Fei Zou Department of Biostatistics Gillings School of Global Public Health University of North Carolina-Chapel Hill fzou@bios.unc.edu

Bayesian QTL Mapping with Variable Selection

• When *p* >> *n*, it mgiht be more desirable to shrink most of the parameters towards 0.

• Let's consider the following model again $y_i = \mu + \sum_{j=1}^{p} \beta_j x_{ij} + e_i$ where $e_i \sim N(0, \sigma^2)$ with the following priors

•
$$p(\mu) \propto 1$$

• $\sigma^2 \propto \frac{1}{\sigma^2}$
• $\beta_j \propto N(0, \sigma_j^2)$
• $\sigma_j^2 \propto \frac{1}{\sigma_i^2}$

• Note: improper priors used for μ, σ^2 and σ_i^2 s.

Bayesian QTL Mapping with Variable Selection

- conditional probabilities of the parameters are now
 - $\mu \mid (\{y_i\}, \sigma^2, \{\sigma_j^2\}, \{\beta_j\}) \sim \mathcal{N}(\frac{1}{n} \sum_i (y_i \sum_j \beta_j x_{ij}), \frac{1}{n} \sigma^2)$
 - σ² | ({y_i}, μ, {σ_j²}, {β_j}) ~ scaled inverted-χ_n² and similarly the conditional probability of σ_j² follows a scaled inverted-χ₁².
 - $\beta_j \mid (\{y_i\}, \mu, \sigma^2, \{\sigma_k^2\}_{k \neq j}, \{\beta_j\}) \sim N(\bar{\beta}_j, s_j^2)$ [exercise: find $\bar{\beta}_j$ and s_j^2].

(日) (同) (三) (三) (三) (○) (○)

• All parameters can be sampled via Gibbs sampler: Great!

 Shrinkage phenomena is clear and seems to work reasonably well for QTL mapping

- Note: improper priors used for μ, σ^2 and σ_i^2 s.
- Hobert and Casella (1996 JASA) showed that even when all conditional distributions are proper, the posterior may not be proper!

- Example: consider the following simple mixed effet model y_{ij} = μ + u_i + ε_{ij}, i = 1, · · · , k j = 1, · · · , J where u_is (random effects) are iid N(0, σ_u²) and ε_{ij}s are iid N(0, σ²). Let θ = (μ, {u_j}, σ², σ_u²)
 μ ~ π(μ) ∝ 1; σ² ~ π(σ²) ∝ 1/σ_u²
 u_j ~ N(0, σ_u²) σ_u² ~ π(σ_u²) ∝ 1/σ_u²
- All conditional distributions are proper:
 - $p(\mu \mid \{u_j\}, \sigma^2, \sigma_u^2, \{y_{ij}\}) \sim N(\frac{1}{n} \sum_{i,j} (y_{ij} u_j), \frac{1}{n} \sigma^2)$
 - $p(u_j \mid \{u_k\}_{k \neq j}, \sigma^2, \sigma_u^2, \{y_{ij}\}) \sim N(\frac{\sum_j (y_{ij} \mu)}{1/\sigma_u^2 + n/\sigma^2}, \frac{1}{1/\sigma_u^2 + n/\sigma^2})$
 - similarly $p(\sigma^2 \mid \mu, \{u_j\}, \sigma_u^2, \{y_{ij}\})$ and $p(\sigma_u^2 \mid \mu, \{u_j\}, \sigma^2, \{y_{ij}\})$ can be shown to be proper[**exercise**: find the conditional densities of σ^2 and σ_e^2].

- However, $\int p(\mu, \{u_j\}, \sigma^2, \sigma_u^2 \mid \{y_{ij}\}) d\theta = \infty$ which is not proper!!!! [exercise: prove this claim]
- Be careful when using improper priors

- Note: ter Braak et al (2005 Genetics) showed that the posterior showed about for QTL is not proper either
- The posterior has two modes for β_js, one (infinity mass) at 0 and another at the true parameter value. The method works well likely due to the fact that all MCMC samples are trapped around the 2nd mode.
- ter Braak et al (2005) suggested the following prior modification to ensure a proper posterior:

•
$$\sigma^2 \propto (\sigma^2)^{-1+\delta}$$

• $\sigma_j^2 \propto (\sigma_j^2)^{-1+\delta}$

which yields a proper posterior for the QTL effet when 0 $<\delta \leq 1/2.$

- Thresholding must be employed in the Bayesian method discussed in previous lecture for variable selection purpose
- Alternatively, may employ Composite Space representation of the QTL model (Yi 2004 Genetics)
 - Re-represent the linear regression model as y_i = μ + Σ^p_{j=1} γ_jβ_jx_{ij} + e_i where γ_j = 1 or 0 depending on whether marker j is a QTL or not. Doing this way, the number of total QTL equals Σ^p_{j=1} γ_j.
 Priors:
 - 1) $p(\gamma_j) = \omega^{\gamma_j}(1-\omega)^{1-\gamma_j}$ where ω is pre-specified, such as 1/22) $\mu \sim N(\mu_0, \kappa_0^2)$. 3) $\beta_j \sim N(0, \kappa^2)$ or $\beta_j \mid \gamma_j \sim (1-\gamma_j)N(0, \kappa^2) + \gamma_j N(0, c\kappa^2)$ where *c* is a predtermined large number. The later has been used by George and McCulloch (1993) and Dellaportas et al. (2002) for a linear regression model. 4) $\sigma^2 \sim \text{Inverse-Gamma}(u, v)$

(日) (同) (三) (三) (三) (○) (○)

Extension to Gene-gene interaction

- in all models discussed thus far, genetics effects from multiple QTL are treated additive (i.e. no gene-gene interactions)
- Genes may interact with each other, i.e. epistasis effect

			QILI	
Example:			AA	AB
	QTL2	AA	1	2
		AB	2	1

- Problem: both genes would be missed by discussed methods
- Solution: split data into groups based on gentypes of one QTL and do stratified QTL mapping within each group, which requires prior knowledge which gene interacts with other genes
 - challenging problem.
- Question: for *p* putative genes, how many possible two way interactions? how many three way interations?

• Model with gene-gene interaction $y_{i} = y_{i} + \sum_{j} \beta_{i} y_{j} + \sum_{j} \beta_{i} y_{j} y_{j}$

 $y_i = \mu + \sum_j \beta_j x_{ij} + \sum_{j \neq k} \beta_{jk} x_{ij} x_{ik} + e_i$

• similar Bayesian approaches can be developed but the number of two-way interaction terms increases dramatically

- Model with other non-genetic covariates
 - Additive model:

$$y_i = \mu + \sum_j \beta_j x_{ij} + \sum_k \xi_k z_{ik} + e_i$$
 or

Interaction model:

$$y_i = \mu + \sum_j \beta_j x_{ij} + \sum_k \xi_k z_{ik} + \sum_{jk} \beta_{jk} x_{ij} z_{ik} + e_i$$