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Proofs of Asymptotic Results for “Maximum Likelihood Estimation
in Semiparametric Transformation Models for Counting Processes”

BY DONGLIN ZENG and D. Y. LIN

This report contains the proofs for the asymptotic properties of the maximum likelihood
estimators (Bn,f\n) We conjecture that the results hold generally, but we only provide the

proofs under the following set of conditions:

Condition 1. The function Ag(t) is strictly increasing and continuously differentiable, and

B lies in the interior of a compact set C.

Condition 2. With probability one, Z(.) has bounded total variation in [0,7]. In addition,
if there exists a vector v and a deterministic function v,(t) such that vo(t) + 7 Z(t) = 0 with
probability one, then v = 0 and 7,(t) = 0.

Condition 3. With probability one, there exists a positive constant § such that pr(C' >
7|Z) > 6 and pr(Y (1) = 1|Z) > §, where Y~ () = 1 means that Y*(t) = 1 for all ¢ € [0, 7].

Condition 4. For any positive ¢g, limsup, . {G(coz)} ' log{zsup,, G'(y)} = 0. This
condition is satisfied by G(z) = {(1 + z)” — 1}/p with p > 0.

Consistency. The proof consists of three steps: first, we show that the maximum likelihood
estimators exist or equivalently that the jump sizes of A, are finite; secondly, we show that,
for almost every sample, A, is bounded, so that by the Helly selection, along a subsequence,

A, — A* weakly and Bn — (% finally, we show that A* = Ag and 3* = 5.

Step 1. Let (Xi,...,,X;n,) be the ordered observed event times for the ith subject and
define Xjo = 0. Let M be a constant such that supgsee c(0. |37 Z(t)| < M with probability one.

Condition 2 implies that such a constant exists. Thus, the ith term in (4) satisfies
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Under Condition 4, this quantity diverges to —oo if A{X;;} tends to oo for some X;;. Thus,

the jump sizes of A must be finite.

Step 2. We show that sup, A,(7) < oo with probability one. Since I,,(A, 8) achieves its

maximum at (/AXn, Bn), the following inequality holds

where &, = /AXn(T) and A, = /A\n/fn To show that sup,, /AXn(T) < oo with probability one,
it suffices to show that &, is bounded almost surely. We prove this result by contradiction.
Suppose that, for every sample in a probability set with positive probability, &, — oo for some
subsequence, which we still denote by &,. From (A.1), we obtain
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Note that the rlght—hand side is bounded from below by

logmlnG { ZN } (M) > —c0.
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However, the left-hand side is bounded from above by

1 n —
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Under Condition 4, log &, sup,<¢, .u G'(y) < eG(&,e7M) for any € when n is large enough. Thus,
n 1 n
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If we choose € such that eE[N(7)] < pr(Y (7) = 1,C > 7)/2, the left-hand side diverges to
—o0o when &, — oo. This is a contradiction. Therefore, A, is bounded with probability one.

By the Helly selection, along a subsequence, we assume that A, — A weakly and Bn — (.

Step 3. We show that A* = Ag and * = (). By differentiating [, (A, 3) with respect to

A{X;;} and setting the derivative be zero, we obtain

where



BT 2

> BT Z( " A
Z/ I(t > 5)Y(s)e? 4G 5]0 (SA) dAn)de(t).
G'(Jo Yu(3)e?" 2)dA,,)
It follows immediately that
N t 5 ,
An(t) = / iz dNi(s)/n. (A.2)

By the Glivenko-Cantelli theorem, ¢, (¢; A, Bn) uniformly converges to a continuously differ-
entiable function ¢*(s; A*, *). We show that minsep - |¢*(s; A*, 5%)| > 2¢ for some positive
constant €y by contradiction. If this inequality does not hold, then ¢*(sg; A*; 5*) = 0 for some
so € [0,7]. It follows from (A.2) that, for any € > 0,

i(s)/n l N(s)
|¢n5Amﬁn|+5 |¢ SA* )|+€ .

Letting e decrease to zero, we obtain

T dN(s) ]
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However, |¢*(s; A", %) = |o*(s; A", %) — ¢*(s0; A*, %) < c1]s — so| for some constant ¢
and [J |s — so| 'E[dN(s)] = oo. This is a contradiction. Thus, when n is large enough,

| (2; /A\n,ﬁn)] > ¢y > 0 for some constant ¢.

By replacing A, and 3, in (A.2) with Ay and 3y, we obtain

- [ B

If follows from the Glivenko-Cantelli theorem together with simple algebra that the right-hand
side of (A.3) uniformly converges to Ay almost surely. By (A.2) and (A.3) and the lower
bound of |¢,|, An(t) is absolutely continuous respect to A,(t) and dA, /dA, converges to a
bounded measurable function (t). That is, A*(t) = [; ¥ (s)dA¢(t). Thus, A*(t) is absolutely

continuous with respect to the Lebsgue measure and we denote its derivative as A*(¢). In
addition, 1¥(t) = \*(t)/Xo(t). Finally, since (A, §) is maximized at (A, 5,),
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We take the limits on both sides. By the Glivenko-Cantelli theorem and the fact that A, {t} /A{t}
converges uniformly to \*(¢)/Ao(t), the Kullback-Leibler information between the density in-

dexed by (A*, 5*) and the true density is negative. Therefore, with probability one,

/0 "log {Y(t))\*(t)eﬁ*TZ(t)G/( /t (5)6% 720) dA*)}dN(t) el /O Ty (1)e 2O
_ /OTlog{Y(t))\o() 206 / ()eﬁoTZ(s)dAo)}dN(t)—G( /OTY(t)eﬁoTZ@dAO).

This equality holds for the case in which Y™ (7) = 1, N*(7) = 0 and C' > 7 and also holds for
the case in which Y (1) = 1, N*(t—) = 0, N*(7) = 1 and C' > 7. The difference between the

equalities from these two cases entails that
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Integrating from 0 to ¢ yields
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If then follows from Condition 2 that * = Gy and A* = A,.

Thus,

Hence, we have proved that 3, — (y and A,(t) — Ag(t) almost surely. The latter can be

strengthened to uniform convergence in t € [0, 7] by the continuity of A,.

Asymptotic distribution. We denote the empirical measure determined by n i.i.d. observations
as P, and denote its expectation as P. Let G, be the empirical process given by /n(P, — P).
In addition, we define [(A, 3) as the logarithm of the observed likelihood function from a single
subject and define its derivative with respect to A as

A(A, B)[AA] = limy (BT AN B) ZUAB)

e—0 €

We also define
InN(A + eAsA, B)[A1A] — 1A (A, B)[A1A]

€

ZAA(A, ﬁ)[AlA, AQA] = 11118

Likewise, lg(A, 3) denotes the score vector for [ and lgg(A, 3) the Hessian matrix of [(A, )

with respect to 3. For convenience, we define
t t
U(t A, B) = G( / Y (s)eP 2OV dn) 16! ( / Y (5)eP 20 gA),
0 0
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T(A, B) = G /0 "y ()P 20 an),

We choose €, small enough and define a map W,, := (W,1, W,2) from {(A,5) : ||A —
Ao|liso,7) < €0, |8 — Bol < €0} CI(Q) x RP to [*(Q) x RP as follows: for any ¢(t) € Q,

Wald. 0l = 5P {100 +5 [Lawin ),
_ Pn{ / g(t)AN () + / (t: A, B) / Y (s)q(s)e® 2O dAdN (¢)
- [y M0gmanc ([ v “0an)}

and

_ Pn{/oT\I/(t;A,ﬁ)/t Y (s)e?"20) Z(s)dAdN (¢ +/ £)dN (¢)

~6/([[ Y@ 70an) [Ty e 40 z(t)an}.

Likewise, we can define the limit version of W,, as W := (W;,W5) by replacing P,, with P in
the above two definitions. Clearly, Wn(/AXn, Bn) =0 and W (Ay, fy) = 0. By Conditions 1-2 and
the Donsker theorem, \/n(W, — W) (A, B,) — v/R(W, —W)(Ag, o) = 0,(1) in the metric space
[*(Q) x RP. In light of Theorem 3.3.1 of van der Vaart and Wellner (1996), it remains to verify
that W is Fréchet-differentiable at (Ao, 5y) and that the derivative is continuously invertible in
the set A = {(A— Ao, B— o) : [|A—Aollio,7 < €0,]8 = Fo| < €0}. The Fréchet-differentiability
of W can be checked directly.

To verify the invertibility of the derivative, we note that the derivative of YW maps A to
[*(Q) x R? and has the form

(e ) (B2 ()] = (G Z it G- .
In addition,

Wi (A= Ao)la) = [(=p(®)] + K)lald(A - M)

Wia(5 = fo)la) = Al [ adol(8 = ).
War (A — Ag) = A™[A — Ao,

Waa (8 — o) = B(8 — Bo),



where p(t) > 0, I is identity operator, A and K are both linear operators, A* is the dual
operator of A, and B is p X p matrix. Specifically,

pt) = E{Y(t)eﬁoTZ(t)G'( /OTY(s)eﬂoTZ@dAO)}
—e{ret 0 [ wssan iinie)|
_ E {Y(t)eﬁgz(t)G’(/ot Y(s)eﬁgz(s)d/\o)} ,
Kla = ~B{y@eF 4080, 0) [V ()% Og(s)ano}
VB {Y(t)ef’oT 2(0) /t "W (51 Ao, Bo) /0 (B (3)e Z@dAOdN(s)},
Alf qdno) E[/OT\IJ'@;AO,ﬁo) [ Y612 q(sydn, [ V() 202 5)dn]
RIS / Vet Z<S>q<s>Z<s>dAo]
Y (1) 20g(t)dA, / 120 7 )dAO\IJ(AO,BO)]
Y0t A0 2anG ([ V(0 A0dn)|
B = E{ /0 U(t; Ao, Bo) /OtY(s)eﬁOTZ(S)Z(s)Z(s)TdAOdN(t)]
B /0 "W (t: Ao, o) { /0 t Y(s>eﬂoTZ<S>Z(s)dAo}®2 dN(t)]

e /0 Y (02O g, /0 Y (1% 70 7(4) Z (1) dA,

+E

|
e
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Wi Wi
War Wa
W12W2_21W21 are continuously invertible.

Thus, to show the invertibility of ( >, it suffices to show that Wy and V := Wy —

We first show that W, is invertible. Note that —Wsy is the information at (y for the
densities with parameters (Ag, 3), so that it is non-negative. If there exists some b € RP such
that b7 Wayeb = 0, then the score for 3 along the direction b should be zero with probability one,

0 = {[ vt:he. ) / Y (5)e%" 20) 7 (s)dAgd N (£)

- T
+/ G'(/ Y(t)e ﬁOTZ(t)dAO)/ Y(t)eﬂOTZ(t)Z(t)dAo} b.
0
The equality holds when Y™ (r) = 1, N(7) = 0 and € > 7, and also holds when Y™ (7) = 1,

C > 7 and N(-) has only one jump at t. The comparison of the equalities from these two cases
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yields
t
Z(t)Th = — / 2 7(5)TbdAgW (¢ Ao, Bo)-
0

This can be regarded as a homogeneous integral equation for the function Z(t)7b. We thus

conclude Z(t)Tb = 0 for all € [0,7]. Condition 2 then entails that b = 0.
Next we show that the operator V is invertible. Note that
VIA=Ao)(h) = [ {=p)1 + K} lald(A - Ao).

where K is an integral operator of ¢(t). If we can show that ¢Q C {—p(t)] + f(/} (Q) for some
constant €, then V' is continuously invertible on its image in (*°(Q). However, K is a compact
operator, so that the previous condition is equivalent to that —p(t)I + K is one to one; that is,
if some function ¢ € QP satisfies {—p(t)] + K} [q] = 0, then ¢ = 0. To prove this, we note that
the following equality holds for any (A, 3) and (g, b),

(Wn Wm) <A—A0> KQ)} :_,P<ZAA(AO>ﬁO) lAﬁ(Ao,ﬁo)) KA—AO) <fqd/\o>}
War Wa ) \ B =05 b lga(Ao, Bo)  Lss(Nos Bo) B—=00)’ b '
Thus, if there exists some ¢ such that {—p(t)] + K } [q] = 0, then in the above equation, we let

AE) = Aolf) = /Ot gdhg, b= — o — —WQ—;WQI[/; gdiy].

The left-hand side is equal to V'[[ ¢dA¢](q), which is zero. By the fundamental equality Ellgy] =
—Ellyl}], the right-hand side is equal to

E [{ZA(Ao,ﬁo)[/ qdAo] + lﬁ(Ao,ﬁo)Tb}T :

Thus, there exists some b € RP such that the score function along the path (Ag+9 [ gdAg, Bo+b)

is zero. This gives that

0 = [[Taman + [[vtne ) [ ¥(5)eh"?

©)q(s)dAodN (t)
el /0 Y (#)e® 7O g, /0 ’ Y(t)eﬂoTZ“)q(t)dAo]
4 { [ vt no ) [ Y ()M 76 7 (s)dAod N(t) + [ zwan)
el /0 Y ($)e 20 gA) /0 ’ Y(t)eﬂonz@)dAo} "

For the case of Y (1) = 1, N(7) = 0 and C' > 7 and for the case of Y (1) = 1, N(t) = I(t > t;)
and C' > 7, we obtain two equalities. By taking the difference, we obtain that

{alto) + Z(t0)"b} + W(to; Ao, o) /0 “{a(s) + 2(s)70} B Zang — 0.
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Again, this is a homogeneous equation for ¢(t) + Z(¢)Tb with only trivial solutions. Thus,
q(t) + Z(t)Tb = 0 for all t € [0,7]. Tt follows from Condition 2 that b = 0 and ¢(t) = 0.

Therefore, V' is invertible.

It now follows from Theorem 3.3.1 of van der Vaart and Wellner (1996) that, in the metric
space [*(Q) X RP, \/ﬁ(/A\n — Ao, B, — Bo) weakly converges to some Gaussian process. Further-

V(e ) (5 23 (D] = 6l aan + 8} + a0

The left-hand side of the equation can be written as

more,

vn {/al(q, b)Yd(A,, — Ao) + a2(q,b)T (B, — 50)} )

where o7 is a linear map from Q x RP? to [*°[0,7], and o9 is a linear map from Q x RP? to

. 1 eqe W11 W12
RP. Th tibility of (
e 1nvertipill y O ng WQQ

choose ¢ such that o1(q,b) = 0 and o3(q,b) = b, then

) implies the invertibility of the map (o1, 02). Thus, if we

V(B — 5o)Tb = Gy {IA[/ gdAo] + ng} + 0,(1).

We conclude that 3, is an asymptotically linear estimator for 3y and that its influence function

is on the space spanned by the score functions. Thus, Bn is semiparametrically efficient.

Consistency of covariance estimators. The above proof implies that

- (imtaod) " G =5 (B5™)]

=g, (MR ) o )

This approximation holds uniformly for ¢ with bounded variation and b with bounded norm.
We define a function /~\(t) as a step function with jumps at the observed event times X;; and
the jump size at Xj; is equal to Ag(Xy;) — maxx,,<x,, Ao(Xw). Clearly, /N\(Xij) = Ao(Xjj). For
any bounded vector {p;;,i=1,...,,n,5 =1,...,,n;} and bounded vector b € R?, we define a
step function p(t) such that it only jumps at X;; and p(X;;) = p;; and define A as the vector
consisting of pij/A\n{Xij}. By the definition of Z,,

&8I (5) L (zm%n,@n) zAﬁ(Knﬁn)> Kfép;l&) | (fépbdﬁnﬂ |

The right-hand side approximates

_p (égiéﬁg:gg lAﬁ(;;Z ﬂ0)> Kf(fpbdf\o> 7 (f(fpgif\oﬂ -0
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uniformly in any bounded function p(t) and b. It follows immediately that Z,, is positive definite

when n is large.

On the other hand,
. ﬁ<{xn{xg}—ﬂ{xﬁ}}>zn 3

bnbo >A - -
() ) (), (5
= (e ) (MY (Fr)
= e () (G- (B5)] e
_ g, {ZA(AO,BO)[/OtpdAO] +100] +0,(1)
_ g, {zA(AO, Bl [ "pdR,) + ng} +0,(1). (A.4)

In the above equations, 0,(1) means convergence to zero in probability uniformly in p;; and b.

Since Z,, is invertible, for any bounded sequence {¢;;}i=1,.. nj=1...n; and b, we can choose

......

{pij}i=1...mj=1...n; and b such that Z, (?) = <%>, where A = {pij/AXn{Xij}} and ¢ is the

vector consisting of ¢;;. With such choices, equation (A.4) yields

zn: i: \/ﬁ@n{Xw} - ]\{Xij})qz'j + \/E(Bn - ﬁo)Tg

i=1j=1

The distribution of the right-hand side approximates a normal distribution with covariance

matrix

P [{MAO, Bo)l [ pla] + Lo(ho, 5o)0} {1a o, ) [ pidRa] + 1s(e, Wb}T]

_ » <zAA(Ao,ﬁo> zon,ﬁo)) ngpdf\n) (fgpdﬁnﬂ
lsa (Mo, Bo) lgp b 7 b '
This distribution can be approximated by
p (zAA(/:\n,@n) lAg(f\n,Bn)> ngpdfxn> (fgpdf\n)]
"\ lga(An, Bn) lgs b ’ b ’

—

which is equal to (&, b)Z, (?) Thus, the asymptotic variance for
>3 V(R X} — MXiH)ai; + vn(Ba — 6o)"b
=1 j=1



can be approximated by .
& (5) = wnz (1),

That is, for any vector b and any bounded function q(t) such that ¢(X;;) = ¢i;, the asymp-
totic variance for /n [T q(t)d(A, — Ao) + /n(B. — o)Th can be consistently estimated by
(7, b)Z;* (%) This holds uniformly for any bounded function ¢(t) and bounded vector b.

n

Some other transformations. Condition 4 rules out such transformations as G(z) = log(1 + x).
However, Condition 4 is only used in the first two steps of the consistency proof. Thus, if we
can verify those two steps for the class of transformations G(z) = glog(1 + rx), where g and r

are positive constants, then all the asymptotic results also hold for such transformations.

To prove Step 1, we rely on the explicit form of G(z). It can be easily shown that the ith
term of (4) is bounded from above. Condition 3 implies that, almost surely, there exist some
subjects with Y7 (1) = 1, N(7) = 0 and C; > 7. For such a subject, the corresponding term in
(4) is equal to —plog(1+r [ e %" dA), which is negative infinity if A has infinite jump sizes.
Thus, Step 1 is proved.

To verify Step 2, it suffices to show A,,(7) < co. By equation (A.2) and the fact that G” < 0,

1 i I(t > Xi)YVe(Xi)e ™
N L
nA {le} n =)o 1+reM [1Y,(s)dA,

Thus,
0< (1R B) — (o )} < O()

—1i/0710g{ /0 I(t > s)Yi(s)e™ _ de()}dN _fZIOgl—i—re /[)T}/i(s)df&n).

nia L+ reM [ Yi(s)dA, i=1
(A.5)
For simplicity, assume that Y'(+) is non-increasing. We introduce a sequence sy = 7 > s1 >
Sy > ...,> sg = 0. Then the right-hand side of the above inequality can be bounded from
above by
1 g
;ZZI (5q-1) = 0,Yi(sg) = 1)

i=1g=1

/0 log{l z”:/oT I(t> s,t EA[SQ’Sq_l])de(t)}dNi(s)

n = 14+ reMA,(s4-1)

n n

2SS I(Yi(5g-1) = 0, Yi(s,) = 1) log(14+re ™A (Sq))—%Z[(Y;(SO) — 1) log(1+re MR, (7).

i=1q=1 i=1

3\@
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Rearranging this expression, we obtain that the right-hand side of (A.5) is bounded by

O(1) — L En:](Yi(sO) = 1)log(1 4+ re ™A, (7))

=1

—QE:HE@WOZOJ%%)ZUk%ﬂ+W€MﬁA%D]- (A6)

N3
Therefore, if we can choose the sequence sp =0 > s; > ..., > sg = 0 such that
1 & n
=S I(Yi(s0) = 0,Yi(s1) = DNi(7) < = 3" I(Yi(so = 1))
i=1

n - 2n

and

Q n

> 1(Yilsg) = 0,Yi(sq41) = DNi(7) < =3 1(Yi(s4-1) = 0,Yi(sg) = 1),

‘ i=1

then the first term in (A.6) diverges to negative infinity when A, (1) — co but the second and
third terms in (A.6) do not diverge. Thus, the right-hand side of (A.5) goes to negative infinity.

This is a contradiction, so that Step 2 is verified.
The sequence sy > s; > ..., can be chosen sequentially as follows: first, s; is defined as

sp = inf {s: E[I(Y(s9) =0,Y(s) =1)N(7)] < oE[I(Y (s0) = 1)]};

0<s<t
then given s, sq41 is defined as
Sqer = Inf {2 B[I(Y(s,) = 0.Y(s) = DN(r)] < coZ[I(Y (s,-1) = 0.¥ (s,) = 1)]}.
where ¢, is a constant less than ¢/2 and is to be determined later. Clearly, such a sequence

is well defined. We show that eventually sg = 0 for some finite (). Otherwise, we obtain

Sg> 81 >...,— 8" >0. Since
E[I(Y (s0) = 0,Y (s1) = YN(7)] = e B[ (Y(s0) = 1)],
EU(Y (sq) = 0,Y (s411) = DN(7)] = @B (Y (54-1) = 0,Y (s, = 1))]
for ¢ > 1, the summation of all these equalities yields
E[N(T)I(Y(s0) =0,Y(s*) =1)] = E[I(Y(s) = 1)].

This cannot be true if we choose ¢, small enough. Thus, sg must be zero for some finite Q).
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