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Summary. Semiparametric regression models play a central role in formulating the effects of
covariates on potentially censored failure times and in the joint modelling of incomplete repeated
measures and failure times in longitudinal studies. The presence of infinite dimensional param-
eters poses considerable theoretical and computational challenges in the statistical analysis of
such models. We present several classes of semiparametric regression models, which extend
the existing models in important directions.We construct appropriate likelihood functions involv-
ing both finite dimensional and infinite dimensional parameters. The maximum likelihood esti-
mators are consistent and asymptotically normal with efficient variances. We develop simple
and stable numerical techniques to implement the corresponding inference procedures. Exten-
sive simulation experiments demonstrate that the inferential and computational methods pro-
posed perform well in practical settings. Applications to three medical studies yield important
new insights.We conclude that there is no reason, theoretical or numerical, not to use maximum
likelihood estimation for semiparametric regression models.We discuss several areas that need
further research.
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1. Introduction

The Cox (1972) proportional hazards model is the corner-stone of modern survival analysis.
The model specifies that the hazard function of the failure time conditional on a set of possibly
time varying covariates is the product of an arbitrary base-line hazard function and a regression
function of the covariates. Cox (1972, 1975) introduced the ingenious partial likelihood principle
to eliminate the infinite dimensional base-line hazard function from the estimation of regression
parameters with censored data. In a seminal paper, Andersen and Gill (1982) extended the Cox
regression model to general counting processes and established the asymptotic properties of
the maximum partial likelihood estimator and the associated Breslow (1972) estimator of the
cumulative base-line hazard function via the elegant counting process martingale theory. The
maximum partial likelihood estimator and the Breslow estimator can be viewed as non-para-
metric maximum likelihood estimators (NPMLEs) in that they maximize the non-parametric
likelihood in which the cumulative base-line hazard function is regarded as an infinite dimen-
sional parameter (Andersen et al. (1993), pages 221–229 and 481–483, and Kalbfleisch and
Prentice (2002), pages 114–128).

Address for correspondence: D. Y. Lin, Department of Biostatistics, CB 7420, University of North Carolina,
Chapel Hill, NC 27599-7420, USA.
E-mail: lin@bios.unc.edu



508 D. Zeng and D.Y. Lin

The proportional hazards assumption is often violated in scientific studies, and other semi-
parametric models may provide more accurate or more concise summarization of data. Under
the proportional odds model (Bennett, 1983), for instance, the hazard ratio between two sets of
covariate values converges to 1, rather than staying constant, as time increases. The NPMLE
for this model was studied by Murphy et al. (1997). Both the proportional hazards and the
proportional odds models belong to the class of linear transformation models which relates
an unknown transformation of the failure time linearly to covariates (Kalbfleisch and Prentice
(2002), page 241). Dabrowska and Doksum (1988), Cheng et al. (1995) and Chen et al. (2002)
proposed general estimators for this class of models, none of which are asymptotically efficient.
The class of linear transformation models is confined to traditional survival (i.e. single-event)
data and time invariant covariates.

As an example of non-proportional hazards structures, Fig. 1 displays (in the full curves)
the Kaplan–Meier estimates of survival probabilities for the chemotherapy and chemotherapy
plus radiotherapy groups of gastric cancer patients in a randomized clinical trial (Stablein and
Koutrouvelis, 1985). The crossing of the two survival curves is a strong indication of crossing
hazards. This is common in clinical trials because the patients who receive the more aggressive
intervention (e.g. radiotherapy or transplantation) are at elevated risks of death initially but
may enjoy considerable long-term survival benefits if they can tolerate the intervention. Cross-
ing hazards cannot be captured by linear transformation models. The use of the proportional
hazards model could yield very misleading results in such situations.
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Fig. 1. Kaplan–Meier ( ) and model-based estimates (- � - � - �) of survival functions for gastrointes-
tinal tumour patients (the chemotherapy and combined therapy patients are indicated by blue and green
respectively): (a) model (3); (b) model (4)
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Multivariate or dependent failure time data arise when each study subject can potentially
experience several events or when subjects are sampled in clusters (Kalbfleisch and Prentice
(2002), chapters 8–10). It is natural and convenient to represent the dependence of related fail-
ure times through frailty or random effects (Clayton and Cuzick, 1985; Oakes, 1989, 1991;
Hougaard, 2000). The NPMLE of the proportional hazards model with gamma frailty was
studied by Nielsen et al. (1992), Klein (1992), Murphy (1994, 1995), Andersen et al. (1997)
and Parner (1998). Gamma frailty induces a very restrictive form of dependence, and the pro-
portional hazards assumption fails more often with complex multivariate failure time data
than with univariate data. The focus of the existing literature on the proportional hazards
gamma frailty model is due to its mathematical tractability. Cai et al. (2002) proposed esti-
mating equations for linear transformation models with random effects for clustered fail-
ure time data. Zeng et al. (2005) studied the NPMLE for the proportional odds model with
normal random effects and found the estimators of Cai et al. (2002) to be considerably less
efficient.

Lin (1994) described a colon cancer study in which the investigators wished to assess the
efficacy of adjuvant therapy on recurrence of cancer and death for patients with resected colon
cancer. By characterizing the dependence between recurrence of cancer and death through a
random effect, one could properly account for the informative censoring caused by death on
recurrence of cancer and accurately predict a patient’s survival outcome given his or her cancer
recurrence time. However, random-effects models for multiple types of events have received little
attention in the literature.

In longitudinal studies, data are often collected on repeated measures of a response variable
as well as on the time to the occurrence of a certain event. There is a tremendous recent interest
in joint modelling, in which models for the repeated measures and failure time are assumed
to depend on a common set of random effects. Such models can be used to assess the joint
effects of base-line covariates (such as treatments) on the two types of outcomes, to study the
effects of potentially mismeasured time varying covariates on the failure time and to adjust for
informative drop-out in the analysis of repeated measures. The existing literature (e.g. Wulfsohn
and Tsiatis (1997), Hogan and Laird (1997) and Henderson et al. (2000)) has been focused on
the linear mixed model for repeated measures and the proportional hazards model with normal
random effects for the failure time.

The linear mixed model is confined to continuous repeated measures with normal error.
In addition, the transformation of the response variable is assumed to be known. Inference
under random-effects models is highly non-robust to misspecification of transformation. Our
experience in human immunodeficiency virus (HIV) and acquired immune deficiency syndrome
research shows that different transformations of CD cell counts often yield conflicting results.
Thus, it would be desirable to employ semiparametric models (e.g. linear transformation mod-
els) for continuous repeated measures, so that a parametric specification of the transformation
or distribution can be avoided. This kind of model has not been studied even without the
task of joint modelling, although econometricians (Horowitz (1998), chapter 5) have proposed
inefficient estimators for univariate responses.

As evident from the above description, the existing semiparametric regression models, al-
though very useful, have important limitations and, in most cases, lack efficient estimators or
careful theoretical treatments. In this paper, we unify and extend the current literature, providing
a comprehensive methodology with strong theoretical underpinning. We propose a very general
class of transformation models for counting processes which encompasses linear transforma-
tion models and which accommodates crossing hazards, time varying covariates and recurrent
events. We then extend this class of models to dependent failure time data (including recurrent
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events, multiple types of events and clustered failure time data) by incorporating a rich family
of multivariate random effects. Furthermore, we present a broad class of joint models by spec-
ifying random-effects transformation models for the failure time and generalized linear mixed
models for (discrete or continuous) repeated measures. We also propose a semiparametric linear
mixed model for continuous repeated measures, under which the transformation of the response
variable is completely unspecified.

We establish the consistency, asymptotic normality and asymptotic efficiency of the NPMLEs
for the proposed models by appealing to modern empirical process theory (van der Vaart and
Wellner, 1996) and semiparametric efficiency theory (Bickel et al., 1993). In fact, we develop a
very general asymptotic theory for non-parametric maximum likelihood estimation with cen-
sored data. Our general theory can be used to derive asymptotic results for many existing
semiparametric models which are not covered in this paper as well as those to be invented in the
future. Simulation studies show that the asymptotic approximations are accurate for practical
sample sizes.

It is widely believed that NPMLEs are intractable computationally. This perception has moti-
vated the development of ad hoc estimators which are less efficient statistically. We present in this
paper simple and effective methods to calculate the NPMLEs and to implement the correspond-
ing inference procedures. These methods apply to a wide variety of semiparametric models with
censored data and make the NPMLEs computationally more feasible than the ad hoc estimators
(when the latter exist). Their usefulness is amply demonstrated through simulated and real data.

As hinted in the discussion thus far, we are suggesting the following strategies in the research
and practice of survival analysis and related fields.

(a) Use the new class of transformation models to analyse failure time data.
(b) Make routine use of random-effects models for multivariate failure time data.
(c) Choose normal random effects over gamma frailty.
(d) Determine transformations of continuous response variables non-parametrically.
(e) Formulate multiple types of outcome measures with semiparametric joint models.
(f) Adopt maximum likelihood estimation for semiparametric regression models.
(g) Rely on modern empirical process theory as the primary mathematical tool.

We shall elaborate on these points in what follows, particularly at the end. In addition, we shall
pose a wide range of open problems and outline several directions for future research.

2. Semiparametric models

2.1. Transformation models for counting processes
The class of linear transformation models relates an unknown transformation of the failure time
T linearly to a vector of (time invariant) covariates Z:

H.T/=−βTZ + ", .1/

where H.·/ is an unspecified increasing function, β is a set of unknown regression parame-
ters and " is a random error with a parametric distribution. The choices of the extreme value
and standard logistic error distributions yield the proportional hazards and proportional odds
models respectively.

Remark 1. The familiar linear model form of equation (1) is very appealing. Since the trans-
formation H.·/ is arbitrary, the parametric assumption on " should not be viewed as restrictive.
In fact, without Z, there is always a transformation such that " has any given distribution.
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We extend equation (1) to allow time varying covariates and recurrent events. Let NÅ.t/ be
the counting process recording the number of events that have occurred by time t, and let Z.·/
be a vector of possibly time varying covariates. We specify that the cumulative intensity function
for NÅ.t/ conditional on {Z.s/; s� t} takes the form

Λ.t|Z/=G

[∫ t

0
RÅ.s/ exp{βTZ.s/} dΛ.s/

]
, .2/

where G is a continuously differentiable and strictly increasing function, RÅ.·/ is an indicator
process, β is a vector of unknown regression parameters and Λ.·/ is an unspecified increasing
function. For survival data, RÅ.t/= I.T � t/, where I.·/ is the indicator function; for recurrent
events, RÅ.·/=1. It is useful to consider the class of Box–Cox transformations

G.x/= .1+x/ρ−1
ρ

, ρ�0,

with ρ=0 corresponding to G.x/= log.1+x/ and the class of logarithmic transformations

G.x/= log.1+ rx/

r
, r �0,

with r = 0 corresponding to G.x/ = x. The choice of G.x/ = x yields the familiar proportional
hazards or intensity model (Cox, 1972; Andersen and Gill, 1982). If NÅ.·/ has a single jump at
the survival time T and Z is time invariant, then equation (2) reduces to equation (1).

Remark 2. Specifying the function G while leaving the function Λ unspecified is equivalent
to specifying the distribution of " while leaving the function H unspecified. Non-identifiabil-
ity arises if both G and Λ (or both H and ") are unspecified and β= 0; see Horowitz (1998),
page 169.

To capture the phenomenon of crossing hazards as seen in Fig. 1, we consider the hetero-
scedastic version of linear transformation models

H.T/=−βTZ + exp.−γTZ̃/",

where Z̃ is a set of (time invariant) covariates and γ is the corresponding vector of regression
parameters. For notational simplicity, we assume that Z̃ is a subset of Z, although this assump-
tion is not necessary. Under this formulation, the hazard functions that are associated with
different values of Z̃ can cross and the hazard ratio can invert over time. To accommodate such
scenarios as well as recurrent events and time varying covariates, we extend equation (2) as
follows:

Λ.t|Z/=G

([∫ t

0
RÅ.s/exp{βTZ.s/} dΛ.s/

]exp.γTZ̃/
)

: .3/

For survival data, model (3) with G.x/ = x is similar to the heteroscedastic hazard model of
Hsieh (2001), who proposed to fit his model by the method of histogram sieves.

Under model (3) and Hsieh’s model, the hazard function is infinite at time 0 if γTZ̃ < 0. This
feature causes some technical difficulty. Thus, we propose the following modification:

Λ.t|Z/=G

([
1+
∫ t

0
RÅ.s/ exp{βT Z.s/} dΛ.s/

]exp.γTZ̃/
)

−G.1/: .4/
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If γ=0, equation (4) reduces to equation (2) by redefining G.1+x/−G.1/ as G.x/. For survival
data, the conditional hazard function under model (4) with G.x/=x becomes

exp{βT Z.s/+γTZ̃}
[

1+
∫ t

0
exp{βT Z.s/} dΛ.s/

]exp.γTZ̃/−1

λ.t/,

where λ.t/=Λ′.t/. Here and in what follows g′.x/=dg.x/=dx. This model is similar to the cross-
effects model of Bagdonavicius et al. (2004), who fitted their model by modifying the partial
likelihood.

Let C denote the censoring time, which is assumed to be independent of NÅ.·/ conditional
on Z.·/. For a random sample of n subjects, the data consist of {Ni.t/, Ri.t/, Zi.t/; t ∈ [0,τ ]}
.i = 1, . . . , n/, where Ri.t/ = I.Ci � t/ RÅ

i .t/, Ni.t/ = NÅ
i .t ∧ Ci/, a ∧ b = min.a, b/ and τ is the

duration of the study. For general censoring and truncation patterns, we define Ni.t/ as the num-
ber of events that are observed by time t on the ith subject, and Ri.t/ as the indicator on whether
the ith subject is at risk at t.

Write λ.t|Z/ = Λ′.t|Z/ and θ= .βT,γT/T. Assume that censoring is non-informative about
the parameters θ and Λ.·/. Then the likelihood for θ and Λ.·/ is proportional to

n∏
i=1

∏
t�τ

{Ri.t/ λ.t|Zi/}dNi.t/exp
{

−
∫ τ

0
Ri.t/ λ.t|Zi/ dt

}
, .5/

where dNi.t/ is the increment of Ni over [t, t +dt/.

2.2. Transformation models with random effects for dependent failure times
For recurrent events, models (2)–(4) assume that the occurrence of a future event is indepen-
dent of the prior event history unless such dependence is represented by suitable time varying
covariates. It is inappropriate to use such time varying covariates in randomized clinical trials
because the inclusion of a post-randomization response variable in the model will attenuate the
estimator of treatment effect. It is more appealing to characterize the dependence of recurrent
events through random effects or frailty. Frailty is also useful in formulating the dependence of
several types of events on the same subject or the dependence of failure times among individuals
of the same cluster. To accommodate all these types of data structure, we represent the under-
lying counting processes by NÅ

ikl.·/ (i=1, . . . , n; k =1, . . . , K; l =1, . . . , nik), where i pertains to
a subject or cluster, k to the type of event and l to individuals within a cluster; see Andersen
et al. (1993), pages 660–662. The specific choices of K =nik = 1, nik = 1 and K = 1 correspond
to recurrent events, multiple types of events and clustered failure times respectively. For the
colon cancer study that was mentioned in Section 1, K = 2 (and nik = 1), with k = 1 and k = 2
representing cancer recurrence and death.

The existing literature is largely confined to proportional hazards or intensity models with
gamma frailty, under which the intensity function for NÅ

ikl.t/ conditional on covariates Zikl.t/

and frailty ξi takes the form

λk.t|Zikl; ξi/= ξi RÅ
ikl.t/ exp{βT Zikl.t/} λk.t/, .6/

where ξi .i = 1, . . . , n/ are gamma-distributed random variables, RÅ
ikl is analogous to RÅ

i and
λk.·/ .k = 1, . . . , K/ are arbitrary base-line functions. Murphy (1994, 1995) and Parner (1998)
established the asymptotic theory of the NPMLEs for recurrent events without covariates and
for clustered failure times with covariates respectively.
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Remark 3. Kosorok et al. (2004) studied the proportional hazards frailty model for univar-
iate survival data. The induced marginal model (after integrating out the frailty) is a linear
transformation model in the form of equation (1).

We assume that the cumulative intensity function for NÅ
ikl.t/ takes the form

Λk.t|Zikl; bi/=Gk

[∫ t

0
RÅ

ikl.s/exp{βT Zikl.s/+bT
i Z̃ikl.s/} dΛk.s/

]
, .7/

where Gk .k =1, . . . , K/ are analogous to G of Section 2.1, Z̃ikl is a subset of Zikl plus the unit
component, bi .i = 1, : : : , n/ are independent random vectors with multivariate density func-
tion f.b;γ/ indexed by a set of parameters γ and Λk.·/ .k = 1, . . . , K/ are arbitrary increasing
functions. Equation (7) is much more general than equation (6) in that it accommodates non-
proportional hazards or intensity models and multiple random effects that may not be gamma
distributed. It is particularly appealing to allow normal random effects, which, unlike gamma
frailty, have unrestricted covariance matrices. In light of the linear transformation model rep-
resentation, normal random effects are more natural than gamma frailty, even for the propor-
tional hazards model. Computationally, normal distributions are more tractable than others,
especially for high dimensional random effects.

Write θ= .βT,γT/T. Let Cikl, Nikl.·/ and Rikl.·/ be defined analogously to Ci, Ni.·/ and Ri.·/
of Section 2.1. Assume that Cikl is independent of NÅ

ikl.·/ and bi conditional on Zikl.·/ and
non-informative about θ and Λk .k =1, . . . , K/. The likelihood for θ and Λk .k =1, . . . , K/ is

n∏
i=1

∫
b

K∏
k=1

nik∏
l=1

∏
t�τ

(
Rikl.t/ λk.t/exp{βT Zikl.t/+ bT Z̃ikl.t/}

×G′
k

[∫ t

0
Rikl.s/exp{βT Zikl.s/+bT Z̃ikl.s/}dΛk.s/

])dNikl.t/

× exp
(

−Gk

[∫ τ

0
Rikl.t/exp{βT Zikl.t/+bT Z̃ikl.t/} dΛk.t/

])
f.b;γ/db,

.8/

where λk.t/=Λ′
k.t/ .k =1, . . . , K/.

2.3. Joint models for repeated measures and failure times
Let Yij represent a response variable and Xij a vector of covariates that are observed at time
tij, for observation j = 1, . . . , ni on subject i = 1, . . . , n. We formulate these repeated measures
through generalized linear mixed models (Diggle et al. (2002), section 7.2). The random effects
bi .i=1, . . . , n/ are independent zero-mean random vectors with multivariate density function
f.b;γ/ indexed by a set of parameters γ. Given bi, the responses Yi1, . . . , Yini are independent
and follow a generalized linear model with density fy.y|Xij; bi/. The conditional means satisfy

g{E.Yij|Xij; bi/}=αTXij +bT
i X̃ij,

where g is a known link function, α is a set of regression parameters and X̃ is a subset of X.
As in Section 2.1, let NÅ

i .t/ denote the number of events which the ith subject has experi-
enced by time t and Zi.·/ be a vector of covariates. We allow NÅ

i .·/ to take multiple jumps to
accommodate recurrent events. If we are interested in adjusting for informative drop-out in the
repeated measures analysis, however, NÅ

i .·/ will take a single jump at the drop-out time. To
account for the correlation between NÅ

i .·/ and the Yij, we incorporate the random effects bi into
equation (2),
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Λ.t|Zi; bi/=G

[∫ t

0
RÅ

i .s/exp{βT Zi.s/+ .ψ ◦bi/
T Z̃i.s/} dΛ.s/

]
,

where Z̃i is a subset of Zi plus the unit component, ψ is a vector of unknown constants and
v1 ◦ v2 is the componentwise product of two vectors v1 and v2. Typically but not necessarily,
Xij =Zi.tij/. It is assumed that NÅ

i .·/ and the Yij are independent given bi, Zi and Xij.
Write θ= .αT,βT,γT,ψT/T. Assume that censoring and measurement times are non-infor-

mative (Tsiatis and Davidian, 2004). Then the likelihood for θ and Λ.·/ can be written as
n∏

i=1

∫
b

∏
t�τ

{Ri.t/ λ.t|Zi; b/}dNi.t/ exp
{

−
∫ τ

0
Ri.t/ λ.t|Zi; b/ dt

}
ni∏

j=1
fy.Yij|Xij; b/ f.b;γ/ db,

.9/

where λ.t|Z; b/=Λ′.t|Z; b/.
It is customary to use the linear mixed model for continuous repeated measures. The normality

that is required by the linear mixed model may not hold. A simple strategy to achieve approx-
imate normality is to apply a parametric transformation to the response variable. It is difficult
to find the correct transformation in practice, especially when there are outlying observations.
As mentioned in Section 1, our experience in analysing HIV data shows that different transfor-
mations (such as logarithmic versus square root) of CD cell counts or viral loads often lead to
conflicting results. Thus, we propose the semiparametric linear mixed model or random-effects
linear transformation model

H̃.Yij/=αTXij +bT
i X̃ij + "ij, .10/

where H̃ is an unknown increasing function and "ij .i=1, . . . , n; j =1, . . . , nij/ are independent
errors with density function f". If the transformation function H̃ were specified, then equation
(10) would reduce to the conventional (parametric) linear mixed model. Leaving the form of
H̃ unspecified is in line with the semiparametric feature of the transformation models for event
times. There is no intercept in α since it can be absorbed in H̃ . Write Λ̃.y/ = exp{H̃.y/}. The
likelihood for θ, Λ and Λ̃ is

n∏
i=1

∫
b

∏
t�τ

{Ri.t/ λ.t|Zi; b/}dNi.t/ exp
{

−
∫ τ

0
Ri.t/ λ.t|Zi; b/ dt

}

×
ni∏

j=1
f"[log{Λ̃.Yij/}−αTXij −bT

i X̃ij]
λ̃.Yij/

Λ̃.Yij/
f.b;γ/ db, .11/

where λ̃.y/= Λ̃′.y/.

3. Maximum likelihood estimation

The likelihood functions that are given in expressions (5), (8), (9) and (11) can all be written in
a generic form

Ln.θ, A/=
n∏

i=1

K∏
k=1

nik∏
l=1

∏
t�τ

λk.t/dNikl.t/ Ψ.Oi; θ, A/, .12/

where A = .Λ1, . . . , ΛK/, Oi is the observation on the ith subject or cluster and Ψ is a func-
tional of random process Oi, infinite dimensional parameter A and d-dimensional parameter θ;
expression (11) can be viewed as a special case of expression (8) with K =2, A= .Λ, Λ̃/, ni1 =1
and ni2 =ni, where repeated measures correspond to the second type of failure. To obtain the
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Kiefer–Wolfowitz NPMLEs of θ and A, we treat A as right continuous and replace λk.t/ by the
jump size of Λk at t, which is denoted by Λk{t}. Under model (2) with G.x/=x, the NPMLEs
are identical to the maximum partial likelihood estimator of β and the Breslow estimator of Λ.

The calculation of the NPMLEs is tantamount to maximizing Ln.θ, A/ with respect to θ and
the jump sizes of A at the observed event times (and also at the observed responses in the case
(11)). This maximization can be carried out in many scientific computing packages. For example,
the ‘Optimization toolbox’ of MATLAB (Gilat, 2004) contains an algorithm fminunc for
unconstrained non-linear optimization. We may choose between large scale and medium scale
optimization. The large scale optimization algorithm is a subspace trust region method that
is based on the interior reflective Newton algorithm of Coleman and Li (1994, 1996). Each
iteration involves approximate solution of a large linear system by using the technique of pre-
conditioned conjugate gradients. The gradient of the function is required. The Hessian matrix
is not required and is estimated numerically when it is not supplied. In our implementation,
we normally provide the Hessian matrix, so that the algorithm is faster and more reliable.
The medium scale optimization is based on the BFGS quasi-Newton algorithm with a mixed
quadratic and cubic line search procedure. This algorithm is also available in Press et al. (1992).
MATLAB also contains an algorithm fmincon for constrained non-linear optimization, which
is similar to fminunc.

The optimization algorithms do not guarantee a global maximum and may be slow for large
sample sizes. Our experience, however, shows that these algorithms perform very well for small
and moderate sample sizes provided that the initial values are appropriately chosen. We may
use the estimates from the Cox model or a parametric model as the initial values. We may also
use some other sensible initial values, such as 0 for the regression parameters and Y for H.Y/.
To gain more confidence in the estimates, one may try different initial values.

It is natural to fit random-effects models through the expectation–maximization (EM) algo-
rithm (Dempster et al., 1977), in which random effects pertain to missing data. The EM algo-
rithm is particularly convenient for the proportional hazards model with random effects because,
in the M-step, the estimator of the regression parameter is the root of an estimating function
that takes the same form as the partial likelihood score function and the estimator for A takes
the form of the Breslow estimator; see Nielsen et al. (1992), Klein (1992) and Andersen et al.
(1997) for the formulae in the special case of gamma frailty.

For transformation models without random effects, we may use the Laplace transformation
to convert the problem into the proportional hazards model with a random effect. Let ξ be a
random variable whose density f.ξ/ is the inverse Laplace transformation of exp{−G.t/}, i.e.

exp{−G.t/}=
∫ ∞

0
exp.−tξ/ f.ξ/ dξ:

If

P.T >t|ξ/= exp
[
−ξ
∫ t

0
exp{βT Z.s/} dΛ.s/

]
,

then

P.T >t/= exp
(

−G

[∫ t

0
exp{βT Z.s/} dΛ.s/

])
:

Thus, we can turn the estimation of the general transformation model into that of the pro-
portional hazards frailty model. This trick also works for general transformation models with
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random effects, although then there are two sets of random effects in the likelihood; see
Appendix A.1 for details.

There is another simple and efficient approach. Using either the forward or the backward
recursion that is described in Appendix A.2, we can reduce the task of solving equations for θ
and all the jump sizes of Λ to that of solving equations for θ and only one of the jump sizes.
This procedure is more efficient and more stable than direct optimization.

4. Asymptotic properties

We consider the general likelihood that is given in equation (12). Denote the true values of θ and
A by θ0 and A0 and their NPMLEs by θ̂ and Â. Under mild regularity conditions, θ̂ is strongly
consistent for θ0 and Â.·/ uniformly converges to A0.·/ with probability 1. In addition, the
random element n1=2{θ̂−θ0, Â.·/−A0.·/} converges weakly to a zero-mean Gaussian process,
and the limiting covariance matrix of θ̂ achieves the semiparametric efficiency bound (Sasieni,
1992; Bickel et al., 1993).

To estimate the variances and covariances of θ̂ and Â.·/, we treat equation (12) as a paramet-
ric likelihood with θ and the jump sizes of A as the parameters and then invert the observed
information matrix for all these parameters. This procedure not only allows us to estimate the
covariance matrix of θ̂, but also the covariance function for any functional of θ̂ and Â.·/. The
latter is obtained by the delta method (Andersen et al. (1992), section II.8) and is useful in
predicting occurrences of events. A limitation of this approach is that it requires inverting a
potentially large dimensional matrix and thus may not work well when there are a large number
of observed failure times.

When the interest lies primarily in θ, we can use the profile likelihood method (Murphy
and van der Vaart, 2000). Let pln.θ/ be the profile log-likelihood function for θ, i.e. pln.θ/ =
maxA[log{Ln.θ, A/}]. Then the .s, t/th element of the inverse covariance matrix of θ̂ can be
estimated by

−"−2
n {pln.θ̂+ "nes + "net/−pln.θ̂+ "nes − "net/−pln.θ̂− "nes + "net/+pln.θ̂/},

where "n is a constant of order n−1=2, and es and et are the sth and tth canonical vectors respec-
tively. The profile likelihood function can be easily calculated through the algorithms that were
described in the previous section. Specifically, pln.θ/ can be calculated via the EM algorithm
by holding θ fixed in both the E-step and the M-step. In this way, the calculation is very fast
owing to the explicit expression of the estimator of A in the M-step. In the recursive formulae,
the profile likelihood function is a natural product of the algorithm.

The regularity conditions are described in Appendix B. There are three sets of conditions.
The first set consists of the compactness of the Euclidean parameter space, the boundedness
of covariates, the non-emptyness of risk sets and the boundedness of the number of events (i.e.
conditions D1–D4 in Appendix B); these are standard assumptions for any survival analysis
and are essentially the regularity conditions of Andersen and Gill (1982). The second set of
conditions pertains to the transformation function and random effects (i.e. conditions D5 and
D6); these conditions hold for all commonly used transformation functions and random-effects
distributions. The final set of conditions pertains to the identifiability of parameters (i.e. condi-
tions D7 and D8); these conditions hold for the models and data structures that are considered
in this paper provided that the covariates are linearly independent and the distribution of the
random effects has a unique parameterization. In short, the regularity conditions hold in all
practically important situations.
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5. Examples

5.1. Gastrointestinal tumour study
As mentioned previously, Stablein and Koutrouvelis (1985) presented survival data from a clin-
ical trial on locally unresectable gastric cancer. Half of the total 90 patients were assigned to
chemotherapy, and the other half to combined chemotherapy and radiotherapy. There were two
censored observations in the first treatment arm and six in the second. Under the two-sample
proportional hazards model, the log-hazard ratio is estimated at 0.106 with a standard error
estimate of 0.223, yielding a p-value of 0.64. This analysis is meaningless in view of the crossing
survival curves that are shown in Fig. 1.

We fit models (3) and (4) with G.x/=x and Z≡ Z̃ indicating chemotherapy versus combined
therapy by the values 1 versus 0. We use the backward recursive formula of Appendix A.2 to
calculate the NPMLEs. Under model (3), β and γ are estimated at 0.317 and −0:530 with stan-
dard error estimates of 0.190 and 0.093. Under model (4), the estimates of β and γ become 3.028
and −1:317 with standard error estimates of 0.262 and 0.032. As evident in Fig. 1, model (4) fits
the data better than model (3) and accurately reflects the observed pattern of crossing survival
curves.

5.2. Colon cancer study
In the colon cancer study that was mentioned in Section 1, 315, 310 and 304 patients with stage
C disease received observation, levamisole alone and levamisole combined with 5-fluorouracil
(group Lev+5-FU) respectively. By the end of the study, 155 patients in the observation group,
144 in the levamisole alone group and 103 in the Lev+5-FU group had recurrences of cancer,
and there were 114, 109 and 78 deaths in the observation, levamisole alone and Lev+5-FU
groups respectively. Lin (1994) fitted separate proportional hazards models to recurrence of
cancer and death. That analysis ignored the informative censoring on cancer recurrence and did
not explore the joint distribution of the two end points.

Following Lin (1994), we focus on the comparison between the observation and Lev+5-FU
groups. We treat recurrence of cancer as the first type of failure and death as the second, and
we consider four covariates:

Z1i =
{

0 if the ith patient was on observation,
1 if the ith patient was on Lev+5-FU;

Z2i =

⎧⎪⎨
⎪⎩

0 if the surgery for the ith patient took place 20 or fewer days before
randomization,

1 if the surgery for the ith patient took place more than 20 days before
randomization;

Z3i =
{

0 if the depth of invasion for the ith patient was submucosa or muscular layer,
1 if the depth of invasion for the ith patient was serosa;

Z4i =
{

0 if the number of nodes involved in the ith patient was 1–4,
1 if the number of nodes involved in the ith patient was more than 4.

We fit the class of models in equation (7) with a normal random-effect and the Box–Cox
transformations {.1 + x/ρ− 1}=ρ and logarithmic transformations r−1 log.1 + rx/ through the
EM algorithm. The log-likelihood functions under these transformations are shown in Fig. 2.
The combination of G1.x/= 2{.1 + x/1=2 − 1} and G2.x/= log.1 + 1:45x/=1:45 maximizes the
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Fig. 2. Log-likelihood functions for pairs of transformations in the colon cancer data: indices below 20 per-
tain to the Box–Cox transformations with ρ ranging from 1 to 0, whereas indices above 20 pertain to the
logarithmic transformations with r ranging from 0 to 2

likelihood function. By the Akaike (1985) information criterion, we select this bivariate mod-
el. Table 1 presents the results under the model selected and the proportional hazards and
proportional odds models. All three models show that the Lev+5-FU treatment is effective
in preventing recurrence of cancer and death. The interpretation of treatment effects and the
prediction of events depend on which model is used.

We can predict an individual’s future events on the basis of his or her event history. The survival
probability at time t for a patient with covariate values z and with cancer recurrence at t0 is(∫

b

exp[−G2{Λ2.t/exp.βT
2 z+b/}] G′

1{Λ1.t0/exp.βT
1 z+b/}exp[−G1{Λ1.t0/

× exp.βT
1 z+b/}] dΦ.b=σb/

)(∫
b

exp[−G2{Λ2.t0/exp.βT
2 z+b/}] G′

1{Λ1.t0/exp.βT
1 z+b/}

× exp[−G1{Λ1.t0/ exp.βT
1 z+b/}] dΦ.b=σb/

)−1

, t � t0,

where Φ is the standard normal distribution function. We estimate this probability by replacing
all the unknown parameters with their sample estimators and estimate the standard error by
the delta method. An example of this kind of prediction is given in Fig. 3.
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Table 1. Estimates of regression parameters and variance component under
random-effects transformation models for the colon cancer study†

Estimates for the following models:

Proportional hazards Proportional odds Selected

Treatment
Cancer −1.480 (0.236) −1.998 (0.352) −2.265 (0.357)
Death −0.721 (0.282) −0.922 (0.379) −1.186 (0.422)

Surgery
Cancer −0.689 (0.219) −0.786 (0.335) −0.994 (0.297)
Death −0.643 (0.258) −0.837 (0.369) −1.070 (0.366)

Depth
Cancer 2.243 (0.412) 3.012 (0.566) 3.306 (0.497)
Death 1.937 (0.430) 2.735 (0.630) 3.033 (0.602)

Node
Cancer 2.891 (0.236) 4.071 (0.357) 4.309 (0.341)
Death 3.095 (0.269) 4.376 (0.384) 4.742 (0.389)

σ2
b 11.62 (1.22) 24.35 (2.46) 28.61 (3.06)

Log-likelihood −2895.1 −2895.0 −2885.7

†Standard error estimates are shown in parentheses.
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Fig. 3. Estimated survival probabilities of the colon cancer patients with recurrences of cancer at 500 days
under the model selected (the blue and green curves pertain to z D .1,1,0,0/ and z D .0,0,1,1/ respectively):
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To test the global null hypothesis of no treatment effect on recurrence of cancer and death,
we may impose the condition of a common treatment effect while allowing separate effects for
the other covariates. The estimates of the common treatment effects are −1:295, −1:523 and
−1:843, with standard error estimates of 0.256, 0.333 and 0.318 under the proportional hazards,
proportional odds and selected models. Thus, we would conclude that the Lev+5-FU treatment
is highly efficacious.

5.3. Human immunodeficiency virus study
A clinical trial was conducted to evaluate the benefit of switching from zidovudine to didano-
sine (ddI) for HIV patients who have tolerated zidovudine for at least 16 weeks (Lin and Ying,
2003). A total of 304 patients were randomly chosen to continue the zidovudine therapy whereas
298 patients were assigned to ddI. The investigators were interested in comparing the CD4 cell
counts between the two groups at weeks 8, 16 and 24. A total of 174 zidovudine patients and 147
ddI patients dropped out of the study owing to patient’s request, physician’s decision, toxicities,
death and other reasons.

To adjust for informative drop-out in the analysis of CD4 cell counts, we use a special case
of equation (10):

H̃.Yij/=α1Xi +α2tij +bi + "ij, .13/

where Xi is the indicator for ddI, tij is 8, 16 and 24 weeks, bi is zero-mean normal with vari-
ance σ2

b and "ij is standard normal. Table 2 summarizes the results of this analysis, along with
the results based on the log- and square-root transformations. These results indicate that ddI
slowed down the decline of CD4 cell counts over time. The analysis that is based on the estimated
transformation provides stronger evidence for the ddI effect than those based on the parametric
transformations. Model (13) includes the random intercept; additional analysis reveals that the
random slope is not significant.

Fig. 4 suggests that neither the log- nor the square-root transformation provides a satisfactory
approximation to the true transformation. The histograms of the residuals (which are not shown
here) reveal that the residual distribution is normal looking under the estimated transformation,
is right skewed under the square-root transformation and left skewed under the log-transfor-

Table 2. Joint analysis of CD4 cell counts and drop-out time for the HIV study†

Parameter Results for the following transformation functions:

Estimated Logarithmic Square root

Est SE Est SE Est SE

α1 0.674 0.222 0.506 0.215 0.613 0.261
α2 −0.043 0.005 −0.041 0.005 −0.041 0.004
β −0.338 0.114 −0.316 0.116 −0.328 0.118
σ2

b 7.837 0.685 7.421 0.575 8.994 0.772
ψ −0.158 0.023 −0.132 0.021 −0.154 0.023

†The parameters α1 and α2 represent the effects of ddI and time on CD4 cell counts,
and β pertains to the effect of ddI on the time to drop-out. The estimates ofα, σ2

b andψ
under the log- and square-root transformations are standardized to have unit residual
variance. Est and SE denote the parameter estimate and standard error estimate.
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Fig. 4. Transformation functions for the HIV study (the blue and green curves pertain respectively to the log-
and square-root transformation functions subject to affine transformations): , estimated transformation
function; - � - � - �, corresponding pointwise 95% confidence limits

mation. In addition, the qq-norm plots of the residuals (which are not shown) indicate that
the estimated transformation is much more effective in handling the extreme observations than
the log- and square-root transformations.

Without adjustment of informative drop-out, the estimates of α1 and α2 under model (13)
shrink drastically to 0.189 and −0:011. The same model is used for CD4 cell counts in the two
analyses, but the estimators are severely biased when informative drop-out is not accounted for.

6. Simulation studies

We conducted extensive simulation studies to assess the performance of the inferential and
numerical procedures proposed. The first set of studies mimicked the colon cancer study. We
generated two types of failures with cumulative hazard functions Gk{exp.β1kZ1i +β2kZ2i +bi/×
Λk.t/} .k = 1, 2; i = 1, . . . , n/, where Z1i and Z2i are independent Bernoulli and uniform [0,1]
variables, bi is standard normal, β11 =β12 =−β21 =−β22 = 1, Λ1.t/ = 0:3t, Λ2.t/ = 0:15t2 and
G1.x/=G2.x/ equals x or log.1+x/. We created censoring times from the uniform [0, 5] distri-
bution and set τ = 4, producing approximately 51.3% and 48.5% censoring for k = 1 and k = 2
under G1.x/=G2.x/=x, and 59.9% and 57.3% under G1.x/=G2.x/= log.1+x/. We used the
EM algorithm that is described in Appendix A.1 to calculate the NPMLEs.

Table 3 summarizes the results for β11, β21, Λ1.t/ and σ2
b , where σ2

b is the variance of the
random effect. The results for β12, β22 and Λ2.t/ are similar and have been omitted. The estima-
tors of βk appear to be virtually unbiased. There are some biases for the estimator of σ2

b and for
the estimator of Λk.t/ near the right-hand tail, although the biases decrease rapidly with sample
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Table 3. Simulation results for bivariate failure time data†

n Parameter Results for G1(x)=G2(x)=x Results for G1(x)=G2(x)
= log(1+x)

Bias SE SEE CP
Bias SE SEE CP

100 β11 −0.014 0.406 0.392 0.942 −0.013 0.516 0.496 0.947
β21 0.025 0.671 0.664 0.955 0.030 0.849 0.847 0.957
σ2

b −0.089 0.489 0.482 0.965 −0.125 0.604 0.717 0.963
Λ1.τ=4/ 0.030 0.156 0.145 0.945 0.043 0.210 0.190 0.952
Λ1.3τ=4/ 0.073 0.474 0.429 0.952 0.116 0.655 0.571 0.955

200 β11 0.000 0.286 0.277 0.949 0.003 0.395 0.350 0.950
β21 0.007 0.474 0.468 0.948 0.016 0.599 0.596 0.955
σ2

b −0.037 0.353 0.346 0.961 −0.054 0.468 0.509 0.957
Λ1.τ=4/ 0.014 0.104 0.099 0.944 0.018 0.130 0.126 0.953
Λ1.3τ=4/ 0.032 0.305 0.291 0.948 0.044 0.393 0.375 0.952

400 β11 −0.000 0.207 0.196 0.943 −0.002 0.258 0.247 0.940
β21 0.009 0.329 0.331 0.952 0.014 0.417 0.420 0.950
σ2

b −0.011 0.251 0.247 0.961 −0.024 0.335 0.362 0.959
Λ1.τ=4/ 0.005 0.070 0.069 0.948 0.008 0.088 0.087 0.954
Λ1.3τ=4/ 0.014 0.210 0.202 0.947 0.020 0.267 0.259 0.950

†Bias and SE are the bias and standard error of the parameter estimator, SEE is the mean of the
standard error estimator and CP is the coverage probability of the 95% confidence interval. The
confidence intervals for Λ.t/ are based on the log-transformation, and the confidence interval for
σ2

b is based on the Satterthwaites (1946) approximation. Each entry is based on 5000 replicates.

size. The variance estimators are fairly accurate, and the confidence intervals have reasonable
coverage probabilities.

In the second set of studies, we generated recurrent event times from the counting process
with cumulative intensity G{Λ.t/exp.β1Z1 +β2Z2 +b/}, where Z1 is Bernoulli with 0.5 success
probability, Z2 is normal with mean Z1 and variance 1, b is normal with mean 0 and variance
σ2

b , Λ.t/ =λ log.1 + t/ and G.x/ = {.1 + x/ρ− 1}=ρ or G.x/ = log.1 + rx/=r. We generated cen-
soring times from the uniform [2, 6] distribution and set τ to 4. We considered various choices of
β1, β2, ρ, r, λ and σ2

b . We used a combination of the EM algorithm and the backward recursive
formula to calculate the NPMLEs. The results are very similar to those of Table 3 and thus have
been omitted.

The third set of studies mimicked the HIV study. We generated repeated measures from model
(13), in which Xi is Bernoulli with 0.5 success probability and tij = jτ=5 .j = 1, . . . , 4/. We set
H̃.y/= log.y/ or

H̃.y/= log
{

.1+y/2 −1
2

}
,

and let the transformation function be unspecified in the analysis. We generated survival times
from the proportional hazards model with conditional hazard function 0:3t exp.βXi +ψbi/, and
censoring times from the uniform [0, 5] distribution with τ =4. The censoring rate was approxi-
mately 53%, and the average number of repeated measures was about 1.58 per subject. We used
the optimization algorithm fminunc in MATLAB to obtain the NPMLEs. We penalized the
objective function for negative estimates of variance and jump sizes by setting its value to −106.
The results are similar to those of the first two sets of studies.
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Table 4. Simulation results for joint modelling of repeated measures and survival time†

n Parameter Results for H(y)= log(y) Results for H(y)=
log[{(1+y)2 −1}=2]

Bias SE SEE CP
Bias SE SEE CP

100 α1 −0.020 0.253 0.248 0.941 −0.017 0.250 0.249 0.943
α2 −0.011 0.207 0.203 0.946 −0.011 0.208 0.205 0.947
β −0.041 0.415 0.416 0.960 −0.047 0.415 0.418 0.959
σ2

1 −0.063 0.403 0.415 0.963 −0.054 0.400 0.418 0.965
σ2

2 −0.053 0.568 0.570 0.935 −0.036 0.553 0.580 0.949
ψ1 0.082 0.453 0.550 0.956 0.084 0.463 0.553 0.969
ψ2 0.022 0.514 0.602 0.967 0.013 0.501 0.612 0.983
Λ̃.1/ 0.015 0.201 0.196 0.947 0.016 0.308 0.302 0.948
Λ̃.3/ 0.027 0.730 0.692 0.940 0.082 2.488 2.394 0.939
Λ.3τ=4/ 0.006 0.180 0.172 0.954 0.008 0.180 0.173 0.954

200 α1 −0.013 0.177 0.176 0.948 −0.014 0.177 0.176 0.948
α2 −0.007 0.145 0.145 0.949 −0.007 0.145 0.145 0.949
β −0.028 0.278 0.283 0.960 −0.028 0.279 0.283 0.960
σ2

1 −0.041 0.297 0.301 0.967 −0.042 0.297 0.301 0.966
σ2

2 −0.047 0.411 0.411 0.958 −0.048 0.412 0.411 0.957
ψ1 0.053 0.322 0.351 0.969 0.053 0.322 0.341 0.968
ψ2 0.014 0.351 0.366 0.979 0.014 0.351 0.366 0.979
Λ̃.1/ 0.009 0.140 0.138 0.950 0.008 0.215 0.212 0.947
Λ̃.3/ 0.012 0.493 0.485 0.950 0.022 1.696 1.651 0.943
Λ.3τ=4/ 0.002 0.122 0.118 0.950 0.002 0.122 0.118 0.950

†Bias and SE are the bias and standard error of the parameter estimator, SEE is the mean of the
standard error estimator and CP is the coverage probability of the 95% confidence interval. The
confidence intervals for Λ̃.t/ are based on the log-transformation, and the confidence intervals for σ2

1
and σ2

2 are based on the Satterthwaites (1946) approximation. Each entry is based on 5000 replicates.

The fourth set of studies is the same as the third except that the scalar random effect bi on
the right-hand side of equation (13) is replaced by b1i + b2itij. The random effects b1i and b2i

enter the survival time model with coefficients ψ1 and ψ2 respectively. We generated .b1i, b2i/
T

from the zero-mean normal distribution with variances σ2
1 and σ2

2 and covariance σ12. Table 4
reports the results for α1 = 1, α2 =−β= 0:5, ψ1 = 1, ψ2 = 0:5, σ2

1 =σ2
2 = 1 and σ12 =−0:4. We

again conclude that the asymptotic approximations are sufficiently accurate for practical use.
In the first three sets of studies, which involve scalar random effects, it took about 5 s on an

IBM BladeCenter HS20 machine to complete one simulation with n = 200. In the fourth set
of studies, which involves two random effects, it took about 7 min and 35 min to complete one
simulation with n=100 and n=200 respectively. In the first three sets of studies, the algorithms
failed to converge on very rare occasions with n=100 and always converged with n=200 and
n=400. In the fourth set of studies, the algorithm failed in about 0.4% occasions with n=100
and 0.2% of the time with n=200.

We conducted additional studies to compare the methods proposed with the existing meth-
ods. For the class of models in equation (1), the best existing estimators are those of Chen et al.
(2002). We generated survival times with cumulative hazard rate

log[1+ r{Λ.t/exp.β1Z1 +β2Z2/}]=r,

where Z1 is Bernoulli with 0.5 success probability, Z2 is normal with mean Z1 and unit variance,
Λ.t/ = 3t, β1 =−1 and β2 = 0:2. We simulated exponential censoring times with a hazard rate
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that was chosen to yield a desired level of censoring under τ = 6. Our algorithm always con-
verged, whereas the program that was kindly provided by Z. Jin failed to converge in about 2%
of the simulated data sets. For n=100 and 25% censoring, the efficiencies of the estimators of
Chen et al. (2002) relative to the NPMLEs are approximately 0.92, 0.83 and 0.69 under r =0:5,
1, 2 respectively, for both β1 and β2. We also compared the estimators proposed with those of
Cai et al. (2002) for clustered failure time data and found that the former are much faster to
compute and considerably more efficient than the latter; see Zeng et al. (2005) for the specific
results under the proportional odds model with normal random effects.

7. Discussion

The present work contributes to three aspects of semiparametric regression models with cen-
sored data. First, we present several important extensions of the existing models. Secondly, we
develop a general asymptotic theory for the NPMLEs of such models. Thirdly, we provide simple
and efficient numerical methods to implement the corresponding inference procedures. We hope
that our work will facilitate further development and applications of semiparametric models.

In the transformation models, the function G is regarded as fixed. One may specify a para-
metric family of functions and then estimate the relevant parameters. This is in a sense what we
did in Section 5.2, but we did not account for the extra variation that is due to the estimation of
those parameters. It is theoretically possible, although computationally demanding, to account
for the extra variation. Whether this kind of variation should be accounted for is debatable (Box
and Cox, 1982). Leaving G non-parametric is a challenging topic that is currently being pursued
by statisticians and econometricians.

As argued in Sections 1, 2.3 and 5.3, it is desirable to use the semiparametric linear mixed
model that is given in equation (10) so that parametric transformation can be avoided. It is
surprising that this model has not been proposed earlier. Our simulation results (which are not
shown here) reveal that the NPMLEs of the regression parameters and variance components
are nearly as efficient as if the true transformation were known. Thus, we recommend that semi-
parametric linear regression be adopted for both single and repeated measures of continuous
response, whether or not there is informative drop-out.

In the joint modelling, repeated measures are assumed to be independent conditional on the
random effects. One may incorporate a within-subject autocorrelation structure in the model, as
suggested by Henderson et al. (2000) and Xu and Zeger (2001). One may also use joint models
for repeated measures of multiple outcomes. The likelihood functions under such extensions
can be constructed. The likelihood approach can handle random intermittent missing values,
but not non-ignorable missingness.

The asymptotic theory that is described in Appendix B is very general and can be applied
to a large spectrum of semiparametric models with censored data. In the existing literature,
the asymptotic theory for the NPMLE has been proved case by case only. This kind of proof
involves very advanced mathematical arguments. The general theorems that are given in Appen-
dix B enable one to establish the desired asymptotic results for a specific problem by checking
a few regularity conditions, which is much easier than proving the results from scratch.

There are some gaps in the theory. First, we have been unable to prove the asymptotics of the
NPMLEs for linear transformation models completely when the observations on the response
variable are unbounded. This means that the NPMLE for model (10) does not yet have rigorous
theoretical justifications, although the desired asymptotic properties are strongly supported by
our simulation results. Secondly, there is no proof in the literature for the asymptotic distri-
bution of the likelihood ratio statistic under a semiparametric model when the parameter of
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interest lies on the boundary of the parameter space. This is a serious deficiency since we might
want to test the hypothesis of zero variance in random-effects models. In many parametric cases,
the limiting distributions of likelihood ratio statistics are mixtures of χ2-distributions (Self and
Liang, 1987). We expect those results to hold for the kind of semiparametric model that is con-
sidered in this paper. This conjecture is well supported by our simulation results (e.g. Diao and
Lin (2005)), although it remains to be proved.

The counting process martingale theory, which has been the workhorse behind the theoretical
development of survival analysis over the last quarter of a century, plays no role in establishing
the asymptotic theory for the kind of problem that is considered in this paper, not even for
univariate survival data. We have relied heavily on modern empirical process theory, which we
believe will be the primary mathematical tool in survival analysis and semiparametric inference
more broadly for the foreseeable future.

The EM algorithms that are described in Appendix A.1 are similar to the QEM algorithm of
Tsodikov (2003), but the latter is confined to univariate failure time data. Although we have very
good experience with them, the convergence rates of such semiparametric EM algorithms have
not been investigated in the literature. It is unclear whether the recursive formulae that are given
in Appendix A.2 are applicable to time varying covariates. Whether the Laplace transformation
idea that is described in Section 3 can be extended to recurrent events is also an open question.
Thus, the extent to which the NPMLEs will be generally adopted depends on further advances
in numerical algorithms.

It is desirable to choose the ‘best’ model among all possible ones. We used the Akaike infor-
mation criterion to select the transformations in Section 5.2. A related method is the Bayesian
information criterion (Schwarz, 1978). An alternative approach is likelihood-based cross-vali-
dation. Another strategy is to formalize the prediction error criterion that was used in Section
5.1. Further research is warranted.

We have demonstrated through three types of problem that the NPMLE is a very general
and powerful approach to the analysis of semiparametric regression models with censored data.
This approach can be used to study many other problems. We list below some potential areas
of research.

7.1. Cure models
In some applications, a proportion of the subjects may be considered cured in that they will
not experience the event of interest even after extended follow-up (Farewell, 1982). Peng and
Dear (2000) and Sy and Taylor (2000) described EM algorithms for computing the NPMLEs
for a mixture cure model that postulates a proportional hazards model for the susceptible indi-
viduals, but they did not study their theoretical properties. It is desirable to extend this model
by replacing the proportional hazards model with the class of transformation models that is
given in equations (2) or (3), to allow non-proportional hazards models and recurrent events.
The asymptotic properties are expected to follow from the general theorems of Appendix B,
although the conditions need to be verified.

7.2. Joint models for recurrent and terminal events
In many instances, the observation of recurrent events is ended by a terminal event, such
as death or drop-out. Shared random-effects models which are similar to those described in
Section 2.3 have been proposed to formulate the joint distribution of recurrent and terminal
events (e.g. Wang et al. (2001), Liu et al. (2004) and Huang and Wang (2004)). In particu-
lar, Liu et al. (2004) incorporated a common gamma frailty into the proportional intensity
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model for the recurrent events and the proportional hazards model for the terminal event. They
developed a Monte Carlo EM algorithm to obtain the NPMLEs but provided no theoretical
justifications. One may extend the joint model of Liu et al. (2004) by replacing the proportional
hazards or intensity model with the general random-effects transformation models and try to
establish the asymptotic properties of the NPMLEs by appealing to the general theorems of
Appendix B.

7.3. Missing covariates
Robins et al. (1994) and Nan et al. (2004) obtained the information bounds with missing data.
Chen and Little (1999) and Chen (2002) studied the NPMLEs for the proportional hazards
model with missing covariates, whereas Scheike and Juul (2004) and Scheike and Martinussen
(2004) considered the specific situations in which covariates are missing because of case–co-
hort or nested case–control sampling (Kalbfleisch and Prentice (2002), page 339). To make the
NPMLEs tractable, one normally assumes data missing at random and imposes certain restric-
tions on the covariate distribution. How general the covariate distribution can be is an open
question.

7.4. Genetic studies
Models (7) and (10) can be extended to genetic linkage and association studies on poten-
tially censored non-normal quantitative traits, whereas models (2) and (7) can be adapted to
haplotype-based association studies (e.g. Diao and Lin (2005) and Lin and Zeng (2006)); infer-
ence on haplotype–disease association, which is a hot topic in genetics, is essentially a missing
or mismeasured covariate problem. The analysis of genetic data by the NPMLE is largely
uncharted.

There are alternative approaches to the NPMLE. Martingale-based estimating equations were
used by Chen et al. (2002) for linear transformation models and by Lu and Ying (2004) for cure
models. This approach can also be applied to the general transformation models that are given in
equations (2)–(4). The inverse probability of censoring weighting (Robins and Rotnitzky, 1992)
approach was used by Cheng et al. (1995) and Cai et al. (2002) for linear transformation models,
and by Kalbfleisch and Lawless (1988), Borgan et al. (2000) and Kulich and Lin (2004) for case–
cohort studies. These estimators are not asymptotically efficient. The estimating equations are
usually solved by Newton–Raphson algorithms, which may not converge. The moment-based
estimators are expected to be more robust than the NPMLEs against model misspecification.
It would be worthwhile to assess the robustness versus efficiency of the two approaches through
simulation studies.

Marginal models (Wei et al. (1989) and Kalbfleisch and Prentice (2002), pages 305–306) are
used almost exclusively in the analysis of multivariate failure time data, mainly because of their
robustness and available commercial software. Because in general marginal and random-effects
models cannot hold simultaneously, there is a debate about which approach is more meaning-
ful. Random-effects models have important advantages. First, they enable us to predict future
events on the basis of an individual’s event history, as shown in Fig. 3, or to predict a person’s
survival outcome given the survival times of other members of the same cluster. Secondly, they
allow efficient parameter estimation. Thirdly, the dependence structures are of scientific interest
in many applications, especially in genetics.

Our work does not cover the accelerated failure time model, which takes the form of equation
(1) but with known H and unknown distribution of " (Kalbfleisch and Prentice (2002), pages
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218–219). Rank and least squares estimators for this model have been studied extensively over
the last three decades; see Kalbfleisch and Prentice (2002), chapter 7. These estimators are not
asymptotically efficient. In addition, it is difficult to calculate them or to estimate their variances,
although progress has been made on this front (Jin et al., 2003, 2006). We are pursuing a variant
of the NPMLE for the accelerated failure time model with potentially time varying covariates,
which maximizes a kernel-smoothed profile likelihood function. The estimator is consistent,
asymptotically normal and asymptotically efficient with an easily estimated variance, and it
works well in real and simulated data.

We have focused on right-censored data. Interval censoring arises when the failure time is
only known to fall in some interval. It is much more challenging to apply the NPMLE to
interval-censored data than to right-censored data. So far asymptotic theory is only available
for proportional hazards models with current status data (Huang, 1996), which arise when the
failure time is only known to be less than or greater than a single monitoring time. Wellner
and Zhang (2005) studied proportional mean models for panel counts data with general inter-
val censoring. We expect considerable theoretical and numerical innovation in this area in the
coming years.

We have taken a frequentist approach. Ibrahim et al. (2001) provided an excellent description
of Bayesian methods for semiparametric models with censored data. There are many recent
references. It would be valuable to develop the Bayesian counterparts of the methods that were
presented in this paper.

Much of the theoretical and methodological development in survival analysis over the last
three decades has been centred on the proportional hazards model. Because everything that
has been written about that model is also relevant to transformation models, opportunities
for research abound. Besides the problems that have already been mentioned earlier, it would
be worthwhile to develop methods for variable selection, model checking and robust inference
(under misspecified models) and to explore the use of these models in the areas of diagnostic
medicine, sequential clinical trials, causal inference, multistate processes, spatially correlated
failure time data, and so on.
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Appendix A: Numerical methods

A.1. EM algorithms
We describe an EM algorithm for maximizing the likelihood function that is given in expression (8). Sim-
ilar algorithms can be used for the other likelihood functions. For simplicity of description, we focus on
multiple-events data. The data consist of .Yik, Δik, Zik/ (i= 1, . . . , n; k = 1, . . . , K), where Yik is the obser-
vation time for the kth event on the ith subject, Δik indicates, by the values 1 versus 0, whether Yik is an
uncensored or censored observation and Zik is the corresponding covariate vector. We wish to maximize
the objective function

n∏
i=1

∫
b

K∏
k=1

(
Λk{Yik} exp{βT Zik.Yik/+bT Z̃ik.Yik/}G′

k

[∫ Yik

0
exp{βT Zik.s/+bT Z̃ik.s/} dΛk.s/

])Δik

× exp
(

−Gk

[∫ Yik

0
exp{βT Zik.t/+bT Z̃ik.t/} dΛk.t/

])
f.b;γ/ db:
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For all commonly used transformations, including the classes of Box–Cox transformations and logarithmic
transformations, exp{−Gk.x/} is the Laplace transformation of some function φk.x/ such that

exp{−Gk.x/}=
∫ ∞

0
exp.−xt/ φk.t/ dt:

Clearly,
∫ ∞

0 φk.t/ dt =1. We introduce a new frailty ξik with density function φk. Since

G′
k.x/exp{−Gk.x/}=

∫ ∞

0
t exp.−xt/ φk.t/ dt,

the objective function can be written as

n∏
i=1

∫
b

K∏
k=1

∫
ξik

[ξik Λk{Yik} exp{βT Zik.Yik/+bT Z̃ik.Yik/}]Δik exp
[
−ξik

∫ Yik

0
exp{βT Zik.t/+bT Z̃ik.t/} dΛk.t/

]

×φk.ξik/ f.b;γ/ dξik db:

This expression is the likelihood function under the proportional hazards frailty model with conditional
hazard function ξik λk.t/exp{βT Zik.t/+bT

i Z̃ik.t/}. Thus, treating the bi and ξik as missing data, we propose
the following EM algorithm to calculate the NPMLEs.

In the M-step, we solve the complete-data score equation conditional on the observed data. Specifically,
we solve the following equation for β:

n∑
i=1

K∑
k=1

Δik

⎛
⎜⎜⎝Zik.Yik/−

n∑
j=1

I.Yjk �Yik/ Zjk.Yik/Ê[ξjk exp{βT Zjk.Yik/+bT
j Z̃jk.Yik/}]

n∑
j=1

I.Yjk �Yik/Ê[ξjk exp{βT Zjk.Yik/+bT
j Z̃jk.Yik/}]

⎞
⎟⎟⎠=0,

where Ê[·] is the conditional expectation given the observed data and the current parameter estimates. In
addition, we estimate Λk as a step function with the following jump size at Yik:

Δik

/
n∑

j=1
I.Yjk �Yik/Ê[ξjk exp{βT Zjk.Yik/+bT

j Z̃jk.Yik/}],

and we estimate γ by the solution to the equation
n∑

i=1
Ê[@ log{f.bi;γ/}=@γ]=0:

The conditional distribution of ξik given bi and the observed data is proportional to

ξ
Δik
ik exp

[
−ξik

∫ Yik

0
exp{βT Zik.t/+bT Z̃ik.t/} dΛk.t/

]
φk.ξik/:

Thus, the conditional expectation of ξik given bi and the observed data is equal to
∫
ξik

ξikξ
Δik
ik exp

[
−ξik

∫ Yik

0
exp{βT Zik.t/+bT Z̃ik.t/} dΛk.t/

]
φk.ξik/ dξik

∫
ξik

ξ
Δik
ik exp

[
−ξik

∫ Yik

0
exp{βT Zik.t/+bT Z̃ik.t/} dΛk.t/

]
φk.ξik/ dξik

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G′
k

[∫ Yik

0
exp{βTZik.t/+bTZ̃ik.t/}dΛk.t/

]
if Δik =0,

−
G′′

k

[∫ Yik

0
exp{βTZik.t/+bTZ̃ik.t/}dΛk.t/

]

G′
k

[∫ Yik

0
exp{βTZik.t/+bTZ̃ik.t/}dΛk.t/

] +G′
k

[∫ Yik

0
exp{βTZik.t/+bTZ̃ik.t/}dΛk.t/

]
if Δik =1.
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It follows that

Ê[ξik exp{βT Zik.t/+bT
i Z̃ik.t/}]= Ê

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝−Δik

G′′
k

[∫ Yik

0
exp{βT Zik.t/+bT

i Z̃ik.t/} dΛk.t/

]

G′
k

[∫ Yik

0
exp{βT Zik.t/+bT

i Z̃ik.t/} dΛk.t/

]

+G′
k

[∫ Yik

0
exp{βT Zik.t/+bT

i Z̃ik.t/} dΛk.t/

])
exp{βT Zik.t/+bT

i Z̃ik.t/}
}

,

which is an integration over bj only. Conditional on the data, the density of bi is proportional to

K∏
k=1

{
exp{Δikb

T Z̃ik.Yik/} G′
k

[∫ Yik

0
exp{βT Zik.s/+bT Z̃ik.s/} dΛk.s/

]Δik

× exp
(

−Gk

[∫ Yik

0
exp{βT Zik.s/+bT Z̃ik.s/} dΛk.s/

])}
f.b;γ/,

so the conditional expectation of any function of b can be calculated via high order numerical approxima-
tions, such as the high order Gaussian quadrature approximation, the Laplace approximation or Monte
Carlo approximations.

On convergence of the algorithm, the Louis (1982) formula is used to calculate the observed information
matrix for the parametric and non-parametric components, the latter consisting of the estimated jump
sizes in the Λks.

A.2. Recursive formulae
We first consider transformation models without random effects for survival data. Suppose that Ψ.Oi; θ, Λ/
depends on Λ only through Λ.Yi/, where Yi is the observation time for the ith subject. This condition holds
if, for example, the covariates are time invariant. We wish to determine the profile likelihood function
for θ, i.e. to find the value of Λ that maximizes the objective function for fixed θ. Let t1 < . . . < tm be the
ordered distinct time points where failures are observed, and let d1, . . . , dm be the jump sizes of Λ at these
time points. The likelihood equation that dk should satisfy is given by

0= 1
dk

+
n∑

j=1
I.Yj � tk/ ∇Λ.Yj/ log[Ψ{Oj ; θ, Λ.Yj/}],

where ∇xg.x, y/= @g.x, y/=@x. It follows that

1
dk+1

= 1
dk

+
n∑

j=1
I.tk �Yj < tk+1/ ∇Λ.Yj/ log

{
Ψ
(
Oj ; θ,

k∑
l=1

dl

)}
:

This gives a forward recursive formula for calculating the dk starting from d1. We can also obtain a back-
ward recursive formula by reparameterizing Λ.x/ as α F.x/ with α=Λ.τ / and F.x/ a distribution function
in [0,τ ]. Abusing notation, we write Ψ.Oi; θ, F/ in which θ now contains α. Since the jump sizes of F add
up to 1, the likelihood score equation for the jump size of F at tk+1, which is still denoted as dk+1, satisfies

1
dk

= 1
dk+1

−
n∑

j=1
I.tk �Yj < tk+1/ ∇Λ.Yj/ log

{
Ψ
(
Oj ; θ, 1−

m∑
l=k+1

dl

)}
:

This is a backward recursive formula for calculating the dk from dm. There is one additional constraint:
Σk dk = 1. It is straightforward to extend the recursive formulae to recurrent events, the only difference
being that the summation over individuals is replaced by the double summation over individuals and over
events within individuals. For transformation models with random effects, the recursive formulae can be
used in the M-step of the EM algorithm.

Appendix B: Technical details

In this appendix, we establish the asymptotic properties of the NPMLEs. A more thorough treatment
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is given in Zeng and Lin (2007). We first present a general asymptotic theory. We impose the following
conditions.

(a) The parameter value θ0 lies in the interior of a compact set Θ, and Λ0k is continuously differentiable
in [0,τ ] with Λ′

0k.t/> 0, k =1, . . . , K (condition (C1)).
(b) With probability 1, P [infs∈[0, t]{Rik·.s/}�1|Zikl, l=1, . . . , nik]>δ0 >0 for all t ∈ [0,τ ], where Rik·.t/=

Σnik
l=1 Rikl.t/ (condition (C2)).

(c) There is a constant c1 > 0 and a random variable r1.Oi/> 0 such that E[log{r1.Oi/}] <∞ and, for
any θ∈Θ and any finite Λ1, . . . , ΛK,

Ψ.Oi; θ, A/� r1.Oi/
K∏

k=1

∏
t�τ

{
1+

∫ t

0
Rik·.t/ dΛk.t/

}−dNÅ
ik·.t/ {

1+
∫ τ

0
Rik·.t/ dΛk.t/

}−c1

almost surely, where NÅ
ik·.t/=Σnik

l=1N
Å
ikl.t/. In addition, for any constant c2,

inf {Ψ.Oi; θ, A/ :‖Λ1‖V [0,τ ] � c2, . . . , ‖ΛK‖V [0,τ ] � c2, θ∈Θ}>r2.Oi/> 0,

where‖h‖V [0,τ ] is the total variation of h.·/ in [0,τ ], and r2.Oi/ is a random variable with E{r2.Oi/
6}<

∞ and E[log{r2.Oi/}] <∞ (condition (C3)).
(d) For any .θ.1/, θ.2//∈Θ, and .Λ.1/

1 , Λ.2/
1 /, . . . , .Λ.1/

K , Λ.2/
K /, .H

.1/
1 , H

.2/
1 /, . . . , .H

.1/
K , H

.2/
K / with uniformly

bounded total variations, there is a function F.Oi/ in L2.P/ such that

|Ψ.Oi; θ.1/, A.1//−Ψ.Oi; θ.2/, A.2//|+ |Ψ̇θ.Oi; θ.1/, A.1//− Ψ̇θ.Oi; θ.2/, A.2//|

+
K∑

k=1
|Ψ̇k.Oi; θ.1/, A.1//[H.1/

k ]− Ψ̇k.Oi; θ.2/, A.2//[H.2/
k ]|

�F.Oi/

[
|θ.1/ −θ.2/|+

K∑
k=1

{∫ τ

0
|Λ.1/

k .s/−Λ.2/
k .s/| dNik· +

∫ τ

0
|Λ.1/

k .s/−Λ.2/
k .s/| ds

}

+
K∑

k=1

{∫ τ

0
|H.1/

k .s/−H
.2/
k .s/| dNik· +

∫ τ

0
|H.1/

k .s/−H
.2/
k .s/| ds

}]
,

where Ψ̇θ is the derivative of Ψ.Oi; θ, A/ with respect to θ, and Ψ̇k[Hk] is the derivative of Ψ.Oi; θ, A/
along the path .Λk + "Hk/ (condition (C4)).

(e) If

K∏
k=1

nik∏
l=1

∏
t�τ

λÅ
k .t/Rikl.t/dNÅ

ikl
.t/ Ψ.Oi; θÅ, AÅ/=

K∏
k=1

nik∏
l=1

∏
t�τ

λ0k.t/
Rikl.t/dNÅ

ikl
.t/ Ψ.Oi; θ0, A0/

almost surely, then θÅ = θ0 and ΛÅ
k .t/=Λ0k.t/ for t ∈ [0,τ ], k =1, . . . , K (condition (C5); first iden-

tifiability condition).
(f) There are functions ζ0k.s; θ0, A0/∈BV[0,τ ], k =1, . . . , K, and a matrix ζ0θ.θ0, A0/ such that

∣∣∣∣E
{

Ψ̇θ.Oi; θ, A/

Ψ.Oi; θ, A/
− Ψ̇θ.Oi; θ0, A0/

Ψ.Oi; θ0, A0/

}
− ζ0θ.θ0, A0/

T.θ−θ0/−
K∑

k=1

∫ τ

0
ζ0k.s; θ0, A0/ d.Λk −Λ0k/

∣∣∣∣
=o

(
|θ−θ0|+

K∑
k=1

‖Λk −Λ0k‖V [0,τ ]

)
,

where BV[0,τ ] denotes the space of functions with bounded total variations in [0,τ ]. In addition,
for k =1, . . . , K,

K∑
k=1

sup
s∈[0,τ ]

|{η0k.s; θ, A/−η0k.s; θ0, A0/}−η0kθ.s; θ0, A0/
T.θ−θ0/

−
∫ τ

0

K∑
m=1

η0km.s, t; θ0, A0/ d.Λm −Λ0m/.t/|

=o
(
|θ−θ0|+

K∑
k=1

‖Λk −Λ0k‖V [0,τ ]

)
,
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where η0k.s; θ, A/ is a bounded function such that

E{Ψ−1.Oi; θ, A/ Ψ̇k.Oi; θ, A/[Hk]}=
∫ τ

0
η0k.s; θ, A/ dHk.s/,

η0km is a bounded bivariate function and η0kθ is a d-dimensional bounded function. Furthermore,
there is a constant c3 such that

|η0km.s, t1; θ0, A0/−η0km.s, t2; θ0, A0/|� c3|t1 − t2|
for any s∈ [0,τ ] and any t1, t2 ∈ [0,τ ] (condition (C6)).

(g) If, with probability 1,

K∑
k=1

nik∑
l=1

∫
hk.t/ Rikl.t/ dNÅ

ikl.t/+
Ψ̇θ.Oi; θ0, A0/

Tv+
K∑

k=1
Ψ̇k.Oi; θ0, A0/

[∫
hk dΛ0k

]

Ψ.Oi; θ0, A0/
=0

for some constant vector v∈Rd and hk ∈BV[0,τ ], k=1, . . . , K, then v=0 and hk =0 for k=1, . . . , K
(condition (C7); second identifiability condition).

(h) There is a neighbourhood of .θ0, A0/ such that, for .θ, A/ in this neighbourhood, the first and
second derivatives of Ψ.Oi; θ, A/ with respect to θ and along the path Λk + "Hk with respect to "
satisfy the inequality in condition (C4) (condition (C8)).

Theorems 1 and 2 below state the consistency, weak convergence and asymptotic efficiency of the
NPMLEs, whereas theorems 3 and 4 justify the use of the observed information matrix and profile likeli-
hood method in the variance–covariance estimation.

Theorem 1. Under conditions (C1)–(C5),

|θ̂−θ0|+
K∑

k=1
sup

t∈[0,τ ]
|Λ̂k.t/−Λ0k.t/|

converges to 0 almost surely.

Theorem 2. Under conditions (C1)–(C7), n1=2.θ̂−θ0, Â−A0/ converges weakly to a zero-mean Gauss-
ian process in Rd × l∞.QK/, where Q = {h.t/ : ‖h.t/‖V [0,τ ] � 1}: Furthermore, the limiting covariance
matrix of n1=2.θ̂−θ0/ attains the semiparametric efficiency bound.

Theorem 3. Under conditions (C1)–(C8), n.vT, hT
1 , . . . , hT

K/ I−1
n .vT, hT

1 , . . . , hT
K/T converges in probability

to the asymptotic variance of

n1=2

{
vT.θ̂−θ0/+

K∑
k=1

∫
hk d.Λ̂k −Λ0k/

}
,

where hk is the vector consisting of the values of hk.·/ at the observed failure times and In is the negative
Hessian matrix of the log-likelihood function with respect to θ̂ and the jump sizes of .Λ̂1, . . . , Λ̂K/.

Theorem 4. Let pln.θ/ be the profile log-likelihood function for θ, and assume that conditions (C1)–(C8)
hold. For any "n = Op.n−1=2/ and any vector v, −{pln.θ̂+ "nv/ − 2 pln.θ̂/ + pln.θ̂− "n/}=n"2

n converges
in probability to vTΣ−1v, where Σ is the asymptotic covariance matrix of n1=2.θ̂−θ0/.

Theorems 1–4 are proved in Zeng and Lin (2007). To establish the desired asymptotic results for a
specific problem, all we need to do is to determine a set of conditions under which regularity conditions
(C1)–(C8) are satisfied. As an illustration, we consider the transformation models with random effects for
dependent failure times that were described in Section 2.2. We assume the following conditions.

(a) The parameter value .βT
0 , γT

0 /T belongs to the interior of a compact set Θ in Rd , and Λ′
0k.t/ > 0 for

all t ∈ [0,τ ], k =1, . . . , K (condition (D1)).
(b) With probability 1, Zikl.·/ and Z̃ikl.·/ are left continuous in [0,τ ] with uniformly bounded left

derivatives (condition (D2)).
(c) With probability 1, P.Cikl � τ |Zikl/> δ0 > 0 for some constant δ0 (condition (D3)).
(d) With probability 1, nik is bounded by some integer n0. In addition, E{Nik·.τ /} < ∞ (condition

(D4)).
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(e) For k = 1, . . . , K, Gk.x/ is four times differentiable such that Gk.0/ = 0, G′
k.x/ > 0, and, for any

integer m�0 and any sequence 0 <x1 < . . . <xm �y,
m∏

l=1
{.1+xl/ G′

k.xl/} exp{−Gk.y/}�μm
0k.1+y/−κ0k

for some constants μ0k and κ0k > 0. In addition, there is a constant ρ0k such that

sup
x

{ |G′′
k .x/|+ |G.3/.x/|+ |G.4/.x/|

G′.x/.1+x/ρ0k

}
<∞

(condition (D5)).
(f) For any constant a1 > 0,

sup
γ

{
E

(∫
b

exp[a1{NÅ
ik·.τ /+1}|b|] f.b;γ/ db

)}
<∞,

and there is a constant a2 > 0 such that, for any γ,
∣∣∣∣∣
ḟ γ.b;γ/

f.b;γ/

∣∣∣∣∣+
∣∣∣∣∣
f̈ γ.b;γ/

f.b;γ/

∣∣∣∣∣+
∣∣∣∣∣
f .3/
γ .b;γ/

f.b;γ/

∣∣∣∣∣�O.1/ exp{a2.1+|b|/}

(condition (D6)).
(g) If there are c.t/ and v such that c.t/ + vT Zikl.t/ = 0 with probability 1 for k = 1, . . . , K and l =

1, . . . , nik, then c.t/=0 and v=0. In addition, there is some t ∈ [0,τ ] such that {Z̃ikl.t/, k =1, . . . , K,
l=1, . . . , nik} spans the whole space of b (condition (D7)).

(h) f.b;γ/=f.b;γ0/ if and only if γ=γ0; if vT f ′.b;γ0/=0, then v=0 (condition (D8)).

We wish to show that conditions (D1)–(D8) imply conditions (C1)–(C8). Conditions (C1) and (C2)
follow naturally from conditions (D1)–(D4). Tedious algebraic manipulations show that conditions (C5)
and (C7) hold under conditions (D7) and (D8). Note that

Ψ.Oi; θ, A/=
∫

b

K∏
k=1

nik∏
l=1

Ωikl.b;β, Λk/ f.b;γ/ dμ.b/,

where

Ωikl.b;β, Λk/= ∏
t�τ

[Rikl.t/ exp{βT Zikl.t/+bT Z̃ikl.t/}G′
k{qikl.t/}]dNÅ

ikl
.t/ exp[−Gk{qikl.τ /}],

and

qikl.t/=
∫ t

0
Rikl.s/ exp{βT Zikl.s/+bT Z̃ikl.s/}dΛk.s/:

If |b| and ‖Λk‖V [0,τ ] are bounded, then Ωikl.b;β, Λk/ � exp{O.1/ NÅ
ikl.τ /}. Thus, Ψ.Oi; θ, A/ is bounded

from below by exp{O.1/ NÅ
ikl.τ /}, so the second half of condition (C3) holds. It follows from condition

(D5) that

Ωikl.b;β, Λk/�O.1/
∏
t�τ

[Rikl.t/ exp{bT Z̃ikl.t/}]dNÅ
ikl

.t/μ
NÅ

ikl
.τ /

0k

∏
t�τ

{1+qikl.t/}−dNÅ
ikl

.t/{1+qikl.τ /}−κ0k :

Since exp{βT Zikl.s/+bT Z̃ikl.s/}� exp{−O.1+|b|/}, we have

1+qikl.t/� exp{−O.1+|b|/}
{

1+
∫ t

0
Rik·.s/ dΛk.s/

}
,

so
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Ωikl.b;β, Λk/�O.1/μ
NÅ

ikl
.τ /

0k exp[O{1+NÅ
ikl.τ /}|b|] ∏

t�τ

{
1+

∫ t

0
Rik·.s/ dΛk.s/

}−dNÅ
ikl

.t/

×
{

1+
∫ τ

0
Rikl.s/ dΛk.s/

}−κ0k

:

Thus, the first half of condition (C3) holds as well.
Under condition (D5),

|Ωikl.b;β, Λk/|� exp[O{1+NÅ
ikl.τ /}|b|],

|@Ωikl.b;β, Λk/=@β|� exp[O{1+NÅ
ikl.τ /}.1+|b|/],

|@Ωikl.b;β, Λk/[Hk]=@Λk|� exp[O{1+NÅ
ikl.τ /}.1+|b|/]:

By the mean value theorem,

|Ωikl.b;β.1/, Λk/−Ωikl.b;β.2/, Λk/|� exp[O{1+NÅ
ikl.τ /}|b|]|β.1/ −β.2/|,

|Ωikl.b;β, Λ.1/
k /−Ωikl.b;β, Λ.2/

k /|� exp[O{1+NÅ
ikl.τ /}.1+|b|/]

×
{∫

Rikl.t/|Λ.1/
k .t/−Λ.2/

k .t/| dNÅ
ikl.t/+

∫ τ

0
|Λ.1/

k .s/−Λ.2/
k .s/| ds

}
:

It then follows from condition (D6) that |Ψ.Oi; θ.1/, A.1//−Ψ.Oi; θ.2/, A.2//| is bounded by the right-hand
side of the inequality in condition (C4). The same arguments yield the bounds for the other two terms
in condition (C4). The verification of condition (C8) is similar to that of condition (C4), relying on the
explicit expressions of Ψ̈θθ.Oi; θ, A/ and the first and second derivatives of Ψ.Oi; θ, A0 +"H/ with respect
to ".

To verify condition (C6), we calculate that

η0k.s; θ, A/=E

⎛
⎝∫

b

K∏
m=1

nim∏
l=1

Ωiml.b;β, Λm/f.b;γ/

∫
b

K∏
m=1

nim∏
l=1

Ωiml.b;β, Λm/f.b;γ/ db

[∫
t�s

G′′
k{qikl.t/}

G′
k{qikl.t/} dNÅ

ikl.t/−G′
k{qikl.τ /}

]

×Rikl.s/ exp{βT Zikl.s/+bT Z̃ikl.s/} db

⎞
⎠:

For .θ, A/ in a neighbourhood of .θ0, A0/,∣∣∣∣η0k.s; θ, A/−η0k.s; θ0, A0/− @

@θ
η0k.s; θ0, A0/

T.θ−θ0/−
K∑

m=1

@η0k

@Λm

.s; θ0, A0/[Λm −Λ0m]

∣∣∣∣
=o

(
|θ−θ0|+

K∑
m=1

‖Λm −Λ0m‖V [0,τ ]

)
:

Thus, for the second equation in condition (C6), η0km.s, t; θ0, A0/ is obtained from the derivative of η0k

with respect to Λm along the direction Λm −Λ0m, and η0kθ is the derivative of η0k with respect to θ. Likewise,
we can obtain the first equation in condition (C6). It is straightforward to verify the Lipschitz continuity
of η0km.

The asymptotic properties for the other models in this paper are verified in Zeng and Lin (2007).
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Discussion on the paper by Zeng and Lin

Robin Henderson (Newcastle University)
Zeng and Lin have provided a beautifully structured paper whose development in some ways mimics the
history of event history methodology over the last 35 years: standard survival and proportional hazards;
recurrent events and counting processes; clustered events and frailty; joint modelling for longitudinal and
event history data. For discussion I shall concentrate mainly on Zeng and Lin’s approach for single-event
survival analysis, recognizing that their methods go much further.

The paper starts with the statement that the Cox (1972) proportional hazards model is the corner-stone
of modern survival analysis. Although this may not be true for reliability, it is indeed so for biostatistics.
Even in 1998 Niels Keiding remarked that ‘. . . explicit excuses are now needed to use different models’
(Keiding, 1998) and very little has changed since then. The proportionality assumption can and should
be challenged but the basic model is so well known and well used that it makes sense to ensure that the
standard proportional hazards model is nested within more flexible alternative semiparametric models.
In Section 2.1 Zeng and Lin do just that, with equation (4) providing an interesting and potentially very
useful extension. This model also incorporates as special cases alternative generalized versions that have
been proposed by, for instance, Bagdonavicius and Nikulin (1999), Hseih (2001) and Bagdonavicius et al.
(2004).

The price to be paid for generality, however, is lack of transparency of the role of covariates. It is
difficult to look at an expression like equation (4) and to gain any intuitive impression of exactly how a
covariate will influence the hazard. To explore, it is convenient to consider perhaps the simplest case of
single-event survival times with two groups, described by a time constant binary covariate Z, with Z =0 in
the control group and Z =1 in the treatment group. Writing θ=exp.β/ and φ=exp.γ/, under the Box–Cox
transformations the hazards corresponding to model (4) become

λ.t|Z/=
{
λ.t/{1+Λ.t/}ρ−1 Z =0 (control),
θφ{1+θΛ.t/}φρ−1 λ.t/ Z =1 (treatment).

For exploration we shall assume that λ.t|Z =0/= 1. We can obtain this in two ways: either by ρ=1 and
λ.t/=1, or by Λ.t/= .ρt +1/1=ρ−1 for any ρ>0: We can take these in turn, starting with ρ=1 and λ.t/=1,
which gives

λ.t|Z/=
{

1 Z =0 (control),
θφ.1+θt/φ−1 Z =1 (treatment). .14/

Interpretation in this case is straightforward. The initial hazard in the treatment group is determined by
the ratio θφ. For φ> 1 we have a monotonic increasing hazard (to ∞); for φ< 1 monotonic decreasing (to
0). At φ=1 we have a proportional hazards model.

Now taking Λ.t/= .ρt +1/1=ρ −1 we have

λ.t|Z/=
{

1 Z =0 (control),
θφ[1+θ{.ρt +1/1=ρ −1}]φρ−1.ρt +1/1=ρ−1 Z =1 (treatment). .15/

The initial value is again determined by θφ but otherwise it is difficult to see the role of the three parameters.
The treatment hazard tends to ∞ if φ> 1, to 0 if φ< 1 and to θρ if φ= 1. Formally the choice between
expressions (14) and (15) is identifiable from data, given a sufficiently large sample. In practice I suspect
that it will be difficult and wonder whether the authors have encountered any identifiability problems in
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their work. Perhaps in the example above it will not matter as the fitted hazard or survival curves under
the alternatives may be very close. And this brings us back to interpretation: if the model parameters are
difficult to interpret do the authors advocate inspecting fitted curves? More generally, it would be helpful if
Zeng and Lin could comment on what real advantages for single-event survival are provided by equation (4)
over generalized additive versions of the proportional hazards model (e.g. Sasieni and Winnett (2003)):

λ.t|Z/= exp{β.t/ Z.t/}λ.t/

or

λ.t|Z/= exp{∑
j

f.t, Zj/}λ.t/:

Returning to the two-group illustration, another point is that neither expression (14) nor expression (15)
can accommodate converging hazards unless ρ= 0, which in many ways should be the default model for
time constant covariates. Indeed, in discussion of Aalen and Gjessing (2001), Keiding pointed to a paper
which is even more venerable than Cox (1972), namely Tetens (1786), where the author took it as almost
axiomatic that hazards converge over time and suggested the hazard ratio model

λ.t/

λ0.t/
= 1+2αS.t/

1+αS0.t/
:

The second family of transformations, G.x/= log.1+ rx/=r, can, I believe, describe converging hazards,
at least for the non-crossing alternative with γ=0: In the two-group case the hazards are

λ.t|Z/=
{
λ.t/={1+ r Λ.t/} Z =0 (control),
θλ.t/={1+ r θΛ.t/} Z =1 (treatment)

and more generally, but still with time constant covariates, the assumed survivor function is

S.t|Z/=
{

1
1+ r exp.βZ/Λ.t/

}1=r

:

This is precisely the marginal survivor function for gamma frailty within a proportional hazards model

Λ.t|Z, ξ/= ξ exp.βZ/Λ.t/ ξ∼Γ.1=r, 1=r/:

I wonder whether the authors have experience of estimating r for single-event survival data. My own expe-
rience is that there is usually downward bias in modest sample sizes. In the simulations was r fixed at the
true value or estimated?

All of the above is for single-event survival with standard independent right censoring. Of course the
paper goes much further and perhaps its main advantages with time will prove to be for the more complex
situations that are now being more often considered in applications. Direct maximum likelihood estimation
of the jumps in Λ has often been considered infeasible (e.g. Tsodikov (2003)) but the authors have shown
this not to be so. What is particularly impressive about the paper is the achievement of realistic computing
times for joint modelling of longitudinal and event history data. Zeng and Lin quote a computing time of 35
min at n=200 for random intercept and slope models. Similar models, though without transformations,
were considered by me and colleagues Peter Diggle and Angela Dobson and could take many days to
fit, meaning that it was realistic only to fit one or a small number of models in any application. Quick
computation combined with the availablity of a maximized log-likelihood means straightforward model
comparison and proper statistical practice.

It gives me great pleasure to propose the vote of thanks.

Odd O. Aalen (University of Oslo)
The paper by Zeng and Lin is an interesting extension of the frailty models in survival and event history
analysis, complementing and extending previous work which has for instance been summarized by Hou-
gaard (2000). One feels, however, that they might have gone even further in their frailty formulation. In
fact, the transformation model in formula (2) is most easily understood as the result of a frailty factor
operating on the Cox proportional hazards model. The authors in fact use this indirectly at the end of
Section 3 and in the beginning of Appendix A.1, but they could have given this formulation from the
outset. If the intensity for an individual is U exp{βT Z.t/}λ.t/ where U is a frailty variable with Laplace
transform L.x/, then we obtain essentially formula (2) when the distribution of U is integrated out and we
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put G.x/=−log{L.x/}. Of course, this is just valid when the function G.x/ has this kind of representation
for some Laplace transform L.x/. It is interesting to note that the Box–Cox transformation for 0�ρ� 1
corresponds to L.x/ being the Laplace transform of a power variance family of frailty distributions which
played a central role in Hougaard (2000). For ρ> 1, it is not clear that there is any frailty representation
at all; remarks at the beginning of Appendix A.1 seem to indicate that there should be one in this case as
well, and the authors should explain this. We may, however, also use ρ< 0; that would give a compound
Poisson frailty distribution (Aalen, 1988, 1992; Moger et al., 2004), which is still a subgroup of the power
variance family class. In this case there will be a group of individuals with zero risk, but this just means
that we have a cure model which would be quite reasonable in many cases.

A basic idea in the paper is to extend the semiparametric principle in the Cox analysis with a non-para-
metric Λ.t/, and the rest of the model being parametric. Although the authors elegantly handle the technical
problems that are connected to this, one could ask whether the semiparametric principle is reasonable in
this case. In the original Cox model, the semiparametric idea yielded a very elegant solution in terms of
the partial likelihood. However, this simplicity entirely disappears in the more general context here, and
one could ask whether the semiparametric idea is carried too far. With a purely parametric version one
would avoid many complications and, anyway, parametric models are highly underused in biostatistical
survival analysis.

A nice aspect of the approach by Zeng and Lin is the ability to handle crossing curves. There is in survival
analysis too much emphasis on the rather dogmatic assumption of proportional hazards, in spite of the
fact that we often observe deviations from this assumption. Professional statisticians would be aware of
the mathematical convenience nature of this assumption and how to handle deviations, but other people
doing proportional hazards regression, like many medical researchers, might not have a clear view of this
limitation and they are not helped by standard statistical software. By the way, crossing of hazard rates
could easily be a frailty effect; see for example Aalen (1994).

Another interesting aspect is the general frailty structure for recurrent event models. An alternative to
this would be to use a model with dynamic covariates, e.g. according to Fosen et al. (2006).

In Section 7 the authors make a rather sweeping statement concerning the use of martingale methods,
saying:

‘The counting process martingale theory . . . plays no role in establishing the asymptotic theory for the
kind of problem that is considered in this paper . . .: We have relied heavily on modern empirical process
theory, which we believe will be the primary mathematical tool in survival analysis and semiparametric
inference more broadly for the foreseeable future.’

It is true that the general model in the paper can be handled by empirical processes, and a solution with
martingale central limit theorems does not seem to have been worked out, although such a solution might
exist. Clearly, if Λ.t/ is parametric, martingale theory can be used. It should then be possible to use a sieve
approach (Bunea and McKeague, 2005) to approximate the non-parametric Λ.t/ and to obtain asymptotic
results within the martingale framework.

It should be noted, however, that the main point of using martingale theory in survival analysis is
not to achieve the asymptotics but to obtain a conceptual underpinning under the statistical approaches.
Censoring, for instance, may depend on what has happened previously in the processes. The martingale
formulation allows very general assumptions on the censoring mechanisms, which are related to the fun-
damental martingale concept of optional stopping time.

More generally, the martingale structure is not imposed from the outside but originates in the heart
of the processes themselves. This is connected to the ‘French probability school’ which views stochastic
processes in terms of how the past influences the future and the present. A major result here is the Doob–
Meyer decomposition by which a semimartingale is decomposed into the sum of a compensator and a
martingale. It was first proved by Brémaud in 1972 that this result is precisely what we need to obtain
a precise definition of the intensity process (see references in Andersen et al. (1993)). The intensity pro-
cess is a general concept embedding the hazard rate, and at the very heart of modern survival analysis.
Before Brémaud’s work the definitions of an intensity process were intuitive and had no mathematical
precision.

The classical framework of statistics is the assumption of independence in various forms, and this
assumption is also necessary for the empirical process approach of Zeng and Lin. The trouble with inde-
pendence is that it is immediately destroyed once you apply, for instance, a censoring mechanism that is
dependent on all the processes under observation. This is not so for the martingale assumption which
enjoys fundamental invariance properties expressed by preservation under optional stopping and stochas-
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tic integration. Also covariates can depend on the past in complex ways. Moreover, some statistically
important quantities are martingales when they are properly normalized; the likelihood and the associ-
ated score functions, the Kaplan–Meier and Nelson–Aalen estimators, the empirical transition matrix,
the two-sample test statistics and many other important quantities. The introduction of ideas from the
French probability school to survival analysis has been presented in several text-books, e.g. Andersen
et al. (1993) and Martinussen and Scheike (2006). Recent applications to general longitudinal data are
given by Martinussen and Scheike (2006), chapter 11, Borgan et al. (2007) and Farewell (2006).

There is also a central limit theory for martingales which nicely complements the aspects that were dis-
cussed above. There might be limitations in the application of this in some cases, but that is no justification
for advocating a general return to the strait-jacket of the independent and identically distributed data world.

Martingale theory has recently revolutionized the field of mathematical finance, and it is high time
that the world of statistics also realizes its usefulness. Martingales should be an integrated part of the
curriculum of statistics students.

In spite of my critical comments I consider the paper by Zeng and Lin to be of considerable interest. I
thank Zeng and Lin for a challenging paper which is also based on a large and impressive effort to make
all the technical details work. It gives me great pleasure in congratulating the authors on their paper and
in seconding the vote of thanks.

The vote of thanks was passed by acclamation.

Daniel Commenges (University of Bordeaux 2)
The authors must be congratulated for proposing a general model encompassing multivariate failure time
data, frailty models and joint models, for proving asymptotic results for the non-parametric maximum
likelihood estimators (NPMLEs) in this model and for proposing maximization algorithms. I have two
comments: one on a drawback of the NPMLE; the other on an alternative algorithm.

Although, as shown by the authors, the NPMLE has the advantage of being more efficient than most
other estimators it has the drawback of yielding estimators which are not a priori in the class of admis-
sible estimators for most applications: the NPMLE of the compensator of a counting process makes
jumps whereas we would generally expect that, under the true law, the counting process has an abso-
lutely continuous compensator and admits an intensity. From a descriptive point of view this drawback
leads to representing the compensator itself or the survival function only, and not risk functions or tran-
sition intensities. This drawback leads to another limitation in that it makes likelihood cross-validation
unusable: generally the NPMLE estimate of the risk at the time of event of a removed observation is
0 so the cross-validation criterion takes an infinite value. Thus most often the NPMLE is strongly re-
jected by a likelihood cross-validation criterion. Likelihood cross-validation ‘estimates’, up to a constant,
the Kullback–Leibler risk, and the NPMLE is not consistent for the Kullback–Leibler risk. An alter-
native is to use a penalized likelihood yielding smooth compensators and intensities (O’Sullivan, 1988);
the advantage of this approach is that likelihood cross-validation may be used for choosing both the
structure of the model and the smoothing coefficient, as proposed in Commenges et al. (2007). How-
ever, deriving the asymptotic properties of the resulting estimator is still an open problem in the general
case.

The numerical problem is of course crucial for complex models and the authors investigate several pos-
sibilities. I would like to draw attention to an algorithm for maximizing likelihoods, which has already
been used by several researchers, and which is based on using the empirical variance of the score in place
of the Hessian, thus sparing much computation time; I call it the ‘robust variance scoring’ algorithm
(Commenges et al., 2006). When the function to maximize is the log-likelihood, this algorithm is superior
to the BFGS algorithm which is not specific. Even with frailties this algorithm can be used because the
observed scores can be obtained by numerical integration from the score of a full problem by using Louis
formulae, such as in Hedeker and Gibbons (1994). It would be interesting to try this algorithm on the
model that is proposed in this paper.

Torben Martinussen and Thomas H. Scheike (University of Copenhagen)
We congratulate the authors on this very interesting and impressive paper. The class of semiparametric
transformation models is an appealing class as it accommodates the crossing hazards situation. It has,
however, the weakness of not being able to describe time varying covariate effects in a direct interpretable
way. Time varying effects are easily estimated by using Aalen’s additive hazards model (Aalen, 1980)

λ.t|Z/=β0.t/+βT
1 .t/Z,



540 Discussion on the Paper by Zeng and Lin

0002005100010050

Time

C
um

ul
at

iv
e 

co
ef

fic
ie

nt
s

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Fig. 5. Gastrointestinal tumour data: effect of combined therapy—Aalen’s least squares estimate of B1.t/
with 95% pointwise confidence bands (- - - - - - -, estimate based on a changepoint model)

where .β0.t/,βT
1 .t// are unspecified regression functions. We would also like to mention the semiparametric

additive risk model of McKeague and Sasieni (1994)

λ.t|Z/=β0.t/+βT
1 .t/Z +γTX,

where some effects are time varying and others are constant (see also Martinussen and Scheike (2006)).
We fitted Aalen’s additive hazards model to the gastrointestinal tumour data. The cumulative regression

coefficient corresponding to the combined therapy group is depicted in Fig. 5, showing nicely that a time
varying effect is indeed the case for these data with a negative effect of the combined treatment in the first
300 days or so, and then apparently an adverse effect thereafter. Another appealing model for these data
is the changepoint model (Martinussen and Scheike, 2007)

λ.t|Z/=β0.t/+Z{γ1 +γ2 I.t>θ/},

where Z is a scalar covariate, and γ1, γ2 and θ are unknown parameters with the last being the change-
point parameter. For the gastrointestinal tumour data we obtain the estimates θ̂= 315 and .γ̂1, γ̂2/ =
.0:00175, − 0:00255/ with the estimated cumulative regression function superimposed on the Aalen esti-
mator in Fig. 5 indicating that this model gives a good fit to these data. The Aalen additive hazards model
and its corresponding changepoint model are easily formulated in multivariate covariate settings. We won-
der whether it is possible, on the basis of model (4) in the present paper, to pinpoint a time varying effect of
a specific covariate in a multiple covariate setting with time constant effect of the remaining covariates, say.

The use of non-parametric maximum likelihood estimators (NPMLEs) and their asymptotic properties
in the setting considered are very useful. We wonder how far this can be taken in terms of other classes of
models, some of them describing time varying effects of some of the covariates.

The NPMLE behaves sensibly for Aalen’s additive hazards model in the situation with only one categori-
cal covariate but seems to break down in the multiple-covariate setting with some of them being continuous.
It would also be interesting to clarify whether NPMLEs can be applied to other general models as for
example the extended proportional odds model

S.t|Z/= [1+G.t/ exp{ZT β.t/}]−1
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with hazard rate

λ.t|Z/=S.t|Z/ exp{ZT β.t/}{G′.t/+G.t/ ZT β′.t/},

or to a variant of this model, using a first-order approximation of the term exp{ZT β.t/} (Scheike, 2006).

Kani Chen (Hong Kong University of Science and Technology) and Zhiliang Ying (Columbia University,
New York)
The pursuit of efficient estimation is always an important problem for nearly all statistical models, espe-
cially those of a semiparametric nature. The computational complexity and theoretical justification are
main hurdles for obtaining efficient estimators in general semiparametric models. However, the current
computational technology, especially the fast developing statistical and mathematical software and the
availability of computation capacity, has drastically reduced the computational workload and time. It
has made many statistical problems that were previously considered as intractable now readily solvable.
Professor Zeng and Professor Lin made this important contribution of computing and justifying efficient
estimation for a broad class of semiparametric models with censored data. We congratulate them for such
an important development.

Their method seems to be far reaching and has many potential applications and extensions. Heuristi-
cally, this method should work if the infinite dimensional parameter, which is typically a function, can
be properly discretized so that support of the likelihood function is on a finite dimensional space. The
maximization procedure can then take advantage of the available computational algorithms. The idea
may date back to the discovery of the empirical distribution as the non-parametric maximum likelihood
estimator of the cumulative distribution function. We use the following examples to illustrate further
extensions.

Consider the transformation model H.Ti/ = −β′Zi + "i for doubly censored data. Let .Li, Ui/ be the
censoring variables, and the observations are .Yi, Zi, δi/, where Yi =Ti and δi =1 if Ti ∈ [Li, Ui], Yi =Ui and
δi =2 if Ti >Ui, and Yi =Li and δi =3 if Ti <Li: The likelihood is

Ln.β, H/=
n∏

i=1
{[λ{β′Zi +H.Yi/}h.Yi/]I.δi=1/ exp[−Λ{β′Zi +H.Yi/}{I.δi =1/+ I.δi =2/}]

× .1− exp[−Λ{β′Zi +H.Yi/}]/I.δi=3/}
where λ.·/ and Λ.·/ are respectively the known hazard and cumulative hazard functions of "i: Restrict-
ing H.·/ to be step functions with jumps only at the uncensored observations, the likelihood function
can be maximized. The maximizers .β̂, Ĥ.·// are consistent and asymptotically normal under suitable
conditions.

In this case, there is no backward or forward recursive algorithm for computation, unlike those presented
in Chen et al. (2002) and this paper for the right-censored data. However, using the function fmincon
in MATLAB works reasonably well in our simulation studies. For example, we simulated the transfor-
mation model with one covariate and with " following one of the Pareto family of distributions with
r =0, 0:5, 1: Note that r =0 and r =1 correspond to the proportional hazards model and the proportional
odds model respectively. With censoring percentages that are well over 50% and sample sizes at 100 and
200, we find that the resulting point and variance estimators are virtually unbiased and confidence intervals
have coverage probabilities that are close to their nominal levels.

Another type of data is the left-truncated data .Ti, Ci, Zi/ where Ci is the truncation variable. The like-
lihood is

Ln.β, H/=
n∏

i=1
λ{β′Zi +H.Ti/}h.Ti/exp[−Λ{β′Zi +H.Ti/}+Λ{β′Zi +H.Ci/}]:

The maximization procedure is similar to that for right-censored data. Certain technical conditions on the
distribution of the truncation variable near 0 will be required to ensure proper large sample behaviour of
the maximizers.

Alex Tsodikov (University of Michigan, Ann Arbor)
I congratulate the authors on this interesting and general paper. I have a few comments on models and
the justification for EM algorithms resulting from the quasi-expectation–maximization (QEM) approach
of Tsodikov (2003).

Models can be constructed by using a transform γ.x/=QE.xu/, where QE is an operator that is defined
so that γ behaves like a probability-generating function E.xU/ of a random variable U up to its first k
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moments. The resulting ‘artificial’ mixed model lends itself naturally to EM-like QEM algorithms. The
E-step is represented by using derivatives of the transform γ much like moments of a random variable
are represented by using derivatives of its probability-generating function. When the ith derivatives satisfy
.−1/idγ.i−1/ exp.−s/=ds>0, i=1, . . . , k, the resultant algorithm is monotonic in likelihood and QE satis-
fies the Jensen inequality. The matrix speed of convergence of the algorithm is determined by the fraction of
‘missing information’ I−1

0 IM, where I0 and IM are ‘complete-data’ and ‘missing data’ information matrices
respectively that are also expressed through derivatives of the transform.

The authors used an ‘artificial’ EM construction in their paper to deal with the transformation G that
was introduced in equation (2) by suggesting that exp.−G/ be a Laplace transform, and later expressing
the E-step by using derivatives of G. It can be shown by using the Bernstein theorem (Feller, 1991) that
exp.−G/ is a Laplace transform if and only if the derivative G′ satisfies .−1/i+1G.i/ > 0, i = 1, 2, . . . , ∞:
Linking this to QEM, we have γ.x/ = exp[−G{− log.x/}]: As a QEM the algorithm is valid under the
weaker condition of G′ > 0, G′′ < 0 and G′′ being an increasing function. The logarithmic transform
satisfies the condition for any r � 0, whereas it is necessary that 0 � ρ< 1 for the Box–Cox transform.
Potentially, G may be represented by a function with discontinuous high order derivatives (splines), in
which case exp.−G/ will not be a Laplace transform. However, the algorithm will still converge provided
that the weak QEM condition is satisfied. Also, it can be shown that a composition of G-based QEM and
an EM dealing with the random effects b will preserve the necessary conditions for monotonic convergence
of likelihood values.

Thomas H. Scheike and Torben Martinussen (University of Copenhagen)
We are very pleased that the authors take up the theme of random-effects models for survival data where
there is clearly much more to be done. One basic problem with the standard shared frailty model

λ.t/=Zi λ0.t/ exp.XT
i β/,

where Zi is a random effect that is gamma distributed with mean 1 and variance θ−1, is that we can identify
all parameters solely on the basis of univariate survival data. Therefore the variance parameter cannot be
interpreted as reflecting only correlation, but it will also reflect lacking fit of the model. Even though it
may not be a big problem for multivariate data it is difficult to know and it is clearly a problem with the
model. We believe that the two-stage procedure with marginals on a specific form provides a practical solu-
tion to this identifiability problem and we may also use non-parametric maximum likelihood estimation
techniques for this model.

The authors seem to prefer normal random effects but we see no reason why these should be preferred.
It has been shown that different random effects lead to different types of dependence and it will vary from
case to case which random-effect distribution leads to the best description of the correlation (Hougaard,
2000).

We have considered the colon cancer data in the case of the shared frailty model that is contained in the
class of models that was considered by the authors but with a gamma-distributed frailty for simplicity. The
colon study is clearly asymmetric since death will censor cancer whereas the opposite is not true; therefore
any correlation should be identified on the basis of how the occurrence of cancer changes the death-rates.
The frailty model considered may be written as

λic.t/=Yic.t/Zi λc.t/ exp.XT
icβ/,

λid.t/=Yid.t/Zi λd.t/ exp.XT
idβ/

for the ith patient where c is for cancer and d is for death, and Zi is gamma distributed with mean 1 and
variance θ−1: One special feature of the asymmetry is that the at-risk indicator Yic.t/ is 0 when a patient
has died but Yid.t/ is equal to 1 if the patient is still alive even if the patient has experienced cancer. The
intensities with respect to the observed history are

λ̃ic.t/=Yic.t/λc.t/ exp.XT
icβ/

1
1+{Λic.t/+Λid.t/}θ−1

,

λ̃id.t/=Yid.t/λd.t/ exp.XT
idβ/

1+Nic.t−/θ−1

1+{Λic.t/+Λid.t/}θ−1
:

For the colon data there are no deaths for subjects who did not experience cancer and so all the deaths
are for subjects who did experience cancer, thus indicating that a frailty-type model is not well suited to fit
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these data. Alternatively one may consider intensity models where one directly models the effect of cancer
on the death-rate by conditioning on the timing of this event.

Per Kragh Andersen (University of Copenhagen)
Professor Zeng and Professor Lin have presented a very impressive paper covering a broad range of mod-
els for univariate and multivariate survival data, and repeated events and joint models for longitudinal
data and survival data. They could give a unified approach to maximum likelihood estimation in such
models, including asymptotic theory, based on results for empirical processes. I would like to address two
aspects of the likelihood derivation: one deals with types of observational patterns; the other with types
of time-dependent covariates.

Though ‘general censoring and truncation patterns’ are, indeed, mentioned when presenting the likeli-
hood (5) it seems as if later likelihoods in random-effects models will only be applicable for independent
and non-informative (in the sense of Kalbfleisch and Prentice (2002), chapter 6, and Andersen et al. (1993),
chapter III) right censoring. Random left truncation, for example, would require non-identical frailty dis-
tributions as the distribution of bi must be evaluated conditionally on survival beyond the left truncation
time. It is not clear whether the theorems as stated in Appendix A cover this situation.

The likelihoods (5) and (8) are only full likelihoods if the time-dependent covariates fulfil certain simpli-
fying assumptions. This could be that they are either deterministic, ancillary or adapted to the history that
is generated by the failure time counting process (Kalbfleisch and Prentice (2002), chapter 6, and Andersen
et al. (1993), chapter III). For internal time-dependent covariates likelihoods (5) and (8) are only partial
likelihoods. In Section 2.3 the resulting likelihoods (9) and (11) may be full likelihoods since a joint model
is available for the failure time data and the internal time-dependent covariate. Does the type of likelihood
have consequences for the asymptotic results that are derived in Appendix B and for the use of the EM
algorithm or do these results only rely on the shape of the likelihood (see equation (12))?

In Section 2.3 covariates X are introduced in the model for response variables Y and it is stated that
‘Typically, but not necessarily Xij = Z.tij/’. Consider this situation for the simple Cox-type version of
equation (2) with a single time-dependent covariate and random effects:

λi.t/=λ.t/ exp{βZi.t/+ψ0bi0 +ψ1bi1 Zi.t/}:

Consider also the simple linear version of model (10):

Yij =α0 +α1 Zi.tij/+bi0 +bi1Zi.tij/:

To compute the likelihoods (5), (8), (9) and (11) values of Zi.t/ must be observed for all t or, at least,
for all observed event times. In contrast, the response variables Y are only observed at certain (‘non-
informative’) measurement times tij , i = 1, . . . , n, j = 1, . . . , ni: One situation in which it is plausible to
observe Zi.t/ continuously but Y only at tij arises when Zi.t/ is deterministic (see Tsiatis and Davidian
(2004)) but if Zi.t/, more generally, is a random process it is not clear whether such observations arise in
practice.

V. T. Farewell and B. D. M. Tom (Medical Research Council Biostatistics Unit, Cambridge)
We commend the authors on an impressive piece of work. The class of semiparametric regression models
proposed provides a comprehensive framework for the identification of relationships between occurrence
of events and potential explanatory variables.

As a means for the examination of goodness of fit regression models, and perhaps as the basis of explor-
atory investigation of relationships along with graphical and tabular procedures, the class is of particular
interest. We would like to ask, however, whether, for the reporting of relationships between an outcome of
interest and explanatory variables, some caution might be wise. Potential issues relate to interpretability,
overfitting and reproducibility.

For the gastric cancer example, the authors’ Fig. 1 displays fits from their two heteroscedastic versions
of the linear transformation model, and the claim is made that the second version fits better. From an
applied perspective, we wonder how important the better fit is in this example. Additionally, we present
a figure here that results from fitting a Cox regression model with two explanatory variables, treatment
and a log.time/ × treatment ‘interaction’ (Fig. 6). This time-dependent Cox model we infer would be a
special case of their class of models. The interaction variable is highly significant and the fit is compa-
rable with those provided in the paper, particularly that of the authors’ model (3). We wonder therefore
whether this approach to a regression model might provide a suitable representation of the treatment
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Fig. 6. Kaplan–Meier and time-dependent Cox model estimates of the survival functions for the gastric
cancer data set: , Kaplan–Meier, chemotherapy; , Kaplan–Meier, combined therapy; - - - - - - -,
time-dependent Cox model, chemotherapy; , time-dependent Cox model, combined therapy

effect for empirical modelling. Would the nature of the treatment effect be conveyed more usefully, in
terms of it varying with a simple function of time, than in terms of the β- and γ-parameters of the models
proposed?

With respect to overfitting and reproducibility, we wonder whether there is the potential that their mod-
els are sensitive to aspects of a particular data set, which might be absent in other studies of the same
question. In particular, one might ask whether, for their models (3) and (4), the authors would respond
differently to variation in β-estimates than to variation in γ-estimates across studies.

In addition, the simulation studies in the paper are restricted to data that were drawn from their pro-
posed class of models. The behaviour of this class in other situations (e.g. data drawn from Aalen’s additive
hazards model) might be of interest.

Again, we congratulate the authors and ask these questions to understand better how the approach that
they have developed can be incorporated into the current body of techniques that are used for comparable
problems.

D. R. Cox (Nuffield College, Oxford)
It is a pleasure to have the chance of congratulating the authors on an interesting and valuable paper. It
raises many points: some detailed and some general.

That fine Mexican statistician, the late Francisco Aranda-Ordaz, was the first to study estimated trans-
formations in this context, although in a way that was different from that used in the present paper
(Aranda-Ordaz, 1983). The simplest way to test for and to represent non-proportionality of hazards
is often through a manufactured time-dependent variable (Cox, 1972; Grambsch and Therneau, 1994).
Table 2 illustrates that, although regression coefficients in different models have different interpretations,
ratios of regression coefficients are relatively stable. There is a simple invariance-based qualitative expla-
nation of this; for a theoretical treatment in the present context, see Solomon (1984) and Struthers and
Kalbfleisch (1986).

Broader aspects are why the hazard and are there special reasons for proportionality? Failure is a sto-
chastic process, Markovian if properly described, and stochastic processes are usually best specified by
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their transition probabilities, in this case the hazard, which is the complete intensity function of a point
process. Note, though, that, although the accelerated life model, which is very natural in some physical
contexts with a single failure mode, can be specified via the hazard, that is not the most direct definition.
Proportional odds and cumulative hazards seem much less natural as a base for initial specification.

The contrast between proportional and additive measures pervades epidemiology. Proportionality
evades positivity constraints, specifies effects essentially in dimensionless form and possibly gives more
stability in estimated effects. Yet quite clearly there are no all-persuasive arguments for proportionality.

More broadly still, the paper illustrates a wide-ranging tension in statistical development. If models are
compact essentially descriptive representations of patterns of variability, the move to ever more general
families of models is a very welcome and fruitful one. If the objective is in part to probe the data-generating
process and to provide simple more incisive interpretations, more specificity in model specification may
often be preferable (Cox, 1972) and this may or may not lie naturally within some prescribed general
setting.

Ørnulf Borgan (University of Oslo)
I congratulate the authors on an impressive paper that will have an influence on the further development
of survival and event history analysis.

In Section 1 the authors praise the ‘ingenious partial likelihood principle’ and the ‘elegant counting pro-
cess martingale theory’. However, a main message is that inference for survival and event history models
should be based on non-parametric maximum likelihood estimation and that empirical processes are the
preferred mathematical tool. I shall advocate a more pragmatic attitude: we should adopt the inference
methods and mathematical tools that are most convenient, seen both from a theoretical and a practical
perspective. I shall use my experience with cohort sampling methods to underpin my point of view.

There are two classes of cohort sampling methods: the nested case–control and case–cohort designs.
These designs are only briefly mentioned in the paper but, as they are likely to gain importance, meth-
ods for survival and event history data should be able to address the methodological problems of cohort
sampling methods.

In a nested case–control study, a few controls are sampled from those at risk at the failure times. A
joint model for the occurrences of failures and the sampling of controls may be formulated and studied
by using counting processes and martingales (Borgan et al., 1995). By allowing the sampling probabilities
to depend on covariates for all individuals at risk (thus leaving an independent and identically distributed
data set-up), the framework makes it possible to tailor the control sampling to the specific design and anal-
ysis needs of a study (e.g. Langholz (2007)). Inference may be based on a Cox-type partial likelihood and
easily performed by using standard software. For simple nested case–control designs, alternative inference
methods have been suggested (e.g. Scheike and Juul (2004) and Samuelsen et al. (2007)). However, in my
opinion, the modest gains in efficiency that are obtained by these methods (for simple nested case–control
designs) do not outweigh the practical complications in fitting the models and the loss of flexibility in
tailoring the control sampling to the study needs.

In a case–cohort study, a subcohort is sampled at the outset of the study by simple or stratified sampling,
and the at-risk individuals in the subcohort are used as controls at all failure times. For case–cohort designs
the partial likelihood degenerates, and estimation is usually based on a pseudolikelihood. Counting pro-
cesses and martingales are of no help in studying the properties of the estimators, which must be done by
using empirical processes for finite population sampling (e.g. Breslow and Wellner (2007)).

P. M. Philipson and W. K. Ho (Newcastle University)
The paper builds on oft-used models in an interesting and widely applicable manner and, as such, the
authors are to be commended. Our comments concern the survival models of Section 2.1.

We feel that there is scope for a link between the models that are routinely used at present and those that
are proposed in this paper. Given the overwhelming popularity of the Cox proportional hazards model,
a useful intermediate step would be to ascertain whether there is sufficient evidence to warrant the use
of transformation models, or the extension to the crossing hazards model. Score tests, requiring only the
trivial fitting of a proportional hazards model, could be used for such a purpose.

Consider the class of Box–Cox transformations. If we assume that only time invariant covariates are
present and that β and Λ0 are known, then, appealing to martingale theory, we obtain

Uρ0 =∑
i

[∫ τ

0
log{1+Λi.u/}dMi.u/

]
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as the score for the transformation parameter ρ under the null hypothesis (i.e. ρ=ρ0 =1), where Mi is the
usual counting process martingale and τ is the duration of study. The predictable variation under the null
hypothesis is

Vρ0 =∑
i

[∫ τ

0
log2{1+Λi.u/}dΛi.u/

]
:

Focusing on the model given by equation (4) of the paper, ignoring any transformations for now, allows
investigation of the crossing hazards case. In an analogous fashion, the score for γ (here assumed for
convenience to be scalar), under the null hypothesis, can be expressed as

Uγ0 =∑
i

(∫ τ

0
Z̃i[1+ log{1+Λi.u/}] dMi.u/

)

with associated variance

Vγ0 =∑
i

(∫ τ

0
Z̃2

i [1+ log{1+Λi.u/}]2 dΛi.u/

)
:

This fledgling idea is at a very embryonic stage; clearly adjustments will need to be made to accommodate
estimation of β and Λ0. It is hoped that fully developed tests would dovetail with the novel models that
have been put forward in this paper and provide clarity for the statistician.

The two cases of transformation and crossing hazards have been considered separately here. The simi-
larity of the above expressions for ρ and γ leads us to ponder the effect of fitting models when both cases
are present. Are the parameters suitably disentangled so that estimation remains robust? Do the authors
have any insight to offer, or any reflections on the fitting of such models?

John A. Nelder (Imperial College London)
Those of us who have been working on h-likelihood methods (Lee et al., 2006) are naturally disappointed
to see no reference to them in this paper. Professor Lee and Professor Ha will give detailed comments
on the use of h-likelihood for fitting the model class that is described in the paper. I shall just say that
more general frailty models, allowing structured dispersion, can be expressed in the form of hierarchical
generalized linear models after a suitable arrangement of the data matrix (Noh et al., 2006). Advantages
of this approach in fitting the models are the following.

(a) Quadrature is not required.
(b) The EM algorithm, that lumbering giant of an algorithm, is not required.
(c) The bias in the frailty coefficient that is caused by the large number of parameters is no longer a

problem.
(d) Standard software (in Genstat) is available to fit these models efficiently.

I commend this approach to the authors.

J. L. Hutton (University of Warwick, Coventry)
I thank the authors for a thought-provoking paper. I make three simple remarks as a medical statistician.

Accelerated life models are useful in medical applications. In my work on cerebral palsy and epilespy,
accelerated life models have been more useful than proportional hazard models (Hutton and Pharoah,
2002; Hutton and Monaghan, 2002; Cowling et al., 2006). Professor Henderson mentioned that hazards
often converge over time and suggested that proportional hazard models needed to incorporate time-
dependent elements to allow for this. Accelerated life models with a log–logistic or gamma base-line have
converging hazard ratios. With a log–logistic base-line, the hazard ratio converges to 1.

Hazard functions should not cross. My response to the data on gastric cancer patients is to ask whether
an oncologist or pharmacologist could suggest covariates which would distinguish those patients who die
early on from those with a better prognosis. Accelerated life models with Pareto distributions were effective
in allowing us to understand the responses to antiepileptic drugs (Cowling et al., 2007).

The following contributions were received in writing after the meeting.

Peter J. Bickel (University of California, Berkeley)
I enjoyed the authors’ presentation of a general toolbox of models for censored survival data. Their paper
raised an old philosophical issue for me.
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The philosophical point has to do with the failure to account for the variability of the transformation
parameter estimates in the confidence bands for the treatment effect parameter that they represent. This
was the subject of Bickel and Doksum (1981) and a subsequent discussion of a paper of Hinkley and
Runger (1984). As I agreed, stating confidence bounds on an effect on an unknown scale is problematic, but
so is underestimating variability. The simple solution is to announce only simultaneous confidence limits
for the transformation parameters and the effects, permitting the reader to interpret the transformation
effect on their selected scale.

Here are a few more comments.

(a) The authors point out that non-parametric maximum likelihood estimators are intractable computa-
tionally, leading to ad hoc estimates. The ad hoc estimates may be the most reasonable starting-point
for their optimization procedure. If it involves Newton–Raphson iteration, a single step from an
o.n1=4/ consistent estimate will suffice for efficiency as remarked by LeCam and extended in Bickel
(1975).

(b) I want to stress a point that was alluded to by the authors in their data analysis. If, as expected,
the model is a crude approximation to the mechanism producing the data, the interpretability of
quantities that are estimated is important. In the authors’ models the form of G and " must be pre-
determined. What they estimate are distributions that are closest to the truth in Kullback–Leibler
distance—but what this means for parameters of interest is not necessarily clear.

(c) The foregoing suggests that making G and even the distribution of " non-parametric is worthwhile if
only to see what effect this has on the parameters of interest. As the authors point out, not specifying
the distribution of ", in the models of Section 2.1, makes the parameter of interest β unidentifiable—
but only in a weak sense. We can still identify the components of β up to a common scale factor,
so relative magnitudes of effects can be measured. Econometricians have studied this problem in
simpler contexts as discussed in Horowitz (1998).

(d) Finally, here is a note of caution. As the complexity of the model increases, so does the number
of parameters explicit or implicit as in the estimated H. I believe that one needs to think about
imposing sparsity on one’s models.

N. E. Breslow (University of Washington, Seattle)
I congratulate Zeng and Lin for their construction of a general model that nicely brings together much
previous work, their development of asymptotic theory that justifies inference using profile likelihood
and their description of innovative computational approaches. They provide little guidance, however,
regarding parameter interpretation. One important benefit of semiparametric models is that quantities
that are of key scientific interest may be summarized parametrically whereas nuisance factors are treated
non-parametrically. Thus the Cox model focuses attention on the well-understood hazard ratio. Mar-
ginal mean and marginally specified hierarchical models (Heagerty and Zeger, 2000) express treatment
effects in terms of population averages, possibly within subgroups defined by covariates, whereas mar-
ginal structural models (Robins et al., 2000) express population level effects that would be observed
if treated and control groups had the same covariate distribution. Parameters in hierarchical transfor-
mation models, by contrast, must be interpreted conditionally and may be highly sensitive to distri-
butional assumptions. How to interpret the fixed covariate coefficients in the random-effects transfor-
mation model for longitudinal data, where the link is left unspecified, seems particularly deserving of
comment.

When faced with crossing hazards, as in Fig. 1, we might add a time-dependent covariate to the Cox
model and express the log-hazard-ratio parametrically as β0 +β1 g.t/ where g.·/ is a specified, increasing
function such as g.t/ = log.t=t0/ with t0 a modal time. Then β0 expresses the log-hazard-ratio at t0 and
β1 its rate of change with a known function of time. With the heteroscedastic transformation model, by
contrast, g.t/=H.t/= log{Λ.t/} and the interpretation is less clear.

For missing data problems, including two-phase studies where data are missing by design, Zeng and
Lin note that Horvitz–Thompson or inverse probability of sampling weighted estimators may be more
robust than non-parametric maximum likelihood estimators in the face of model misspecification. Indeed,
survey statisticians advocate their use on grounds that they consistently estimate the parameters obtained
when fitting a possibly misspecified model to the source population, which the non-parametric maximum
likelihood estimator may fail to do. Breslow and Wellner (2007) provide theory for Horvitz–Thompson
estimation of both Euclidean and infinite dimensional parameters in semiparametric models fitted to
data from two-phase stratified samples. Efficiency may be enhanced through adjustment of the sampling
weights by using the survey techniques of post-stratification and calibration, or by their estimation. I
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concur wholeheartedly that further studies are needed to assess the relative merits of Horvitz–Thompson
and non-parametric maximum likelihood methods for complex sampling designs.

Jack Cuzick (Wolfson Institute of Preventive Medicine, London)
We have recently extended our study of non-compliance in randomized trials from the binary outcome
case (Cuzick et al., 1997) to a proportional hazard set-up (Cuzick et al., 2007). This greatly complicates
estimation, and we have developed a non-iterative ad hoc estimator, as well as estimators that are based on
a partial likelihood and the full semiparametric likelihood. The complications arise because non-compli-
ance is modelled by a covariate (insistor, refuser or ambivalent) which is incompletely observed, leading
to a latent class model. In particular insistors cannot be distinguished from patients who are willing to
accept either treatment in the active treatment arm, whereas refusers and ambivalent patients are indistin-
guishable in the control arm. In simulations we have found that the non-parametric maximum likelihood
estimator that is computed by using the BFGS quasi-Newton algorithm outperforms other estimators
in a wide range of conditions, but an asymptotic theory has eluded us. The likelihood is of their general
form (12) but not the specific form (11), and validation of the conditions of their general theorem in this
case is still formidable, as is computation of the asymptotic variances. Nevertheless the paper gives a very
valuable foundation for studying a wide range of semiparametric problems and will no doubt become a
standard reference for further research.

Paddy Farrington (The Open University, Milton Keynes) and Mounia Hocine and Thierry Moreau
(Institut National de la Santé et de la Recherche Médicale, Paris)
The authors have achieved an impressive unification and extension of several classes of semiparametric
models for event history and repeated measures data. Particularly useful is the general asymptotic theory
underpinning these models.

Does the modelling framework for recurrent events encompass models for different timescales, includ-
ing both time from last event and calendar time? We were mystified by the comment regarding clinical
trials at the beginning of Section 2.2. For example, Duchateau et al. (2003) proposed a model involving
both frailties and time-varying effects in the form of gap time-dependent hazards, which they applied to
clinical trial data.

General and complex models induce problems of model identification and interpretation. For example,
crossing hazards may be attributable to one of several contrasting effects. These include time varying
exposures, selection effects and the functional form of the dependence of the hazard on fixed covariates.
All three are available in the present models: to what extent are they identifiable from data?

Furthermore, interpreting the model parameters is far from easy, as illustrated by several of the exam-
ples in the paper. In the gastrointestinal tumour example, the estimated parameter value for the treatment
effect for the well fitting model (4) is β=3:028 (0.262). Yet to make sense of this requires us to look at the
Kaplan–Meier survival curves: knowledge of β provides little further enlightenment. A similar point can
be made about the colon cancer example: the parameter estimates for the selected model provide little clue
about how effective the treatment really is.

It would be useful in particular if the authors could clarify under what parameter combinations the
hazards do not cross, and whether a test for non-crossing hazards could be derived for model (4) which
could lead to simplifications. For example, in model (3) with G.x/=x and fixed covariates, the null hypoth-
esis of no crossing is simply γ= 0, and the corresponding score test is readily obtained (Quantin et al.,
1996).

An alternative to building ever more complex models is perhaps to focus on the questions of primary
interest, while eliminating nuisance parameters by conditioning. One such approach, admittedly for much
simpler data structures than those considered here, is provided by the semiparametric case series model
(Farrington and Whitaker, 2006). This employs a conditioning argument to eliminate the multiplicative
effects of frailties and non-varying covariates, thus focusing the analysis on time varying exposures of
interest.

Jason P. Fine (University of Wisconsin, Madison)
Theory for non-parametric maximum likelihood estimation has percolated over the past decade, stimu-
lated by the seminal work of Murphy (l994, 1995). The current paper presents potentially useful albeit
somewhat straightforward extensions, with the modelling ideas and theoretical developments following
closely earlier contributions. The argument that such methodology should play a wider role in statisti-
cal practice is intriguing. Unfortunately, the rationale for widespread adoption in applications is less
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convincing than that for the underlying mathematics. There is an inattention to key applied issues and the
relevance and practical utility of the framework in the examples.

In the cancer illustration in Section 5.1, the treatment effect clearly violates proportional hazards and
fitting models (3) and (4) yields very different results from a naïve proportional hazards analysis. Viewing
Fig. 1, the study investigators would be interested in understanding how the treatment effect changes over
time in the population. This is obscured by the heteroscedastic transformation model, whose interpre-
tation is rather mathematical and difficult for non-statisticians. The proportional hazards model easily
accomodates time-dependent effects. Either time-dependent covariates involving interactions of treatment
and time (Therneau and Grambsch, 2000) or time-dependent coefficients (Martinussen and Scheike, 2006)
may be employed.

In Section 5.2, the joint model for the recurrence time X and the death time Y is questionable. The
resulting analysis of the marginal distribution of recurrence corresponds to the setting where death before
recurrence does not occur, which is generally of secondary interest to patients and physicians. Typically,
competing risk end points, like cause-specific hazard and cumulative incidence (Kalbfleisch and Prentice,
2002), are reported in oncology journals. Their interpretation corresponds to the current reality where
death may occur before recurrence, which is of greater interest. If the distribution of residual life post
recurrence is of interest, then the distribution of Y −X can be directly modelled conditionally on X and
other covariates using proportional hazards models, which would be the default in practice. This simple
analysis can be implemented using standard software and the interpretation of the effect of X on Y −X is
much more transparent than that in the joint model.

For multivariate data, random-effects models may be useful for assessing failure time correlations. The
gamma distribution is attractive, because of its relationship to the cross-hazard ratio (Oakes, 1989). The
model can be generalized to permit time varying and asymmetric associations. The cross-hazard interpre-
tation is opaque for the normal distribution (Hougaard, 2000). When correlation is a nuisance, random-
effects models seem less attractive, as their misspecification may bias other parameter estimators. Moreover,
incorporating random effects in conditional proportional hazards models generally gives marginal non-
proportional hazards models, whose interpretation may be problematic. Marginal proportional hazards
models avoid such limitations. These models can be coupled with copulas, e.g. multivariate normal. Presum-
ably, non-parametric maximum likelihood estimation inferences are efficient, similarly to random-effects
models.

Il Do Ha (Daegu Hanny University, Daegu)
For the maximum likelihood (ML) estimation the authors use the EM algorithm and the discrete non-
parametric Breslow estimator, which results in biased estimators (Rondeau et al., 2003). Overall, the
authors consider bivariate survival data, where there is less of a problem than with univariate data (Barker
and Henderson, 2005). We now demonstrate how the h-likelihood approach overcomes this problem. For
simplicity of argument, we consider the semiparametric frailty models (1) with clustered failure time data.
We assume that ui has a gamma distribution with E.ui/=1 and var.ui/=α to allow an explicit marginal
log-likelihood m.

Let mÅ be the profile marginal likelihood (Nielsen et al., 1992; Murphy and van der Vaart, 2000) after
eliminating the nuisance parameter λ0, defined by

mÅ =m|λ0=λ̃0
,

where m = log{∫
exp.h/ dv} is the marginal likelihood, h is the h-likelihood (Lee and Nelder, 1996; Ha

et al., 2001) and λ̃0 is the discrete Breslow estimator, obtained from @m=@λ0 =0. In fact, the maximization
of mÅ gives the ML estimators by using the EM algorithm (Andersen et al., 1997). The resulting ML
estimators have downward biases, particularly for the frailty parameter α.

On the basis of 200 replications of simulated data we investigate the performances of three profile like-
lihood methods .mÅ, pw.m/ and ps

v.h
Å//. For the gamma frailty we use the second-order Laplace approx-

imation ps
v.h

Å/ (Lee and Nelder, 2001). Given the frailty parameter α, we use profile likelihoods mÅ and
hÅ, which provide the same estimates for β (Ha et al., 2001). However, they give different estimators for α
because the estimates ofα are obtained by maximizing the three adjusted profile likelihoods. Under no cen-
soring we generate data by assuming the exponential base-line hazardλ0.t/=1, one standard normal covar-
iate with β=1, and α=1. We consider both univariate and bivariate sample cases: N =Σn

i=1 ni = .100, 200/
with .n, ni/= .100, 1/, .100, 2/, .200, 1/. Note here that we choose fairly extreme cases, with no censoring
and small sample size, because these situations yielded the most biased estimates of α̂ in the simulation
studies by Nielsen et al. (1992) and Barker and Henderson (2005). The results are summarized in Table 5.
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Table 5. Simulation results for the estimators α̂ and β̂ under marginal and h-likelihoods in semi-
parametric gamma frailty models†

n ni Method Results for α̂ Results for β̂

Mean Standard Mean-squared Mean Standard Mean-squared
deviation error deviation error

100 1 mÅ 0.42 0.363 0.469 0.80 0.228 0.094
pw.m/ 0.87 0.618 0.398 0.97 0.297 0.088
ps

v.hÅ/ 0.89 0.617 0.393 0.96 0.296 0.089
100 2 mÅ 0.90 0.240 0.067 0.98 0.281 0.079

pw.m/ 0.99 0.258 0.066 1.00 0.286 0.081
ps

v.hÅ/ 0.99 0.258 0.066 1.00 0.286 0.081
200 1 mÅ 0.63 0.301 0.231 0.87 0.188 0.054

pw.m/ 0.98 0.437 0.191 0.99 0.221 0.050
ps

v.hÅ/ 0.99 0.439 0.192 1.00 0.231 0.053

†The simulation is conducted with 200 replications at true gamma frailty variance α=1 and regression
parameter β=1 (no censoring).

As expected, mÅ gives severe downward biases in all cases considered, especially with ni =1. Moreover, the
underestimation of α leads to that of β. Table 5 also demonstrates that the two adjusted profile likelihoods
pw.m/ and ps

v.h
Å/ reduce such biases substantially, giving almost the same results.

Here we have considered the gamma frailty model to have an explicit form for m and pw.m/. However,
this is not so in general, for example, for models with log-normal frailty, or with nested and/or serially
correlated frailty. Thus, the adjusted profile likelihoods that are based on h-likelihood are useful for general
frailty models. We believe that the h-likelihood approach gives more flexible ML inferences than the EM
approach.

Joel L. Horowitz (Northwestern University, Evanston)
I congratulate Professor Zeng and Professor Lin on their interesting paper. It presents a class of flexible
semiparametric models for censored survival and longitudinal data. The models accommodate a wide
variety of distributions of random effects or frailty. In particular, the standard assumption of gamma-
distributed random effects is removed. It is useful to ask whether the assumptions about frailty can be
relaxed further by making the frailty distribution non-parametric.

There has been much interest in this question in econometrics over the past two decades. Heckman and
Singer (1984a) showed that the parameter estimates from a Weibull hazard model are very sensitive to the
choice of frailty distribution. They established consistency of a non-parametric maximum likelihood esti-
mator of this distribution. Elbers and Ridder (1982), Heckman and Singer (1984b) and Ridder (1990) gave
conditions for identification of proportional hazard and generalized accelerated failure time models with
non-parametric frailty. Honoré (1990) developed an estimator of the shape parameter of a Weibull hazard
model with frailty and gave conditions under which it is asymptotically normal with a rate of convergence
in probability that is arbitrarily close to n−1=3. Horowitz (1999) showed how to estimate a proportional
hazard model in which the base-line hazard function and frailty distribution are both non-parametric.
Horowitz’s estimator, like Honoré’s, has a slower than n−1=2 rate of convergence. This happens because
identification is through the behaviour of the hazard function in an arbitrarily small neighbourhood of 0.
However, Ridder and Woutersen (2003) showed that n−1=2-convergence is possible if the base-line hazard
function is bounded away from 0 and ∞ in a neighbourhood of 0. An n−1=2 rate of convergence is also
possible if we have longitudinal data (Horowitz and Lee, 2004). Indeed, this is possible with longitudinal
data even if the frailty variable is correlated with the covariates.

Non-parametric estimation of the frailty distribution with cross-sectional data is a deconvolution prob-
lem, so the rates of convergence in probability are quite slow in general. None-the-less, it appears possible
to obtain useful estimates with samples of practical sizes (Horowitz, 1999). In summary, estimation results
in hazard models can be very sensitive to misspecification of the frailty distribution. Non-parametric treat-
ment of the frailty distribution is possible in simple models such as proportional hazards models. It is worth
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investigating whether more complicated models such as those of Zeng and Lin are also sensitive to misspe-
cification of the frailty distribution and whether non-parametric estimation of this distribution is possible.

John D. Kalbfleisch (University of Michigan, Ann Arbor, and National University of Singapore) and
Jinfeng Xu (National University of Singapore)
We congratulate Professor Zeng and Professor Lin on an interesting and far reaching paper with many
facets and intricacies. Our allotted space is very short, so we confine our comments to three points.

There is clearly value in developing methods for and investigating uses of alternative models but, like
many others, this paper begins by setting up proportional hazards as a straw man. There is no recognition
that the covariates in the model can incorporate interactions with functions of time and so model, quite
parsimoniously, various non-proportional aspects of a problem. For this reason, Kalbfleisch and Prentice
(2002) suggest use of the term relative risk or Cox model instead of the proportional hazards misnomer.
The proposal of incorporating heterogeneous errors in a linear transformation model to account for pos-
sible non-proportional hazards leads to incorporation of coefficients that are difficult to interpret, and
more difficult, we suggest, than the interpretation of a time varying term in a relative risk model.

How in general do we interpret parameters in a linear transformation model? There are simple inter-
pretations for extreme value or logistic error. In the more general case with estimated G and arbitrary H ,
however, it is not clear what β is measuring in model (1) or its extensions. Table 1 illustrates the point.
Here the parameters in the relative risk model have simple interpretations as log-relative-risks and similar
interpretations apply in the proportional odds model. The paper notes that the ‘interpretation of treatment
effects . . . depends on which model is used’ but provides no guidance on interpreting the parameters under
the suggested analysis. We seem to be left with a test for no treatment effect but without the benefit of
interpretable parameters.

Finally, Fig. 2 comprises four separate sheets wherein (0,0), (0,40), (40,0) and (40,40) all correspond to
proportional odds and (20,20) corresponds to proportional hazards. It is not clear that (20,20) corresponds
to a single ordinate in all four sheets as it should; nor is it apparent that all representations of proportional
odds (e.g. (0,40) and (0,0)) have the same ordinate, and we wonder whether the normalizing constant is the
same in all sheets. A contour plot would perhaps have been more informative. The reason for the arbitrary
cut-off at ρ=1 also is unclear and seems that it may affect the model selected. Some investigation of simple
time-dependent relative risks in this example would be interesting.

Michael R. Kosorok (University of North Carolina, Chapel Hill)
I congratulate Zeng and Lin on an excellent contribution to statistical modelling for right-censored data.
The authors make a very strong case for the practical use of efficient, maximum-likelihood-based estima-
tion for semiparametric models. Moreover, the heteroscedastic linear transformation model proposed and,
especially, the random-effects linear transformation model are scientifically interesting and very appealing
new models.

Nevertheless, there are a few points to be made. To begin with, several important references should be
added to the part of the introduction that reviews transformation models. Slud and Vonta (2004) gen-
eralized the work of Scharfstein et al. (1998) to more general choices of the G-function than is given in
expression (2) of the paper under discussion. Kosorok et al. (2004) further generalized to allow G to be
parameterized with unknown parameter values. Thus the future topic that Zeng and Lin propose in the
second paragraph of Section 7 has already been partly accomplished in Kosorok et al. (2004).

On a more favourable note, the ensemble of numerical tools that were developed by Zeng and Lin is a
key contribution that makes the methods proposed usable in practice. However, additional gains in com-
putational efficiency are possible when both the finite and the infinite dimensional parameters are jointly
efficiently estimated, as has been verified, for example, by Kosorok et al. (2004) for transformation models
with right-censored data. Incidentally, this joint efficiency holds for most of the models in Zeng and Lin’s
paper, even though they neglected to point this out. This gain in computational efficiency is achievable
through careful utilization of the profile likelihood structure for both the finite dimensional parameter via
the profile sampler (Lee et al., 2005) and for all parameters jointly via the piggyback bootstrap (Dixon
et al., 2005). The computational savings of these methods have been verified rigorously and can be dra-
matic. Combining the profile sampler and piggyback bootstrap with the numerical innovations of Zeng
and Lin should lead to further dramatic improvements.

In Section 7, the authors mention robustness under model misspecification and extending transfor-
mation models to interval-censored data as important future topics. Some initial work on robustness of
transformation models was given in Kosorok et al. (2004), who showed that the direction of the regres-
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sion effects can be accurately estimated even when the G-function is misspecified. Likelihood inference
under interval censoring for transformation models with partly linear regression effects was developed and
verified theoretically in Ma and Kosorok (2005). A key challenge here is the presence of two non-root-n
consistent estimators.

In general, very little work has been done for likelihood-based semiparametric inference involving
parameters that are not root n estimable. A very careful analysis of the entropy of these models is usually
required, making this area of endeavour one of the most intellectually demanding in all of statistics. Add-
ing to this the other open topics that were mentioned by Zeng and Lin, it is clear that many challenging
questions in semiparametric inference remain.

Youngjo Lee (Seoul National University, Seoul)
I congratulate the authors on unifying maximum likelihood estimation for the analysis of multivariate sur-
vival data, based on the EM algorithm. However, the EM method is slow and may not be easily applicable
to complicated situations. For simplicity of argument, consider the semiparametric frailty models (6) with
clustered failure time data, giving conditional hazard

λ.t|Zil; ui/=λ0.t/ exp.βTZil/ui, .16/

where λ0.·/ is an unspecified base-line hazard function and the ui follow some distribution. For inferences,
Lee and Nelder (1996) proposed to use the h-likelihood, which is defined by

h= log{fθ.y|u/}+ log{fθ.v/}
where fθ.y|u/ and fθ.v/ are probability density functions for y|u and v= log.u/ respectively. For inferences
about the fixed parameters θ, the marginal (log-)likelihood has been proposed, using

m= log{fθ.y/}= log
{∫

exp.h/ dv

}
:

However, in general the required integration is intractable. Thus, Lee and Nelder (2001) considered a
function class that they called adjusted profile likelihoods pτ .l/; these eliminate the nuisance parameter τ
from a likelihood l, defined by

pτ .l/= .l− 1
2 log[det{D.l, τ /=2π}]/|τ=τ̂

where D.l, τ /=−@2l=@τ 2 and τ̂ solves @l=@τ =0. The adjusted profile function pv.h/ eliminates the random
parameters v by the Laplace approximation to integration (Lee et al., 2006) and pβ.m/ eliminates the fixed
parameters β by conditioning on β̂ (Cox and Reid, 1987).

For frailty models, Ha and Lee (2005) proposed to use an adjusted profile h-likelihood pv.h
Å/, which is

defined by

pv.h
Å/= .hÅ − 1

2 log[det{D.hÅ, v/=2π}]/|v=v̂,

where hÅ =h|λ0=λ̂0
is a profile h-likelihood with a solution λ̂0 from @h=@λ0 =0, D.hÅ, v/=−@2hÅ=@v2 and

v̂ solves @hÅ=@v=0. Ha and Lee (2007) showed that

pv.h
Å/�pw.m/,

where w= log.λ0/. These adjusted profile likelihoods give practically satisfactory estimators (Ha and Lee,
2005, 2007). Instead of using the E-step the h-likelihood method directly maximizes various adjusted
profile likelihoods: for its advantages see Lee et al. (2006).

Yi Li (Harvard School of Public Health and Dana–Farber Cancer Institute, Boston)
Zeng and Lin are to be congratulated for a wonderful work on non-parametric maximum likelihood esti-
mation for semiparametric frailty regression models. In this comment, I concentrate on the interpretation
of frailties.

In the framework of random-effects models, the frailties have been introduced to model the clustering
effect and will be useful for prediction as illustrated in Section 5.2. However, they are meant to model the
within-cluster dependence as the variance components of the frailties typically gauge the magnitude of
such dependence (Diggle et al., 1994). This, however, was not elucidated in this paper. This note bridges
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the frailty parameters with within-cluster dependence measures and highlights a challenge in interpreting
these parameters. To convey the idea, consider a (much) simplified version of model (7) for bivariate failure
times (T1, T2) with no covariates, namely

Λ.t|b/=G

{∫ t

0
exp.b/ dΛ.s/

}
.17/

where b∼f.·;γ/. Our goal is to link the variance component γ to a ‘model-free’ and standardized depen-
dence measure that is commonly used for bivariate survival. One such device is Kendall’s coefficient of
concordance (Kendall’s τ ), which can be evaluated by

τ =4
∫ ∞

0

∫ ∞

0
p.t1, t2/ S.t1, t2/ dt1 dt2 −1

where p.t1, t2/ and S.t1, t2/ are the joint bivariate density and survival functions respectively (see, for exam-
ple, Hougaard (2000)). It follows that the joint survival under model (17) is

S.t1, t2/=
∫

exp[−G{exp.b/Λ.t1/}−G{exp.b/Λ.t2/}] f.b;γ/ db,

and p.t1, t2/ can be conveniently evaluated by p.t1, t2/ = @2S.t1, t2/=@t1 @t2. Therefore, γ can be viewed to
characterize the bivariate dependence through

τ =4
∫ ∞

0

∫ ∞

0

(∫
G′{exp.b/t1}G′{exp.b/t2} exp.2b/ exp[−G{exp.b/t1} −G{exp.b/t2}] f.b;γ/ db

)

×
(∫

exp[−G{exp.b/t1}−G{exp.b/t2}]f.b;γ/ db

)
dt1 dt2 −1:
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Fig. 7. Kendall’s τ versus γ for the proportional odds ( ) and proportional hazards (– – –) models
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It is worth noting that τ does not depend on the base-line function Λ.t/ in model (17) and its efficient
estimate can be obtained by replacing γ with its maximum likelihood estimator γ̂, whose variance estimate
will be immediately available via the delta method. In a similar fashion, the relationship of variance com-
ponent γ with the other global dependence measures, e.g. the Spearman correlation, integrated hazard
ratio and median concordance, and the local dependence measure, i.e. the local cross-ratio, can also be
established.

However, a serious challenge of interpreting γ as a dependence measure lies in its dependence on the
link function G in model (17). This can be illustrated by Fig. 7, which depicts Kendall’s τ against various γ
when b∼N.0, γ/, under the proportional hazards model (with G.x/=x) and the proportional odds model
(with G.x/= log.1+x//. For example, γ=1:8 corresponds to Kendall’s τ of 0.40 under the proportional
hazards model, which is almost twice as much as that of 0.21 under the proportional odds model, beg-
ging the cliché question of ‘how large is large?’ when viewing the variance component as a measurement
for dependence under various transformation models. I would welcome the authors’ comments on this
issue.

N. T. Longford (SNTL, Reading, and Universitat Pompeu Fabra, Barcelona)
I am perplexed by the double negative (‘no reason for not using maximum likelihood estimation’) in the
penultimate sentence of the summary, which I regard as vacuous. The authors do not mention any alterna-
tive, and I think that there is no credible alternative to maximum likelihood estimation. The difficulty is not
in maximizing a likelihood, such as expression (12), but in specifying one appropriately through the details
of the adopted model, balancing the requirements of validity and parsimony. This highlights the need for
model selection, or dealing with model uncertainty, and for taking account of the model selection process
in the analysis. Information criteria, such as Akaike’s information criterion and the Bayes information
criterion, are standard but exceedingly poor solutions if the model that is selected is regarded as being
valid and as if it were selected before data inspection (Longford, 2005). The model selection process is far
from ignorable.

Maximum likelihood is efficient only asymptotically, and only with a valid model. If simulations confirm
that the asymptotic sampling variance closely approximates the sampling variance in a finite sample setting
and the bias is small or none, we cannot conclude that maximum likelihood estimation is efficient also in
small samples. In finite samples, some submodels of a valid model may yield more efficient estimators for
some targets; the bias of an estimator that is based on an invalid model may be more than offset by the
variance reduction in relation to a valid model. This issue is highly relevant in semiparametric models in
which the effective numbers of observations and parameters cannot be counted straightforwardly.

Xavier de Luna (Umeå University) and Per Johansson (Uppsala University and Institute for Labour
Market Policy Evaluation, Uppsala)
The paper presents in a convincing manner a broad class of models for longitudinal and event time data.
Our purpose with this comment is to make potential users of these models aware of an important pitfall in
the analysis of studies with waiting time to treatment (i.e. the time units have been eligible for treatment).
Indeed, ignoring waiting time is not innocuous even in experiments with randomized treatment assign-
ment. When the outcome of interest is a survival time, then the effect of the treatment can be defined by
using the survival functions of the treated and non-treated subjects over the population of those who are
eligible for treatment. The survival function S.t/ = E{I.T � t/}, where I.·/ is the indicator function, is
then estimated for treated and control units respectively. By randomizing treatment assignment to units,
waiting time to treatment is balanced for. In general, we would expect the hazard to death to be a func-
tion of waiting time w : h.t; w/=E{I.T = t/|T � t, W =w}. Marginalizing over waiting time is equivalent
to considering h.t/ = EW{h.t; W/}. Unfortunately, the use of the estimated average (over w) hazards to
construct the Kaplan–Meier estimator does not yield a valid estimator of the population survival func-
tion S.t/, unless h.t; w/=h.t/. This is because the Kaplan–Meier estimator is a non-linear function of the
hazards.

In the colon cancer study of Section 5.2, waiting time is taken into account through the covariate Z2i.
We must assume that the hazards that are modelled are not functions of w within the classes Z2i = 0
.w � 20 days/ and Z2i = 1 .w > 20 days/, for the curves that are displayed in Fig. 3 to be interpretable as
survival functions. Note that the waiting time is at most 1 month (Fleming, 1992), and this might be a
reasonable assumption here.

In non-randomized experiments, controls have no well-defined waiting time. This constitutes a major
complication because waiting time cannot then be introduced as a covariate in a model. This issue was
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addressed in Fredriksson and Johansson (2004) and de Luna and Johansson (2007) by conditioning the
inference on waiting time. For instance, the models that are discussed by Zeng and Lin may be applied on
a stratum that is defined by a waiting time w0. Then, in this stratum, all units having survived until time w0
and not treated at that time can and must be considered as controls. For this approach to be feasible,
enough observed cases for each waiting time stratum of interest must be available.

Ross L. Prentice (Fred Hutchinson Cancer Research Center and University of Washington, Seattle)
I congratulate the authors on a lucid and impressive paper that unifies and extends a diverse statistical
literature, while using a modern empirical process for asymptotic distributional results, including that of
semiparametric efficiency.

The authors recommendation (a) is to ‘use the new class of transformation models to analyse failure
time data’. They motivate this new class of models (2)–(4) by the need to allow for the possibility of crossing
hazards. However, as noted in the first sentence of their paper, the Cox (1972) model includes time varying
covariates, which may readily be defined to include crossing hazards; see Prentice et al. (2005) for a recent,
practically important, example. More generally, the Cox model is by far the most important special case
of models (2)–(4), because of the ready interpretation of regression effects on the hazard ratio, to the point
that I wonder whether the larger class adds much. Linear transformation models as a class do not seem to
share such a useful interpretation, except for accelerated failure time models which, as the authors note,
are not encompassed by models (2)–(4).

The authors’ recommendation (b) is to ‘make routine use of random-effects models for multivariate
failure time data’. Although frailty models allow for dependence between clustered failure times, and
I agree that normal random effects have the advantage of avoiding restrictions on pairwise dependen-
ces, I do not find the frailty approach to be so appealing. For example, frailty models typically imply
complicated marginal distributions for failure times, and the interpretation of regression coefficients is
conditional on the frailty. Why should the marginal models for a failure time change, just because some
possibly correlated failure times are being simultaneously analysed? Copula models preserve marginal
distributions while also allowing correlation. A multivariate normal copula model as applied to standard
normal variates arising from Cox model margins (e.g. Li and Lin (2006)) seems particularly appeal-
ing. For recurrent events, the authors argue that the inclusion of post-randomization time-dependent
variables in Cox models may affect treatment effect interpretation. However, random-effect modelling
cannot be expected to remove biases if censoring rates depend in a complex fashion on the preceding
counting process history. Careful data analysis is then required, with Cox models having evolving co-
variates providing a useful and interpretable modelling context (e.g. Kalbfleisch and Prentice (2002),
chapter 9).

I again congratulate the authors on their stimulating work.

N. I. Ramesh (University of Greenwich, London) and A. C. Davison (Ecole Polytechnique Fédérale de
Lausanne)
We would like to mention work on a related topic for which the methods that are outlined in this interesting
paper may be applicable.

We use a multistate Markov model to analyse the movement of ticks of the species Ixodes ricinus up
and down blades of grass under the influence of covariates such as temperature, relative humidity or light.
The movements are recorded under controlled conditions in a laboratory setting over 10 days, with light
changed to mimic diurnal variation (Perret et al., 2003).

A simple model is that at any time a tick is in one of the three states, resting at the foot of the blade
(1), walking between the top and bottom of the blade (2) and questing for prey at the top of the blade
(3), and that transitions may take place between these as follows: 1↔2 ↔3, so direct transition between
states 1 and 3 is not allowed. Under a proportional hazards model, we might suppose that a tick in state
1 moves out of it at a rate h12.t/ ξ12.x;β/, where h12.t/ depends on time t since the start of the experiment,
and represents a base-line rate at which a tick in state 1 might leave that state. Similarly we define base-line
rates h32.t/, h21.t/ and h23.t/ for the other possible transitions. The quantities ξij.x;β/ reflect the influence
of covariates on the rates.

The key aspect of interest is what influences changes between the states?
This is an application where the diurnal variation would lead us to expect cyclic behaviour, so we may

use a proportional hazard model with periodic base-line hazard (Pons and de Turckheim, 1988).
To what extent do the ideas of the present paper extend to the periodic case, or to other situations where

a base-line function has some special form or constraints induced by the sampling plan?
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Peter Sasieni (Queen Mary, University of London)
This impressive paper unifies many models for right-censored data (including right-censored repeated
measures) and provides a general approach to asymptotic theory and computation. Although the power
of empirical process theory is not doubted, the loss of the key concept of ‘history’, which is central to
martingale theory, is lamentable. More particularly, are these large unifying models simply too big to be
useful? If model (4) were widely used, how would one perform a meta-analysis based on published results?
The following issues all relate to parameter identifiability, interpretation and approximation (McCullagh,
2002).

(a) In the transformation model (1), the scale is fixed by the error distribution. Since different distri-
butions have different variances, the magnitude of the parameter β has no common interpretation.
Would constraining the variance of " help interpretation of β (Chen et al., 2002a; McCullagh,
2002)?
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Fig. 8. Kaplan–Meier estimates of survival from cancer recurrence to death in the colon cancer example
(a) showing how the survival from recurrence is shorter in those who had recurrence earlier ( , <121 days;
– – –, 121–365 days; - - - - - - - , 366–730 days; � — �, >730 days) and (b) showing how the survival from recur-
rence is worse in those in the treatment arm (although overall survival is better owing to the much bigger
beneficial effect of treatment on recurrence) ( , treat = 0; – – –, treat = 1)
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(b) In general, since the interpretation of the regression parameters β depends on the transformation
H , there are difficulties in interpreting confidence intervals that take into account the uncertainty
in H (Bickel and Doksum, 1981; Hinkley and Runger, 1984). There are exceptions: notably, when
the error is extreme value or logistic, β has a natural interpretation that does not depend on H.

(c) In model (4), one cannot even interpret the sign of β without taking into account γ and Λ. In such
circumstances the focus will turn to estimating functionals such as Pr.T1 < T2|Z1, Z2/ or E.T2 −
T1|Z1, Z2/. What then is the advantage of model (4) over non-parametric estimation?

(d) Is model (7) simply too big? As illustrated by Fig. 2, the likelihood can be quite flat with multiple local
maxima. In such circumstances we might prefer a suboptimal model with a simpler interpretation
that captures the main features of the data. A hierarchy of models would be useful in practice.

(e) Given that the likelihood is not (even asymptotically) convex, can we be sure that the solution to
the score equation that is used in the M-step will lead to a consistent estimator?

(f) The model that was used to analyse the colon cancer data treats cancer and death symmetrically
despite the fact that there were no cases of death without recurrence. It is of clinical interest to note
that the time from recurrence to death is
(i) strongly correlated with the time to recurrence (Fig. 8) and
(ii) decreased by treatment.

L. Tian (Northwestern University, Evanston) and L. J. Wei (Harvard School of Public Health, Boston)
We thank Professor Zeng and Professor Lin for providing us practically useful, theoretically justifiable
inference procedures for a general class of semiparametric models via the maximum likelihood principle.
Their proposals are far reaching and can handle various classical challenging problems in survival and
longitudinal data analysis. When the fitted model is correctly specified, the resulting estimation procedure
is asymptotically efficient. Moreover, unlike other ad hoc methods dealing with censored data, theirs is
valid without much restriction on the distribution of the censoring variable. The authors also showed that
the non-parametric maximum likelihood estimator (NPMLE) is numerically tractable at least when the
number of observed failure times is not too large. An alternative way to obtain an approximation to the
distribution of the NPMLE of the Euclidean parameter θ0 is to draw random samples repeatedly from
the density function proportional to exp{−pln.θ/}, where pln.·/ is the profile log-likelihood function. The
realizations of these random samples can be generated via a Markov chain Monte Carlo sampler (Lee
et al., 2005).

The authors concluded that ‘there is no reason, theoretical or numerical, not to use maximum likelihood
estimation for semiparametric regression models’. However, a fitted model is probably an approximation
to the true model. It is possible that the NPMLE may not converge under a working model. Moreover,
generally the robust ‘sandwich variance estimate’ for the NPMLE is difficult to obtain owing to a lack
of an explicit score function. Furthermore, for evaluating a working model, first we fit the data with the
model and then validate it by using, for example, a function D, which measures the average distance
between the observed and the model-based predicted responses. Preferably this distance function can be
easily interpretable, say, with respect to the scale of the response variable. For example, we may use an
R2-type measure or the absolute prediction error as a possible candidate for D (Uno et al., 2007; Tian
et al., 2007). We then use the sampling distribution of an estimated D to evaluate the adequacy of the fitted
model. However, a likelihood-based validation criterion may not be easy to interpret. Therefore, to make
a coherent package from model estimation to validation, we may prefer to use certain moment-based
estimates for the regression parameters.

Lastly, we may take the above approach to compare different working models, e.g. to examine whether
a normal random-effects model is better than a gamma frailty counterpart or a parametric model is better
than a semiparametric counterpart.

Keming Yu and Shanchao Yang (Brunel University, Uxbridge, and Guangxi Normal University, Guilin)
and Ali Gannoun (Conservatoire National des Arts et Métiers, Paris)
This is an impressive piece of work; the idea may motivate some new research for quantile regression in
survival analysis. Whereas a conditional survival function at time t represents the proportion of those con-
ditionally surviving up to time t, a pth .0<p<1/ conditional quantile function provides the earliest time by
which the proportion p have died. Let Qh.T/.p|Z, Z̃/ be the pth conditional quantile of h.T/. First, although
it is difficult to find a parametric transformation to achieve normality for a standard linear mixed model
or to leave the unknown transformation function under a semiparametric version (10), quantile regression
has the feature of equivalance to monotone transformation, i.e. Qh.T/.p|Z, Z̃/ = h{QT .p|Z, Z̃/} for any
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monotone function h, so we can simply select a transformation such as the Box–Cox transformation to
apply. In fact, whatever the parametric monotone transformation h to achieve normality of the response
variable, we shall transform it back to obtain QT .p|Z, Z̃/=h−1{Qh.T/.p|Z, Z̃/}. Second, in the context of
this paper we may propose semiparametric quantile models in different stages. For example, corresponding
to the heteroscedastic version of linear transformation models H.T/=−βTZ+ exp.−γTZ̃/", we may have
their quantile versions as Qh.T/.p|Z, Z̃/ = −β.p/TZ + exp{−γ.p/TZ̃} (Chaudhuri et al., 1997; Koenker
and Geling, 2001), where parameters β.p/ and γ.p/ depend on p (the monotonicity of Qh.T/.p|Z, Z̃/ over
p may be required). Corresponding to those new cumulative intensity functions in equations (3) or (4), the
new quantile regression models can be derived as follows: from

log[−log{P.T>t|Z/}]=βT Z.s/+γTZ̃ + exp.γTZ̃ −1/

[
1+

∫ t

0
exp{βT Z.s/}dΛ.s/

]
Λ0.t/,

where λ.t/ is the base-line hazard function and Λ0.t/= ∫ t

0 λ.s/ ds, we have that Qh.T/.p|Z, Z̃/ satisfies the
equation

Qh.T/.p|Z, Z̃/=Λ−1
0

(
[log{− log.1−p/}−βT Z.s/−γTZ̃] exp.1−γTZ̃/

1+
Qh.T/.p|Z, Z̃/∫

0

exp{βT Z.s/}dΛ.s/

)
:

Then Qh.T/.p|Z, Z̃/ could be estimated on the basis of the ‘check function’ or ‘loss function’ ρ.u/=u{p−
I.u< 0/} (Portnoy, 2003; Gannoun and Yu, 2007) with proper non-linear optimization.

The authors replied later, in writing, as follows.

We are delighted with the unusually large number of contributions from such a diverse group of researchers.
We thank all the discussants for taking the time to read our paper and to prepare constructive com-
ments. We are particularly grateful to those who travelled from outside the UK to attend the Ordinary
Meeting. For brevity, it is not feasible to respond to all the points that were raised. We shall focus on some
common themes.

This year marks the 35th anniversary of Cox’s (1972) landmark paper on proportional hazards regres-
sion, which is the foundation of our work. We are deeply honoured by Sir David Cox’s participation in the
meeting and the discussion. As always, his comments are extremely insightful and pertinent. We share his
views on hazard and accelerated failure time modelling, contrast between proportionality and additivity,
and general versus specific models.

Several discussants, particularly Prentice and Sasieni, question the usefulness of transformation mod-
els. We wish to reiterate that we are not advocating abandonment of the Cox model, but rather extension
of this highly useful model to provide additional modelling capabilities. Although we have presented
our models in very general and somewhat abstract forms, any specific application will probably involve
only a subset of the models with simpler representation. Most studies are concerned with single events
with time invariant covariates, in which setting the class of linear transformation models that is given in
equation (1) or its heteroscedastic version that is given above equation (3) would suffice. Although cast
within the framework of transformation models, the paper contains new development for the Cox regres-
sion, such as Cox models with non-gamma random effects and the joint modelling of repeated measures
and failure times via the semiparametric linear mixed model and the Cox model with normal random
effects.

There seems to be a general agreement that the proportional hazards assumption should be challenged
in practice. Several discussants, including Cox, Breslow, Farewell and Tom, Fine, Kalbfleisch and Xu, and
Prentice, recommend adjustment of non-proportionality through the use of manufactured time varying
covariates in the form of Z f.t/, where f.t/ is a known function, such as t or log.t/. This approach can be
quite useful, especially if we wish to stay within the hazard modelling framework, but it is rather restrictive
and data driven. Finding the right form of f can be challenging, particularly when there are multiple con-
tinuous covariates. If a linear transformation model, such as the proportional odds model, truly captures
the non-proportionality, then that model would provide more concise summarization of the data than the
Cox model with manufactured time varying covariates. As Breslow points out, the log-hazard ratio takes
the form of a+b log.t/ under the two-sample Cox model with f.t/= log.t/ and the form of a+b log{Λ.t/}



Discussion on the Paper by Zeng and Lin 559

under model (3). The latter formulation is actually more appealing since it is non-parametric and scale
invariant.

The familiar linear model form of equation (1) is more intuitive than the hazard formulation, especially
when the response variable does not pertain to failure time. The choice of the extreme value distribution
for " yields the proportional hazards model. If the true error distribution is not extreme value, then we
should use whatever the true distribution is rather than abandoning this attractive formulation.

Equation (1) can be expressed as g{Sz.t/}=H.t/+βTZ, where Sz.·/ is the conditional survival function of
T given Z, and g.·/ is a known link function. The choices of g.x/= log{− log.x/} and g.x/= log{x=.1−x/}
yield the proportional hazards and proportional odds models respectively. These two models are analogous
to the binary data regression models with the complementary log–log- and logit link functions. If the true
link function is logit, it would not be sensible to insist on using the complementary log–log-link function
and trying to correct for the misspecification of the link function by incorporating interaction terms.

Both equation (1) and its survival function representation show that linear transformation models char-
acterize directly the effects of covariates on the ultimate outcome, i.e. survival time or survival probability.
By contrast, hazard is a conditional concept and the effects of covariates on the survival time under the
Cox model with (manufactured) time-dependent covariates is not transparent. A few discussants, par-
ticularly Henderson, Martinussen and Scheike, Farewell and Tom, and Prentice, are concerned that the
effects of covariates on the hazard function may not be clear under transformation models. But we should
not confine ourselves to a hazard interpretation, especially when the hazards are not proportional and
alternative formulations lead to more parsimonious models.

Hutton remarks that accelerated failure time models are more useful than proportional hazards mod-
els in certain medical applications and can accommodate non-proportional hazards through appropriate
choices of the error distribution. Her comments further support the use of linear transformation models,
which are the same as parametric accelerated failure time models except that the transformation of the
failure time is unspecified.

Several discussants, particularly Breslow, Fine and Farrington, Hocine and Moreau, query the inter-
pretation of the regression parameters in the gastric cancer example. In that example, model (3) takes a
simple form

H.T/=−βZ + exp.−γZ/",

where " has the extreme value distribution. This is just a heteroscedastic linear regression model. The
model can also be written in terms of the cumulative hazard function

Λ.t|Z/={exp.βZ/Λ0.t/}exp.γZ/,

which is a semiparametric version of the Weibull regression model in which β and γ represent the effects of
the combination therapy on the scale and shape of the failure time distribution respectively. Under model
(4), the hazard ratio is

exp.β+γ/{1+ exp.β/Λ0.t/}exp.γ/−1,

which reduces to equation (14) in Henderson’s contribution under Λ0.t/= t. As explained by Henderson,
the interpretation of β and γ is fairly straightforward in this case. We agree with Hutton and Farrington,
Hocine and Moreau that it would be desirable to identify factors that cause crossing hazards.

For recurrent events and time varying covariates, it is necessary to formulate the transformation models
in terms of hazard. Then the interpretation of the regression parameters indeed may not be simple, and
the main advantages of the transformation models may lie in prediction. Regression analysis has tradi-
tionally been focused on individual regression parameters. Inference on individual regression parameters
can be quite misleading when covariates are correlated. More emphasis should be placed on prediction,
i.e. on characterizing how different covariates act together to affect the ultimate outcomes. For purposes
of prediction, it is desirable to use the most accurate model. For that, rich classes of models such as those
presented in our paper are highly valuable, as alluded by Cox.

As Sasieni and Li point out, the interpretation of the regression parameters and variance components
generally depend on the transformation function. In the special cases of the proportional hazards and
proportional odds models, the regression parameters have simple interpretation. Thus, we recommend the
use of those two models as long as they provide reasonable approximations.

Henderson and Fine mention the Cox model with time varying regression coefficients. This is a nice way
of visualizing the effects of covariates on the hazard function over time. It is, however, very difficult to esti-
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mate the time varying coefficients well. Indeed, such parameters cannot be estimated at the usual n1=2-rate
and non-parametric smoothing is required. The proportional odds model with time varying regression
coefficients that was suggested by Martinussen and Scheike encounters the same difficulties. Additive haz-
ards models with time varying regression coefficients are easier to deal with; however, additive models do
not constrain the hazard functions to be positive, as noted by Cox.

The advantages of the non-parametric maximum likelihood estimators (NPMLEs) have been discussed
at great length in the paper, and we shall not repeat our arguments. As Borgan points out, partial likelihood
provides a simple, although inefficient, approach to analysing nested case–control data. This approach
applies only to the Cox model and is intractable when covariates are measured with error, whereas the
NPMLE is more broadly applicable. As demonstrated by Zeng et al. (2006), NPMLEs provide a unified
framework for efficient semiparametric inference under the nested case–control and case–cohort designs.

Fine and Prentice find marginal models conceptually more appealing than random-effects models. This
view is not universally adopted. Indeed, random-effects models are more desirable than marginal models
when the response for an individual rather than for the population is the focus (Zeger et al., 1988). The
advantages of random-effects models over marginal models are discussed in Section 7 of our paper.

We share Scheike and Martinussen’s sentiment that one should use the random-effect distribution that
provides the best description of the correlation. Unfortunately, it is difficult to determine the true distribu-
tion of random effects empirically. The advantages of the normal random effects are described in the paper.
Normal random effects are particularly natural in joint modelling of repeated measures and failure times.

We agree with Aalen that counting process martingale theory is a very important conceptual framework
for formulating the effects of potentially time varying covariates on event history under general censor-
ing mechanisms. Our remarks about the limitations of this tool pertain only to the proofs of asymptotic
results. As Aalen points out, counting process martingale theory provides a very simple approach to under-
standing the properties of standard survival analysis methods, such as Kaplan–Meier and Nelson–Aalen
estimators, log-rank tests and Cox regression analysis. Thus, most graduate courses in survival analysis
theory are currently taught from the counting process martingale point of view. Once the students start
working on their theses, however, they realize that this elegant theory cannot be used to solve cutting edge
research problems whereas empirical process theory is much more powerful.

Andersen is right that the construction of the likelihoods makes the standard assumption of indepen-
dent and non-informative censoring. The theoretical results in the paper cover random left truncation
under suitable regularity conditions. In the presence of internal time varying covariates, likelihoods given
in expressions (5) and (8) are indeed only partial likelihoods and the EM algorithms may not apply. Like
the standard Cox regression analysis, our methods require that time varying covariates be measured at all
observed event times.

Since the scope of our paper is very broad, it is impossible to cite all relevant papers. Kosorok et al.
(2004) is discussed in remark 3 of the paper. The h-likelihood that was mentioned by Nelder, Lee and Ha
is very intriguing. It is unclear whether this approach will provide numerically accurate and statistically
efficient estimators in the semiparametric setting that is considered in our paper.

Tsodikov provides very nice insights into the convergence properties of the semiparametric EM algo-
rithms that are employed in our paper. The robust variance scoring algorithm that was mentioned by
Commenges is promising and worth trying. It would also be worthwhile to explore the profile sampler and
piggyback bootstrap procedures that were mentioned by Kosorok as well as Tian and Wei.

Bickel and Henderson bring up the issue of estimating the transformation parameter. This issue is briefly
discussed in Section 7 and is carefully studied in Zeng and Lin (2007), which shows that the transforma-
tion parameter can be estimated reliably from the data and the variability of the estimator can be properly
accounted for.

One potential use of the transformation models is to test the proportional hazards model since the latter
is embedded in the former. Specifically, we can check the proportional hazards assumption by testing ρ=0
under the Box–Cox transformation or by testing γ=0 under model (3) or (4) with G.x/=x. This can be
done by the Wald, score or likelihood ratio statistics. The score statistics that were proposed by Philipson
and Ho make the unnecessary assumption that β and Λ0 are known. As Farrington, Hocine and Moreau
point out, Quantin et al. (1996) proposed a score statistic to test γ= 0 in model (3) with G.x/=x. Their
statistic does not seem to account properly for the variability due to the estimation of the cumulative
base-line hazard function.

Fig. 2 seems to have confused Sasieni as well as Kalbfleisch and Xu. This figure is actually a concat-
enation of four separate plots for the four classes of bivariate transformation models. For each class of
models, the likelihood appears to be convex.
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We are pleased to see the interesting extension of our work to doubly censored data that was presented by
Chen and Ying and the application of the transformation models to quantile regression that was described
by Yu and Yang. It should be possible to apply our theory to the problem that was described by Cuzick.
By imposing appropriate constraints on the jump sizes of Λ.·/ to reflect periodicity, our results should
also be applicable to the problem that was outlined by Ramesh and Davison. Fine as well as Farrington,
Hocine and Moreau suggest the use of different timescales, such as the gap times between successive events.
By formulating the dependence of the gap times through random effects, our framework can cover such
models. The non-parametric transformation model that was mentioned by Bickel and the non-parametric
random-effects distribution that was mentioned by Horowitz are very challenging problems, and it is
unclear whether the NPMLE is feasible in either case.
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