
Learning Optimal Individualized Treatment Rules
from Electronic Health Record Data

Yuanjia Wang∗, Peng Wu, Ying Liu
Department of Biostatistics

Columbia University
∗Email: yw2016@cumc.columbia.edu

Chunhua Weng
Department of Biomedical Informatics

Columbia University

Donglin Zeng
Department of Biostatistics

University at North Carolina at Chapel Hill

Abstract—Medical research is experiencing a paradigm shift
from “one-size-fits-all” strategy to a precision medicine approach
where the right therapy, for the right patient, and at the right
time, will be prescribed. We propose a statistical method to
estimate the optimal individualized treatment rules (ITRs) that
are tailored according to subject-specific features using electronic
health records (EHR) data. Our approach merges statistical
modeling and medical domain knowledge with machine learning
algorithms to assist personalized medical decision making using
EHR. We transform the estimation of optimal ITR into a
classification problem and account for the non-experimental
features of the EHR data and confounding by clinical indication.
We create a broad range of feature variables that reflect both
patient health status and healthcare data collection process.
Using EHR data collected at Columbia University clinical data
warehouse, we construct a decision tree for choosing the best
second line therapy for treating type 2 diabetes patients.

I. INTRODUCTION

During the past decade, medical research is experiencing a
paradigm shift from “one-size-fits-all” strategy to a precision
medicine approach where the right therapy, for the right
patient, and at the right time, will be prescribed [1], [2].
Technological advances in data collection are enabling this
shift by providing large-scale personal data (e.g., clinical
assessments, electronic health records, genomic measures) to
meet the promise of individualized health care. Statistical
methods for estimating optimal medical treatment and disease
management strategy according to patient-specific character-
istics for each individual have received extensive attention
in the recent literature [3], [4], [5], [6]. Powerful machine
learning methods are proposed to estimate the optimal in-
dividualized treatment rule (ITR) based on high-dimensional
subject-specific feature variables. In particular, reinforcement
learning (e.g., Q-learning [3], [7]) can be used to discover the
optimal treatment at each stage of critical decision point by a
backward induction to maximize the estimated future clinical
reward (Q-function). However, the regression based Q-learning
selects the optimal treatment by modeling the Q-function and
its contrasts that are not explicitly related to the optimization
of the objective function (i.e., value function [7]), and thus
may suffer from incorrect model assumptions. The mismatch
between maximizing the Q-function and the value function
may lead to suboptimal treatment rules due to overfitting the
regression model [5]. Recent work by [5], [6] suggests an alter-
native framework, outcome-weighted learning (O-learning), to

estimate the optimal ITR by directly optimizing the expected
clinical outcome at the end of study. The resulting optimal
treatment regimen is identified by a weighted support vector
machine [8] and can estimate an ITR with any unconstrained
nonparametric functional form.

Electronic health records (EHR) provide rich longitudinal
data to address important clinical questions about the effec-
tiveness of interventions and allows estimating ITRs in real
world settings. Recently, EHR data collected in large scale
networks are proved as useful resources to characterize treat-
ment pathways in diverse populations [9]. However, subjects
recorded in these databases rarely received random assign-
ments of treatments, and this non-experimental feature poses
major challenges in inferring causality from observational
data, where confounding and selection bias may obscure a
true effect or create a spurious one [10]. Thus combining
medical domain knowledge with valid statistical methods is
critical in order to identify the optimal ITR with least bias
using observational data. A sound analysis needs to properly
handle potentially high-dimensional confounding factors and
systematic imbalance or heterogeneity among patients receiv-
ing different treatments. A wide range of statistical meth-
ods are developed to draw inferences from non-randomized
data, including propensity score weighting [11], and structural
nested models. However, none of these methods are combined
with O-learning to discover ITR from large-scale observational
EHR data. In addition, current O-learning methods [5], [6]
provide fully nonparametric decision rules which are not easy
to interpret.

In this work, we adapt O-learning approach to EHR data
in order to estimate optimal ITR depending on a patient’s
personalized characteristics such as health history, disease
risk factors, and predictive markers. To provide highly in-
terpretable ITRs, we incorporate classification and regression
trees (CART) in the O-learning. To mitigate confounding by
clinical indication for the treatments under study as a result
of physicians making treatment choices in light of available
clinical information, we study treatment strategies where little
evidence exists to guide choices between alternative treat-
ments (e.g., second line treatment choices for type 2 diabetes
[T2D] patients). To further mitigate confounding, we create
a broad range of potentially relevant feature variables from
the EHR data and apply propensity score adjustment using



random forest [12]. Using EHR data collected at Columbia
University clinical data warehouse, we construct a decision
tree to discover ITR for choosing the best second line therapy
for T2D patients and demonstrate the advantage of O-learning
in terms of achieving a greater clinical reward as compared to
Q-learning.

II. METHODS

The main goal of O-learning is to achieve personalized
medical decision making by estimating the optimal treatment
choice that assigns individualized treatment at each decision
stage according to a patient’s personal characteristics and
intermediate outcomes. The optimality of an ITR is measured
by a final clinical outcome (or reward) and ITR is expected
to be as effective or better than “one-size-fits-all” rule that do
not tailor to a patient’s personal features.

A. O-learning for Observational Data

Let Ri denote the reward or the clinical outcome for the ith
subject, where a larger rewards may correspond to better func-
tioning or fewer symptoms, depending on the clinical setting.
Let Hi denote feature variables collected before the initiation
of a treatment. Let Ai denote the received treatment assign-
ment taking values {−1, 1}. An ITR is a decision function,
D(Hi), that maps the domain of Hi to the treatment choices in
{−1, 1}. The value function is defined as the expected clinical
reward under the rule D(H) [7], V(D) = ED [Ri]. Under the
positivity assumption, the value function can be obtained from
observed data through [7]

V(D) = E

[
I(Ai = D(Hi))Ri

π(Ai, Hi)

]
, (1)

where π(Ai, Hi) is the probability of the ith patient receiving
treatment Ai. An optimal ITR, D∗, is the treatment rule that
maximizes the value function, that is, D∗ = maxD V(D).

Q-learning indirectly estimates the optimal ITR through
fitting a model for Ri. Specifically, Q-learning predicts out-
comes as R̂i = f̂(Hi, Ai) using Hi and interactions between
Hi and Ai as features, and selects the optimal treatment
as a∗ = max{a=1,−1} f̂(H, a). Q-learning may suffer from
incorrect model assumptions and overfitting when estimating
f , especially when Hi contains high-dimensional features.
Even if a nonparametric learning algorithm is used, the method
models the Q-function and its contrasts that are not explicitly
related to the optimization of the objective function in (1) and
this limitation was shown to result in suboptimal ITRs due to
overfitting the regression model in [5], [6].

In contrast, O-learning directly maximizes the value func-
tion in (1). Note that maximizing (1) is equivalent to minimiz-
ing E

[
I(Ai 6=D(Hi))Ri

π(Ai,Hi)

]
, which is a weighted missclassification

error rate with Ai as class labels and Ri as weights. O-learning
capitalizes on this observation and turns learning optimal ITR
into a weighted classification problem. Recently, [13] proposed
an improved algorithm to the original O-learning, which is
adopted here for further development. The basic idea is to
replace weights Ri in (1) by some surrogate weights, denoted

as R̃i, which yields the same asymptotic optimal decision rule
as [5] but is more efficient. Note that if we define R̃ = R−R̂,
where the predicted R̂ depends only on H but not A, then
the optimal decision function associated with R̃ remains the
same. Intuitively, because learning ITR is essentially to learn
the qualitative interaction between A and H , removing any
main effects of H on R has no influence. Thus, the first
improvement compared to [5] is to remove the main effects by
taking residuals from a prediction model (i.e., random forest).

A computational challenge of using Ri as weights in a
weighted classification is that Ri can be negative, so the
objective function is no longer convex and conventional clas-
sification algorithms based on convex optimization cannot be
applied. Methods in [5] resolved this issue by subtracting an
arbitrarily small constant from R in order to make it positive,
which unfortunately increases the variability of the weights
and could be unstable in practice. To this end, we propose the
following procedure similar to [13]. First, note that by simple
algebra, the value function for any decision function f under
the new weights R̃i = Ri − R̂i is

E

[
R̃i

π(Ai, Hi)
I(Ai 6= sign(f(Hi)))

]

= E

[
|R̃i|

π(Ai, Hi)
I(Aisign(R̃i) 6= sign(f(Hi)))

]
−E

[
R̃−i

π(Ai, Hi)

]
,

where x− = −min(0, x). Therefore, estimating the optimal
ITR is equivalent to maximizing the first term on the right hand
side of the above equation, which can be solved by a weighted
classification algorithm with weights |R̃i|/π(Ai, Hi) and class
labels Aisign(R̃i). This guarantees a convex optimization
problem that is easy to compute.

In a randomized trial, the probability of receiving a treat-
ment, π(Ai, Hi), is the randomization probability specified
by design and thus is known in the analysis. However, for
observational studies, the treatment assignment mechanism is
usually unknown and needs to be estimated from data. To
accommodate the observational feature of EHR data in clinical
data warehouse, we pay special attention to the clinical records
measurement patterns and create informative variables that are
predictive to the observed measurement patterns and adjust for
confounding (details in section II-B). These feature variables
are then used to estimate π(Ai, Hi).

To summarize, our proposed O-learning for EHR data
performs the following three steps.
Step 1. Use feature variables Hi to predict treatment assign-
ment probability (or propensity score), π̂(Ai, Hi), for each
individual.
Step 2. Use feature variables Hi to obtain a predicted outcome
R̂i by fitting a random forest with inverse propensity score
weighting by π̂(Ai, Hi).
Step 3. Obtain R̃i = Ri − R̂i for each subject, and fit a
weighted classification tree to estimate the decision function
f , where the weights are |R̃i/π̂(Ai, Hi)|, and the class labels
are Aisign(R̃i).
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Fig. 1. Tests Measurement Patterns Discriminating Received Treatment

B. EHR Data

Current guidelines for managing T2D advocate metformin
medication as the preferred first line therapy [14], but no
longer recommend a particular second-line agent largely be-
cause of insufficient evidence on the long-term outcomes
of different treatments [15]. Literature reveals uncertainties
of timely insulin initiation in clinical practice and optimal
sequence of treatments for insulin therapy versus oral hypo-
glycemic agents (OHA, e.g., sulfonylureas) for treating T2D.
The impact of delayed insulin initiation and the comparative
effectiveness of augmenting metformin with insulin therapy or
a second line OHA is largely unknown, particularly in a real-
world setting. We propose to apply the developed O-learning
to explore the optimal second line treatment of T2D using data
from Columbia University Medical Center’s (CUMC) clinical
data warehouse (CDW) and New York Presbyterian hospital
patient electronic health records [16]. The CUMC CDW con-
tains over 20 years of health information for about 4.5 million
patients with diverse ethnicities. The CDW data resource is
part of the New York City Clinical Data Research Network
which include complete, comprehensive, and longitudinal data
for at least 2.5 million patients from 22 organizations across
seven systems in one of the nation’s most populous and diverse
regions.

However, EHR data are inheritantly biased because they
are collected in an uncontrolled environment and are not
carefully curated for research purposes. Ignoring such biases
in statistical analyses may lead to the detection of spurious
effects, reversals of cause and effect [10], and errors when
predicting optimal drug dosage [17]. We tackle these chal-
lenges by a two-stage analytic strategy. In the first stage, we
extract feature variables that not only reflect patients’ health
status but also are informative of the healthcare and EHR

data recording process that can be used to mitigate bias. We
characterize the raw data into three categories: patient demo-
graphics (age, gender, race), patient health history including
prior ICD10 diagnosis, medication prescription, recent and
overall average lab measures (HbA1c, LDL, HDL), recent
and overall average vital signs (systolic blood pressure, SBP;
diastolic blood pressure, DBP, body mass index, BMI), and
measures of the CUMC healthcare system process. The latter
category includes temporal clinical events and laboratory tests
recording patterns, which are one of the most widely-used
features to capture the characteristics of a healthcare system
in EHR-related research [18]. However, capturing the context
of laboratory testing is a challenge since EHR data do not
directly offer an explicit reason of why a test was ordered.
Thus, data-driven automatic feature extraction is recommended
to discover contexts and patterns for lab measurements [19].

C. Feature Extraction and Implementing O-learning

We created temporal features of the rates of tests, numeric
values of tests, and their bivariate association with the gap
times between two consecutive measurements, which are used
to adjust for bias and patient heterogeneity [18]. Each patient
was aligned at their second line treatment initiation time, and
their lab measures within the past month or during the entire
recording period before treatment were calculated. The density
and frequencies of the measures were obtained by bivariate
smoothing.

Next, we used the aforementioned feature variables to con-
struct propensity scores by random forest to predict probability
(i.e., π̂i(Hi, Ai)) of observing OHA or insulin initiation for
each patient. To further handle potential bias caused by miss-
ing post-treatment outcome data, we used inverse probability
weighting (IPW) of missing, which is a valid approach under
missing at random (given observed features) assumption [20].



In the second stage, the discovery stage, we fitted O-learning
to estimate the optimal ITR with extracted tailoring variables
to choose OHA or insulin for patients already treated with
metformin for at least 3 months. The clinical outcome to
be optimized is glycemic control (level of HbA1c between
2 month post treatment and one year, Ri), and the tailoring
variables include demographics, BMI, co-morbidity informed
by ICD10 codes, SBP, DBP and other general health status
variables. The negation of the post-treatment HbA1c was
maximized (equivalently HbA1c was minimized). The value
function was inversely weighted by treatment propensity and
missing outcome probability as defined in (1) and computed
on the full training sample.

III. RESULTS

We extracted EHR data from the CDW at CUMC for adults
age 18 or older and having at least one T2D diagnosis ICD-
9 code selected from the following set of codes: 250.00,
250.02, 250.10, 250.12, 250.20, 250.22, 250.30, 250.32,
250.40, 250.42, 250.50, 250.52, 250.60, 250.62, 250.70,
250.72, 250.80, 250.82, 250.90, 250.92, between 1/1/2008 and
12/31/2012. To study the choice of second line therapy for
treating T2D, we further restricted our analyses sample to
patients who had been on metformin for at least 3 months
and who augmented treatment with either insulin or a second
line OHA, sulfonylurea, and with at least one record post
second-line treatment initiation. There were 357 patients in
sulfonylureas group with 1725 longitudinal records and 203
in insulin group with 982 longitudinal records.

We summarized the bivariate association between the mea-
surement intensity of several important laboratory tests/vital
signs (measured before second line treatment initiation) and
time to next measurement on the logarithm scale in Figure 1.
The two-dimensional intensity plots show smoothed frequen-
cies of subjects in the space defined by the numeric values of
lab tests and measurement gaps. For example, Figure 1a shows
that a high proportion of patients receiving sulfonylureas
had a wider range of measurement gaps (between 3 and
6 on the log-scale) and lower HbA1c level as compared
to patients receiving insulin (gap time between 4.5 and 6,
greater frequency with higher HbA1c). Similarly, discriminant
patterns are observed for other lab tests. Varying gaps between
measurements of lab tests may associate with different health
status of a patient [18] and explain some of the variability of
different treatment initiation. Thus, feature variables created
from these bivariate intensity plots are useful for predicting the
probability of receiving alternative treatments. We discretized
each density in Figure 1 into 9 subgroups based on low,
medium, and high quartiles of lab tests and gap time (e.g.,
the first group is “low HbA1c and short measurement gap
time”), and created indicator variables for each patient’s group
membership (intensity pattern group) as feature variables to
estimate propensity scores. Other univariate summaries such
as number of observations and length of observations were
also constructed. We present a heat map of the standardized
continuous feature variables in Figure 4. The features with

Fig. 2. Frequencies of Pre-treatment Co-morbidity Conditions Extracted from
ICD9 Codes
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Fig. 3. Longitudinal Measurements of HbA1c for Individuals (colored lines)
and Smoothed Overall Trajectory (black solid line)

most discriminant ability comparing treatment groups include
length of observations, frequency of observations, bivariate
intensity patterns, and some mean numeric values of lab tests
(e.g., overall mean HbA1c, recent mean BMI). Discrete feature
variables extracted include ICD9 co-morbidity codings (Figure
2). The frequency of occurrence is low in general, where the
most prevalent condition is cerebrovascular disease.
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Fig. 4. Heatmap of Extracted Continuous Feature Variables

A. Learning Optimal ITR

We present the longitudinal HbA1c measurements for all
individuals included in the analyses in Figure 3. On average,
there is an increasing trend (smooth solid black line) before
treatment initiation and a decreasing trend after treatment. We
included all the feature variables displayed in Figure 2 and 4
and general demographic variables measured prior to the treat-
ment initiation to predict propensity of treatment assignment
using random forest. Missing values of feature variables were
imputed using proximity from the random forest. Consistent
with observed in Figure 1 and 4, the most important features
predictive of propensity scores include overall HbA1c mean
value, bivariate SBP and DBP measurement patterns, length
and number of measures of SBP and DBP. To examine
whether propensity scores have balanced the distribution of
pre-treatment feature variables between treatment groups, we
compared group means of most important variables in Table I.
Within each stratum defined by the quartiles of the predicted
propensity scores, the means of feature variables are compara-
ble between treatment groups, suggesting the propensity score
balancing is effective.

The goal of estimating optimal ITR is to find a decision
tree based on individual features so that for subjects who
follow the ITR, the post-treatment HbA1c between two and
twelve months will be under control (minimized). There were
85 subjects missing post treatment HbA1c, and we used IPW
[20] to adjust for missing. The reciprocal of the product of
treatment propensity and missing probability were used as

weights in the O-learning outlined in section II-A. A CART
was fit using the feature variables for each subject except
the measurement pattern variables which are informative for
adjusting bias but may not directly relate to a future patient’s
health status to tailor treatment (a total of 36 features). As
a comparison, we also fitted Q-learning [7] with regression
tree and summarized the results in Table II. The values for
O-learning and Q-learning in the table were computed using
2-fold cross validation: the regression model was fitted on
the training samples and the value function was computed on
the testing sample. The optimal ITR estimated by O-learning
has a lower HbA1c than Q-learning for all tree levels. For
the “one-size-fits-all” rules, the average pre-treatment HbA1c
in sulfonylureas group is 8.56 and in insulin group is 9.82
(Table II). Augmenting all patients with OHA leads to a post-
treatment HbA1c of 7.81 and augmenting all with insulin leads
to 7.91. The 2-fold cross validation result shows optimal ITR
estimated by O-learning with 4-level decision tree achieves a
post-treatment HbA1c of 7.76, which approaches the normal
level, and is lower than augmenting with medication or insulin
for all patients. In conclusion, the optimal ITR estimated by
O-learning leads to a lower HbA1c compared to Q-learning
or non-individualized rules on the testing samples.

We present the 4-level decision tree fitted on all subjects
in Figure 5. The most important tailoring variables are pre-
treatment mean HbA1C (importance score = 0.299), recent
4-month mean HDL (importance score = 0.252), recent
month mean DBP (importance score = 0.220), recent month



TABLE I
BALANCING FEATURE VARIABLE DISTRIBUTION WITHIN PROPENSITY

SCORE QUANTILE DEFINED STRATA

Features 0-25th quartile 25 -50th quartile

Sulf Insul p value Sulf Insul p value
Average HbA1c 8.62 9.37 0.295 9.15 9.60 0.555

Length SBP 180.40 268.67 0.189 234.77 172.63 0.259
Length BMI 175.93 232.30 0.385 270.19 165.44 0.081
Length LDL 317.60 441.51 0.211 434.61 399.69 0.710

Length HbA1c 303.20 446.51 0.109 516.00 426.56 0.316

SBP (med-med) 3.83 3.59 0.765 0.58 2.06 0.030
Number of SBP 32.45 35.00 0.711 12.63 18.44 0.255
DBP (low-long) 1.91 2.27 0.597 0.47 1.60 0.037
DBP (high-med) 2.25 4.50 0.027 1.07 2.40 0.124
DBP (med-med) 5.33 2.74 0.015 1.27 1.67 0.543

50-75th quartile 75 -100th quartile
Sulf Insul p value Sulf Insul p value

Average HbA1c 8.29 8.99 0.338 7.50 8.84 0.105
Length SBP 341.87 360.33 0.830 374.98 300.14 0.180
Length BMI 353.08 289.44 0.405 366.17 310.43 0.349
Length LDL 582.87 480.67 0.437 584.51 502.43 0.193

Length HbA1c 586.79 514.44 0.518 578.34 546.57 0.644

SBP (med-med) 0.10 0.22 0.612 0.07 0.29 0.300
Number of SBP 7.23 6.33 0.687 5.54 3.86 0.075
DBP (low-long) 0.23 0.89 0.167 0.12 0.00 0.023
DBP (high-med) 0.39 0.22 0.556 0.17 0.14 0.867
DBP (med-med) 0.36 0.44 0.860 0.00 0.29 0.172

TABLE II
VALUE FUNCTION (HBA1C) OF FITTED TREATMENT RULES

Individualized Treatment Rules
Tree level O-learning Q-learning

2 7.72 7.88
3 7.79 8.13
4 7.76 7.92
5 7.73 7.97

One-size-fits-all Rule
All Sulfonylureas All Insulin

Pre-treatment 8.56 9.82
Post-treatment 7.81 7.91

mean LDL (importance score = 0.129), and pre-treatment
neuropathy diagnosis (importance score = 0.067). Overall,
about 70% patients were estimated to have sulfonylureas as
the optimal second line treatment while 30% estimated to have
insulin as optimal. As an example of optimal ITR, a patient
with HbA1c ≤ 10.66, recent 4-month mean HDL ≤ 43.21
and recent 4-month LDL ≤ 84.0 should initiate insulin as the
second-line therapy, while a patient with similar features but
with LDL > 84.0 should use sulfonylureas.

IV. DISCUSSION AND CONCLUSION

In this work, we propose O-learning for EHR data to
transform identifying optimal ITR to a classification frame-
work to yield flexible and interpretable ITR as a decision
tree. This transformation opens an avenue to merge powerful
classification tools such as random forest, classification tree or
support vector machine to optimize clinical decision making.
The direct treatment choice optimization framework of O-

Recent 1-Month DBP ≤ 70.25
samples = 100.0%
value = [0.5, 0.5]

class = Medication

Neuropathy Diagnosis ≤ 0.5
18.0%

[0.85, 0.15]
Insulin

True

Overall HbA1C ≤ 10.6625
82.0%

[0.4, 0.6]
Medication

False

Overall DBP ≤ 72.1607
15.0%

[0.96, 0.04]
Insulin

3.0%
[0.39, 0.61]
Medication
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[0.71, 0.29]

Insulin
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Fig. 5. Optimal ITR Decision Tree Estimated from O-learning

learning is shown to be superior than Q-learning on the
training data. One reason of the improvement is that the
treatment by feature variable interactions could be masked
when fitting Q-learning to predict outcomes, especially in the
presence of large number of features and interaction terms in
complex real world setting. O-learning, in contrast, directly
compares value function in (1) under alternative treatment
choices for each individual and thus does not suffer from such
limitation.

The estimated ITR provides insights on the effects of
patients’ characteristics on the outcome and the optimal choice
of treatment. However, due to the non-experimental feature
of EHR data, the estimated ITR needs to be interpreted with
caution. Here, propensity score weighting is carried out to
adjust for bias based on observed features. However, hidden
confounding and bias due to unobserved characteristics may
still be present. Thus the discovered optimal ITR needs to
be confirmed in future randomized trials. Recent research on
sequential multiple assignment randomized trials [21] pro-
vides experimental methodologies for designing randomized
trials to study multiple-stage ITRs or dynamic treatment rule.
Current single-stage O-learning can be extended to multiple-
stage settings where the treatment strategies are dynamically
adapted depending a subject’s time-varying feature variables
and build optimal treatment sequences. However, a challenge
for applications to EHR data is to handle unbalanced random
treatment switching time points.

Cohort identification using EHR data can be challenging
[22]. More sophisticated approach for identifying true T2D
patients from EHR data using both ICD codes and clinical
notes is desirable. Currently we used mean laboratory test
values as feature variables to learn an ITR. Better temporal
abstraction methods may be used to improve accuracy [23].
Lastly, using double-robust augmentation to handle missing
data [24] and exploring methods to handle complications from
missing-not-at-random mechanisms [25] are of interest.
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