane σ2 and
the QTL effects β = {βj}



Gaussian Process Prior on η

A Gaussian process where all possible finite dimensional
distributions η = (η(t1), . . . , η(tn))

′
follow a multivariate

normal with E (η(ti )) = µ(ti ) and cov(η(ti ), η(tj)) = σ(ti , tj)
where
µ(t;α) = α1f1(t) + · · ·+ αl fl(t) and
σ(ti , tj) = 1

τ exp(−ρ(ti − tj)
2)

τ controls the smoothness of η: when τ → 0, the posterior
mean of η almost interpolates the data while centered around
the prior mean function if τ →∞.



Prior Specifications

On β = {βj}: follow SSVS idea such that
P(γj = 1) = 1− P(γj = 0) = pj
βi | γj ∼ (1− γj)N(0, σ20) + rjN(0,2j σ

2
0)

we also put hyper priors on τ and α = (α1, · · · , αl) as
τ ∼ inverse-Gamma(aτ , bτ ) and α ∼ N(α0, Γ)



Conditional Probability

Define Σ = τVar(η), i.e., prior of η is N(µ,Σ/τ).

Define M as a k × l matrix with the (i , j)th element equal to
µj(ti ).

Then the conditional posterior distributions are

βj | y,θ−βj ∼ N(β̂j ,
σ2

x′j xj+σ2/σ2
j

) [exercise: find β̂j ]

p(γj = 1 | θ−γj ) =
cj

cj+
pj

1−pj
exp

{
β2
j

2σ2
1

(
1− 1

c2
j

)}
η | y,α,β, τ ∼ N(µ?,Σ?)
......

where θ is the vector of all unknown parameters, σj = c
γj
j σ0,

µ? = Σ?D(U− µ) + µ, Σ? = (D + Σ−1)−1,
D = diag(d1, . . . , dk)/σ2 with dj = # of subjects that have
covariates equal to tj and U = {uj} with uj = average of
yi −

∑
j βjxij for those samples whose covariate equals tj .



Bayesian Model: Simulation Results

See lecture4 ppt file



Semiparmetric QTL Mapping II: Multiple Interacting QTLs

Goal: map multiple potentially interacting QTLs without
specifically model all potential main and higher order
interaction effects

Semiparametric model:
yi = η(xi1, · · · , xip) + ei , i = 1, · · · , n with ei ∼ N(0, σ2)

Again function η is unspecified

very flexible
η(xi1, · · · , xip) = xi1 + xi3, or xi1xi3 or xi1 + xi4xi5xi6 ......



Semiparmetric QTL Mapping II: Multiple Interacting QTLs

Again Gaussian process prior is placed on η function such that

E (ηi ) = 0
cov(ηi , ηk) = 1

τ exp[−
∑

j ρj(xij − xkj)
2] where

ηi = η(xi1, · · · , ηip) and let η = {ηi}.

Hyperparameters ρj related to length scales 1√
ρj

which

characterize the distance in that particular direction over
which η is expected to vary significantly.

When ρj = 0, η is expected to be an essentially constant
function of that input variable j , which is therefore deemed
irrelevant (Mackay 1998).



Semiparmetric QTL Mapping II: Multiple Interacting QTLs

The original papers on the Gaussian process (Mackay 1998;
Neal 1997) did not view this method as an approach for
variable selection and imposed a Gamma prior on the ρj
parameters. However, ρj does provide information about the
relevance of any QTL with value near zero indicating an
irrelevant QTL.

For variable selection purpose, we can impose the following
mixture priors on ρj based on latent variable γj :

P(γj = 1) = pj
τj(= 1/ρj) ∼ (1− γj)Ga(α0

2 ,
α0

2µ0
) + γjGa(α1

2 ,
α1

2µ1
)



Semiparmetric QTL Mapping II: Multiple Interacting QTLs

No closed posterior form for τjs and we resort to
Metropolis-Hastings algorithm

Direct use of MH is not very efficient for our model and it
would explore region of hight probability by an very inefficient
random walk
hybrid MC method was proposed (Neal 1993,1996: Rasmussen
1996; Barber et al 1997) and we adopt this approach
hybird approach merges the MH algorithm with sampling
techniques called dynamic simulation based on a ”energy”
function

Not computationally feasible for GWAS data where millions of
genotypes available on thousands of samples

deterministic algorithms to replace MCMC sampling, such as
conjugate gradient optimization technique for
maximum-a-posterior estimates?



Semiparmetric QTL Mapping: Extensions

A) non-genetic factors, zi = (zi1, · · · , ziq) can be also inluded
into η
yi = η(xi1, · · · , xip, zi1, · · · , ziq) + ei , i = 1, · · · , n with
ei ∼ N(0, σ2)

B) longitudinal data
yij = η(xi1, · · · , xip, tij) + eij with
e = (ei1, · · · , ei ,ki ) ∼ N(0,Σi ). We have considered cases
where

Σi is known up to certain parameters
ΣI is unknown and modelled vai the deomposition method of
Chen and Dunson (2003, Biometrics)


