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Abstract. In this paper, we establish a general asymptotic theory for the nonparametric maximum
likelihood estimation in semiparametric regression models with right censored data. We identify
a set of regularity conditions under which the nonparametric maximum likelihood estimators are
consistent, asymptotically normal and asymptotically efficient with covariance matrix that can be
consistently estimated by the inverse information matrix or the profile likelihood method. The
general theory allows one to obtain the desired asymptotic properties of the nonparametric maximum
likelihood estimators for any specific problem by verifying the set of conditions identified in this
paper rather than proving technical results from first principles. We demonstrate the usefulness of

this powerful theory through a variety of examples.
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1. Introduction

Semiparametric regression models are highly useful in investigating the effects of covariates on
potentially censored responses (e.g. failure times and repeated measures) in longitudinal studies. It is
desirable to analyze such models by the nonparametric maximum likelihood approach, which gener-
ally yields consistent, asymptotically normal and asymptotically efficient estimators. It is technically
difficult to prove the asymptotic properties of the nonparametric maximum likelihood estimators
(NPMLEs). Thus far, rigorous proofs exist only in some special cases.

In this paper, we develop a general asymptotic theory for the NPMLEs with right censored
data. The theory is very encompassing in that it pertains to a generic form of likelihood rather
than specific models. We prove that under a set of mild regularity conditions, the NPMLEs are
consistent, asymptotically normal and asymptotically efficient, and the limiting covariance matrix

can be consistently estimated by the inverse information matrix or the profile likelihood method.



This paper is the technical companion to that of Zeng and Lin (2007), which presents several
classes of models to unify and extend the existing semiparametric regression models. The likelihoods
for those models can all be written in the general form considered in this paper. For each class of
models in Zeng and Lin (2007), we identify a set of conditions under which the regularity conditions

for the general theory are shown to hold so that the desired asymptotic properties are ensured.

2. Some Semiparametric Models

We describe briefly the three kinds of models considered in Zeng and Lin (2007). We assume that

the censoring mechanism satisfies coarsening at random (Heitjan and Rubin, 1991).

2.1. Transformation Models for Counting Processes

Let N*(t) record the number of events that the subject has experienced by time ¢, and let Z(-)
denote the corresponding covariate processes. Zeng and Lin (2007) proposed the following class of
transformation models for the cumulative intensity function of N*(¢) given the covariate and the
at-risk history by time ¢

e”/TZ

At|Z) =G {1 + /t R*(s)eﬁTZ(s)dA(s)} —G(1),

0

where G is a continuously differentiable and strictly increasing function with G’(1) > 0 and G(o0) =
oo, R*(+) is an indicator process, Z is a subset of Z , B and ~y are regression parameters, and A(-) is
an unspecified increasing function. The data consist of {N;(t), R;(t), Z;(t);t € [0,7]} (i = 1,...,n),
where R;(t) = I(C; > t)R!(t), Ni(t) = N} (t AN C;), C; is the censoring time, and 7 is a constant. The
likelihood is

n

[T Ttr ez O e {~ [ Roareiz ).

i=1t<r
where dNZ(t) = Nz(t) — Ni(t—).
2.2. Transformation Models With Random Effects for Dependent Failure Times

Fori=1,...,n,k=1,...,K and |l = 1,...,n4, let N},(-) denote the number of the kth type
of event experienced by the /th individual in the ith cluster, and Z;(-) the corresponding covariate

processes. Zeng and Lin (2007) assumed that the cumulative intensity for V7, (¢) takes the form
t -
Ag(t|Zins; bi) = G {/ Rfkl(5)€ﬂTZi“(SHbZ’TZ“”(S)dAk(S)} ’
0
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where Gy, Ay, and R, are analogous to G, A and R* of Section 2.1, Zikl is a subset of Z;;; plus the
unit component, and b; is a vector of random effects with density f(b;v). Let Cix, Nig and Rig; be

defined analogously to C;, N; and R; of Section 2.1. The likelihood is

n K ngg . . t - . dN;p (1)
H/HHH I:Rik:l(t)@ﬁ Zik (t)+b Zikl(t)dAk(t)G% {/ Rikl(s)eﬁ Ziki(s)+b Z“”(s)d/\k(S)H
i=17b g=11=11<r 0
T ~
X exp [_Gk {/ Rikz(t)eﬁTZ“”(t)+bTZ’“(t)dAk(t)H £ (b;y)db.
0
2.8. Joint Models for Repeated Measures and Failure Times
For i = 1,...,n and j = 1,...,n; let Y;; be the measure of a response variable at time ¢;;
for the ith subject, and Xj;; the corresponding covariates. We assume that (Yj1,...,Y,,) follows a

generalized linear mixed model with density fy,(y|Xj;b;), where b; is a set of random effects with

density f(b;y). We define N and Z; as in Section 2.1, and assume that
t -
A(t|Zi;b;) = G {/ R;,“(S)eﬁTZi(s)‘f'(d’Obi)TZi(S)dA(S)} 7
0

where Z is a subset of Z; plus the unit component, ¥ is a vector of unknown constants, and v o vy

is the component-wise product of two vectors v1 and vy. The likelihood is

i ’ b)Y exp { "R, . s X )
11 /b TT (B (1)dA (112 )} p{ /0 Rz(t)dA(t!Zz,b)} E £ (Yis | X5 5) £ (b 7) b,

t<rt

For continuous measures, Zeng and Lin (2007) proposed the semiparametric linear mixed model
H(Yij) = " Xij + b Xij + €5,

where H is an unknown increasing function with H(—oc0) = —oo, H(co) = oo and H(0) = 0, o' is a
set of regression parameters, )?ij is typically a subset of X;;, and €;; (1 =1,...,n;j =1,...,n;;) are

independent with density f.. Write K(y) = ¢, The likelihood is

i i )}V exp { — ’ ) .
il;[l/bH{Rz(t)dA(tIZ“b)} p{ /OR,(t)dA(tZ“b)}

t<rt
x [T fe(log(A(Yij)) — @™ X — b] Xij) {dlog A(Yyj) /dy} f (b; ) db.
j=1

3. Nonparametric Maximum Likelihood Estimation



All the likelihood functions given in Section 2 can be expressed in the following form
TTTITIIT M) ®eviaw (0,0, ),

where 7 is the study duration and assumed to be finite, N}j,(-) denotes the counting process of
event k for Ith subject in cluster ¢ and dN}j,(t) is the jump size of N}, at time ¢, R;y(-) denotes
the observed at-risk process of event k for ith subject in cluster i, Ai(t) = A} (¢), 0 is a d-vector of
regression parameters and variance components, A = (Ay,...,Ax), O; pertains to the observation
on the ith cluster including (N}, Riki, Riki, Ziri, b = 1,..., K, 1 = 1,...,n4) with Z;; denoting the
possibly time-dependent covariates associated with subject [ in cluster ¢, and V¥ is a functional of O;,
f and A. Additionally, n;; is the cluster size for cluster ¢ associated with event k& and we assume
that it is uniformly bounded. For the nonparametric maximum likelihood estimation, we allow .4
to be discontinuous with jumps at the observed failure times and maximize the modified likelihood

function
K Nik

[TTTIIIT Axtey @@ w050, 4),

i=1k=11=11t<r

where Ap{t} denotes the jump size of the monotone function Ay at ¢. Equivalently, we maximize the
logarithm of the above function
n K n; T
L,(0,A) = Z [ZZ/ Riki(t) log Ap{t}dN},;(t) +1og U (O;;6,A) | . (1)
i=1 Lk=11=1"0

We wish to establish an asymptotic theory for the resulting NPMLEs 6 and A.

4. Regularity Conditions

We impose the following conditions on the model and data structures.

(C1) The true value 6y lies in the interior of a compact set O, and the true functions Ay are
continuously differentiable in [0, 7] with Aj,(t) >0, k=1,..., K.

(C2) With probability one, P(infscjoy Rik.(5) > 1|Zig,l = 1,...,n5) > do > 0 for all t € [0, 7],
where Rig.(t) = > 1% Ripi(2).

(C3) There exist a constant ¢; > 0 and a random variable 71 (0;) > 0 such that Eflogr(0;)] < 0o
and for any # € © and any finite Ay, ..., Ax,

U(0;;0,A) < r1(0;) ﬁ 11 {1 + /Ot Rik.(t)dAk(t)}dN;k'(t) {1 + /OT Rik.(t)dAk.(t)}_Cl

k=1t<t



almost surely, where N}, (t) = >_)" N, (t). In addition, for any constant ca,
inf {\IJ(OZ, 9,.4) : ||A1||V[077_] <ecg,..., ||AKHV[0,T} < 9,0 € @} > 1"2(01') > 0,

where ||h[[y[o,7) is the total variation of h(:) in [0, 7], and 72(0O;), which may depend on cz, is a finite

random variable with E[|logr2(0;)|] < oo.

We require certain smoothness of U. Let Uy denote the derivative of U (0;; 6,A) with respect to
0, and let ‘Ilk[Hk] denote the derivative of W(0;; 6, .A) along the path (Ag + €Hy), where Hj, belongs
to the set of functions in which Ay + eHy, is increasing with bounded total variation. We impose the

following condition.
(C4) For any (61,6®) € ©, and (A, AP, .. (AD, A2y, (=m#®, #P), ..., (HY, HY) with
uniformly bounded total variations, there exist a random variable F(0;) € L4(P) and K stochastic

processes ik (t; O;) € Lg(P),k =1, ..., K, such that
]xp(@i;e(l),A(l)) - W(Oi;e(z),A@))’ + )\izg(om(l),,zt( )) = Wg(0;;0), A?)
-3 [0, AV ) — (0502, AP )]

k=1
B (0500, ADYHD)  F,(0;;6@), AR)HP)

| 00500, AW) (002, A?)
K r .
k=1 70 0

In addition, u,,(s; O;) is non-decreasing, and E[F(O;)uik(s; O;)] is bounded and left-continuous with
uniformly bounded left- and right-derivatives for any s € [0,7]. Here, the right-derivative for a

function f(z) is defined as limy,_ o4 (f(x + h) — f(x+))/h.

The following condition ensures identifiability of parameters.

(C5) (First Identifiability Condition) If

K n; K n;
11 ﬁ [T @fm®Na®] w05 0%, 4%) = | [T ﬁ [T pow (1) Bt DN | w5 (0;; 65, Ao)
k=11=1t<7 k=11=1t<7

almost surely, then 0* = 6y and A} (t) = Aox(t) for t € [0,7], k=1,..., K.

The next assumption is more technical and will be used in proving the weak convergence of the

NPMLEs. For any fixed (6,.4) in a small neighborhood of (6y,Ag) in R? x {BV[0, 7]}, where



BV|[0, 7] denotes the space of functions with bounded total variations in [0, 7], condition (C4) implies
that the linear functional

H,— FE

xifkwi;e,A)[Hk]]

is continuous from BV[0, 7] to R. Thus, there exists a bounded function ng(s;6,.4) such that

‘Ilk\(y(?(’)eeA«)KIk]] B /OT or (550, A)dHy(s).

We assume the following condition.

E

(C6) There exist functions (oi(s; 6o, Ao) € BV[0,7], k =1,..., K, and a matrix (pg(6p,.Ag) such that

\i/g(Oi;G,A)_‘ile(Oi;HO,AO) _ _ _ = /T :
VOLTA ~ W(On8 A | ~ (00 A0)(O = bo) ; | Cor(s: 00, A0)d(Ax — Aor)

K
=o(|0 0+ 3 Ak - AOknm,ﬂ).

k=1

E

In addition, for k =1,..., K,
K
> sup HUOk(S; 0, A) = 1o (s; 907/10)} — Noko (83 00, Ao) (6 — 6o)

=1 €[0,7]
T K K
- / Nokm (8,3 00, Ao)d(Am — AOm)(t)‘ = 0(!9 — o] + Y [[Ak — AOkHV[O,T])7
0 m=1 k=1
where 7or, is a bounded bivariate function and gk is a d-dimensional bounded function. Further-
more, there exists a constant cs such that |nogm (s, t1; 00, Ao) — Mokm (S, t2; 00, Ao)| < c3|t; —to| for any
s € [0,7] and any ty,t5 € [0, 7).
The final assumption ensures that the Fisher information matrix along any finite-dimensional
submodel is non-singular.

(CT7) (Second Identifiability Condition) If with probability one,

K ng T T K

N Wy (O;; 00, A + VL0 00, A hrdA
E E /hk(t)Rikl(t)dNikl(t)+ o 0, Ao) @ \I,Z((gﬁlgo k(o) 0, Ao)J 0k]:O
k=1 i=1 i5 0o, A

for some constant vector v € R? and hy € BV[0,7], k = 1,...,K, then v = 0 and h;, = 0 for
k=1,...,K.

Remark 1. (C1)-(C2) are standard assumptions in any analysis of censored data. Particularly,
(C2) assumes that for each type of event, at any time in [0, 7], there exists some subject in the
cluster to be at risk. Intuitively, this condition enables one to identify Ag(t) for ¢ € [0,7]. (C3)

pertains to the model structure and will be verified for the examples in Section 2. (C4) and (C6)



essentially impose the smoothness of this structure and in many cases, they can be verified through
some appropriate differentiability. (C5) is clearly the usual parameter identifiability condition. In
(C7), the expression on the left-hand side of the equality is in fact the score function along submodel
(6o + ev, Aoy, + € [ hpdAok, k = 1,..., K). Therefore, (C7) is equivalent to saying that any non-trivial
submodel has non-singular Fisher information. Both conditions (C5) and (C7) usually require some

work to verify, but can be translated to simple conditions in specific cases.
5. Some Useful Lemmas

Lemma 1. For any constant ¢, the following classes of functions are P-Donsker:

Fi = {log\I/((’)i;G,A) Akllvioy <ck=1,...,K,0¢€ @},

Uy(0;50, A)
= ——: < =1,...
Fa { \I/(OZ,Q,A) HAkHV[O,T] _C,k’ 17 7K79€®}a

U (0:;0, A)[H]
= S||A < =1,...,K,0€0,||H < k=1,...,K.
F3k { \I/(Oz,H,A) H m”V[O,T} >c6m ) 18,0 € 7” HV[O,T} >Cp, ) )
Proof. We shall only prove that Fs3; is P-Donsker. The proofs for the other two classes are

similar. For k =1,..., K, we define a measure fi; in [0, 7] such that for any Borel set A C [0, 7],
fin(A) = /0 I(t € A)VE [F(O)2(uin(7: O3) — pan(0; O5))2dpuar (t; O3)]

Condition (C4) implies that px ([0, 7]) < [[F(O:) L, p)llir(T; Os) — 1131 (0; Oi) | g (p)- Thus, fig is a
finite measure. According to Theorem 2.7.5 of van der Vaart and Wellner (1996), the bracket covering
number for any bounded set in BV[0, 7] is of order exp{O(1/€)} in La(fix),k = 1,..., K. Thus, we
can construct N. = (1/€)? x exp{O(K/e)} x exp{O(1/¢)} brackets for the set of (6, A, H) in Fay,
denoted by

[0F,00] x [AT, AV] x -+ x [Afy, A% x [HY HY), p=1,...,N,,

p>Up
such that [0 — )] < e and
/|A 2duk<e /HU HL|2duk<e E=1,...,K.
Any (0, A, H) must belong to one of these brackets. Obviously, the bracket functions
(O 0L, AL [H*]

v Ypo

K
la po m=1

+/|Hg(s) —H;(s)umm(s;oi)}, p=1,...,N,,




cover all the functions in F3j. Since

K
Hﬂo» {wﬁf 014 S [N — Ay (o)ldpin(5:0) + Z / (HY (s) — HE(8)]dptam(s: 0)}
m=1 Lo (P)
K 2 1/ 1/2
<c||0Y — ok {E AY (s) — AL ()|dfiim F (O } HY (s) — HY (5)*dfim ]
[p He Y (/| J(s) — AL (s)]df <>) +Z{/\ mw}
K 1/2
o0 0t + Y { [ A5 = ko) P Bl (01 o7 00) = i 0 0»)21}
m=1
K . 1/2
U(s) — HE ()20,
+mz{/o HY (s) Hp<>|cm} ]
K 12 K - 1/2
U _ L U ($)— AL (s)diin, U(s) — HE(s)2dii,, ’
v ep\+mzl{/mmp<> AL () Pdf } +mz{/ (HY (s) — HY(s)|2df } ]

where ¢ is a constant depending on K, the Lo(P)-distance within each bracket pair is O(e). Hence,

<c

<c

the bracket entropy integral of Fj; is finite, so that F3i is P-Donsker.

Lemma 2. For any bounded random variable (6,A) in © x BV[0,7], the function g(s) =
B [1(050, A)I(- 2 )]/ (030, 4)

is left-continuous and it satisfies that for any s € [0, 7],
there exist ds, ¢s > 0 such that |g(5) — g(s)| < ¢s|§—s| for § € (s =05, s) and |g(8) — g(s+)| < ¢s]5— 3]
for § € (s,s+ ds).

Proof. Since p;(t; O;) is non-decreasing in ¢, it follows from (C4) that for any s; and so,

o(o1) = 9(e2)| <E [ F(O) { [ 1162 o1) = 10 > so)dua(:09) } |

<|E[F(O5) pir (515 05)] — E [F(O;) pir (525 O5)]| -

Thus, since E [F(O;) ik (s; O;)] is bounded, left-continuous and non-decreasing in s, g(s) is in BV[0, 7]
and is left-continuous. In addition, the left- and right-differentiability of E[F(O;)uk(s; O;)] in (C4)
implies that the second part of the lemma holds. <

Lemma 3. For any h(s) € BV[0,7], the linear map h — [ h(t)1okm(t, 5500, Ao)dAox(t) is a
bounded compact operator from BV[0, 7] to BV[0, 7].

Proof. Tt is clear from condition (C6) that this function maps any bounded set in BV[0, 7] into
a bounded set consisting of equi-continuous functions. The result thus follows since any bounded
and equi-continuous functions consist of a totally bounded set in BV[0,7] and the linear map is

continuous. <

6. Consistency



The following theorem states the consistency of 0 and Kk, k=1,...,K.

Theorem 1. Under conditions (C1)~(C5), |6 — o] + S5, supyepo 1Ak (t) — Aok(t)] —a.s. 0.

Proof. We fix a random sample in the probability space and assume that conditions (C1)-(C5)
hold for this sample. The set of such samples has probability one. We prove the result for this fixed
sample. The entire proof consists of three steps.

Step 1. We show that the NPMLEs exist or equivalently Kk(T) <oofork=1,...,K when n is

large enough. By condition (C3), the likelihood function is bounded by

ﬁm(Oz‘) ;ﬁ tl;IT Ap{t}Rix.(t) {1 + /Ot Rik-(s)dAk(s)}_ll AN (1) {1 N /OT Rik_(s)d/\k(s)}_q
ﬁ kl_[l {1 + /OT Rik.(s)dAk(s)}_q ,

If Ag(7) = oo for some k, then condition (C2) implies that, with probability one, inf,c|o - Rix.(t) > 1
for some 7, so that the above function is equal to zero. Thus, the maximum of the likelihood function
can only be attained for Ay, (1) < oo when n is large enough.

Step 2. We show that lim sup,, Ay (1) < oo almost surely, i.e., Kk(T) is bounded uniformly for all
large n. By differentiating the objective function (1) with respect to Ap{Yi;} for which dN},(Yir) =1

and R (Yiki) = 1, we note that /A\k{YZkl} satisfies the following equation

In other words,

To prove the boundedness of ZA\k (1), we construct another step function Kk with jumps only at the

}/ikl for which dN;;ﬁl(szl) =1 and Rzkl(Y;kl) = 1,

AYiad P V(O3 b, Ao)

1 = 005500, AT (- > Yiw)]

That is,
-1

no N ‘l’k (Oj; 60, A))[L(- > )]
== Z/ (0360, Ao) i (i)

i=1 m=1




We show that Ay, uniformly converges to Agx. By Lemma 1,

n

_ U1,(053 00, Ao)[I(- > s)]
e Z ¥(0Oj; 60, Ao)

U (O;; 60, Ao) @)

W4(Oi3 00, A1 (- > s)]]
j=1
uniformly in s € [0, 7]. Since the score function along the path Ay = Ao + €I (- > s) with the other

parameters fixed at their true values has zero expectation,

L RA [dt=s) . B4 (04 00, AV I (- > 5)]
0=FE ;/WRzkl(t)d )| +E T(Or: 0. Ao) ] .

> Rikl(s)dNﬁ;l(s)/dsl />\0k(8) +E
=1

U3,(03 00, A)[I(- > 5)]
V(03 60, Ao) ’

where 0(t = s) is the Dirac function. The submodel is not in the parameter space; however, we can
always choose a sequence of submodels in the parameter space which approximates this submodel.

Thus, the uniform limit of Ag(t) is

Nk t
m=1

That is, Ay (¢) uniformly converges to Agg(t).

Nk

-1
ZRZ-M(s)dNizl(s)/ds] /A%(s)} Riton (5)dN i () = Aou(t):
=1

We show next that the difference between the log-likelihood functions evaluated at (5, JZ) and
(o, .,Z), where A = (Kl, A i), will be negative eventually if some Kk(T) diverges, which will induce
a contradiction. The key arguments are based on condition (C3) and are similar to those of Murphy
(1994). Clearly, n_lﬁn(g, A) > n1L,(6p, A). Tt follows from (2) and (3) that nA,{t} converges
to Aok (t)/E [X1" Riw(t)dN;, (t)/dt], and is thus uniformly bounded away from zero, where ¢ is an
observed failure time. Therefore,

n K n

n~ L, (00, A) +n! Z Z Z / Ripi (t)d Ny, (t) logn
=1 k=1 =1
n K ng

=ty D / log(nAr{t}) Roxr(1)dNGj, (8) + "> " log U (O3 60, Ao),

i=1 k=1 I=1 i=1
which is bounded away from —oo when n is large. That is,

n K n

w100, )+ SO Z/Rikl(t)d]\f;}d(t) logn = O(1),

i=1 k=1 1=1

10



where O(1) denotes a finite constant. On the other hand, condition (C3) implies that

n K n n
w1 L0, <n SO / Rua(1) log Rt} NGy () + 01 S log (09, A)
i=1 k=1 I=1 i=1
n n K R
§n_1 Z log Tl(Oi) + n~1 Z Z / I(Rik.(t) > O) log Ak{t}dNik-(t)
=1 i=1 k=1
n K ¢ R
_ n-l Z Z / log {1 + / le(s)dAk(S)} szk:(t)
i=1 k=1 0
n K . R
_ n*l Z Z Cq1 10g {1 + / le(s)dAk(s)} s
i=1 k=1 0

where dN;y.(t) = > R (t)dN,(t). Thus,

n K
0(1) <0t 373" [ 1) > ) og(nRu {8} N (1

i=1 k=1

! an i / log {1 + /0 t Rik.(s)dﬁk(s)} ANy (1) (@)

i=1 k=1

—n! Zn: i 1 log {1 + /OT Rik-(s)dxk(s)} .

i=1 k=1
We now show that the right-hand side will diverge to —oo if /A\k(T) diverges for some k. The
proof is based on the partitioning idea of Murphy (1994). Specifically, we construct a sequence:

tor = T > t1p > tor > ... in the following manner. First, we define
. Cc1 — _ _ tok
t1x = argmin< t € [O,tgk) : EE[I(Rzk(T) > 0)] >F I(Rik.(t) > 0, Rzk(T) = 0)/ szk(t) ,
¢

where Rj.(t) = infycpo4 Rik-(s). Clearly, such a ty;, exists, and the above inequality becomes an

equality if 15 > 0. If ¢1; > 0, we choose a small constant ¢y such that

€0 < ClE [I(Elk(T) = Oaﬁik-(tlk) > 0)}
1—eo E [I(Ezk(tlk) = O,Ezk(()) > 0) fOT dNjp. (t)] ’

and define

tor, = argmin {t €[0,t1x): (1 —€)E

{cl + /t% dNik-(t)} I(Rix(tox) = 0, Rig.(t1x) > 0>]

tik

> E [I(Rik.(tlk) — 0, Rue () > 0) /t " dNik.(t)] }

11



Such a top exists. If to > 0, the inequality is an equality, and we define

tag

yp = argmin{t €10, t) : (1— ) E Hcl + / tlk dNik.(t)} [(Rin (h1g) = 0. Rop (tor) > 0)}

> E [I(Rik.(t%) — 0,y (t) > 0) /t - dNik.(t)] }

We continue this process. The sequence eventually stops at some ¢y, j = 0. If this is not true, then
the sequence is infinite and strictly decreases to some t* > 0. Since all the inequalities are equalities,
we sum all the equations except the first one to obtain

(1—e)E Hcl + /t o dNik.(t)} IR (t7) > 0, By () = 0)]

"
tig

- [I(R@-k. (t0) = 0. T (1) > 0) [ (tﬂ ’

which implies that

ci(1 — €)E[I(Rix.(1) = 0, Rix.(tir) > 0)] < eF [I(Rik~(t1k) =0, Ry1..(0) > 0) /OT sz‘k~(t)] :

This contradicts with the choice of €g. Thus, the sequence stops at some ¢y, = 0.
If we denote Iy, = [tg41.k,tqk), then the right-hand side of (4) can be bounded by

K TLNkl

S0 D It = 0. Tty > 0) [ oy (nRift)) i

k=1 i=1 ¢=0 telyy
n Nip—1

_1 Z Z qk = O Rzk ( q+17k) > O)/ lek log {1 + Ak(tq—‘rl,k)}
=1 q= 0 te[qk (5)
n Nkfl
n ST IRk (tr) = 0, R (fgs1) > 0)er log {1 + Ak(tqﬂ,k)}

i=1 q=0

— S IR (o) > 0) log {1 + Kk(f)}] .

=1
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Since log z is a concave function,

n

> I(Rip(tgr) = 0, Rig.(tgs1.6) > 0)/

i=1 tEqu

<{ZI(Rik~(tqk) =0, Rik.(tg41,) >0)/ dNik~}

i=1 tely
S I(Rige(tar) = 0, Rk (tgi1) > 0) fyep  nA{t}dNa. (1)

S IR (tak) = 0. Ra(t 1) > 0) fyey, dNae (1)

< {Z I(Rzk (tqk) = O,Eik.(tq+17k) > 0)/ dNik.}
i=1 t€lqy

nKk(tqk)
Yimt I(Rik. (tqk) = 0, Rig.(tg1,6) > 0) [y, dNik-(t)

log (nka{t}) AN (t)

x log

x log

Therefore, (5) can be further bounded by

n

K Ni—1
0(1) < Z [ Z nt ZI(Rik-(tqk) = O,Rik.(tq_;_l’k) > 0)/ dNip.

4=0 i=1 t€lqk

% log - — _"
2ict I(Rig.(tak) = 0, Rik.(tg16) > 0) frep, dNi.

Nk—l n
+ Z log Ak(tqk) {n_l ZI(Rik‘(tqk) =0, Rjz. (tq—i-l,k:) > O)/ dNik.}
q=0 i=1 telyk

n N-—1

n~! Z I(Ri.(tqr) = 0, Rig. (tg1,%) > 0)/

dNik. log {1 + Kk(tq—i-l,k)}
i=1 q= telyy

=0
Np—1 n
=Y 0 IRk (tgr) = 0, Ri.(tg14) > 0)cr log {1 + Ak<tq+lvk>}

e z_; IRy (to) > 0) log {1 + Kk(T)}] .

By condition (C2),
n

Z?:l I(Rik.(tqk) =0, Rix. (tq—l-l,k) > 0) J;Eelqk dNiy.

—a.s. (E

-1
I(Rik.(tgr) = 0, Rik. (g1 1) > 0)/ dNik-]) < 00,
Equ

13



so that

K n
_ C1 ~
SZ( 12 SR (tor) >0)log{1+Ak(7)}
k=1
_ - C
{ lz 21[ ik tOk >0 —n 12[ ik- tok)—o Rzk(tlk)>0)/ szk}
Tok,

i=1 te

x log {1 + Ak(t%)}
Np—1

-y [nlzI(Rik.(tq_Lk) =0, Rig.(tgx) > 0) {c1+ / dNik}
i=1 t€lqk

g=1
{1 + 10gKk(tqk)} ) .

According to the construction of ¢,;’s, the coefficients in front of log Kk(tqk) are all negative when n

—n Y I(Ri (tqr) = 0, Rig (tg1.0) > 0)/ dNip,.
i=1 telyy

is large enough. Therefore, the corresponding terms cannot diverge to co. However, if Kk(T) — 00,
the first term in the summation goes to —oo. We conclude that for all n large enough, Kk(T) < 00.
Thus, lim sup,, A () < oo.

Step 3. We obtain the consistency result from condition (C5). Since Ay is bounded and monotone,
Kk is weakly compact. Helly’s selection theorem implies that, for any subsequence, we can always
choose a further subsequence such that Kk point-wise converges to some monotone function Aj.
Without loss of generality, we also assume that ) converges to some 6*. The consistency will hold if
we can show that A} = Agi and 6* = 6. Since Agy, is continuous, the weak convergence of /AXk to Aok
can be strengthened to the uniform convergence of ZA\k to Agx in [0, 7).

Note that

/ ‘n*lzg LUE(0;; 00, A I (- > )];W(Oj;HO’AO)’de(S)- (6)

=t 0, U050, A[I(- > 5)]/W(0;; 0, A)
Clearly, Kk is absolutely continuous with respect to Kk By condition (C3),

n—1§n:‘i’kz(oj§§7 )[I('ZS 12‘1% Owég -’2*>[A(>> S)]

K
nt ZI(O]) {’5— 0*’ + Z/ ‘Kk(t) — A};(t)]d,u,]k(t,(’)])} — 0
j=1 k=1

since A, converges to A} and is bounded and {F(O;)u;x(t; O;) : t € [0,7]} is a P-Glivenko-Cantelli

class. By Lemma 1 and the Glivenko-Cantelli theorem,

g O A 2 )
Z U(0,;0°, A7) E

Uy (0 6%, AN > 9)]
U(0;; 6%, A*)

] uniformly in s € [0, 7],

14



and

,1i .7 oj,eo,Ao)[ (=8)] | (05300, A > 5)]
T (0j; 60, Ao) U (Oj; 60, Ao)

uniformly in s € [0, 7].

The numerator and denominator in the integrand of (6) uniformly converge to deterministic functions,
denoted by g1 (s) and gox(s), respectively. It follows from (3) that gix(s) = E[3 " Riri(s)dNipi+(s)/ds]/ Nir(s)
is bounded away from zero. We claim that infy¢c(g - gax(s) > 0. If this is not true, then there exists

some s* € [0, 7] such that gor(s*+) = 0 or gox(s*) = 0. By Lemma 2, there exist 6* and ¢* such that

|gor(s)| < ¢*|s — s*| for s € (s*,8* + %) or s € (s* — %, s*]. On the other hand, for any € > 0,

R > / In~! ;;:1 g’zk(c?j;eo,éo)g(. > )] /\I/(Oj;GO,AAE)\de(S)'
0 e+ |nTt 30 Wi(050, A)I(- = 5)]/¥(0;;0, A)

Taking limits on both sides, we obtain

i glk(s) s
o(1) > /0 D dhau(s)

Let € — 0. By the monotone convergence theorem,

o(1) > /s*+6* Mds,

. c*ls — s*|

or

0(1) > / : i 1) Mok (s) ;o

c*|s — s*|
This is a contradiction since the right-hand side is infinity. The contradiction implies that the limit

g21(s) is uniformly positive. We can take limits on both sides of (6) to obtain

Aj(t) = / t 9D 11 (5)

0 92k(s)

Thus, A} is also absolutely continuous with respect to Agx and dA}/dAox = gix/g2k. Since Agx(t)
is differentiable with respect to ¢, so is A} (t). We denote {A;} (t) = A (t). The forgoing arguments

show that dAy(t)/dA(t) uniformly converges to i (t)/Aok(t), which is uniformly positive in [0, 7].

~

It follows from the inequality n‘1£n(§7 ) > n"1L, (6, A) that

n K n n

- Z Z Z/ Z Rip(1)dNG, (1) +n~t Z log m N

i=1 k=1 1l=1 i=1

In view of Lemma 1, the Glivenko-Cantelli theorem and the uniform convergence of de / dxk, we

take limits on both sides of the above inequality to obtain

T T1 Tl AN () R OaNG O (0;; 6%, A¥)

F
*TI5, 1% Ti<, {20 (8) i OO W (O 6, Ao)

log
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The left-hand side is the negative Kullback-Leibler distance of the density indexed by (6*,.A4*). Thus,
condition (C5) entails that 6* = 6y and A* = Ay. &

7. Weak Convergence and Asymptotic Efficiency

Define V = {v € R%, |v] <1}, and Q = {h(t) : |h(t)[lvjo) < 1} . We identify (6 — 6y, A — Ag) as
a random element in [*°(V x Q) through the definition (5— )T v + Zle Io his(8)d(Ay — Agi) ().
Theorem 2. Under conditions (C1)~(C7), n*/2(6— 6y, A— Ay) —4 G in I°°(V x QF), where G is a
continuous zero-mean Gaussian process. Furthermore, the limiting covariance matrix of n'/2 (é\ —0o)

attains the semiparametric efficiency bound.

Proof. The proof is based on the likelihood equation and follows the arguments of van der Vaart
(1998, pp. 419-424). Let £(6,.A) be the log-likelihood function from a single cluster, £4(6, A) be the
derivative of £(6,.A) with respect to 0, and Ly(6,.A)[H}] be the path-wise derivative along the path
Ay, + eHj,. We sometimes omit the arguments in these derivatives when 6 = 6y and A = Ay. Let P,
be the empirical measure based on n i.i.d. observations, and P be its expectation.

Define W = (hq,...,hx) € QK. The likelihood equation for (6,.4) along the path (8 + ev, A +
ede./Z), where v € R? and hy, € BV[0, 7], is given by

0="P,

oT L6, A) + ZKj Lo(0, A) [ / hdek}

k=1

To be specific,

UT\PQ(Oi; ‘9’ A)

0=Pu\ =5 0,0, 4)

% / R () Riga (8)d NG (1) +¢k(0¢;0,A)[ / hdek}

=1

K
+) Py
k=1

Since (6o, Ap) maximizes P[L(6, A)],

0 :P |:UT£'9(90,A0)} 5 0= P |:£k(00,./40> |:/hk’dA0k:|:| 5 hk- S Q, k = 1, e ,K.

-~

These equations, combined with the likelihood equation for (5, ), yield
. ~ A~ K ~ . ~
T Lo(@,A) + 3 L4(B. ){ / hdek}

k=1

n'2(P, —P)

U3,(03;0, A)[ [ hrdhr] W03 00, Ao)[ [ hrdAor)
U(0;: 0, A) U (O;; 00, Ao) '
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Define Ny = {(G,A) 210 — 00| + S5, 1AL — Aorllvion < (50} , where &y is a small positive con-

stant. When n is large enough, (5, .2(\) belongs to Ny with probability one. By Lemma 1 and the

Donsker theorem,

op(1) +n'/*(Py = P)

K
v Lo(6o, Ao) +Z£k(907A0)[/hdeOk]

=1
oI Wp(0;0, A) UT‘i’e(Oz‘;%,Ao)
(036, A) ¥ (0i; 6o, Ao)

U1(0;:0, A) lf hidAy) B U, (Os3 00, Ao) [ hidAog]
(036, A) W (0;; 6o, Ao)

where 0,(1) represents some random element converging in probability to zero in [®(V x QF).

Under condition (C6), the first term on the right-hand side of (7) is equal to

K . ~ K
—n!/? {Z/ 0" Cor(s)d(Ag — Aok) + 0" Coa (6 — 90)} + 0(n1/2|9 — | + 02> Ay — AOkIV[o,T})
k=10 k=1
The second term is equal to

an {/ (t)mok (£; 0, A)dA (t) - /T hk(?/)’?ozc(t§HOaAO)dAOk(t)}‘

0

It follows from condition (C6) that the above expression is equal to

ZNI/Z / hu (¢ {nOke(t 60, Ao)(0 — 6) +Z/ Nokm (5. £: 00, Ao)d(Ap, _AOm)(S)}dAOk(t)

+ /OT e (£)0k (8 60, Ao)d(Ax(t) — Aok(t)

K
-y
k=1

o (20— ] S, - Aoulvor
k=1

(6 — 60)T /OT hi(t)noke (t; 0o, Ao)d Aok (t)

K. i )
+ mZ::l/O {I(m = k)l (t)n0m(t; 0o, Ao) +/0 TIOkm(S,t;90,A0)hk(8)dA0k(S)} d(Ap(t) — Aom(t))]

K
+ 0<n1/2|9 — bo| +n'/? D Ak - AOk”V[O,r})‘
=1

Thus, the right-hand side of (7) can be written as

nt/? {Bl[v W] (0 — 6o) +Z/szv W]d(Ak—AOk)}+0( 2190, H’TLI/QZHM A0k||V[oT)

k=1
where (By, Ba1, . .., Bag) are linear operators in R? x {BV[0, 7]}, and

K T
B, [U, W] = 'I)TC()@(HO, .Ao) + Z/o hk(t)nokg (t; 0o, .A())dAok(t), (8)
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K T
Bo[v, W] = v Cox (s 00, Ao)+hr ()08 (£ 60, Ao)+ D / Nomk (8,3 00, Ao)hun (s)dAok(s), k=1,..., K.
m=1 0

9)
It follows from the above derivation that
K
Blo W5+ [ Bulo. WiiidAo,
:i 077 [UT,CQ(QO +ev, Ay + E/Wd.Ao) + Z L0+ €0, Ag + € / Wd.AO)[/ hdeOk]] .
= k=1

We can write (Bj, Boy, ..., Bag)[v, W] as

v vTCop (B0, Ao) + Sohy fo e (E)moke (t; 00, Ao)d Aok (t) — v
no1(t; 0o, Ao) x hi(t) N oTCo1 (60, Ao) + 3o 1 [T 10m1 (8, t; 00, Ao) b (8)d Ao (5)

nox (t; 6o, Ao) % hi(t) v Coxc (t; 00, Ag) + Zﬁ:l fOT Nomi (S, t; 00, Ao) hm (s)dAom(s)
We wish to prove that (By, Bai, . .., Bak ) is invertible. As shown at the end of this section, nox (¢; 69, Ag) <
0, so that the first term of (B1, Bay, . .., B2 ) is an invertible operator. It follows from Lemma 3 that
the second term is a compact operator. Thus, (B, Bai, ..., Bak) is a Fredholm operator, and the in-
vertibility of (B, ..., Bak) is equivalent to the operator being one-to-one (Rudin, 1973, pp. 99-103).
Suppose that Bi[v, W] =0, ..., and Bag[v, W] = 0. It is easy to see from (10) that the derivative of
Pl Ly(00, Ao) + S0, L(Bo, Ao)[ [ hedAor]] along the path (6 + ev, Ag + € [ WdAp) is zero. That
is, the information along this path is zero, or v¥'Lg(6o, Ag) + Zle L (6o, Ag) [f hdeok} = 0 almost
surely. By condition (C7), v = 0 and W = 0, so that (B, Boai, ..., B2 is one-to-one and invertible.

It follows from (7) that, for any (v, W) € V x QK|

—~ K T N
nl/2 {UT(9 —60) + Z/ hi(t)d(Ag(t) — Aok(t))}
k=10

K

0" Lo(00, Ao) + > Ly (6o, Ao) [ / EdeOk]

k=1

= —n/2(p, - P)

K
+ om0 = G0l + 12> Rk Aoellvip):
k=1

where (@/,%1, . ,TlK) = (Bl, By, ... 7B2K)_1(’U, hi,..., hK). Since
K

K T
|6 — o] + Z Ak — Aokllvio = sup vT'(0 - 6) + Z/ hi(t)d(Ag(t) — Aok (1)),
P (0,11, )EVX QK —Jo
we have
n'/2 {|9 — o] + Z [ Ax — AOk’V[O,T}} = 0p(1) + 0("’”&1/2’9 — O] +n'/? Z [ Ax — AOkHV[O,T])'
k=1 k=1
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Thus, n1/2{|§— o] + Zéil Ay — AOkHV[O,r}} = Op(1). Consequently,

~ K T n
nl/? {UT(e — 0) + Z/ hie(t)d(A(t) — AOk(t»}
k=170

K

5" L(80,Ao) + Y L (60, Ao) [/ﬁdeOk]
k=1

(P, — ) +0,(1).

We have proved that n'/2(6 — 6, A — Ag) converges weakly to a Gaussian process in [(V x QK).
By choosing hy = 0 for k = 1,..., K, we see that 079 is an asymptotically linear estimator of vT g
with influence function o7 Lg(6, Ao) + Zle L (00, Ao)lS EdeOk]. Since the influence function lies
in the space spanned by the score functions, 0 is an efficient estimator for .

It remains to verify that no(¢; 6p,.49) < 0. Under condition (C6),

(04500, Ao) [Hy]
U(O;; 00, Ao)

P

2/ nok(s; 0o, Ao)dHp(s).
0

The choice of Hi(s) = I(s > t) yields

U5,(03 00, A)[I(- > t)]
V(03 60, Ao)

P

] = nok(t; 6o, Ao).

On the other hand, the score function along the path Aoy + eI(- > t) with the other parameters fixed

at their true values has zero expectation. We expand this expectation to obtain

P = — A\, (OdE [I(Ri.(t) > 0)Nj..(t)] /dt < 0.

\P(Oza 907 AO)

U (04300, Ao)[I(- > t)]]
Thus, Uok(t, 007-'40) <0. $

8. Information Matrix

Theorem 2 implies that the functional parameter A can be estimated in the same rate as the
Euclidean parameter . Thus, we may treat (1) as a parametric log-likelihood with 6 and the jump
sizes of A, k =1,..., K, at the observed failure times as the parameters and estimate the asymptotic
covariance matrix of the NPMLEs for these parameters by inverting the information matrix. This

result is formally stated in Theorem 3. We impose an additional assumption.

(C8) There exists a neighborhood of (6p,.4p) such that for (6,.4) in this neighborhood, the first and
second derivatives of log U(0;; 6,.A) with respect to 6 and along the path Ay + eHj with respect to

e satisfy the inequality in (C4).
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For any v € V and hy,...,hx € O, we consider the vector (UT,E{, .. .,HJI;)T, where hy; is the
vector consisting of the values of hy(-) at the observed failure times. Let Z,, be the negative Hessian

matrix of (1) with respect to 6 and the jump sizes of (/Ah, e KK)

Theorem 3. Assume that conditions (C1)—(C8) hold. Then Z,, is invertible for large n, and

sup n(fUTa}_L"{a“ : ,Eﬂ)IEI(UT7E{’” 'aﬁﬂ)T

vEV,h1,....hgx€Q
~ K ~
nl/2 {UT(G —6y) + Z / hid(Ag — AOk)}
k=1

in probability, where AVar denotes the asymptotic variance.

— AVar

Proof. The proof is similar to that of Theorem 3 in Parner (1998); see also van der Vaart (1998,
pp. 419-424). First, (10) implies that, for any v € V and hy,...,hg € Q,

. . . v v
Log Lor ... Lok f hidAgy fhldAm
il : ’ :
Lro Lrx1 ... Lkk [ hrdAogk [ hixdAok
K
=o' Bi(v,h1,...,hg) + Z/sz(v,hl, -y b ) hid Ao, (11)
k=1

where £ pertains to the second-order derivative of the log-likelihood function.

On the right-hand side of (10), we replace P by P,, to obtain two new linear operators By, and
Byok. It is easy to show that B,,; and B9, converge uniformly to B; and By, respectively. Under
condition (C8), the results of Lemma 1 apply to the second-order derivatives L and the operators

(B1, Bai, ..., Bag). By replacing 6y, Agr and P on both sides of (11) with é\, XOk and Py, we obtain

-

K
W' RL R T (0" R R T =0T B (3, h17---,hK)+Z/Bn2k(5, hi, ..., hic)hkdAg+op(1).
k=1

According to the proof of Theorem 2, (Bi, Bay, ..., Bak) is invertible, and so is (Bp1, ..., Bpok) for

large n. Note that v” By, (5,%1, o ,%K) + Z,I::l f Biok (v, El, . ,TzK)hdek can be written as
WT mT, . )BT BT hE)T
for some matrix B,,. Therefore, B,, is invertible, and so is Z,,. Furthermore,

sup T, hT RN, (0T AT R — (T BT R BT R AT — 0.
veV,h1,...,hk€Q
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According to Theorem 2, the asymptotic variance of n'/? {vT(g— o) + Zé{:l i hkd(lAXk — Aok)}

is equal to

K 2
P {ﬁga—i— Zﬁk |:/%de01{|}
k=1

. o ~ v v

Loy Lot ... Lok [ hydAor [ hidAo;
——p Do e : ’ : ’

Lrko Lrk1 ... Lkk fﬁKdAoK fﬁKdAoK

where (17,711, . ,lNLK) is equal to (Bi, Boi,...,Bak) ' (v,h1,...,hk), which can be approximated

by (Bni, Bnot, .., Bnox) Y (v, h1,...,hg). Hence, the asymptotic variance can be approximated

o N =T =T
uniformly in v and hy’s by its empirical counterpart (vI,hT, ... WE)BAZ, B, (01 by, ... k)T,
which is further approximately by (v’ H{, . E%)Zgl(vT, ﬁf, . EIT()T &

9. Profile Likelihood

Theorem 4. Let pl,(0) be the profile log-likelihood function for 6, and assume that conditions
(C1)—(C8) hold. For any €, = Op(nfl/Q) and any vector v,

_pln(9 + €env) — 2pl7;(9) + 0l (60 — €n) —p T By,
nez

where ¥ is the limiting covariance matrix of n'/? (5— ). Furthermore, 2 {pln(ﬁ) — ply (90)} —q X3

Proof. We appeal to Theorem 1 of Murphy and van der Vaart (2000). Specifically, we construct
the least favorable submodel for 6§y and verify all the conditions in their Theorem 1. For notational
simplicity, we assume that K = 1. It is straightforward to extend to K > 1.

It follows from the proof of Theorem 2 that

/ By(0,h)h*dAg = —F [EAA[/h*dAO,/hdAOH ,
0

where By stands for the operator (Boi, ..., Bag), and Lan [H1, H3] denotes the second-order deriva-

tive of £(6, A) with respect to A along the bi-directions H; and Hs. On the other hand,
E [ZA { / h*dAo} c‘e} =— / R*(s) LA LodAo(s),
0

where £} is the dual operator of L5 in L[0, 7]. Thus, if we choose h such that By(0,h) = —ﬁf\ﬁg,

E [[’,A[/h*dAo} c’e] =—F [EAAUh*dAO,/hdAO” .
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By definition, [ hdAy is the least favorable direction for 6y and Log— LAl [ hdAy] is the efficient score
function. Such an h exists since Bz(0,-) is invertible. In addition, h € BV[0,7]. Hence, we can
construct the least favorable submodel at (6, A) by € — (e, A¢) with dA(6,A) = {1+ (¢ — 0) - h} dA.
Clearly, Ag(0,A) = A and

OL(e, Ae) — Ly CA[/hdAO}
Oe €=00,0=00,A=Ao

If o —p 0o and K—é maximizes the objective function with greplaced by 5, we can use the arguments

in the proof of Theorem 1 to show that ]\\5 is consistent. In the likelihood equation for 7\5, we can

use the arguments for the linearization of (7) to show that, uniformly in h € Q,
0p(1) +n'/2(P, — P) [r;A(eo, Ao) [/hdAOH
==/ [ B0, m)d(R — 80) + 0,02 = 60 + 0,0 R~ Aol
The arguments for proving the invertibility of (B, B2) show that h — By(0, h) is invertible. Thus,
145 = Aollvios = Op(16 = O] + 17 1/2).

By condition (C6), we obtain the no-bias condition, i.e.,

O0L(€, Ae)
E [ Oe

= 0,(10 - ~1/2
€=90,9:5,A:7x§] Op(10 — 00| +n ).

We have verified conditions (8)—(11) of Murphy and van der Vaart (2000).

Condition (C4), together with Lemma 1, implies that the class

{85(;,6/\6) : |€ — 90’ < (50,(9,/\) EN()}

is P-Donsker and that the functions in the class are continuous at (6p, Ag) almost surely, while

condition (C8) implies that the class

82L (e, A,
{a(;) e — Bo| < o, (8, A) e/\fo}

is P-Glivenko-Cantelli and is bounded in Ly(P). Therefore, all the conditions in Murphy and van

der Vaart (2000) hold, so that the desired results follows from their Theorem 1. {

10. Applications
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In this section, we apply the general results to the problems described in Section 2. We shall
identify a set of conditions for each problem under which regularity conditions (C1)—(C8) are satisfied
so that the desired asymptotic properties hold. These applications not only provide the theoretical
justifications for the work of Zeng and Lin (2007), but also illustrate how the general theory can be

applied to specific problems.

10.1. Transformation Models With Random Effects for Dependent Failure Times

We assume the following conditions.

(D1) The parameter value (3%, 7¢)T belongs to the interior of a compact set © in R%, and A, (t) >0
forallt € [0,7], k=1,...,K.

(D2) With probability one, Ziy(-) and Z(+) are in BV[0,7] and are left-continuous with bounded
left- and right-derivatives in [0, 7].

(D3) With probability one, P(Cig > 7|Zik;) > 0o > 0 for some constant dy.

(D4) With probability one, n;; is bounded by some integer ng. In addition, E[Ny.(7)] < cc.

(D5) For k =1,...,K, Gi(x) is four-times differentiable such that G;(0) = 0,G}.(xz) > 0, and for

any integer m > 0 and any sequence 0 < z1 < ... < Ty, < ¥,

m

T4t + 206G} exp{—Galy)} < i (1 +) "
=1

for some constants por and ko > 0. In addition, there exists a constant pgr such that

s { Gi(@)| +1GD (@) + 16D (@) } e

G'(z)(1 + x)Pok

T

(D6) For any constant a; > 0,

sup B | [explan (Vi (7) -+ DIbIb ()t < .
v b
and there exists a constant ag > 0 such that for any -,

fv(b§ ’Y)
J(b;)

£2(b;7)

fv(bQ ’Y)
- J(b;7)

f(b57)

_l’_

< O(1) exp{az(1 + [b])}.

(D7) Consider two types of events: k € K; indicates that event k is recurrent and k € Iy indicates
that event k is survival time. For k € Kj U Kq, if there exist ¢x(t) and v such that with probability

1, cx(t) +vT Zyy(t) = 0 for k € K1 and ¢(0) + v* Z;j3(0) = 0 for k € Ko, then v = 0.
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(D) If there exist constants oy and agx such that for any subset Ly C {1,...,n;} and for any wy;

and tkl,
Nik

/ H Hexp{lwklb szl tkl } H H exp{ozk+b szl( )}f(b,')’)db

b kek, 1=1 k€K I€Ly
Nik
/ I I expliwnd” Zina(t)} T] ] expfoor + 6" Zini(0)} £(b;vo)db
keKy =1 keKa lEL,

then v = ~. In addition, if for k£ € Ky and for any ¢,

/b exp {—Gk( /O t ebTZikl(s)dAl(s))} Fb:yo)db = /b exp {—Gk( /0 t ebTZikl(S)dAg(s))} F(b: 7o) db,

then A7 = As. Furthermore, if for some vector v and constant oy,
I(keky) / 2T ZiiO) ¢ (b no)Twdb + T (k € Ka) / T 7O (q £ (b 70) — £ (b 70)Tw)db = 0,
b b

then v = 0.

(D1)-(D4) are standard conditions for this type of problem. We shall show that condition (D5)
holds for all commonly used transformations. We first consider the class of logarithmic transforma-

tions G(x) = plog(l 4+ rx) (p > 0,7 > 0). Clearly,

m

[[{(+206 W) expl=C0o sg{pqiﬁ }(Hry)“’
<{or(T+1/m)}" (1 +ry)™"

<A{pr(1+1/r)}" min(1,7) (1 +y)~".

Thus, in condition (D5), we can set ug to pr(1 4+ 1/r)min(1,7)"” and kg to p. We can verify the
polynomial bounds for G”(z)/G(x), G®(x)/G(z) and G® (z)/G(x) by direct calculations. We next

consider the class of Box-Cox transformations G(x) = {(1 + z)? — 1}/p. Clearly,

m

H{(1+xk (z1) } exp{—G(y H 1+ )P exp[—{(1 +y)” — 1}/p]
k=1 k=1

IN

(1+y)"" exp{—(1+y)"/2p} exp{—(1 +y)"/2p} exp(1/p)
< (2p)™ exp(1/p)2p(1 +y)~"
<{4p+exp(1/p)}" (1+y)~".
Thus, we can set pg to 4p + exp(1/p) and kg to p. The polynomial bounds for G"(z)/G(z),

G®)(x)/G(x) and GW(x)/G(x) hold naturally. Finally, we consider the linear transformation model:

H(T) = 77 + ¢, where € is standard normal. In this case, G(z) = —log{1 — ®(logx)}, where ® is
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the standard normal distribution function. We claim that there exists a constant vy > 0 such that
o(z) < vo{l — ®(x)}(1 + |z]). If 2 < 0, then p(z) < (27)"1/2 < 2(20)~/2{1 — ®(2)} (1 + |z]). If

x >0,

im ¢(x) o) 1/2
e Tur Y yvrwrs B OO

By the L’Hospital rule,

o 1=9) ()
xh—{go W o xh—{go ¢(x)x =0,
and
lim ¢(z) = lim —o@) = lim 1 =1.

700 {1 = @(2)}(1+2)  a= —p(z)(1+2) +{l-2(2)} a=c0 (1+2)/z— {1 - ®(2)}/ve(x)
Therefore, ¢(z)/[{1 — ®(z)}(1 + z)] is bounded for x > 0. Without loss of generality, assume that

y > 1. Clearly,

[T {0 +20)G (20)} exp{-G(y H{ + x1)p lg(xk))/xk}{l—é(logy)}.

k=1 k=1 (7))

Since (1 + x)¢(log(x))/[x{1l — ®(logx)}] is bounded when z is close to zero and it is bounded by a

multiplier of (1 + logz) when z is close to o,

(14 z)p(log(x))/xz{1 — ®(logx)} < vo1 + vo2log(l + x)

for two constants 91 and 9. Therefore,
[ {0 +20)C (@)} exp{=G(y)} < {vo1 + vo2log(1 +y)}™ {1 - B(logy)}.
k=1

Since 1 — ®(z) < 2'/2 exp(—22/4) when z > 0, the above expression is bounded by

272 o1 + voa log(1 + )} exp{—(log y)* /4}
<oz {vo1 + vozlog(1 4 y)}™ exp{—voa(log(1 + 1))’}
<wo3 {101 + 1oz log(1 + )} exp{—r04(log(1 + y))*/2} exp{ o4 log(1 + y) /2}

<vga(1+y) o,

where all the v’s are positive constants. The polynomial bounds for G”(x)/G(z), G®)(z)/G(x) and
G (z)/G(x) follow from the fact that ¢(z)/{1 — ®(z)} < O(1 + |z|).
Condition (D6) pertains to the tail property of the density function for the random effects f(b; ).

For survival data, N} (1) < 1, so that the first half of condition (D6) is tantamount to that the

25



moment generating function of b exists everywhere. This condition holds naturally when b has a
compact support or a Gaussian density tail. The second half of condition (D6) clearly holds for
Gaussian density functions.

(D7) and (D8) are sufficient conditions to ensure parameter identifiability and non-singularity
of the Fisher information matrix. In most applications, these conditions are tantamount to the
linear independence of covariates and the unique parametrization of the random-effects distribution.
Specifically, if Zikl is time-independent, then the second condition in (D8) is not necessary; if Zikl does
not depend on k and [ and b has a normal distribution, then the other two conditions in (D8) hold as
well provided that Z-kl is linearly independent with positive probability; if Z;kl is time-independent
and K is non-empty (i.e., at least one event is recurrent), then (D8) can be replaced by the linear

independence of Zkl for some k£ € K1 and the unique parametrization of f(b;~).

We wish to show that conditions (D1)-(D8) imply conditions (C1)-(C8), so that the desired
asymptotic properties hold. Conditions (C1) and (C2) follow naturally from (D1)-(D4). To verify
condition (C3), we note that

K Nik

W(0;:0, 4) = /HHQW : 8, i) £ (b5 7)db

k=11=1

where

AN, (1)
Qi (b3 8, M) = [ ] {Rzkl el Zin 48T Zun(t )G;c(%‘kl(t))} T exp {—Grlgim ()}

t<rt
and qikl(t) = fot Rikl(s) exp{ﬂTZikl(s) + bTZikl(S)}dAk(S).
If [[Akllvio,- are bounded, then Qix(b; 3, Ar) > exp{O(1)N;, (1)} (|b] < By) for any fixed con-
stant By such that P(|b| < Bp) > 0. Thus, ¥(0;;60,.A) is bounded from below by exp{O(1)N},(7)},

so that the second half of condition (C3) holds. It follows from condition (D5) that

AN}, (t

Qir1(b; B, Ax) < O(1 )H {Rikl(t)ebTZikl(t)} zkl H {1+ qim(t Nl {1 + o (7)) 0K
t<t t<t
Since exp{ 37 Zip (s)+bT Zii(s)} > exp{—O(14b|)}, we have 1+qip () > e~ O+ED {1 + f Rik.(s)dAg(s )}
so that

—dN},

zkl( ) T —Rok
{1 +f le<s>dAk<s>} .
0

Qi (b: 8, Ak) < O(1)pgy 7 e+ () ""H{1+/ >dAk<>}

t<t

Thus, the first half of condition (C3) holds as well.

26



We now verify condition (C4). Under condition (D5),

Q31105 B, Ar)| < exp{O(1 + Ny, (7))1b]},

‘aﬁﬂ ikt (b; B, Ak) | =|Qir (b; B, Ag) {/Rikl(t)zikl(t)dN;}cl(t)
| G// (qina(t fO el (s eﬁTZikl(S)'HJTZikl(S)Zikl(S)dAk( )
+/lel( G (qira(t)) Wit
— G (qima (T {/ Rip(s)eP" 2wt Zina(3) 7 () d A (s )}] ‘
<exp{O(1 + Ny (7)) (1 + (b))},
0
A, Qirt (b; B, M) [Hy]| =it (b; 5, Ag)
| szl fO zkl eﬁTZikl(S)‘H?TZikl(S)de()
’ {/ IO GLlam®) Al

= Gilam(7)) {/ Rm<s>e““‘S’*bT’Z?kl<s>de<S>}] '
0
< exp{O(L + N, (7))(1 + [b])}-
Thus, it follows from the mean-value theorem that

Qura (b; BY, Ag) — Qi (b; B2, Ay,) ’— Qi (b; 5%, A) | 1B — @]

< eXp{O(l + N ()b} 50 = 5@,

0
|Qra (b5 571\;(:)) - Qikl(b§ﬂ7A§€2))| = A, Qira (b; B, AL [A AN - A;(f)]

< exp{O(1 + Ny (7))[bl}

t ~

0
/o Ry (t)e? " Zm 0" Zua () g AL — APy (5)

d zkl()

+

<exp{O(1 + N, (7)) (1 + [b])}
1 2 NG 2
[ R0 - AP wlanzuto) + [T - AP 0as)
where the last inequality follows from integration by parts and the fact that Z;;;(¢) and Zkl(t) have
bounded variations. It then follows from condition (D6) that |¥(O;; 01, A — W (0;; 0, AP)] is

bounded by the right-hand side of the inequality in (C4). By the same arguments, we can verify the

bounds for the other three terms in (C4).
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To verify condition (C6), we calculate that

nok(s;6,A) =

/ m 1 H?”f szl(b ﬁ Am)f(b,’y)
o Ty TT77 Qi (b3 B, Ao f (b57)db

X { " Cmd lkl( ) — G;g(qZ’kl(T))} Rikl(S)eﬁTZikl(S)—i-bTéikl(s)db].

For (6, A) in a neighborhood of (6y, Ap),

K
0
nok (536, A) — nox(s; 00, Ao) — %77019(3;907-40 (0 —6) — Z Ok (s: 00, Ao)[Am — Aom]
) -
=0 (’9 — o+ > [[Am — AOmHV[o,T]> :
m=1

Thus, for the second equation in (C6), Mogm (s, t; 6o, Ag) is obtained from the derivative of 7y, with
respect to A, along the direction A, — Agm, and mgre is the derivative of 7g, with respect to 6.
Likewise, we can obtain the first equation in condition (C6). It is straightforward to verify the
Lipschitz continuity of nggn,-

The verification of condition (C8) is similar to that of (C4), relying on the explicit expressions of
{1}99(02'; 0,A) and the first and second derivatives of U(0O;; 0, Ay + €H) with respect to e.

It remains to verify the two identifiability conditions under (D7) and (D8). To verify (C5),
suppose that (3,7, A1, ..., Ax) yields the same likelihood as (5o, 70, A1o, - - -, Ako). That is,

K n;g K ni

/H TT AR ()™ (b5 8, Ar) £ (b;7)db = /H TT Aro ()™ Db Bo, Aro) £ (b5 70) b
br=11=1 k=11=1
We perform the following operations on both sides sequentially for k=1,..., K and [ =1,...,n;:

(a) If the kth type of event pertains to survival time, for the [th subject of this type of event, the
first equation is obtained with R (t) = 1 and dN};,;(t) = 0 for any t < 7, i.e., the subject does
not experience any event in [0,7]. The second equation is obtained by integrating ¢ from tg; to
7 on both sides under the scenario that R;y(t) = 1 and Nj;,(t) has a jump at t, i.e, the subject
experiences the event at time ty;. We then take the difference between these two equations. In the
resulting equation, the terms Ay, (£) Vit Q1 (b; 3, Ag) and Ao (8) Vi1 O Q1 (b; Bo, Ago) are replaced by
exp{—Gr(fy" exp{B” Zini(s) + b7 Zis(s) }dA)} and exp{—Gr([y* exp{B Ziri(s) +bT Zira(s) }dAro) },
respectively.

(b) If the kth type of event is recurrent, for the Ith subject of this type of event, we let R (t) = 1

and let N’ (t) have jumps at si,s9,...,5, and s|,...,s , for any arbitrary (m + m’) times in
ikl 1 m
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[0,7]. We integrate s1,..., Sy, from 0 to ¢y and integrate s{,...,s/ , from 0 to 7. In the obtained

NG D Qi1 (b; B, A ) is replaced by {Gr (g (te))}™ { G (qikl(T))}m, on both sides. Note

equation, A (t)
that m and m' are arbitrary. We then multiple both sides by {(iwg)™/m!} /m’! and sum over
m,m’ = 0,1,... On both sides of the resulting equation, the terms associated with k and [ are

replaced by exp{iwkGr(qiki(tx))}-

After these sequential operations, we obtain

/ 1T ﬂexp{iwszk(qikl(tkl))} 11 ﬂeXp{_Gk(Qikl(tkl))}f(b§'Y)db

b keky 1=1 kel 1=1

=11 ﬂexp{iwlek(Qiklo(tkl))} 11 ﬂeXp{_Gk(Qiklo(tkl))}f(b§'Yo)db-
b keky 1=1 kel 1=1

For survival time, we can let any subject from the n;; subjects have t;; = 0, which results in

/b H Hexp{iwlek(Qikl(tkl))} H H [;{l + eXP{_Gk(%’kl(tkl))}] f(b;)db

keky =1 keka =1

Nik Nik

Z/b 1T I expliwnGrlamota))}y T 11 [;kl +eXp{_Gk(Qiklo(tkl))}} J(b;7v0)db,

kel =1 kel l=1
where £ is any positive variable.
The above expression implies that {Gx(gixi(t)), k € K1} as a function of

Nik

n~ TT 1T | +espl-Galamtun)}] si6s)

ke 1=1

has the same distribution as {G(giki0(t)), k € K1} as a function of

Nik

b~ [T 11 L +exp{_Gk(Qiklo(tkl))}:| CGROE

1
kel 1=1 Lok
so is true between {¢;x;(¢)} and {g;xi0(t)} because of the one-to-one mapping. Thus, the distributions
of {logq.;(t)} and {logq},,,(t)} should also agree and they have the same expectation. Now let
ti = 0 for k € KCa. Since E[b1] = E[b2] = 0, we obtain log A\.(t) + 87 Zix(t) = log Mo (t) + 8L Ziri(t)
for k € K1. The above arguments also yield

Nik Nik

A H HGXP{bTZ‘kl(tkl)} H H §1 +eXp{_Gk(Qikl(tkl))}] f(b;’Y)db

keky =1 keky =1 LSk

Nik Nik

_/b IT ITexp{o" Zite)} T] ] 51

keky =1 keky 1=1 LSk

+ eXp{—Gk(qz'klo(tkl))}} f(;70)db.
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We compare the coefficients of {; for k € Ko. This yields that for any subset Ly C {1,...,n},

Nk

/ 1T TTexplicond” Zi(t)y TT TT exp{—Grlaime(t)}f (b v)db

ke, 1=1 keKa leLy,

/ 11 HeXP{IUszb Zita)} [T 1] expf—Gr(aiwn(t)}f(b;vo)db

kel I=1 kea lEL

We differentiate the above expression with respect to ti; at 0 for k € Kq. It then follows from (D8)
that log Ax(0) — log Aox(0) + (8 — o) Zixy(0) = 0 and v = ~p. Thus, (D7) implies that 3 = 3y and
Ai(t) = Mg (t) for k € K1. On the other hand, for any fixed k € Ko, we let tjy =0if k' £ korl' #1.
Thus, [, exp{—Gr(qiri(tr))}f(b;vo)db = [, exp{—Gr(qoiri(tr1))} f(b;vo)db. Therefore, A = Agy for
k € KCy according to (D8).

To verify (C7), we write v = (vg,vy). We perform operations (a) and (b) on the score equation

n (C7). The arguments used in proving the identifiability yield

Nik

b; v
/ D0 iwr A (tk) Grlgiro(ti) = Y Y Aira(tr) + ff(b%) ) s
b | hek, =1 kKo IE Ly, o
Nkl
xexpd Y > iwnGrlgimo(ta)) — Y Y Grlgimo(t)) ¢ f(b;70)db =0, (12)
keky =1 keEo IELY

where
t ~
Aikl(t) = / (hk(s) + Zikl(S)Tv,g)eﬁoTZ”“l(s)+bTZikl(S)dAkO(S)Gi;(%klo(t))'
0

We differentiate (12) with respect to tg; twice at 0 for k € Kq. Comparison of the coefficients for wy;
yields [, e2bTZikl(0)f’(b; 70)Tvydb = 0. We also differentiate (12) with respect to tg at 0 for k € Ka.
We obtain for each k € Ky and [ =1, ..., n,
/ (hi(0) + Zigg (0)Tvg)e?” 2810 £(b; 7o )db = — Gy (0) / e Zit1O) £ (b: 40) v, db.
b b

It then follows from (D8) that v, = 0. For fixed kg and Iy, with the fact of v, = 0, the score equation
under operations (a) and (b), where in (a) we let dN},(t) = 0 for any ¢ < 7 and in (b) we let m =0
whenever k # ko or | # lp, becomes a homogeneous integral equation for hy, (t) + Zi,i, (t)Tvg. The
equation has a trivial solution, so hk,(t) + Zikyl, (t)Tvg = 0. Since k¢ and [y are arbitrary, condition

(D7) implies that hy, = 0 and vg = 0.

Remark 2. For survival time, condition (D5) is required to hold only for m = 0 and m = 1.
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Remark 3. The above results do not apply directly to the proportional hazards model with gamma
frailty because condition (D6) does not hold when b has a gamma distribution. It is mathematically
convenient to handle this model because the marginal hazard function has an explicit form. The
likelihood is a special case of ours with

;i T —(1/6+N;.(7))
W(03;6,A) = [T TT (6 8)™5 O TT {1 + 0N () {1 +6 / Yo (u; B)dA(U)}
j=1t<t t<t 0
in Parner (1998)’s notation. Clearly, ¥ satisfies condition (C3) when 6 > 0. The other conditions
can be verified in the same manner as before.

Remark 4. Our theory does not cover the case in which the true parameter values lie on the
boundary of ©. It is delicate to deal with the boundary problem. One possible solution is to follow
the idea of Parner (1998) by extending the definition of the likelihood function outside © and verifying
conditions (C2)—(C8) for the extended likelihood function.

Remark 5. We have assumed known transformations. We may allow G, to belong to a parametric
family of distributions, say Gg(-;%), where v is a parameter in a compact set. Then 6 contains ).

Our results and proofs apply to this situation if assumption (D5) holds uniformly in ¢ and the two

identifiability conditions are satisfied.

10.2. Joint Models for Repeated Measures and Failure Times

For the (parametric) generalized linear mixed model, the likelihood can be viewed as a special
case of that of Section 10.1 except that there is an additional parameter « in f(y|z;b). We assume

that conditions (D1)-(D8) hold but with (D6) replaced by the following condition.
(D6’) For any constant a; > 0,

sup E / exp{ar (N7(7) + D[]} [T £V X5 0) 1 (b 7)db | < oo,

ayy b Jate

and there exists a constant ay > 0 such that for any v and «,

k=1

£ (b;)
f(b;7)

£ (V351 X5, b)
f(Yi;|Xi5,0)

< r3(0;) exp{az(1 + [b])}

almost surely, where r3(0O;) is a random variable in Lo(P).

Under these conditions, the desired asymptotic properties follow from the arguments of Section 10.1.
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Under the semiparametric linear transformation model for continuous repeated measures, the
likelihood is in the form of that of Section 2.2 with K = 2 and n;3 = n;, where the time to the second
type of failure is defined by Y;; (assuming without loss of generality that Y;; > 0). Thus, if we regard
Yi; as a right-censored observation when it is greater than a very large value (i.e., the upper limit of
detection), then the asymptotic results given in Section 10.1 hold. When such an upper limit does
not exist, the estimator for A can be unbounded when sample size goes to infinity. Then our proof

of Theorem 1 does not apply.

10.3. Transformation Models for Counting Processes

We shall verify conditions (C1)-(C8) under the following conditions.

(E1) The parameter value (3¢,~7d)7 belongs to the interior of a compact set © in R?, and A)(t) > 0
for all ¢ € [0, 7].

(E2) With probability one, P(C' > 7|Z) > §p > 0 for some constant dy.

(E3) Condition (D5) holds.

(E4) With probability one, Z(-) and Z are in BV[0,7] and are left-continuous with bounded left-
and right-derivatives in [0, 7].

(E5) If ’yTZ is equal to a constant with probability one, then v = 0. In addition, if 87 Z(t) = c(t)
for a deterministic function ¢(¢) with probability one, then § = 0.

In this case,

- t
U(O;;0,A) = H (Ri(t)eﬁTZi(t)"l"YTZi {1 +/ Ri(s)eBTZi(S)dA(S)}
0

t<t

, T2 1\ dNE (D)
{1 + / Ri(s)eﬁTZ’i(S)dA(s)} ]) exp (— G
0

By condition (D5),

xG'

~ t e’ Zi-1
11 <Ri(t>eﬂTZi<t>ﬂTZi {1+ / RAs)eﬁTZi(S)dA(s)}

t<t 0

t e Zi dN;(t) T T
{1 + / Ri(S)eﬁTZi(s)dA(s)} ] > exp < -G {1 + / Ri(S)eﬂTZi(S)dA(S)} ] )
0 0

* t —dN}(t) T 7
guf[i (r) 1—[ {1 L / Ri(s)eﬂTZi(S)dA(S)} {1 + / Ri(s)eﬂTZi(s)dA(S)}
0 0

Tz,
t<rt

x G’

—keY
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for some constant p;. Thus, condition (C3) follows from the boundedness of 'yTZ-. We can verify
the other conditions by using the arguments of Section 10.1.

To verify the first identifiability condition, we assume that N(¢) has jumps at z,z1,...,zy, for
some integer m. After integrating both sides of the equation in (C5) over 1, ..., x,, from 0 to 7 and

integrating x from x to 7, we obtain

G {1+/ eﬂoTZi(t)dAo(t)}
0
T 0 Zi "
X (G {1+/ eﬁoTZi“)dAo(t)} G(l))
0

Ta
€10 Zi

x exp | -G {1+/ eﬁOTZi(t)dAo(t)} + G(1)
0

T
e0 i

|
N
—
—
+
o
]
)
L
N
L
=
(e
=
——

*TZ' *T =

- e i = e
S e {1+/ eﬁ*TZi(t)dA*(t>} ye {1+/ eﬁ*TZi(t)dA*(t)}
0 0

- T e’Y*TZi m
x (G {1+/ eﬁ*TZi(t)dA*(t)} G(l))
0

*TZi

T e’
< exp | —G {1+ / eﬁ*TZi(t)dA*(t)} e
0

Multiplying both sides of this equation by 1/m! and summing over m > 0, we obtain

x 6 Zi
{1+/ eﬁoTZi(t)dAO(t)} ]
0

*TZi

G {1+/ eﬁgzi“)dAO(t)}
0

T
€0 Zi

-G

T er”
=G {1+/ eﬁ*TZi(t)dA*(t)}
0

Tz . o
e {1+/ eﬁ*TZi@)dA*(t)}
0

Setting N(7) = 0 in the likelihood function yields

T 67(1;21 T ey i
0 0

Thus

or .
€0 Zi Tz,

x T e i
{1 + / eﬁOTZi(t)dAo(t)} = {1 + / eﬁ*TZi(t)dA*(t)} .
0 0
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Then A*(t) is absolutely continuous with respect to ¢. Differentiating both sides with respect to
x and letting z = 0 yield A*(0) > 0. When z converges to zero, the left-hand side is equal to
lexp{ 3¢ Zi(0)} X0(0)x] 0% +0(a;eWOT§i) while the right-hand side is equal to [exp{ﬁ*TZi(O)})\* (0)x] r
—|—o(x€7*T§i). Thus, 7; T7Z; = v*TZ;. By condition (E5), v = 7*. Furthermore, efo Zi(®) dAo(t)/dt =
BT ZiD A (¢ )/dt. Tt follows from condition (E5) that Gy = f* and Ay = A*.

To verify the second identifiability condition (C7), we assume that the score function along
(Bo + €hg, Y0 + €hy, dAo + €hdAg) is zero. Equivalently, if we let go(t) = {1+ f ePo Zi i) dAg(s )}VOTZ

then we obtain
0= [ h RNy (@) + [ Rute) {W52:(0) + W Zi} any (o

Ri(t) ("% — 1) teﬁoTZi(s) Ty (s . ) .
o L+ [y B 200do(s) Uo {ha2i(s) + h(s)} dol ﬂ aN; (1)

I t
s [ ronize o {1+ [ 5 0ane bavzo

G”(go(t)) TZ.e 7 0 teﬁoTZi(S) s *
/R G'(g0(1)) iy 90()hy Zi ) 1 g{1+/0 dAo( )}dNZ (t)
G (g0() % [ A T Z(s) + hs) bdno(s)]
/ B0 G (gotay 1+ [7 e 2 dAg(s) i
- G/(QO(T))QO(T)h»{Ze”TZ log {1 + /OT eﬁoTZ"(S)dAg(s)}
67(?2' T (s
R o o prws / B2 (WD 7,() + h(s)} dAo(s)

We multiply both sides by the likelihood function and let N;(t) have jumps at times ¢y, t2,. .., ty,.

We integrate t; from 0 to ¢t and ¢;, 1 <1 < m from 0 to 7. By multiplying the resulting equation by

1/(m — k)! and summing over m = 1,2,..., we obtain

- t Jo €% 7O (BT Zi(s) + h(s) }dAo(s)
nLZ:1 {1+/ 3 Zi) gA o (s }+ 0
v £ 108 o o(s) 1+f B0 Zi( s)dAo( )

Differentiation with respect to ¢ then yields

S e Z:s) {thi(s) v h(s)} dAo(s)

hTZ +{nLz;t) +h
{ (t )} 1+ f(f eﬁgzi(s)dAO(s)

= 0.
Combining the above two equations, we have

JiE e85 2s) {thi(s) + h(s)} dAo(s)
1+ fot e85 Zi(8) d A (s)

1
+
log{1 + fg eﬁOTZi(s)dAo(s)}]

{hEZi(t) + h(t)} —
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This is a homogeneous integral equation for h%:Zi(t) + h(t) and has zero solution. That is, thi(t) +
h(t) = 0. It follows from (E5) that h(t) = 0 and hg = 0. Thus, h, = 0.

11. Concluding Remarks

We have developed a general asymptotic theory for the NPMLEs with right censored data and
shown that this theory applies to the models considered by Zeng and Lin (2007). This theory can
also be used to establish the desired asymptotic properties for other existing semiparametric models,
particularly the models mentioned in Sections 7.1-7.4 of Zeng and Lin (2007), as well as those that
may be invented in the future. It is much simpler to verify the set of sufficient conditions identified
in this paper than proving the asymptotic results from scratch, which requires a good command of
modern empirical process theory and entails many pages of derivations. Conditions (C1) and (C2)
are standard conditions required in all censored-data regression; (C3), (C4) and (C6) are certain
smoothness conditions that can be verified directly, as demonstrated in Section 10; (C5) and (C7)
are two minimal identifiability conditions that need to be verified for any specific problem.

Although the basic structures of our proofs mimic those of Murphy (1994; 1995) and Parner
(1998), our technical arguments are innovative and substantially more difficult because we deal
with a very general form of likelihood function rather than specific problems. In all previous work,
verification of the Donsker property relies on the specific expressions of the functions, whereas our
Lemma 1 provides a universal way to verify this property. In verifying the invertibility of the
information operator, all previous work requires an explicit expression of the information operator
that is identified as the sum of an invertible operator and a compact operator, whereas we allow a
very generic form of information operator obtained from the likelihood function (1). Murphy and van
der Vaart (2001) stated that the consistency of NPMLEs needs to be proved on a case-by-case basis;
however, we were able to prove the consistency for a very general likelihood function. Although we
borrowed the partitioning idea of Murphy (1994), our technical arguments are very different because
of the generic form of the likelihood.

In some applications, the failure times are subject to left truncation in addition to right censoring.
To accommodate general censoring/truncation patterns, we define N(¢) as the number of events
observed by time t and R(t) as the at-risk indicator at time ¢ reflecting both left truncation and right
censoring. Assume that the truncation time has positive mass at time 0, so that condition (C2) is

satisfied. Then all the results continue to hold.
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This paper is concerned with the theoretical aspect of the NPMLEs and complements the work
of Zeng and Lin (2007). The interested readers are referred to the latter for the calculations of the
NPMLEs and for the use of the semiparametric regression models and NPMLEs in practice. The
latter also provides rationale for the kind of model considered in Sections 2 and 10 of this paper.
Although the latter contains some theoretical elements, this paper presents the theory (especially

the regularity conditions) in a more rigorous manner and provides all the proofs.
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