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Bayesian QTL Mapping with Variable Selection

When p >> n, it mgiht be more desirable to shrink most of
the parameters towards 0.

Let’s consider the following model again
yi = µ+

∑p
j=1 βjxij + ei where ei ∼ N(0, σ2)

with the following priors

p(µ) ∝ 1
σ2 ∝ 1

σ2

βj ∝ N(0, σ2
j )

σ2
j ∝ 1

σ2
j

Note: improper priors used for µ,σ2 and σ2j s.



Bayesian QTL Mapping with Variable Selection

conditional probabilities of the parameters are now

µ | ({yi}, σ2, {σ2
j }, {βj}) ∼ N( 1

n

∑
i (yi −

∑
j βjxij),

1
nσ

2)

σ2 | ({yi}, µ, {σ2
j }, {βj}) ∼ scaled inverted-χ2

n and similarly the

conditional probability of σ2
j follows a scaled inverted-χ2

1.

βj | ({yi}, µ, σ2, {σ2
k}k 6=j , {βj}) ∼ N(β̄j , s

2
j ) [exercise: find β̄j

and s2j ].

All parameters can be sampled via Gibbs sampler: Great!
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Shrinkage phenomena is clear and seems to work reasonably
well for QTL mapping
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Note: improper priors used for µ,σ2 and σ2j s.

Hobert and Casella (1996 JASA) showed that even when all
conditional distributions are proper, the posterior may not be
proper!
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Example: consider the following simple mixed effet model
yij = µ+ ui + εij , i = 1, · · · , k j = 1, · · · , J where ui s
(random effects) are iid N(0, σ2u) and εijs are iid N(0, σ2). Let
θ = (µ, {uj}, σ2, σ2u)

µ ∼ π(µ) ∝ 1; σ2 ∼ π(σ2) ∝ 1
σ2

uj ∼ N(0, σ2
u) σ2

u ∼ π(σ2
u) ∝ 1

σ2
u

All conditional distributions are proper:
p(µ | {uj}, σ2, σ2

u, {yij}) ∼ N( 1
n

∑
i,j(yij − uj),

1
nσ

2)

p(uj | {uk}k 6=j , σ
2, σ2

u, {yij}) ∼ N(
∑

j (yij−µ)
1/σ2

u+n/σ2 ,
1

1/σ2
u+n/σ2 )

similarly p(σ2 | µ, {uj}, σ2
u, {yij}) and p(σ2

u | µ, {uj}, σ2, {yij})
can be shown to be proper[exercise: find the conditional
densities of σ2 and σ2

e ].

However,
∫
p(µ, {uj}, σ2, σ2u | {yij})dθ =∞ which is not

proper!!!! [exercise: prove this claim]

Be careful when using improper priors
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Note: ter Braak et al (2005 Genetics) showed that the
posterior showed about for QTL is not proper either

The posterior has two modes for βjs, one (infinity mass) at 0
and another at the true parameter value. The method works
well likely due to the fact that all MCMC samples are trapped
around the 2nd mode.

ter Braak et al (2005) suggested the following prior
modification to ensure a proper posterior:

σ2 ∝ (σ2)−1+δ

σ2
j ∝ (σ2

j )−1+δ

which yields a proper posterior for the QTL effet when
0 < δ ≤ 1/2.
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Thresholding must be employed in the Bayesian method
discussed in previous lecture for variable selection purpose

Alternatively, may employ Composite Space representation of
the QTL model (Yi 2004 Genetics)

Re-represent the linear regression model as
yi = µ+

∑p
j=1 γjβjxij + ei

where γj = 1 or 0 depending on whether marker j is a QTL or
not. Doing this way, the number of total QTL equals

∑p
j=1 γj .

Priors:
1) p(γj) = ωγj (1−ω)1−γj where ω is pre-specified, such as 1/2
2) µ ∼ N(µ0, κ

2
0).

3) βj ∼ N(0, κ2) or βj | γj ∼ (1− γj)N(0, κ2) + γjN(0, cκ2)
where c is a predtermined large number. The later has been
used by George and McCulloch (1993) and Dellaportas et al.
(2002) for a linear regression model.
4) σ2 ∼ Inverse-Gamma(u, v)



Extension to Gene-gene interaction

in all models discussed thus far, genetics effects from multiple
QTL are treated additive (i.e. no gene-gene interactions)

Genes may interact with each other, i.e. epistasis effect

Example:

QTL1
AA AB

QTL2
AA 1 2
AB 2 1

Problem: both genes would be missed by discussed methods
Solution: split data into groups based on gentypes of one QTL
and do stratified QTL mapping within each group, which
requires prior knowledge which gene interacts with other genes

challenging problem.

Question: for p putative genes, how many possible two way
interactions? how many three way interations?



Multiple QTL Mapping

Model with gene-gene interaction
yi = µ+

∑
j βjxij +

∑
j 6=k βjkxijxik + ei

similar Bayesian approaches can be developed but the number
of two-way interaction terms increases dramatically

Model with other non-genetic covariates

Additive model:
yi = µ+

∑
j βjxij +

∑
k ξkzik + ei or

Interaction model:
yi = µ+

∑
j βjxij +

∑
k ξkzik +

∑
jk βjkxijzik + ei


