Bayesian QTL Mapping

Fei Zou
Department of Biostatistics

Gillings School of Global Public Health University of North Carolina-Chapel Hill
fzou@bios.unc.edu

Bayesian QTL Mapping with Variable Selection

- When $p \gg n$, it mgiht be more desirable to shrink most of the parameters towards 0 .
- Let's consider the following model again
$y_{i}=\mu+\sum_{j=1}^{p} \beta_{j} x_{i j}+e_{i}$ where $e_{i} \sim N\left(0, \sigma^{2}\right)$
with the following priors
- $p(\mu) \propto 1$
- $\sigma^{2} \propto \frac{1}{\sigma^{2}}$
- $\beta_{j} \propto N\left(0, \sigma_{j}^{2}\right)$
- $\sigma_{j}^{2} \propto \frac{1}{\sigma_{j}^{2}}$
- Note: improper priors used for μ, σ^{2} and $\sigma_{j}^{2} \mathrm{~s}$.

Bayesian QTL Mapping with Variable Selection

- conditional probabilities of the parameters are now
- $\mu \left\lvert\,\left(\left\{y_{i}\right\}, \sigma^{2},\left\{\sigma_{j}^{2}\right\},\left\{\beta_{j}\right\}\right) \sim N\left(\frac{1}{n} \sum_{i}\left(y_{i}-\sum_{j} \beta_{j} x_{i j}\right), \frac{1}{n} \sigma^{2}\right)\right.$
- $\sigma^{2} \mid\left(\left\{y_{i}\right\}, \mu,\left\{\sigma_{j}^{2}\right\},\left\{\beta_{j}\right\}\right) \sim$ scaled inverted- χ_{n}^{2} and similarly the conditional probability of σ_{j}^{2} follows a scaled inverted- χ_{1}^{2}.
- $\beta_{j} \mid\left(\left\{y_{i}\right\}, \mu, \sigma^{2},\left\{\sigma_{k}^{2}\right\}_{k \neq j},\left\{\beta_{j}\right\}\right) \sim N\left(\bar{\beta}_{j}, s_{j}^{2}\right)$ [exercise: find $\bar{\beta}_{j}$ and $\left.s_{j}^{2}\right]$.
- All parameters can be sampled via Gibbs sampler: Great!

Bayesian QTL Mapping

- Shrinkage phenomena is clear and seems to work reasonably well for QTL mapping

Bayesian QTL Mapping

- Note: improper priors used for μ, σ^{2} and σ_{j}^{2} s.
- Hobert and Casella (1996 JASA) showed that even when all conditional distributions are proper, the posterior may not be proper!

Bayesian QTL Mapping

- Example: consider the following simple mixed effet model $y_{i j}=\mu+u_{i}+\epsilon_{i j}, i=1, \cdots, k \quad j=1, \cdots, J$ where $u_{i} \mathrm{~s}$ (random effects) are iid $N\left(0, \sigma_{u}^{2}\right)$ and $\epsilon_{i j} \mathrm{~s}$ are iid $N\left(0, \sigma^{2}\right)$. Let $\theta=\left(\mu,\left\{u_{j}\right\}, \sigma^{2}, \sigma_{u}^{2}\right)$
$\begin{array}{lll}\text { - } \mu \sim \pi(\mu) \propto 1 ; & \sigma^{2} \sim \pi\left(\sigma^{2}\right) \propto \frac{1}{\sigma^{2}} \\ \text { - } u_{j} \sim N\left(0, \sigma_{u}^{2}\right) & \sigma_{u}^{2} \sim \pi\left(\sigma_{u}^{2}\right) \propto \frac{1}{\sigma_{u}^{2}}\end{array}$
- All conditional distributions are proper:
- $p\left(\mu \mid\left\{u_{j}\right\}, \sigma^{2}, \sigma_{u}^{2},\left\{y_{i j}\right\}\right) \sim N\left(\frac{1}{n} \sum_{i, j}\left(y_{i j}-u_{j}\right), \frac{1}{n} \sigma^{2}\right)$
- $p\left(u_{j} \mid\left\{u_{k}\right\}_{k \neq j}, \sigma^{2}, \sigma_{u}^{2},\left\{y_{i j}\right\}\right) \sim N\left(\frac{\sum_{j}\left(y_{i j}-\mu\right)}{1 / \sigma_{u}^{2}+n / \sigma^{2}}, \frac{1}{1 / \sigma_{u}^{2}+n / \sigma^{2}}\right)$
- similarly $p\left(\sigma^{2} \mid \mu,\left\{u_{j}\right\}, \sigma_{u}^{2},\left\{y_{i j}\right\}\right)$ and $p\left(\sigma_{u}^{2} \mid \mu,\left\{u_{j}\right\}, \sigma^{2},\left\{y_{i j}\right\}\right)$
can be shown to be proper[exercise: find the conditional densities of σ^{2} and σ_{e}^{2}].
- However, $\int p\left(\mu,\left\{u_{j}\right\}, \sigma^{2}, \sigma_{u}^{2} \mid\left\{y_{i j}\right\}\right) d \theta=\infty$ which is not proper!!!! [exercise: prove this claim]
- Be careful when using improper priors

Bayesian QTL Mapping

- Note: ter Braak et al (2005 Genetics) showed that the posterior showed about for QTL is not proper either
- The posterior has two modes for $\beta_{j} \mathrm{~s}$, one (infinity mass) at 0 and another at the true parameter value. The method works well likely due to the fact that all MCMC samples are trapped around the 2nd mode.
- ter Braak et al (2005) suggested the following prior modification to ensure a proper posterior:

$$
\begin{aligned}
& \text { - } \sigma^{2} \propto\left(\sigma^{2}\right)^{-1+\delta} \\
& \text { - } \sigma_{j}^{2} \propto\left(\sigma_{j}^{2}\right)^{-1+\delta}
\end{aligned}
$$

which yields a proper posterior for the QTL effet when $0<\delta \leq 1 / 2$.

Bayesian QTL Mapping

- Thresholding must be employed in the Bayesian method discussed in previous lecture for variable selection purpose
- Alternatively, may employ Composite Space representation of the QTL model (Yi 2004 Genetics)
- Re-represent the linear regression model as
$y_{i}=\mu+\sum_{j=1}^{p} \gamma_{j} \beta_{j} x_{i j}+e_{i}$
where $\gamma_{j}=1$ or 0 depending on whether marker j is a QTL or not. Doing this way, the number of total QTL equals $\sum_{j=1}^{p} \gamma_{j}$.
- Priors:

1) $p\left(\gamma_{j}\right)=\omega^{\gamma_{j}}(1-\omega)^{1-\gamma_{j}}$ where ω is pre-specified, such as $1 / 2$
2) $\mu \sim N\left(\mu_{0}, \kappa_{0}^{2}\right)$.
3) $\beta_{j} \sim N\left(0, \kappa^{2}\right)$ or $\beta_{j} \mid \gamma_{j} \sim\left(1-\gamma_{j}\right) N\left(0, \kappa^{2}\right)+\gamma_{j} N\left(0, c \kappa^{2}\right)$ where c is a predtermined large number. The later has been used by George and McCulloch (1993) and Dellaportas et al. (2002) for a linear regression model.
4) $\sigma^{2} \sim$ Inverse-Gamma (u, v)

Extension to Gene-gene interaction

- in all models discussed thus far, genetics effects from multiple QTL are treated additive (i.e. no gene-gene interactions)
- Genes may interact with each other, i.e. epistasis effect QTL1

Example:

- Problem: both genes would be missed by discussed methods
- Solution: split data into groups based on gentypes of one QTL and do stratified QTL mapping within each group, which requires prior knowledge which gene interacts with other genes
- challenging problem.
- Question: for p putative genes, how many possible two way interactions? how many three way interations?

Multiple QTL Mapping

- Model with gene-gene interaction

$$
y_{i}=\mu+\sum_{j} \beta_{j} x_{i j}+\sum_{j \neq k} \beta_{j k} x_{i j} x_{i k}+e_{i}
$$

- similar Bayesian approaches can be developed but the number of two-way interaction terms increases dramatically
- Model with other non-genetic covariates
- Additive model:

$$
y_{i}=\mu+\sum_{j} \beta_{j} x_{i j}+\sum_{k} \xi_{k} z_{i k}+e_{i} \text { or }
$$

- Interaction model:

$$
y_{i}=\mu+\sum_{j} \beta_{j} x_{i j}+\sum_{k} \xi_{k} z_{i k}+\sum_{j k} \beta_{j k} x_{i j} z_{i k}+e_{i}
$$

