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SUMMARY

Meta-analysis is widely used to synthesize the results of multiple studies. Although meta-

analysis is traditionally carried out by combining the summary statistics of relevant studies,

advances in technologies and communications have made it increasingly feasible to access

the original data on individual participants. In the present paper, we investigate the relative

efficiency of analyzing original data versus combining summary statistics. We show that,

for all commonly used parametric and semiparametric models, there is no efficiency gain by

analyzing original data if the parameter of main interest has a common value across studies,

the nuisance parameters have distinct values among studies, and the summary statistics are

based on maximum likelihood. We also assess the relative efficiency of the two methods

when the parameter of main interest has different values among studies or when there are

common nuisance parameters across studies. We conduct simulation studies to confirm the

theoretical results and provide empirical data from a genetic association study.

Some key words: Cox regression; Evidence-based medicine; Genetic association; Individual

patient data; Information matrix; Linear regression; Logistic regression; Maximum likeli-

hood; Profile likelihood; Research synthesis.
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1. INTRODUCTION

Meta-analysis, the combination of results from a series of independent studies, is gaining

popularity in many fields, including medicine, psychology, epidemiology, education, genet-

ics and ecology. In particular, meta-analysis publications in medical research have grown

enormously over the last three decades, due to greater emphasis on evidence-based medicine

and the need for reliable summarization of the vast and expanding volume of clinical re-

search (e.g., Sutton et al., 2000; Whitehead, 2002). Most of the recent discoveries on genetic

variants influencing complex human diseases were made possible through meta-analysis of

multiple studies (e.g., Lohmueller et al., 2003; Zeggini et al., 2008).

Traditionally, meta-analysis is carried out by combining the summary statistics of rel-

evant studies, which are available in journal articles. With improving technologies and

communications and increasing recognition of the benefits of meta-analysis, it is becoming

more feasible to obtain the raw or original data on individual participants (e.g., Sutton et

al., 2000). Indeed, meta-analysis of individual patient data is regarded as the gold standard

in systematic reviews of randomized clinical trials (e.g., Chalmbers et al., 1993). Recently,

a number of networks or consortia have been created to share original data from genetic

association studies (e.g., Kavvoural & Ioannidis 2008; The Psychiatric GWAS Consortium

Steering Committee, 2009). In general, obtaining original data is difficult, costly and time-

consuming. A question naturally arises as to how much efficiency gain can be achieved by

analyzing original data over combining summary statistics.

A partial answer to this question was provided by Olkin & Sampson (1998), who showed

that, in the case of comparing multiple treatments and a control with respect to a con-

tinuous outcome, the traditional meta-analysis based on estimated treatment contrasts is

equivalent to the least-squares regression analysis of individual patient data if there are no

study-by-treatment interactions and the error variances are constant across trials. Mathew

& Nordström (1999) stated that the equivalence holds even if the error variances are dif-

ferent across trials. There has been no theoretical investigation beyond this special setting.
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Empirically, meta-analysis using original data has been found to be generally similar but not

identical to meta-analysis using summary statistics (e.g., Whitehead, 2002, Ch. 5).

In the present paper, we provide a systematic investigation into the relative efficiency of

using summary statistics versus original data in fixed-effects meta-analysis, which assumes a

common effect among studies. We prove that the two types of meta-analysis are asymptoti-

cally equivalent for all commonly used parametric and semiparametric models provided that

the effect sizes are indeed the same for all studies, the nuisance parameters are distinct across

studies, and maximum likelihood estimation is used in the calculations of summary statistics

and in the joint analysis of original data. We also investigate the relative efficiency of the

two methods when the effect sizes are different among studies or when there are common

nuisance parameters across studies. We illustrate the theoretical results with simulated and

empirical data.

2. THEORETICAL RESULTS

2.1. Main Results

Suppose that there are K independent studies, with nk participants for the kth study.

The original data consist of (Yki, Xki) (k = 1, . . . , K; i = 1, . . . , nk), where Yki is the response

variable for the ith participant of the kth study, and Xki is the corresponding vector of

explanatory variables. The response variable can be continuous or discrete, univariate or

multivariate. Under fixed-effects models, the conditional density of Yki given Xki takes the

form f(y, x; β, ηk), where β is a vector of parameters common to all K studies, and ηk is

a vector of parameters specific to the kth study. A simple example is the linear regression

model for the normal response variable:

Yki = αk + βTXki + εki, k = 1, . . . , K; i = 1, . . . , nk,

where εki is normal with mean zero and variance σ2
k (Whitehead, 2002, §5.2.1). In this

case, f(y, x; β, ηk) = (2πσ2
k)
−1/2 exp{−(y − αk − βTx)2/2σ2

k}, and ηk = (αk, σ
2
k). Additional

examples are given in §2.4. We wish to make inference about β.
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Meta-analysis is usually performed on a scalar parameter. We allow vector-valued β for

two reasons. First, there are important applications in which the effects of interest, such as

treatment differences in a multi-arm clinical trial or co-dominant effects of a genetic variant,

are truly multivariate. Second, if the nuisance parameters, e.g., intercepts or confounding

effects, have the same values among the K studies, then performing meta-analysis jointly on

the effects of interest and the common nuisance parameters can improve statistical efficiency,

as will be discussed in §2.2. Of course, our formulation includes scalar β as a special case.

Let β̂k be the maximum likelihood estimator (MLE) of β by maximizing the kth study

likelihood:

Lk(β, ηk) :=
nk∏

i=1

f(Yki, Xki; β, ηk),

and let β̃ be the MLE of β by maximizing the joint likelihood

L(β, η1, . . . , ηK) :=
K∏

k=1

Lk(β, ηk).

The profile likelihood functions for β based on Lk(β, ηk) and L(β, η1, . . . , ηK) are, respectively,

plk(β) := sup
ηk

Lk(β, ηk),

and

pl(β) := sup
η1,...,ηK

L(β, η1, . . . , ηK).

The corresponding observed profile information matrices are Ik(β) := −∂2 log plk(β)/∂β2

and I(β) := −∂2 log pl(β)/∂β2. The maximizer of the profile likelihood is the same as the

MLE in that β̂k = argmax plk(β) and β̃ = argmax pl(β). Write n =
∑
k nk and assume

that nk/n → ck ∈ (0, 1) as n → ∞. Assume also that the regularity conditions for profile

likelihood as stated in Murphy & van der Vaart (2000) hold. Then nkI−1
k (β̂k) and nI−1(β̃) are

consistent estimators of the covariance matrices of n
1/2
k (β̂k−β) and n1/2(β̃−β), respectively.

Remark 1. For survival data and other censored data, the likelihood needs to be mod-

ified. If Yki is right censored at Ỹki, then we replace f(Yki, Xki; β, ηk) in the likelihood by

S(Ỹki, Xki; β, ηk), where S(y, x; β, ηk) =
∫∞
y f(u, x; β, ηk)du.
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Remark 2. Our framework allows different likelihood functions among studies, and the

statistical models are not necessarily regression models. In meta-analysis of diagnostic ac-

curacy data, the likelihood function for each study pertains to the multinomial distribution

of a 2× 2 contingency table, and β can be the sensitivity or specificity or both.

In traditional meta-analysis, one collates summary statistics β̂k and v̂ar(β̂k) := 1/Ik(β̂k)

(k = 1, . . . , K) for a scalar parameter β. The well-known inverse-variance estimator of β is

β̂ :=

∑K
k=1 β̂k/v̂ar(β̂k)
∑K
k=1 1/v̂ar(β̂k)

, (1)

and its variance is estimated by

v̂ar(β̂) :=
1

∑K
k=1 1/v̂ar(β̂k)

.

To allow vector-valued β, we propose a multivariate version of estimator (1):

β̂ =

{
K∑

k=1

Ik(β̂k)
}−1 K∑

k=1

Ik(β̂k)β̂k, (2)

whose covariance matrix is estimated by

v̂ar(β̂) :=

{
K∑

k=1

Ik(β̂k)
}−1

. (3)

If original data are available, one can estimate β by the MLE β̃, whose covariance matrix

is estimated by v̂ar(β̃) := I−1(β̃). It is easy to see that pl(β) =
∏K
k=1 plk(β), which implies

that I(β) =
∑K
k=1 Ik(β). Thus,

v̂ar(β̃) =

{
K∑

k=1

Ik(β̃)

}−1

. (4)

Equations (3) and (4) show that v̂ar(β̂) and v̂ar(β̃) take the same form, the only difference

being that the Ik(β) are evaluated at the β̂k in the former and at β̃ in the latter. Under

standard regularity conditions, β̂k (k = 1, . . . , K) and β̃ converge to β, and n−1
k Ik(β) (k =

1, . . . , K) converge to constant matrices. It follows that n1/2(β̂−β) and n1/2(β̃−β) have the

same limiting normal distribution. Thus, using summary statistics has the same asymptotic

efficiency as using original data.
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2.2. Common Nuisance Parameters

According to the results of the last section, meta-analysis based on summary statistics

has the same asymptotic efficiency as the MLE of full data if the former analysis is performed

jointly on all common parameters. It is generally difficult to obtain multivariate summary

statistics, especially in retrospective meta-analysis of published results. Thus, it is important

to determine the efficiency loss of meta-analysis based on the univariate summary statistics

for the effect of main interest when there are other common effects, which are referred to as

common nuisance parameters.

Suppose that β is a scalar parameter representing a common effect of main interest and

that a subset of ηk, denoted by γ, is a vector of common nuisance parameters. Denote the

profile information matrices for (β, γ) based on the kth study data and all the data as

Ik =
( Ikββ Ikβγ
Ikγβ Ikγγ

)
,

and

I =
( Iββ Iβγ
Iγβ Iγγ

)
,

respectively. The variance of β̂k is approximately (Ikββ − IkβγI−1
kγγIkγβ)−1, so the variance

of β̂ is approximately {∑k(Ikββ − IkβγI−1
kγγIkγβ)}−1. The variance of β̃ is approximately

(
Iββ − IβγI−1

γγ Iγβ
)−1

. Thus, the relative efficiency of β̂ to β̃ is approximately

∑
k Ikββ −

∑
k IkβγI−1

kγγIkγβ
Iββ − IβγI−1

γγ Iγβ
.

Because I =
∑
k Ik, the relative efficiency can also be expressed as

∑
k Ikββ −

∑
k IkβγI−1

kγγIkγβ∑
k Ikββ − (

∑
k Ikβγ)(

∑
k Ikγγ)−1(

∑
k Ikγβ)

.

It follows from Lemma 1 of Appendix A that

∑

k

IkβγI−1
kγγIkγβ ≥ (

∑

k

Ikβγ)(
∑

k

Ikγγ)−1(
∑

k

Ikγβ).

Thus, the relative efficiency is always less than or equal to 1. It also follows from Lemma

1 that the relative efficiency is 1 if and only if IkβγI−1
kγγ = IlβγI−1

lγγ (∀k 6= l). Note that
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IkβγI−1
kγγ ≈ −var(β̂k)

−1cov(β̂k, γ̂k), where β̂k and γ̂k are the MLEs of β and γ based on the

kth study data. Thus, the relative efficiency is 1 if and only if var(β̂k)
−1cov(β̂k, γ̂k) are the

same among the K studies. Obviously, the latter condition is satisfied if cov(β̂k, γ̂k) = 0

(k = 1, . . . , K). The foregoing conclusions also hold for multivariate β.

2.3. Unequal Effect Sizes

The fixed-effects meta-analysis assumes that the effect sizes βk are the same across stud-

ies. This assumption does not affect the type I error of hypothesis testing since all effect sizes

are the same under the null hypothesis. However, it is of practical importance to determine

the relative power of using summary statistics versus original data when the βk are unequal.

Write Uk(β) = ∂ log plk(β)/β and U(β) = ∂ log pl(β)/β. By definition, Uk(β̂k) = 0 (k =

1, . . . , K) and U(β̃) = 0. Since U(β) =
∑K
k=1 Uk(β), we have

∑K
k=1

{
Uk(β̂k)− Uk(β̃)

}
= 0.

By the mean-value theorem,
∑K
k=1 Ik(β∗k)(β̂k − β̃) = 0, where β∗k lies between β̂k and β̃. In

other words,

β̃ =

{
K∑

k=1

Ik(β∗k)
}−1 K∑

k=1

Ik(β∗k)β̂k. (5)

Comparison of (5) to (2) reveals that β̃ is the same kind of weighted combination of the β̂k

as β̂, with the weights Ik(β) evaluated at the β∗k rather than the β̂k. As shown in §2.1, the

only difference between v̂ar(β̃) and v̂ar(β̂) lies in the evaluation of the Ik(β) at β̃ versus the

β̂k. Hence, meta-analysis based on summary statistics and meta-analysis of original data

will have similar power provided that the Ik(β) do not changes their values drastically when

β varies between the β̂k and β̃. When the βk are unequal, the limits of β̂ and β̃ pertain to

weighted combinations of the βk, rather than a common parameter is a statistical model.

We consider the local alternatives H1n : β
(n)
k = β + O(n−1/2), k = 1, . . . , K. Under H1n,

the estimators β̂k (k = 1, . . . , K) converge in probability to β. We show in Appendix B

that β̃ also converges in probability to β under H1n. It follows that, for each k, the weights

n−1Ik(β̂k), n−1Ik(β̃) and n−1Ik(β∗k) all converge in probability to the same constant matrix.

Thus, meta-analysis based on summary statistics and meta-analysis of original data have

the same asymptotic power against H1n.
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For hypothesis testing, one can use score statistics in meta-analysis. For testing the null

hypothesis H0 : β = β0, the score statistics based on summary statistics and original data

are {
K∑

k=1

Uk(β0)

}T{ K∑

k=1

Ik(β0)

}−1 { K∑

k=1

Uk(β0)

}
,

and UT(β0)I−1(β0)U(β0), respectively. The two statistics are numerically identical since

U(β) =
∑K
k=1 Uk(β) and I(β) =

∑K
k=1 Ik(β). This equivalence holds whether the true effect

sizes are equal or not.

2.4. Special Cases

In this section, we consider three most common cases of meta-analysis: linear regression

for continuous response, logistic regression for binary response, and Cox regression for po-

tentially censored survival time. We will pay particular attention to the form of the observed

profile information matrices Ik because, as shown in §§2.1 and 2.3, the only difference be-

tween β̂ and β̃ lies in the argument of the profile information matrix. We use X to denote

the explanatory variables of main interest and Z to denote the unit component and possibly

other explanatory variables or covariates that are measured at the individual level. The

numbers and types of covariates need not be the same among the K studies.

Example 1 (Linear regression). Assume that the distribution of Yki conditional Xki and

Zki is normal with mean βTXki + γT
k Zki and variance σ2

k. The observed profile information

matrix for β based on the kth study data is Ik(σ2
k) := Dk/σ

2
k, where

Dk =
nk∑

i=1

X⊗2
ki −

nk∑

i=1

XkiZ
T
ki

( nk∑

i=1

Z⊗2
ki

)−1 nk∑

i=1

ZkiX
T
ki,

and a⊗2 = aaT. The MLEs of σ2
k based on the kth study data and all data are, respectively,

σ̂2
k = n−1

k

nk∑

i=1

(Yki − β̂T
kXki − γ̂T

k Zki)
2,

and

σ̃2
k = n−1

k

nk∑

i=1

(Yki − β̃TXki − γ̃T
k Zki)

2,
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where β̂k and γ̂k are the least-squares estimators of β and γk based on the kth study

data, and β̃ and γ̃k are the MLEs of β and γk based on all data. By definition, β̂ =

{∑k Ik(σ̂2
k)}
−1∑

k Ik(σ̂2
k)β̂k and v̂ar(β̂) = {∑k Ik(σ̂2

k)}
−1

. It is easy to show that β̃ =

{∑k Ik(σ̃2
k)}−1∑

k Ik(σ̃2
k)β̂k and v̂ar(β̃) = {∑k Ik(σ̃2

k)}−1
. Thus, β̂ and β̃, and their vari-

ance estimators differ only in whether Ik(σ2
k) is evaluated at σ̂2

k or σ̃2
k. In general, σ̂2

k and σ̃2
k

are approximately the same, so that the results of meta-analysis using summary statistics

and using original data are similar. Under the assumed model, both σ̂2
k and σ̃2

k converge to

σ2
k, so that using summary statistics is asymptotically equivalent to using original data. If

the assumed model is incorrect, then the two estimators may converge to different constants.

The setting considered by Olkin & Sampson (1998) and Mathew & Nordström (1999) is

a special case of our model in which X consists of treatment indicators and Z = 1. In this

setting, Dk is a function of group sizes only. Under the assumption that σ2
1 = σ2

2 = . . . = σ2
K ,

one can define β̂ as (
∑
kDk)

−1∑
kDkβ̂k, which also turns out to be the expression of β̃ under

the common variance assumption. Thus, using summary statistics is numerically identical to

using original data, which is the finding of Olkin & Sampson (1998). Mathew & Nordström

(1999) stated that the equivalence continues to hold even if the error variances are unequal.

They used the true values of the σ2
k in their definition of β̂. Since the σ2

k need to be estimated

from the data, the equivalence holds only asymptotically rather than numerically.

Example 2 (Logistic regression). Assume that

pr(Yki = 1|Xki, Zki) =
eβ

TXki+γ
T
k Zki

1 + eβ
TXki+γ

T
k
Zki
, k = 1, . . . , K; i = 1, . . . , ni.

Write θk = (β, γk). The observed profile information matrix for β based on the kth study

data is

Ik(θk) :=
nk∑

i=1

vki(θk)X
⊗2
ki −

{
nk∑

i=1

vki(θk)XkiZ
T
ki

}{
nk∑

i=1

vki(θk)ZkiZ
T
ki

}−1 { nk∑

i=1

vki(θk)ZkiX
T
ki

}
,

where vki(θk) = eβ
TXki+γ

T
k Zki/(1 + eβ

TXki+γ
T
k Zki)2. Note that Ik depends on θk only through

the vki(θk). Clearly, vki(θk) = pr(Yki = 1){1 − pr(Yki = 0)}, which is not sensitive to the

value of θk unless pr(Yki = 1) is extreme. Thus, the results of meta-analysis using summary
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statistics and using original data are generally similar, regardless of whether the effect sizes

are equal or not.

Example 3 (Cox regression). The Cox (1972) proportional hazards model specifies that

the hazard function of the survival time Yki conditional on covariates Xki takes the form

λ(y|Xki) = λk0(y)eβ
TXki , k = 1, . . . , K; i = 1, . . . , ni,

where the λk0(·) are arbitrary baseline hazard functions. In the presence of right censoring,

the data consist of (Ỹki,∆ki, Xki) (k = 1, . . . , K; i = 1, . . . , nk), where Ỹki = min(Yki, Cki),

∆ki = I(Yki ≤ Cki), Cki is the censoring time on Yki, and I(.) is the indicator function.

The observed profile information matrix for β based on the kth study data is Ik(β) =

∑nk
i=1 ∆kiVk(β; Ỹki), where

Vk(β; y) =

∑nk
j=1 I(Ỹkj ≥ y)eβ

TXkjX⊗2
kj∑nk

j=1 I(Ỹkj ≥ y)eβ
TXkj

−




∑nk
j=1 I(Ỹkj ≥ y)eβ

TXkjXkj
∑nk
j=1 I(Ỹkj ≥ y)eβ

TXkj





⊗2

.

Note that Vk(β; y) is an empirical covariance matrix of X and is not sensitive to the value of

β. Thus, the results of meta-analysis using summary statistics and using original data are

similar whether the effect sizes are equal or not.

3. NUMERICAL RESULTS

3.1. Simulation Studies

We conducted simulation studies to assess how well the asymptotic efficiency results of

§2 approximate realistic situations. We mimicked meta-analysis of randomized clinical trials

with a binary outcome and simulated data from the following logistic regression model

pr(Yki = 1|Xki) =
eαk+βkXki

1 + eαk+βkXki
, k = 1, . . . , K; i = 1, . . . , nk, (6)

where Xki is the treatment indicator, and the proportion of subjects receiving treatment 1 in

the kth trial is pk. The first set of simulation studies was focused on K = 2. We set α1 = 0

and α2 = −1, and chose various values of β1, β2, p1, p2, n1 and n2. For each combination of
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the simulation parameters, we generated 1 million data sets; for each data set, we performed

the two types of meta-analysis, i.e., the one based on summary statistics versus the one

based on original data. The results are summarized in Table 1.

When the effect sizes are the same between the two studies, i.e., β1 = β2, both β̂ and

β̃ are virtually unbiased, and their standard errors are virtually identical to each other.

Consequently, the two types of meta-analysis have essentially the same power. When the

effect sizes are different between the two studies, i.e., β1 6= β2, there are some noticeable

differences between the two methods. In many cases, the meta-analysis based on original

data appears slightly more powerful than the meta-analysis based on summary statistics.

There are also cases in which the latter is slightly more powerful than the former.

In the second set of studies, we simulated K trials of size n from (6) with αk = −1,

βk = 1 and pk = 0.5 (k = 1, . . . , K). For both meta-analysis of summary statistics and

meta-analysis of original data, the K intercepts might be assumed to the same or allowed

to be different. To impose a common intercept in meta-analysis of summary statistics, we

used the bivariate summary statistics for the (αk, βk). Table 2 displays the relative efficiency

results based on 10000 replicates that have no zero cell counts. Meta-analysis of summary

statistics appears to be as efficient as or slightly more efficient than meta-analysis of original

data when the two methods make the same modelling assumptions. For n = 10, meta-

analysis of original data with a common intercept is a bit more efficient than meta-analysis

of summary statistics with different intercepts.

3.2. Major Depression Data

Major depression is a complex common disease with enormous public health significance.

The lifetime prevalence of this disorder is approximately 15% and is two-fold higher in

women than men. Recently, a genome-wide association study was conducted to identify

single nucleotide polymorphisms, SNPs, that are associated with major depression (Sullivan

et al., 2009). Using a case-control sample of 1,738 cases and 1,802 controls, the investigators

found strong signals in a region surrounding the gene piccolo, PCLO. The investigators
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then attempted to replicate the results with five independent case-control samples. For

our illustration, we exclude the two replication samples that do not have information on

sex, which is an important predictor of major depression. The remaining three replication

samples have 1907, 2489 and 2005 subjects, with a total of 3135 cases and 3266 controls.

A total of 30 SNPs in the PCLO region were genotyped in the replication samples. For

each SNP, we fit the logistic regression model

pr(Yki = 1|Xki, Zki) =
eαk+βXki+γkZki

1 + eαk+βXki+γkZki
, k = 1, . . . , 3; i = 1, . . . , nk, (7)

where Yki is the case-control status of the ith subject in the kth sample, and Xki and Zki

are the corresponding genotype score and sex indicator; the genotype score is the number

of copies of the less frequent nucleotide of the SNP that the subject carries. The estimates

of the genetic effects and their standard error estimates vary substantially among the three

replication samples. For meta-analysis of summary statistics, the estimates of the genetic

effects pre-adjusted for sex from the three samples are combined according to formula (1).

To perform meta-analysis of original data, we allow the αk in (7) to be different among

the three samples so as to reflect the unequal case-control ratios; the γk may be the same

or different among the three samples. Figure 1 compares the results of meta-analysis based

on summary statistics versus original data when the γk are allowed to be different. The two

meta-analysis methods have the same modeling assumptions. The meta-analysis estimates of

the genetic effects based on summary statistics are essentially identical to their counterparts

based on original data, and so are the two sets of standard error estimates; therefore, the

two types of meta-analysis yield virtually identical test statistics and p-values. Figure 2

compares the results of the two methods when the γk are assumed to be the same among the

three replication samples in the meta-analysis of original data; this assumption is not used

in the meta-analysis of summary statistics since three separate sub-models are fitted. Now

the results are not always the same between the two types of analysis, but the differences

are very small. Incidentally, the covariance estimates between the β̂k and γ̂k are virtually

zero, so the differences should be small in light of the results of §2.2.
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4. REMARKS

The theoretical results of the present paper are much broader than those of Olkin &

Sampson (1998) and Mathew & Nordström (1999), even in the special setting considered

by those authors; we have clarified the conditions for the equivalence results stated in those

two papers and examined the consequences of violating the underlying assumptions. We

have considered more general models for continuous response variables, as well as general

parametric and semiparametric models for other response variables.

Our work has important practical implications. There is an ongoing debate on whether

the benefits of using original data outweigh the extra cost of taking this approach. The

statistical issues surrounding this debate have not been well understood. There is a com-

mon perception that analyzing original data is statistically more efficient than combining

summary statistics. We have demonstrated both theoretically and numerically that this per-

ception is false. Meta-analysis based on summary statistics will reduce resource utilization,

simplify data collection and analysis, and avoid bias and efficiency loss due to exclusion of

studies without original data.

By accessing original data, one can enhance comparability among studies with respect to

inclusion/exclusion criteria, definitions of variables, creations of subgroups and adjustments

of covariates, ensure estimation of the same parameter by the same statistical method,

and perform model building and diagnostics. These benefits can still be achieved if all

participating investigators follow a common set of guidelines on quality control and statistical

analysis and then submit their summary statistics to the meta-analyst. Providing summary

statistics is logistically much simpler than transferring original data. Indeed, human subject

protection and other study policies often prohibit investigators from releasing original data.

One reason for obtaining original data is to use individual-level covariates. It is widely

recognized that using study-level covariates can yield highly biased and inefficient meta-

analysis (Berlin et al., 2002; Lambert et al., 2002). We have shown both theoretically and

numerically that there is no bias or efficiency loss if the covariate adjustments are made
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within each study and the covariate-adjusted effect estimates are combined via formula (2).

In our context, the asymptotics pertains to individual study sizes nk. For commonly used

parametric and semiparametric models, such as linear, logistic and Cox regression models,

the asymptotic approximations are accurate even for small nk. When the data for individual

studies are very sparse, the parameter estimates may be undefined or unreliable. In that

situation, analysis of original data will encounter the same difficulties if it is stratified by

studies but will tend to be more stable if it is unstratified. The unstratified analysis can be

very misleading if the underlying populations are different among studies.

We have focused on fixed-effects models, which assume a common value for the parameter

of main interest among studies. An alternative approach is to employ random-effects models,

in which the parameter of main interest is treated as a random variable with different real-

izations across studies (DerSimonian & Laird, 1986). It is technically more challenging to

deal with random-effects models than fixed-effects models. Indeed, the properties of meta-

analysis under random-effects models have not be rigorously investigated. Our preliminary

investigations reveal that the conclusions of §2 hold for random-effects models under certain

conditions. The results will be communicated in a separate report.
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APPENDIX A

Some useful matrix results

Lemma 1. For any matrices Ap×q, Bq×q, Cp×q and Dq×q with B > 0 and D > 0,

AB−1AT + CD−1CT ≥ (A+ C)(B +D)−1(A+ C)T. (A.1)

The equality holds if and only if AB−1 = CD−1.
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Proof. Since B > 0 and D > 0, we can find a non-singular matrix P such that B =

Pdiag{λ1, . . . , λq}PT and D = Pdiag{µ1, . . . , µq}PT, where λi > 0 and µi > 0 (i = 1, . . . , q).

By redefining A as A(PT)−1 and C as C(PT)−1, it suffices to prove the lemma when B =

diag{λ1, . . . , λq} and D = diag{µ1, . . . , µq}. Let ai be the ith column of A and ci be the ith

column of C. Then (A.1) becomes

q∑

i=1

(
λ−1
i aia

T
i + µ−1

i cic
T
i

)
≥

q∑

i=1

(λi + µi)
−1(ai + ci)(ai + ci)

T.

We wish to show that λ−1
i aia

T
i + µ−1

i cic
T
i ≥ (λi + µi)

−1(ai + ci)(ai + ci)
T or equivalently

λ2
i cic

T
i + µ2

iaia
T
i ≥ λiµi(aic

T
i + cia

T
i ). The desired inequality holds if, for any x,

(λix
Tci)

2 + (µix
Tai)

2 ≥ 2λiµi(x
Tai)(x

Tci),

which is obvious from the Cauchy-Schwartz inequality. The foregoing inequality becomes

an equality if and only if λici = µiai. Thus, the equality in (A.1) holds if and only if

AB−1 = CD−1.

APPENDIX B

Consistency of MLE under local alternatives

By the profile likelihood theory (Murphy & van der Vaart, 2000),

log plk(β) = log plk(β̂k)−
1

2
(β − β̂k)TIk(βk)(β − β̂k) + op(n

1/2‖β − βk‖+ 1)2

for β in a neighborhood of the true value of βk. Denote the true value of β by β0. Because

β̂k − βk = Op(n
−1/2), βk − β0 = O(n−1/2) and Ik(βk) = Ik(β̂k) + op(n), we have

K∑

k=1

log plk(β) =
K∑

k=1

log plk(β̂k)−
1

2

K∑

k=1

(β − β̂k)TIk(β̂k)(β − β̂k) + op(n
1/2‖β − β0‖+ 1)2

for β in a neighborhood of β0. By definition, β̂ maximizes

−1

2

K∑

k=1

(β − β̂k)TIk(β̂k)(β − β̂k).
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It then follows from the Taylor series expansion that

−1

2

K∑

k=1

(β̂ − β̂k)TIk(β̂k)(β̂ − β̂k) ≥ −
1

2

K∑

k=1

(β − β̂k)Ik(β̂k)(β − β̂k) + αn‖β̂ − β‖2

for some positive constant α. Thus,

log pl(β̂)− log pl(β) ≥ αn‖β̂ − β‖2 + op(n‖β − β0‖2 + n‖β̂ − β0‖2 + 1).

Because ‖β̂ − β0‖ = O(n−1/2), the foregoing inequality implies that pl(β̂) > pl(β) for any

β such that ‖β − β̂‖ = n−1/2M for a large M . Hence, there exists a local maximum

within the n−1/2M -neighborhood of β̂. We define that estimator as β̃ and conclude that

β̃ − β0 = Op(n
−1/2).
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Table 1. Mean parameter estimates, standard errors (SE) and powers at the .05

significance level for meta-analysis based on summary statistics versus original data

Summary statistics Original data
β1 β2 p1 p2 n1 n2 Mean SE Power Mean SE Power

.5 .5 .5 .5 200 200 .503 .211 .665 .504 .212 .669
200 400 .502 .174 .827 .503 .174 .828
400 200 .501 .170 .842 .502 .171 .843

.2 .5 200 200 .502 .236 .566 .506 .237 .575
200 400 .501 .186 .769 .504 .187 .774
400 200 .502 .198 .722 .504 .199 .726

.5 .2 200 200 .504 .229 .595 .503 .230 .593
200 400 .502 .195 .729 .501 .196 .729
400 200 .504 .179 .803 .502 .180 .801

.2 .8 .5 .5 200 200 .483 .205 .643 .488 .207 .656
200 400 .586 .169 .933 .589 .171 .935
400 200 .383 .166 .629 .388 .167 .643

.2 .5 200 200 .553 .231 .666 .559 .234 .676
200 400 .645 .183 .945 .649 .185 .945
400 200 .447 .193 .633 .453 .196 .647

.5 .2 200 200 .427 .228 .474 .427 .231 .471
200 400 .530 .194 .786 .530 .196 .779
400 200 .339 .178 .485 .339 .179 .481

.8 .2 .5 .5 200 200 .521 .214 .678 .526 .217 .687
200 400 .417 .176 .652 .422 .178 .664
400 200 .619 .172 .949 .622 .174 .950

.2 .5 200 200 .443 .236 .438 .457 .240 .476
200 400 .350 .188 .442 .362 .190 .477
400 200 .550 .198 .780 .559 .201 .798

.5 .2 200 200 .588 .226 .710 .580 .229 .710
200 400 .479 .192 .668 .476 .195 .678
400 200 .673 .178 .961 .665 .180 .958
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Table 2. Relative efficiency of using summary statistics versus original data in

meta-analysis †

K = 20 K = 50 K = 100
n RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

10 1.108 0.968 1.093 1.113 0.966 1.097 1.112 0.966 1.098
20 1.161 1.010 1.112 1.160 1.006 1.113 1.156 1.004 1.110
50 1.092 1.017 1.065 1.096 1.021 1.068 1.096 1.022 1.069

100 1.049 1.007 1.030 1.047 1.007 1.029 1.046 1.007 1.030

† RE1 is the relative efficiency of meta-analysis of summary statistics with a common inter-

cept to meta-analysis of original data with a common intercept; RE2 is the relative efficiency

of meta-analysis of summary statistics with different intercepts to meta-analysis of original

data with a common intercept; RE3 is the relative efficiency of meta-analysis of summary

statistics with different intercepts to meta-analysis of original data with different intercepts.
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Figure Legends

Figure 1 Meta-analysis of genetic effects based on original data versus summary statistics

for the major depression study: estimates of log odds ratios, standard error estimates, test

statistics, and − log10(p-values) are shown for 30 SNPs in the PCLO region; the effects of

sex are allowed to be different among the three replication samples.

Figure 2 Meta-analysis of genetic effects based on original data versus summary statistics

for the major depression study: estimates of log odds ratios, standard error estimates, test

statistics, and− log10(p-values) are shown for 30 SNPs in the PCLO region; the meta-analysis

of original data assumes a common effect of sex among the three replication samples, whereas

the meta-analysis based on summary statistics does not.
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