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In this article we study a class of semiparametric transformation models with random effects for the intensity function of the counting
process. These models provide considerable flexibility in formulating the effects of possibly time-dependent covariates on the developments
of recurrent events while accounting for the dependence of the recurrent event times within the same subject. We show that the nonparametric
maximum likelihood estimators (NPMLEs) for the parameters of these models are consistent and asymptotically normal. The limiting
covariance matrices for the estimators of the regression parameters achieve the semiparametric efficiency bounds and can be consistently
estimated. The limiting covariance function for the estimator of any smooth functional of the cumulative intensity function also can be
consistently estimated. We develop a simple and stable EM algorithm to compute the NPMLEs as well as the variance and covariance
estimators. Simulation studies demonstrate that the proposed methods perform well in practical situations. Two medical studies are provided
for illustrations.
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1. INTRODUCTION

Recurrent-events data are commonly encountered in scien-
tific studies because each study subject may repeatedly expe-
rience a certain phenomenon. Medical examples of recurrent
events are multiple infection episodes and tumor recurrences.
Other examples include repeated breakdowns of a certain ma-
chinery in reliability testing and repeated purchases of a certain
product in marketing research. In such studies, investigators are
interested in evaluating the effects of covariates (e.g., treatment
assignments and demographic characteristics) on the recurrent
event times and in predicting the developments of future events
given past event histories. The statistical analysis is complicated
by the presence of censoring (due to subject withdrawals and
study termination), as well as the potential dependence of the
recurrent event times within the same subject.

It is natural and convenient to represent the recurrent event
times as a counting process. The most popular counting-process
model is the proportional intensity model studied by Andersen
and Gill (1982). Let N∗(t) denote the number of events that the
subject has experienced by time t, and let X(t) be a vector of
possibly time-dependent covariates. The proportional intensity
model specifies that the intensity function for N∗(t) associated
with X takes the form

λ(t|X) = λ0(t)e
βT X(t), (1)

where λ0(·) is an unspecified baseline intensity function and β

is a vector of unknown regression parameters. The maximum
partial likelihood estimator for β and the corresponding Aalen–
Breslow estimator for �0(t) ≡ ∫ t

0 λ0(u)du are consistent and
asymptotically normal (Andersen and Gill 1982).

Under model (1), the occurrence of an event is independent
of any earlier events that occurred to the same subject unless
X(t) includes the past history. It is difficult to model correctly
the intraclass correlation through time-dependent covariates.
Furthermore, it is not appropriate to use such time-dependent
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covariates when assessing treatment effect in randomized clini-
cal trials, because the inclusion of postrandomization response
in the model would attenuate the estimator of treatment effect.

A useful approach to accommodating the dependence of the
recurrent event times within the same subject is to incorporate
a random effect or frailty ξ into (1),

λ(t|X; ξ) = ξλ0(t)e
βT X(t) (2)

(e.g., Nielsen, Gill, Andersen, and Sorenson 1992; Oakes
1992). This frailty may represent the intraclass correlation in
lieu of or in addition to time-dependent covariates. The pres-
ence of frailty poses considerable challenges in statistical infer-
ence. To date, rigorous asymptotic theory has been established
only for the special case of gamma frailty without covariates
(Murphy 1994, 1995). Unfortunately, gamma frailty induces a
very restrictive form of dependence. Furthermore, the propor-
tional intensity assumption (i.e., the multiplicative relationship
between the baseline intensity function and the exponential re-
gression function) may not be satisfied in applications.

In this article we propose a broad class of intensity models
with random effects that accommodates nonproportional inten-
sity and allows various frailty distributions. Specifically, the cu-
mulative intensity function for N∗(t) takes the form

�(t|X,Z;b) = G

(∫ t

0
λ(s)eβT X(s)+bT Z(s) ds

)
, (3)

where β is a set of unknown regression parameters, b is a set
of random effects with density function ψ(b;γ ) indexed by
parameters γ , X and Z are the covariate processes associated
with the fixed and random effects, λ(·) is an arbitrary posi-
tive function, and G(·) is a thrice continuously differentiable
and strictly increasing transformation function with G(0) = 0
and G(∞) = ∞. Note that X(t) and Z(t) are possibly time-
dependent and may include covariates derived from the event
history before time t.

There are considerable flexibilities in choosing the transfor-
mation G and the distribution of the random effects ψ(b;γ ). In
particular, one may specify the multivariate normal distribution
for ψ , which, unlike the gamma distribution, has an unrestricted
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covariance structure. Various of covariate effects can be formu-
lated through the class of Box–Cox transformations,

G(x) =
{ {(1 + x)ρ − 1}/ρ, ρ > 0

log(1 + x), ρ = 0.

If ρ = 1, then (3) reduces to the proportional intensity model
with random effects, in which case the effects of covariates on
the intensity function are constant over time. For ρ > 1, the
covariate effects increase over time; for ρ < 1, the covariate
effects decrease over time. Another useful class of transforma-
tions is

G(x) =
{

log(1 + rx)/r, r > 0
x, r = 0.

For r > 0, the covariate effects always decrease over time, with
a higher rate of decrease for larger r. Misspecification of the
transformation would lead to incorrect characterization of the
covariate effects over time, as well as biased prediction of the
occurrence of events over time.

If an important covariate is omitted from the proportional
hazards model, then the resulting model will be a transforma-
tion model. Various transformations can be derived by postu-
lating different distributions for the omitted covariate. Kosorok,
Lee, and Fine (2004) studied such transformation models. The
class of models given in (3) extends the transformation mod-
els for univariate survival data to recurrent events. These mod-
els not only involve transformations, but also contain random
effects characterizing the dependence of recurrent event times
within the same subject. The characterization of the intraclass
correlation through random effects adds considerable complex-
ity to the statistical inference.

It is more challenging, both theoretically and computation-
ally, to deal with the class of models given in (3) rather than
with model (2). We show that the nonparametric maximum
likelihood estimators for the parameters of (3) are consistent,
asymptotically normal, and asymptotically efficient by appeal-
ing to modern empirical process theory (van der Vaart and
Wellner 1996) and semiparametric efficiency theory (Bickel,
Klaasen, Ritov, and Wellner 1993). In addition, we develop a
simple EM algorithm to compute the maximum likelihood esti-
mators (MLEs) and their variances and covariances. Finally, we
demonstrate through simulation studies and real examples that
the proposed methods work well in practical situations.

2. INFERENCE PROCEDURES

2.1 Nonparametric Maximum Likelihood Estimation

Recurrent-event times are commonly subject to right cen-
soring. Let C denote the censoring time. For a random sam-
ple of n subjects, the data consist of {Xi(·),Zi(·),Ni(·),Yi(·)},
i = 1, . . . ,n, where Ni(t) = N∗

i (t ∧ Ci), Yi(t) = I(Ci ≥ t), and
I(·) is the indicator function. We wish to use these data to make
inference about θ , which is a d × 1 vector of parametric com-
ponents in model (3), and �(t) ≡ ∫ t

0 λ(s)ds, the nonparametric
component.

Let τ denote the duration of the study. We assume that the
conditional probability of C > t given {X(s),Z(s),N∗(s); s ∈
[0, τ ]} and b depends only on {X(s),Z(s); s ≤ t} and is nonin-
formative about (�, θ). In addition, we assume that the con-
ditional distribution of {X(t),Z(t)} given {X(s),Z(s),N(s),

Y(s); s < t} is noninformative about (�, θ). The first assump-
tion pertains to the assumption of coarsening at random and
reduces to the two conditions of Andersen, Borgan, Grill, and
Keiding (1993, p. 665) in the absence of covariates. The second
assumption, which implies that no information on the parame-
ters can be extracted from the covariates process, is required in
any regression analysis.

Under the foregoing assumptions, the log-likelihood function
concerning the parameters (�, θ) is

n∑
i=1

log
∫

b

∏
t≤τ

{
Yi(t)λ(t)eβT Xi(t)+bT Zi(t)

× G′
(∫ t

0
Yi(s)e

βT Xi(s)+bT Zi(s) d�(s)

)}�Ni(t)

× exp

{
−G

(∫ τ

0
Yi(t)e

βT Xi(t)+bT Zi(t) d�(t)

)}
ψ(b;γ )db,

where G′ denotes the derivative of G and �Ni(t) denotes the
jump of Ni at t. The maximum of this function does not exist
if �(·) is restricted to be absolutely continuous. Thus we allow
�(·) to be any increasing right-continuous function and replace
λ(t) with the jump size of � at time t, denoted by �{t}. We then
maximize the modified log-likelihood function

ln(�, θ) =
n∑

i=1

log
∫

b

∏
t≤τ

{
Yi(t)�{t}eβT Xi(t)+bT Zi(t)

× G′
(∫ t

0
Yi(s)e

βT Xi(s)+bT Zi(s)d�(s)

)}�Ni(t)

× exp

{
−G

(∫ τ

0
Yi(t)e

βT Xi(t)+bT Zi(t) d�(t)

)}
× ψ(b;γ )db (4)

over � and θ , treating �(·) as a step function with jumps at the
observed event times Tij (i = 1, . . . ,n; j = 1, . . . ,ni), where ni
is the number of observed events on the ith subject. This max-
imization is equivalent to maximizing (4) over θ and �{Tij}
(i = 1, . . . ,n; j = 1, . . . ,ni). The existence of the maximum
is shown in Appendix A. The resulting nonparametric MLEs
(NPMLEs) for � and θ are denoted by �̂n and θ̂n.

2.2 Asymptotic Results for Known Transformations

We describe the asymptotic properties of the NPMLEs when
the transformation G is completely specified, in which case θ =
(βT ,γ T)T . Denote the true values of �(t) and θ by �0(t) and
θ0. We impose the following conditions:

• Condition 1. The function �0(·) is strictly increasing and
continuously differentiable with �′

0(t) > 0, and θ0 lies in
the interior of a known compact set in the domain of θ .

• Condition 2. With probability 1, X(·) and Z(·) have
bounded total variations in [0, τ ]. In addition, the fol-
lowing identifiability conditions hold: (a) If there ex-
ists a vector µ and a deterministic function α0(t) such
that α0(t) + µTX(t) = 0 with probability 1, then µ = 0
and α0(t) = 0; (b) P{Z(t)T Z(t) is full rank for some t ∈
[0, τ ]} > 0; (c) ψ(b;γ ) = ψ(b;γ 0) for almost every b im-
plies that γ = γ 0; (d) if ψ ′(b;γ 0)

Tvγ = 0 almost every-
where for b, where ψ ′(b;γ ) is the derivative of ψ with
respect to γ , then vγ = 0.
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• Condition 3. With probability 1, there exists a positive con-
stant δ such that P{C ≥ τ |X(t),Z(t); t ∈ [0, τ ]} > δ.

• Condition 4. There exist a constant α and a function µ(·)
such that for any 0 < x1 < x2 < · · · < xm < y < τ ,

m∏
i=1

{(1 + xi)G
′(xi)} ≤ µ(m)(1 + y)−α exp{G(y)}

and E[logµ(N∗(τ ))] < ∞.
• Condition 5. For any finite K, K1, and K2,

sup
γ

(∫
b

eK|b|∣∣ψ(m)(b;γ )
∣∣db

+ E

[
log

∫
e{K1+K2N∗(τ )}|b|∣∣ψ(m)(b;γ )

∣∣db
])

< ∞

for m = 0,1,2, where ψ(m) is the mth derivative of ψ with
respect to γ .

Remark 1. Parts (a) and (b) of Condition 2 are standard
assumptions for (random-effects) regression models. Part (c)
means that the parameterization of the random-effects distrib-
ution is unique, whereas (d) means that the information matrix
for the random-effects distribution is nonsingular. This condi-
tion is trivially satisfied by all commonly used distributions.
Condition 3 implies that there is a positive probability for the
events to be observed in the time interval [0, τ ]. Condition 4
covers all commonly used transformations. In particular, the
classes of Box–Cox transformations and logarithmic transfor-
mations mentioned in Section 1 satisfy this condition because
of the inequalities

m∏
i=1

(1 + xi)
ρ ≤ (1 + y)m

≤ [2m/ρ]!ρ[2m/ρ]e1/ρ(1 + y)−1/ρe[(1+y)ρ−1]/ρ

and
m∏

i=1

(1 + xi)

1 + rxi
≤ {max(1/r,1)}m

min(r,1)1/r
(1 + y)−1/r(1 + ry)1/r.

It can be shown that the transformations given by Kosorok et al.
(2004), which are derived as

∫
e−ξx dF(ξ) with F(ξ) follow-

ing the inverse-Gaussian, gamma, and other distributions, also
satisfy Condition 4. Condition 5 is satisfied by the normal,
mixture-normal, and other distributions with tails less heavy
than exponential. Thus any combination of the aforementioned
transformations and random-effects distributions would satisfy
all of the conditions.

The consistency of the NPMLEs (�̂n, θ̂n) is stated as fol-
lows.

Theorem 1. Under Conditions 1–5, |̂θn −θ0| → 0 and ‖�̂n −
�0‖l∞[0,τ ] → 0 almost surely, where ‖ · ‖l∞[0,τ ] is the supre-
mum norm in the interval [0, τ ].

The proofs of this theorem and others are given in Appen-
dix A.

To describe the asymptotic distribution, we define Q =
{q(t) : q(t) ∈ BV[0, τ ],‖q‖BV[0,τ ] ≤ 1}, where BV[0, τ ] denotes
the set of functions with bounded total variations and ‖q‖BV[0,τ ]

denotes the total variation of q(t) in [0, τ ]. Then �̂n(t) can be
considered as a bounded linear functional in l∞(Q) by the de-
finition �̂n(q) = ∫ τ

0 q(t)d�̂n(t). Thus (�̂n − �0, θ̂n − θ0) is
treated as a random element in the metric space l∞(Q) ×Rd .

Theorem 2. Suppose that Conditions 1–5 hold. Then
√

n ×
(�̂n − �0, θ̂n − θ0) converges weakly to a mean-0 Gaussian
process in the metric space l∞(Q) × Rd . In addition, the as-
ymptotic covariance matrix of

√
n(̂θn − θ0) attains the semi-

parametric efficiency bound.

Theorem 2 implies that
√

n(�̂n − �0) and
√

n(̂θn − θ0)

are asymptotically normal. Estimating their asymptotic vari-
ances is useful. These statistics can be expressed in the form√

n
∫ τ

0 q(t)d(�̂n − �0) + √
nuT (̂θn − θ0), where q(t) ∈ Q

and u ∈ Rd . Denote the random element in the limiting dis-
tribution by (B,V) ∈ l∞(Q) × Rd . Then the random vari-
able

√
n
∫ τ

0 q(t)d(�̂n − �0) + √
nuT (̂θn − θ0) is asymptoti-

cally normal with mean 0 and variance var(B[q] + uTV), and
this normal approximation is uniform in q and u. To esti-
mate the variance, we view (4) a parametric log-likelihood
with �{Tij} (i = 1, . . . ,n; j = 1, . . . ,ni) and θ the parameters.
Then, according to the parametric likelihood theory, the as-
ymptotic covariance matrix for these parameters can be esti-
mated by the inverse of the observed information matrix. The
observed information matrix is equal to the negative Hessian
matrix of (4) at �̂n{Tij} (i = 1, . . . ,n; j = 1, . . . ,ni) and θ̂n,
which is denoted by nIn. Thus, the asymptotic variance of√

n
∫ τ

0 q(t)d(�̂n − �0) + √
nuT (̂θn − θ0) is equal to that of√

n
∑n

i=1
∑ni

j=1 q(Tij)�̂n{Tij} + √
nuT (̂θn − θ0), which is es-

timated by V̂n ≡ (qT ,uT)I−1
n (qT ,uT)T , where q consists of

q(Tij) (i = 1, . . . ,n; j = 1, . . . ,ni). The following theorem jus-
tifies the proposed variance estimator.

Theorem 3. Under Conditions 1–5, supq∈Q,|u|≤1 |V̂n −
var(B[q] + uTV)| → 0 in probability.

The results in the foregoing theorems allow us to make
inference about θ and �, and in fact about any Hadamard-
differentiable functional of � and θ . In particular, the condi-
tional survival function for the second recurrence time T2 given
that the first recurrence time T1 is equal to t1 for a subject with
covariate values x and z is estimated consistently by∫

b
exp

{
G

(∫ t1

0
eβ̂

T
n x(s)+bT z(s) d�̂n(s)

)
− G

(∫ t

0
eβ̂

T
n x(s)+bT z(s) d�̂n(s)

)}
ψ(b; γ̂ n)db

for t > t1. The variance of this estimator can be consistently
estimated according to Theorem 3 and the functional δ-method.

Remark 2. An alternative approach to estimating the asymp-
totic covariance matrix of θ̂n is with the profile log-likelihood
function (Murphy and van der Vaart 2000), in which the neg-
ative second-order numerical difference of the profile log-
likelihood function at θ̂n is used to estimate the inverse covari-
ance matrix. This approach, however, does not provide variance
estimation for �̂n, which is an important limitation because pre-
diction of recurrent events is highly desirable under transforma-
tion models.
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2.3 Asymptotic Results for Unknown
Transformation Parameters

Suppose that the transformation G belongs to a one-parame-
ter family, {Gη :η ∈ (a0,b0)}, where a0 and b0 are finite bounds
for η. In this case, θ = (βT ,γ T , η)T . We assume that Condi-
tions 1, 3, and 5 hold and that Condition 4 holds for α and µ(·)
regardless of the value of η. In addition, we impose a stronger
version of Condition 2:

• Condition 2′. With probability 1, X(·) and Z(·) have
bounded total variations in [0, τ ]. In addition, the follow-
ing identifiability conditions hold: (a) if there exists a vec-
tor µ and a constant α0 such that α0 + µTX(0) = 0 with
probability 1, then µ = 0 and α0 = 0; (b) P{Z(0)TZ(0) is
full rank} > 0; (c) ψ(b;γ ) = ψ(b;γ 0) for almost every b
implies that γ = γ 0; and (d) if ψ ′(b;γ 0)

T vγ = 0 almost
everywhere for b, then vγ = 0.

When covariates are time-independent, Condition 2 and Con-
dition 2′ are the same. The linear independence of covariates at
time zero was also imposed by Kosorok et al. (2004). We re-
quire some smoothness conditions for the transformation with
respect to its parameter η:

• Condition 6′. Gη is twice-continuously differentiable with
respect to η; G′

η(0) = 1, Ġ′
η(0) = 0, and Ġ′′

η(0) < 0, where

Ġη denotes the derivative of G with respect to η.

Remark 3. Condition 6′ is similar to, but slightly weaker than
the last condition of (D1) of Kosorok et al. (2004). It is easy to
show that this condition holds for the two families of transfor-
mations mentioned in Section 1.

Theorem 4. Under Conditions 1, 2′, 3, 4, 5, and 6′, the con-
clusions of Theorems 1–3 hold.

2.4 Numerical Methods

The maximization of (4) can be achieved through various op-
timization algorithms, such as those implemented in MATLAB.
In Appendix B we describe a simple and reliable EM algorithm
(Dempster, Laird, and Rubin 1977) for calculating the NPMLEs
and their variance estimators for known transformations. In the
E-step, conditional expectations are evaluated through numeri-
cal integration, such as the Gaussian-quadrature approximation
for normal random effects. In the M-step, we are able to reduce
the number of equations to be solved to (d + 1) by taking ad-
vantage of a recursive formula for �̂n. To calculate the variance
estimators, it suffices to evaluate the observed information ma-
trix for θ̂n and �̂n{Tij} (i = 1, . . . ,n; j = 1, . . . ,ni). This is ac-
complished through the well-known formula of Louis (1982).

When the transformation parameter is unknown, we estimate
it along with other model parameters using the MATLAB opti-
mization algorithm fminunc. The variances and covariances can
be estimated by inverting the observed information matrix for
all of the parameters in the extended model or by using the pro-
file likelihood method.

3. SIMULATION STUDIES

We conducted extensive simulation studies to assess the per-
formance of the proposed methods. We generated recurrent
event times from the counting process with cumulative intensity

�(t|X1,X2;b) = G(�(t)e−.5X1+X2+b), where X1 is Bernoulli
with success probability .5, X2 = X1 + εI(|ε| < 1) + I(|ε| ≥
1), ε is standard normal, b is normal with mean 0 and vari-
ance σ 2, �(t) = α log(1 + t), and G(x) = {(1 + x)ρ − 1}/ρ
or log(1 + rx)/r. We generated censoring times from the uni-
form [2,6] distribution and set τ to 4. We chose ρ = 1 and .5
and r = .5 and 1, and set the corresponding values of (α,σ 2)

to (.2,1), (.2,2), (.5,4), and (.5,4), which yield, on average,
1.05, .98, 1.81, and 1.24 observed events per subject.

We used the proposed EM algorithm to calculate the
NPMLEs and used the inverse of the observed information ma-
trix to estimate the variances. We set the initial value of β to 0
and that of σ 2 to 1. In addition, we set the initial values for the
jump sizes of � to 1/n. For each combination of the simulation
parameters, we generated 1,000 replicates of data. It took less
than 2 days on an IBM BladeCenter HS20 machine to complete
all of the simulation studies given in Table 1. No convergence
problem was encountered in any simulation run.

Because � is nonnegative, we used the log-transformation in
constructing its confidence interval. Specifically, the 95% con-
fidence interval for �(t) is �̂n(t) exp[±1.96 × ŝe{log(�̂n(t))}],
where ŝe denotes the estimated standard error. In addition, we
used the Satterthwaite approximation (e.g., Burdick and Gray-
bill 1992) to construct the 95% confidence interval for σ 2:
(νσ̂ 2

n /χ2
ν,.975, νσ̂ 2

n /χ2
ν,.025), where ν = 2{̂σ 2

n /ŝe(̂σ 2
n )}2 and χ2

ν,α

is the α-quantile of the chi-squared distribution with ν degrees
of freedom.

As is evident in Table 1, the NPMLEs for β0 and �0(·) are
virtually unbiased, the variance estimators accurately reflect the
true variations, and the confidence intervals achieve proper cov-
erages. As expected, the asymptotic normal approximation for
σ̂ 2

n is not very accurate in small samples, although the proposed
inference procedures appear to perform reasonably well, at least
for n = 400.

To assess the consequences of misspecifying the transforma-
tion, we generated recurrent events from the foregoing propor-
tional odds model but fit the data with the proportional intensity
model. The biases of the estimators for β1 and β2 are approx-
imately .25 and −.5. The predicted numbers of events are also
biased, especially for large t.

In the second set of simulation studies, we generated data in
the same manner as in the first set but estimated the transfor-
mation parameters along with other parameters and accounted
for extra variation in the variance estimation. The results are
summarized in Table 2. As expected, it is difficult to estimate
the transformation parameters with good precision in moderate
samples. Treating the transformation parameters as unknown
versus known appears to have more impact on the estimation of
the variance components than on that of the other parameters.

4. EXAMPLES

We first consider a randomized clinical trial conducted to as-
sess the efficacy of rhDNase, a highly purified recombinant en-
zyme, in reducing exacerbations of respiratory symptoms for
patients with cystic fibrosis (Therneau and Hamilton 1997). A
total of 321 patients were assigned to rhDNase and 324 were
assigned to placebo. Most patients were followed for approx-
imately 170 days. By the end of follow-up, 65 patients in the
rhDNase group experienced 1 exacerbation and 39 experienced
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Table 1. Summary Statistics for the Simulation Studies With Fixed Transformations

n = 200 n = 400

G(x) Parameter True value Bias SE SEE CP Bias SE SEE CP

ρ = 1 β1 −.5 −.010 .315 .300 .937 −.005 .219 .212 .932
β2 1.0 .015 .206 .204 .941 −.002 .144 .141 .943
σ 2 1.0 −.029 .245 .253 .965 −.009 .160 .176 .960

�(τ/4) .139 .001 .034 .033 .932 .002 .024 .023 .947
�(τ/2) .220 .002 .052 .050 .940 .003 .036 .036 .950
�(τ ) .322 .003 .076 .072 .933 .004 .052 .052 .946

ρ = .5 β1 −.5 .007 .382 .387 .956 −.007 .277 .274 .939
β2 1.0 −.001 .255 .251 .956 .004 .180 .178 .943
σ 2 2.0 −.010 .486 .467 .972 −.048 .350 .332 .938

�(τ/4) .139 .008 .043 .042 .938 .004 .031 .029 .932
�(τ/2) .220 .011 .065 .065 .939 .007 .048 .045 .936
�(τ ) .322 .005 .095 .093 .946 .008 .069 .065 .940

r = .5 β1 −.5 −.026 .456 .454 .949 .007 .317 .322 .948
β2 1.0 .017 .278 .287 .957 −.008 .204 .203 .950
σ 2 4.0 −.134 .787 .773 .958 −.056 .543 .554 .962

�(τ/4) .347 .020 .115 .110 .944 .010 .078 .077 .953
�(τ/2) .549 .028 .180 .170 .940 .015 .123 .119 .947
�(τ ) .805 .039 .261 .247 .944 .021 .180 .173 .938

r = 1 β1 −.5 −.004 .510 .492 .954 −.002 .343 .353 .955
β2 1.0 .006 .317 .312 .942 −.001 .221 .223 .957
σ 2 4.0 −.287 .962 .951 .966 −.094 .706 .699 .953

�(τ/4) .347 .025 .128 .122 .940 .010 .088 .085 .946
�(τ/2) .549 .038 .201 .199 .937 .014 .137 .131 .945
�(τ ) .805 .054 .291 .272 .932 .019 .201 .189 .941

NOTE: Bias and SE correspond to the bias and standard error of the NPMLE; SEE, to the mean of the standard error estimator; and CP, to the coverage probability
of the 95% confidence interval.

at least 2 exacerbations; in the placebo group, 97 patients expe-
rienced 1 exacerbation and 42 experienced at least 2 exacerba-
tions.

The solid step curve in Figure 1 is the ratio of the nonpara-
metric estimates of mean frequencies of exacerbations between
the placebo and rhDNase groups. In view of the decreasing

Table 2. Summary Statistics for the Simulation Studies With Estimated Transformations

n = 200 n = 400

G(x) Parameter True value Bias SE SEE CP Bias SE SEE CP

ρ = 1 β1 −.5 .014 .285 .305 .956 .015 .199 .216 .960
β2 1.0 −.001 .221 .246 .955 −.009 .160 .171 .952
σ 2 1.0 −.007 .390 .372 .899 −.001 .280 .261 .891
ρ 1.0 .100 .465 .402 .856 .052 .286 .251 .848

�(τ/4) .139 −.001 .034 .035 .952 .001 .025 .025 .938
�(τ/2) .220 −.003 .049 .051 .956 −.001 .035 .036 .943
�(τ ) .322 −.004 .074 .073 .956 −.002 .049 .051 .955

ρ = .5 β1 −.5 .014 .379 .391 .959 .007 .279 .280 .949
β2 1.0 −.011 .279 .281 .941 −.004 .193 .201 .954
σ 2 2.0 −.009 .720 .722 .945 −.002 .514 .954 .940
ρ .5 .066 .260 .261 .907 .020 .159 .165 .926

�(τ/4) .139 .007 .045 .045 .934 .002 .031 .033 .953
�(τ/2) .220 .010 .065 .065 .940 .003 .046 .047 .942
�(τ ) .322 .009 .093 .092 .954 .005 .065 .065 .946

r = .5 β1 −.5 .015 .440 .450 .956 .014 .315 .320 .956
β2 1.0 −.021 .299 .298 .941 −.018 .217 .212 .940
σ 2 4.0 −.232 1.078 1.095 .960 −.167 .776 .788 .956
r .5 −.030 .121 .129 .965 −.015 .093 .093 .926

�(τ/4) .347 .016 .111 .107 .946 .011 .078 .076 .954
�(τ/2) .549 .015 .172 .165 .941 .013 .120 .117 .949
�(τ ) .805 .018 .256 .244 .944 .015 .179 .174 .946

r = 1 β1 −.5 .038 .490 .479 .953 .015 .345 .348 .958
β2 1.0 −.070 .332 .333 .924 −.037 .248 .244 .929
σ 2 4.0 −.552 1.352 1.442 .960 −.333 1.067 1.127 .962
r 1.0 −.132 .293 .329 .967 −.072 .240 .253 .964

�(τ/4) .347 .021 .117 .116 .964 .010 .085 .083 .951
�(τ/2) .549 .015 .185 .184 .967 .010 .139 .133 .953
�(τ ) .805 .001 .286 .285 .961 .005 .220 .210 .943

NOTE: See the note to Table 1.
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Figure 1. Ratio of the Mean Frequency Functions for the Placebo Group versus the rhDNase Group. The solid step curve pertains to the
nonparametric estimates. The other curves from the bottom up pertain to the model-based estimates for r = 0, .5, 1, 1.181, and 2. The values of
r = 0 and 1 correspond to the proportional intensity and proportional odds models.

trend over time, we fit the transformation intensity models with
a normal random effect and with the treatment indicator and
baseline level of forced expiratory volume per second (FEV1)
as the covariates. Figure 2 shows the log-likelihood values un-
der the Box–Cox and logarithmic transformations, whereas Fig-
ure 1 plots the ratios of the predicted frequencies of exacer-
bations between the placebo and rhDNase groups under vari-
ous transformations. Table 3 summarizes the estimation results.
The standard error estimates in the last column accounts for
the variation due to estimation of the transformation parame-
ter.

By the Akaike information criterion (AIC) (Akaike 1985),
which is tantamount to the log-likelihood value in this setting,
one would select the logarithmic transformation with r = 1.181.
Because r = 1 is fairly close to 1.181 (in terms not only of
numerical value, but also of the corresponding log-likelihood
value), and corresponds to the well-known proportional odds
model for survival data (Bennett 1983; Pettitt 1984), it is rea-
sonable to choose r = 1 for simplicity of interpretation. The
choice of r = 0 (i.e., ρ = 1), which corresponds to the propor-
tional intensity model, would clearly contradict the fact (shown
in Fig. 1) that the treatment effect diminishes over time rather
than staying constant, whereas the choice of r = 1 reflects this
time trend. As shown in Table 3, the prediction error is much
lower under the proportional odds model than under the pro-
portional intensity model.

Figure 3 displays the estimated conditional survival proba-
bilities for the time to the second exacerbation given that the
first exacerbation occurs on days 120 for patients with specific

characteristics under the proportional odds and proportional in-
tensity models. The two models lead to quite different predic-
tions.

As a second example, we use the recurrent infection data
from the chronic granulomatous disease (CGD) study described
by Lin, Wei, Yang, and Ying (2000). This study enrolled 128 pa-
tients with CGD, of whom 63 received gamma interferon and
65 received placebo. Data were collected on all serious pyo-
genic infections occurring up to cessation of follow-up, 400
days for most patients. During the study, 14 patients receiv-
ing gamma interferon and 30 receiving placebo experienced at
least 1 infection. In the gamma interferon group, four patients
had two infections and one had a third infection. In the placebo
group, five patients had two infections, four patients had three
infections, and three patients had four or more infections.

Under the Andersen–Gill proportional intensity model with-
out frailty, the estimated effect of gamma interferon is at
−1.097, with (estimated) model-based SE of .261. The robust
SE (Lin et al. 2000), which accounts for the dependence of re-
current infections, is .311. To model the intraclass correlation,
we add a time-dependent covariate indicating the occurrence of
infections within the last 60 days. Then the estimated treatment
effect is reduced to −.989, with model-based and robust SEs
of .266 and .294. The difference between the two SEs seem to
suggest that the time-dependent covariate may not adequately
capture the intraclass correlation. Consequently, we consider
random-effects models.

We fit the proportional intensity models with normal and
gamma random effects in S–PLUS. The covariates include the
treatment indicator and age. The estimated treatment effects are
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Figure 2. The Log-Likelihood Values Under Various Transformation Models for the Cystic Fibrosis Study. The left panel pertains to the Box–Cox
transformations G(x) = {(1+x)ρ −1}/ρ; the right panel, to the logarithmic transformations G(x) = log (1+ rx)/r . The horizontal dashed lines indicate
that the right limit of the Box–Cox family (i.e., ρ = 0) pertains to the proportional odds model (i.e., r = 1 in the logarithmic family) and the left limit of
the logarithmic family (i.e., r = 0) pertains to the proportional intensity model (i.e., ρ = 1 in the Box–Cox family). The curves are based on grids of
size .001.

−1.018 with a SE of .298 and −1.051 with a SE of .308 under
the normal and gamma random-effects distributions. Although
the estimates of regression parameters are very similar under
these two random-effects distributions, the predictions of re-
current events can be very different. For a placebo subject age
2 years, the predicted cumulative frequencies at days 100, 200,
and 300 are .375, .739, and 1.510 under the normal random
effect versus .459, .908, and 1.865 under the gamma random

effect; for a placebo patient age 7 years, the corresponding pre-
dicted values are .072, .142, and .300 under the normal random
effect, compared with .050, .099, and .210 under the gamma
random effect.

Table 4 summarizes the results for the normal random-effect
models with the Box–Cox and logarithmic transformations. The
model with r = .347 yields the highest likelihood and smallest
prediction error.

Table 3. Estimation Results for the Cystic Fibrosis Study

G(x) = {(1 + x)ρ − 1}/ρ

ρ held fixed ρ estimated

ρ 2 1 .5 .013(.231)
Treatment −.216(.099) −.280(.123) −.341(.143) −.444(.186)
FEV1 −.013(.002) −.017(.003) −.020(.003) −.025(.005)
σ 2 .258(.079) .439(.126) .643(.182) .998(.359)
Log-likelihood −2,642.7 −2,640.0 −2,638.0 −2,636.7
MSE (×10−4) 2.203 1.673 1.511 1.371

G(x) = log (1 + rx)/r

r held fixed r estimated

r .5 1 2 1.181(.642)
Treatment −.365(.151) −.449(.176) −.602(.223) −.477(.211)
FEV1 −.021(.003) −.025(.004) −.033(.005) −.027(.006)
σ 2 .728(.212) 1.005(.304) 1.597(.524) 1.113(.502)
Log-likelihood −2,637.5 −2,636.7 −2,637.3 −2,636.6
MSE (×10−4) 1.471 1.400 1.237 1.344

NOTE: The standard error estimates are given in parentheses. MSE is the mean squared error comparing the nonparametric and model-based estimates of
cumulative frequency functions.
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Figure 3. Estimated Conditional Survival Probabilities for the Cystic Fibrosis Patients. The dashed and dotted curves pertain to treated patients
with FEV1 of 16 under the proportional odds model and proportional hazards model. The solid and dashed–dotted curves pertain to untreated
patients with FEV1 of 16 under the proportional odds model and proportional hazards model.

5. DISCUSSION

We have developed a general asymptotic theory, together
with a simple and stable numerical algorithm, for the maxi-
mum likelihood estimation in a broad class of transformation
intensity models with random effects. There is considerable
flexibility in choosing the transformation and random-effects
distribution. Therneau and Grambsch (2000) proposed fitting
the proportional intensity model with normal random effects by
the penalized partial likelihood method, but provided no for-
mal theoretical justifications. The current version of S–PLUS

allows one to fit the proportional intensity model with normal
or gamma random effects. We have developed a MATLAB pro-
gram to fit the class of models studied in this article.

In our data examples, we used the AIC to determine the
best transformation. Other criteria for model selection include
the Bayes information criterion (BIC) and likelihood-based
cross-validation (van der Laan, Dudoit, and Keles 2004). But
none of these criteria takes into consideration the complex-
ity of the transformation. For example, if the transformation
G(x) = log{1 + log(1 + x)} provides a slightly better fit than
G(x) = log(1 + x), one may still prefer the latter transformation

Table 4. Estimation Results for the CGD Study

G(x) = {(1 + x)ρ − 1}/ρ

ρ held fixed ρ estimated

ρ 2 1 .5 .334(.402)
Treatment −.840(.251) −1.067(.311) −1.282(.367) −1.387(.485)
Age −.026(.013) −.032(.016) −.038(.020) −.041(.022)
σ 2 .328(.188) .593(.308) .944(.467) 1.141(.788)
Log-likelihood −397.14 −396.35 −395.88 −395.82
MSE(×10−3) 1.724 1.449 1.341 1.343

G(x) = log (1 + rx)/r

r held fixed r estimated

r .5 1 2 .347(.393)
Treatment −1.387(.398) −1.659(.474) −2.137(.621) −1.297(.445)
FEV1 −.041(.021) −.047(.025) −.058(.032) −.038(.021)
σ 2 1.166(.592) 1.662(.887) 2.762(1.610) 1.004(.659)
Log-likelihood −395.76 −396.39 −398.09 −395.70
MSE(×10−3) 1.324 1.596 2.500 1.293

NOTE: See the note to Table 3.
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because of its simplicity and interpretability. Thus incorporat-
ing the complexity of the transformation into the model selec-
tion process is an interesting open problem.

Our work can be viewed as a generalization of the transfor-
mation models for univariate survival data studied by Kosorok
et al. (2004) to correlated recurrent event times. Our conditions
on transformation are similar to those authors’ conditions D1
and D2; however, we do not assume their concavity of the trans-
formation or restrictive condition E1. Due to the lack of con-
cavity, presence of random effects, and unbounded number of
events, our technical developments are more delicate, especially
in proving the consistency, model identifiability, and invertibil-
ity of the information matrix.

In some applications, one is interested in testing whether
the variance of a random effect is zero. Then the hypothe-
sized parameter value lies on the boundary of the parameter
space, which violates Condition 1. However, the conclusions of
Theorems 1–3 continue to hold if the log-likelihood function
(4) allows an extended definition beyond the boundary and af-
ter the extension the log-likelihood function still satisfies the
regularity conditions. We note in Remark A.1 in Appendix A
that the extension is indeed valid for gamma frailty. We believe
that in general the likelihood ratio statistic for testing zero vari-
ance has a mixture of chi-squared distributions asymptotically.
This conjecture is supported by our simulation studies; a formal
derivation is underway.

Following the arguments of Kosorok et al. (2004), we can
show that the information operator in a neighborhood of the
true parameter value is invertible. This fact, together with the
uniqueness of the Kullback–Leibler maximizer, allows us to
make inference under misspecified transformations. The details
are omitted here.

A number of authors, including Pepe and Cai (1993), Law-
less and Nadeau (1995), Lawless, Nadeau, and Cook (1997),
and Lin et al. (2000), have advocated the proportional mean/rate
model, under which

E{dN∗(t)|X(t)} = eβT X(t) dµ0(t),

where µ0(t) is an unknown continuous function. For time-
independent covariates, Lin, Wei, and Ying (2001) proposed a
class of transformation models for the mean function

E{N∗(t)|X} = G
(
µ0(t)e

βT X)
,

where G(·) is a transformation function. These marginal mod-
els cannot be used to make predictions about future recurrences
based on individual event histories shown in Figure 3. Further-
more, the existing estimators for these models are not efficient,
especially outside of the proportional mean/rate model. For the
proportional intensity/rate model studied in Section 3, the effi-
ciencies of the maximum partial likelihood estimators of β1 and
β2 relative to the NPMLEs were found to be approximately .9
and .85 under σ 2 = 1. The efficiency loss becomes more sub-
stantial as σ 2 increases.

In some applications, censoring depends on the underlying
recurrent event process even after conditioning on the covari-
ates in the model. One possible way to adjust for such depen-
dent censoring is to postulate a proportional hazards model or,
more generally, a transformation model for time to dependent
censoring that shares the random effects of (3). The joint model

for recurrent events and dependent censoring can be estimated
by the nonparametric maximum likelihood method, and the re-
sultant estimators are consistent, asymptotically normal and as-
ymptotically efficient. We will communicate these results in a
separate report.

For the proportional rate model, Miloslavski, Keles, and van
der Laan (2004) proposed adjusting for dependent censoring
through the inverse-probability-of-censoring weighting. This
approach requires that censoring depend only on the observed
(possibly time-dependent) covariates, some of which may not
be included in the model for recurrent events. The estimating
equation may be numerically unstable under heavy censoring.
Computing the efficient estimator is difficult due to the implicit
nature of the efficient influence function. Generalization of this
approach beyond the proportional rate model is unclear.

Counting process models characterize the effects of covari-
ates on the development of recurrent events in a parsimonious
and efficient manner. These models require that the recurrent
events be of the same nature. In some medical applications, the
second recurrent event may be biologically different from the
first recurrence. Then it is more appropriate to model each re-
currence separately. Several methods are available for doing so
(see Wei, Lin, and Weissfeld 1989; Prentice, Williams, and Pe-
terson 1981; Schaubel and Cai 2004). It would be worthwhile
to study random-effects models for such data.

APPENDIX A: PROOF OF ASYMPTOTIC RESULTS

Here we sketch the proofs of Theorems 1–4. Detailed proofs are
available in a separate technical report.

A.1 Proof of Theorem 1

Let O(1) denote some positive constant and define M =
supt

{
supX,β |βT X(t)| + supZ |Z(t)|}. Write Q(t,O,b;�,β) =∫ t

0 Y(s)eβT X(s)+bT Z(s) d�, where O represents the data.

Step 1. We prove the existence of NPMLEs. Under Condition 4,
the integrand in the ith term of ln(�, θ) is dominated by

O(1)eM|b|Ni(τ )µ(Ni(τ ))

×
∏
t≤τ

[
�{t}{1 + Q(t,Oi,b;�,β)}−1]�Ni(t)

× {1 + Q(τ,Oi,b;�,β)}−αψ(b;γ ).

Thus ln(�, θ) attains the maximum for finite � values, so the
NPMLEs exist.

Step 2. We show that supn �̂n(τ ) < ∞ with probability 1. By set-
ting the derivative of ln(�, θ) with respect to �{Tij} to 0, we obtain

�̂n(t) = n−1 ∫ t
0
∑n

i=1 dNi(s)/|φn(s; �̂n, θ̂n)| with

φn(s;�, θ)

= 1

n

n∑
k=1

∫
b R1(b,Ok;�, θ)R2(s,b,Ok;�, θ)ψ(b;γ )db∫

b R1(b,Ok;�, θ)ψ(b;γ )db
, (A.1)

where

R1(b,O;�, θ)

=
∏
t≤τ

{
Y(t)eβT X(t)+bT Z(t)G′(Q(t,O,b;�,β))

}�N(t)

× e−G(Q(τ,O,b;�,β))
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and

R2(s,b,O;�, θ)

= −
{∫

I(t ≥ s)
G′′(Q(t,O,b;�,β))

G′(Q(t,O,b;�,β))
dN(t)

− G′(Q(τ,O,b;�,β))

}
Y(s)eβT X(s)+bT Z(s).

Replacing �̂n and θ̂n on the right side of the equation for �̂n by �0
and θ0, we obtain a similar function denoted by �̃n(t). It follows from
the Glivenko–Cantelli theorem that �̃n converges uniformly to �0 al-
most surely.

Clearly, n−1{ln(�̂n, θ̂n) − ln(�̃n, θ0)} ≥ 0. We show that if �̂n(τ )

diverges, then the left side of this inequality cannot be nonnegative
when n is large. By Condition 5 and the fact that e−|x|(1 + y) ≤ (1 +
exy) ≤ e|x|(1 + y),

ln(�̂n, θ̂n) ≤ O(1) +
n∑

i=1

∫ τ

0
Yi(t) log

�̂n{t}
1 + ∫ t

0 Yi(s)d�̂n(s)
dNi(t)

−
n∑

i=1

α log

{
1 +

∫ τ

0
Yi(t)d�̂n(t)

}
.

Therefore,

0 ≤ O(1) + 1

n

n∑
i=1

∫ τ

0
Yi(t) log

n�̂n{t}
1 + ∫ t

0 Yi(s)d�̂n(s)
dNi(t)

−α

n

n∑
i=1

log

{
1 +

∫ τ

0
Yi(t)d�̂n(t)

}
. (A.2)

The right side of (A.2) will diverge to −∞ if �̂n(τ ) diverges. The
proof of this claim is based on the partitioning idea of Murphy (1994).
Specifically, we construct a sequence t0 = τ > t1 > t2 > · · · > tm0 = 0
and denote Iq = [tq+1, tq). The right side of (A.2) can be bounded by

O(1) ≤
(

−n−1
n∑

i=1

α

2
I(Yi(t0) > 0) log{1 + �̂n(τ )}

−
{

n−1
n∑

i=1

α

2
I(Yi(t0) > 0)

− n−1
n∑

i=1

I
(
Yi(t0) = 0,Yi(t1) > 0

)∫
t∈I0

dN∗
i

}

× log{1 + �̂n(t0)}

−
m0−1∑
q=1

[
n−1

n∑
i=1

I
(
Yi(tq−1) = 0,Yi(tq) > 0

){
α +

∫
t∈Iq

dN∗
i

}

− n−1
n∑

i=1

I
(
Yi(tq) = 0,Yi(tq+1) > 0

)∫
t∈Iq

dN∗
i

]

× {1 + log �̂n(tq)}
)

.

The tq’s are chosen such that the coefficients in front of log �̂n(tq)

are all negative when n is large enough. Thus the corresponding terms
cannot diverge to ∞. However, if �̂n(τ ) → ∞, then the right side di-
verges to −∞. We conclude that lim supn �̂n(τ ) < ∞. It then follows
from Helly’s selection theorem that along a subsequence, �̂n → �∗
and θ̂n → θ∗.

Step 3. We show that �∗ = �0 and θ∗ = θ0. By the Glivenko–
Cantelli theorem, φn(s; �̂n, θ̂n) given in (A.1) converges uniformly
to a continuously differentiable function φ∗(s;�∗, θ∗). We show that
mins∈[0,τ ] |φ∗(s;�∗, θ∗)| ≥ 2ε0 for some positive constant by contra-
diction. If this inequality does not hold, then φ∗(s0;�∗, θ∗) = 0 for
some s0 ∈ [0, τ ]. For any ε > 0,

�̂n(τ ) ≥
∫ τ

0

∑n
i=1 I(Ci ≥ s)dNi(s)/n

|φn(s; �̂n, θ̂n)| + ε

→ E

[∫ τ

0

I(C ≥ s)dN(s)

|φ∗(s;�∗, θ∗)| + ε

]
.

Letting ε decrease to 0, we obtain E[∫ τ
0 I(C ≥ s)dN(s)/|φ∗(s;�∗,

θ∗)|] < ∞. However, |φ∗(s;�∗, θ∗)| = |φ∗(s;�∗, θ∗) − φ∗(s0;�∗,

θ∗)| ≤ c1|s − s0| for some constant c1, and
∫ τ

0 |s − s0|−1E[I(C ≥
s)dN(s)] = ∞. This is a contradiction. Thus, when n is large enough,
|φn(t; �̂n, θ̂n)| > ε0 > 0 for some constant ε0.

The lower bound of |φn| implies that �̂n(t) is absolutely continuous
with respect to �̃n(t) and d�̂n/d�̃n converges to a bounded measur-
able function ζ(t); that is, �∗(t) = ∫ t

0 ζ(s)d�0(t). Thus �∗(t) is ab-
solutely continuous with respect to the Lebesgue measure, and we de-
note its derivative by λ∗(t). Furthermore, ζ(t) = λ∗(t)/λ0(t). Finally,
because (�̂n, θ̂n) maximizes ln(�, θ),

1

n

n∑
i=1

[∫ τ

0
log

�̂n{t}
�̃n(t)

dNi(t)

+ log

∫
b R1(b,Oi; �̂n, θ̂n)ψ(b; γ̂ n)db∫
b R1(b,Oi; �̃n, θ0)ψ(b;γ 0)db

]
≥ 0.

We take the limits on both sides. By the Glivenko–Cantelli theorem
and the fact that �̂n{t}/�̃{t} converges uniformly to λ∗(t)/λ0(t), we
conclude that the Kullback–Leibler information between the density
indexed by (�∗, θ∗) and the true density is negative; therefore, the
two densities are equal almost surely. We show in Section A.4 that this
finding implies that �∗ = �0 and θ∗ = θ0. Thus we have proven that
θ̂n → θ0 and �̂n(t) → �0(t) almost surely. The latter convergence can
be strengthened to uniform convergence in t ∈ [0, τ ] by the continuity
of �0.

Remark A.1. Inequality (A.2) is the key to the derivation of the
boundedness of �̂n and thus to the proof of consistency. This inequal-
ity holds naturally for the classical gamma frailty model, under which
G(x) = x and exp{bT Zi(t)} is replaced by a gamma variable ξi. The
reason for this is as follows. Suppose that ν is the variance of ξi, which
is assumed to be bounded by νmax. By integrating out the frailty, we
obtain

ln(�, θ) ≤
n∑

i=1

O(1) log
�(Ni(τ ) + 1/νmax)ν

Ni(τ )
max

�(1/νmax)

+
n∑

i=1

∫ τ

0
Yi(t) log�{t}dNi(t)

−
n∑

i=1

(
1

ν
+ Ni(τ )

)
log

{
1 + ν

∫ τ

0
Yi(s)d�(s)

}
.

Thus it follows from the inequality

(1 + νx)Ni(τ )+1/ν

≥ (Ni(τ ) + 1)−1−Ni(τ )

× min
{
(1 + x)Ni(τ )(1 + νmaxx)1/νmax , (1 + x)Ni(τ )+1}

that (A.2) holds. Therefore, our consistency result holds for the gamma
frailty model, even though the gamma distribution does not satisfy
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Condition 5. We further note that the foregoing arguments allow ν = 0,
that is, zero variance of frailty.

A.2 Proof of Theorem 2

Let Pn be the empirical measure determined by n iid observations,
and let P be its expectation. Also let Gn be the empirical process given
by

√
n(Pn −P). In addition, let l(�, θ) be the log-likelihood function

from a single subject and define its derivative with respect to � as

l�(�, θ)[��] = lim
ε→0

l(� + ε��, θ) − l(�, θ)

ε
.

Also define

l��(�, θ)[�1�,�2�]

= lim
ε→0

l�(� + ε�2�, θ)[�1�] − l�(�, θ)[�1�]
ε

.

Similarly, let lθ (�, θ) be the score vector for θ , and let lθθ (�, θ) be
the Hessian matrix of l(�, θ) with respect to θ . The proof is based on
the expansion of the score functions for both � and θ and relies on
theorem 3.3.1 of van der Vaart and Wellner (1996).

A key step is to verify the invertibility of the information op-
erator for (�0, θ0). The information operator, denoted by −Ẇ , is
the sum of an invertible linear operator and a compact operator. It
suffices to show that if the information matrix along the submodel
(�0 + δ

∫
q d�0, θ0 + δv) is zero (i.e., the score function along this

submodel is zero), then v = 0 and q = 0. This is verified in Section A.4.
In light of theorem 3.3.1 of van der Vaart and Wellner (1996), we

conclude that in the metric space l∞(Q×O),
√

n(�̂n − �0, θ̂n − θ0)

converges weakly to a mean-0 Gaussian process. In addition,

√
nẆ

(
�̂n − �0

θ̂n − θ0

)[(
q
v

)]
= Gn

{
l�

[∫
q d�0

]
+ lTθ v

}
+ op(1).

We can choose a finite number of q’s such that Ẇ(q,v) = v. Thus√
n(̂θn − θ0)T v = Gn{l�[∫ q d�0] + lTθ v} + op(1). We conclude that

θ̂n is an asymptotically linear estimator for θ0 and that its influence
function is on the space spanned by the score functions. Thus θ̂n is an
asymptotically efficient estimator.

Because the density for the random-effects model takes a generic
form, the foregoing proof applies to the gamma-frailty model as well.
This is also true of the proof for Theorem 3.

A.3 Proof of Theorem 3

The results in Section A.2 imply that

−P
(

l��(�0, θ0) l�θ (�0, θ0)

lθ�(�0, θ0) lθθ (�0, θ0)

)
×

[(√
n(�̂n − �0)√
n(̂θn − θ0)

)
,

(∫ t
0 q d�0

v

)]
= Gn

(
l�(�0, θ0)[∫ t

0 q d�0]
lTθ (�0, θ0)v

)
+ op(1)

uniformly for q with bounded variation and v with bounded norm.
We define a function �̃(t) as a step function with jumps at the ob-
served event times Tij, with the jump size at Tij equal to �0(Tij) −
maxTkl<Tij �0(Tkl). Clearly, �̃(Tij) = �0(Tij). For any bounded vec-
tor {pij, i = 1, . . . ,n, j = 1, . . . ,ni} and bounded vector v ∈Rd , we de-
fine a step function p(t) such that it jumps only at Tij and p(Tij) = pij.
Let � denote the vector consisting of pij�̂n{Tij}. By the definition
of In, we obtain

(�T ,vT )In

(
�

v

)
= −Pn

(
l��(�̂n, θ̂n) l�θ (�̂n, θ̂n)

lθ�(�̂n, θ̂n) lθθ (�̂n, θ̂n)

)
×

[(∫ t
0 p d�̂n

v

)
,

(∫ t
0 p d�̂n

v

)]
.

The right side of the foregoing equation converges to the information
operator. Thus In is positive definite for large n.

In contrast,

−√
n

(
�̂n{Tij} − �̃{Tij}

θ̂n − θ0

)
In

(
�

v

)
= Gn

{
l�(�0, θ0)

[∫ t

0
p d�̂n

]
+ lTθ (�0, θ0)v

}
+ op(1). (A.3)

Because In is invertible, for any ṽ and bounded sequence
{qij}i=1,...,n,j=1,...,ni , we can choose {pij}i=1,...,n,j=1,...,ni and v such

that In
(�

v
) = (q

ṽ
)
, where q is the vector consisting of qij. With such

choices, (A.3) implies that
∑n

i=1
∑ni

j=1
√

n(�̂n{Tij} − �̃{Tij})qij +√
n(̂θn − θ0)T ṽ converges to a normal distribution with covariance

P
[{

l�(�0, θ0)

[∫ t

0
p d�̂n

]
+ lTθ (�0, θ0)v

}

×
{

l�(�0, θ0)

[∫ t

0
p d�̂n

]
+ lTθ (�0, θ0)v

}T]
= −P

(
l��(�0, θ0) l�θ (�0, θ0)

lθ�(�0, θ0) lθθ (�0, θ0)

)
×

[(∫ t
0 p d�̂n

v

)
,

(∫ t
0 p d�̂n

v

)]
.

The right-side of this equation is the limit of (�T ,vT )In
(�

v
)
. Thus for

any vector v and any bounded function q(t) such that q(Tij) = qij, the
asymptotic variance of

√
n
∫ τ

0 q(t)d(�̂n − �0) + √
n(̂θn − θ0)T ṽ can

be consistently estimated by (qT , ṽT )I−1
n

(q
ṽ
)
.

A.4 Two Identifiability Results

Proposition A.1. The equation∫
b

∏
t≤τ

{
Y(t)λ(t)eβT X(t)+bT Z(t)G′(Q(t,O,b;�,β))

}�N(t)

× exp
{−G(Q(τ,O,b;�,β))

}
ψ(b;γ )db

=
∫

b

∏
t≤τ

{
Y(t)λ0(t)eβ0

T X(t)+bT Z(t)G′(Q(t,O,b;�0,β0))
}�N(t)

× exp
{−G(Q(τ,O,b;�0,β0))

}
ψ(b;γ 0)db (A.4)

implies that � = �0 and θ = θ0.

Proof. We consider only the case where Y(τ ) = 1. For any differ-
ent t1, . . . , tm, t′1, . . . , t′k ∈ [0, τ ], we consider the event that the recur-
rences occur at these times. We integrate t1, . . . , tm from 0 to t1, . . . , tm
while integrating t′1, . . . , t′k from 0 to τ in (A.4). In the equalities
thus obtained, we let ti have multiplicity ki and further multiply by∏m

i=1(isi)
ki!/ki!. After summing over ki = 0,1,2, . . ., we notice that

the joint distribution of {G(
∫ ti

0 eβT X(s)+bT
1 Z(s) d�)}m

i=1 is the same

as that of {G(
∫ ti

0 eβT
0 X(s)+bT

2 Z(s) d�0)}m
i=1, where b1 ∼ ψ(b;γ ) and

b2 ∼ ψ(b;γ 0). It follows that {logλ(ti) + βT X(ti) + bT
1 Z(ti)}m

i=1
and {logλ0(ti) + βT

0 X(ti) + bT
2 Z(ti)}m

i=1 have the same joint dis-
tribution. Because

∫
b bψ(b;γ )db = ∫

b bψ(b;γ 0)db = 0, we have
logλ(t)+βT X(t) = logλ0(t)+βT

0 X(t); thus λ = λ0 and β = β0 from

Condition 2. Then bT
1 Z(t) has the same distribution as bT

2 Z(t). From
Condition 2, γ = γ 0.

Proposition A.2. Suppose that l�(�0, θ0)[q] + lTθ0
v = 0 almost

surely. Then v = 0 and q = 0.

Proof. In the score function l�(�0, θ0)[q] + lTθ0
v, we consider the

case where the counting process has jumps at time t1, . . . , tm and
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C ≥ τ . We integrate ti from 0 to ti for 1 ≤ i ≤ l and from 0 to τ for
(l + 1) ≤ i ≤ m and multiply by 1/(m − l)!. After summing over all
nonnegative integers for m − l = 0,1,2, . . . , we have∫

b

{ l∑
i=1

F2(b, ti) + ψ ′(b;γ 0)T vγ

ψ(b;γ 0)

}

×
l∏

i=1

{H2(b, ti)}ψ(b;γ 0)db = 0. (A.5)

Here and in the sequel,

F1(b, ti) = (q(ti) + X(ti)
T vβ )

+
∫ ti

0
(q(s) + X(s)T vβ )eβT

0 X(s)+bT Z(s) d�0

× G′′(
∫ ti

0 eβT
0 X(s)+bT Z(s) d�0)

G′(
∫ ti

0 eβT
0 X(s)+bT Z(s) d�0)

,

F2(b, ti) =
∫ ti

0
(q(s) + X(s)T vβ )eβT

0 X(s)+bT Z(s) d�0

× G′
(∫ ti

0
eβT

0 X(s)+bT Z(s) d�0

)
,

H1(b, ti) = λ(ti)e
βT

0 X(ti)+bT Z(ti)G′
(∫ ti

0
eβT

0 X(s)+bT Z(s) d�0

)
,

and H2(b, ti) = G(
∫ ti

0 eβT
0 X(s)+bT Z(s) d�0).

By applying the arguments used in the proof of Proposition A.1 to
(A.5), we obtain∫

b

{ l∑
j=1

isjF2(b, tj)H2(b, tj) + ψ ′(b;γ 0)T vγ

ψ(b;γ 0)

}

× exp

{ l∑
j=1

isjH2(b, tj)

}
ψ(b;γ 0)db = 0

for any s1, . . . , sl. We make the variable transformation {y1, . . . , yl} =
{H2(b, t1), . . . ,H2(b, tl)} and take the Fourier transformation. Thus,

−
l∑

j=1

∂

∂bj
F2(b, tj)H2(b, tj)ψ(b;γ 0) + ψ ′(b;γ 0)T vγ = 0

almost everywhere. Let t1, . . . , tl go to 0. We conclude that ψ ′(b;
γ 0)T vγ = 0 almost everywhere. Thus Condition 2(d) implies that
vγ = 0. By the fact that vγ = 0, (A.5) with l = 1 is a homogeneous
equation for (X(t)T vβ + q(t)). It is easy to see that the equation has

only a trivial solution; thus X(t)T vβ + q(t) = 0. It follows from Con-
dition 2(a) that vβ = 0 and q = 0.

A.5 Proof of Theorem 4

If we can verify the two propositions in Section A.4, then the proof
of Theorem 4 is the same as the proofs of Theorems 1–3. To verify the
first identifiability condition as stated in Proposition A.1, we imple-
ment the same technique in its proof and obtain that the processes{

Gη

(∫ t

0
eβT X(s)+bT

1 Z(s) d�

)
: t ∈ [0, τ )

}
and{

Gη0

(∫ t

0
eβT

0 X(s)+bT
2 Z(s) d�0

)
: t ∈ [0, τ )

}
have the same distribution, where b1 ∼ ψ(b;γ ) and b2 ∼ ψ(b;γ 0).
Thus their derivatives at t = 0 have the same distribution. Because
G′

η(0) = 1, we see that logλ(0) + βT X(0) + bT
1 Z(0) and logλ0(0) +

βT
0 X(0) + bT

2 Z(0) have the same distribution. Taking the expectation
and using Condition 2′(b), we have β = β0 and λ(0) = λ0(0). Thus
bT

1 Z(0) and bT
2 Z(0) have the same distribution. From Condition 2′(c),

ψ(b;γ ) = ψ(b;γ 0), so γ = γ 0. Thus Gη(
∫ t

0 eβT
0 X(s)+bT Z(s) d�) =

Gη0(
∫ t

0 eβT
0 X(s)+bT Z(s) d�0) almost surely for b ∼ ψ(b;γ 0). We dif-

ferentiate with respect to t and obtain

log G′
η

(∫ t

0
eβT

0 X(s)+bT Z(s) d�

)
+ logλ(t)

= log G′
η0

(∫ t

0
eβT

0 X(s)+bT Z(s) d�0

)
+ logλ0(t).

Further differentiation at t = 0 yields{
G′′

η(0) − G′′
η0

(0)
}
eβT

0 X(0)+bT Z(0) = δ,

where δ is the derivative of − logλ(t)/λ0(t) at t = 0. If G′′
η(0) −

G′′
η0

(0) 
= 0, then βT
0 X(0) + bT Z(0) is a constant, and so is its ex-

pectation with respect to b. Thus βT
0 X(0) is a constant, implying that

bT Z(0) = 0. This result contradicts Condition 2′(d). Thus G′′
η(0) =

G′′
η0

(0). Because G′′
η(0) is strictly monotone in η due to Condition 6′,

we have η = η0. As a result, � = �0.
To verify the second identifiability condition as stated in Proposi-

tion 2, we note that the arguments for proving vγ = 0 are valid if we
redefine F1(b, ti) as the original expression plus

uĠη0

(∫ ti

0
eβT

0 X(s)+bT Z(s) d�0

)
and F2(b, ti) as the original expression minus

uĠη0

(∫ τ

0
eβT

0 X(s)+bT Z(s) d�0

)
,

where u is the direction of the score for η0. Thus, (A.5), together with
the fact that vγ = 0, implies that F1(b; t) = 0 almost surely. Let t = 0.
By Condition 2′(b), vβ = 0. Then

0 = q(t) +
∫ t

0
q(s)eβT

0 X(s)+bT Z(s) d�0

× G′′
η0

(Q(t,O,b;�0,β0))

G′
η0

(Q(t,O,b;�0,β0))

+ uĠη0(Q(t,O,b;�0,β0)).

We multiply both sides by H1(b; t) and integrate from 0 to t to obtain

q(t) = −
{

uĠ′
η0

(Q(t,O,b;�0,β0))

G′
η0

(Q(t,O,b;�0,β0))

− uĠη0(Q(t,O,b;�0,β0))G′′
η0

(Q(t,O,b;�0,β0))

G′
η0

(Q(t,O,b;�0,β0))

}
.

We further differentiate with respect to t and let t = 0, obtaining

q′(0) = −uλ0(0)Ġ′′
η0

(0)eβT
0 X(0)+bT Z(0).

The arguments used in verifying the first identifiability condition then
yield that u = 0, which implies that q(t) = 0.

APPENDIX B: NUMERICAL ALGORITHM

Here we provide an EM algorithm for calculating the NPMLEs
and their variances. In the EM algorithm, the random effects bi, i =
1, . . . ,n, are treated as missing data. Let Ê[·] denote the conditional
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expectation given the observable data and the current parameter esti-
mates. In the E-step, we calculate the expectation Ê[H(bi)] for some
function H(bi) as

Ê[H(bi)] =
[∫

bi

H(bi)
∏
t≤τ

{
ebT

i Zi(t)

× G′
(∫ t

0
I(Ci ≥ s)eβT Xi(s)+bT

i Zi(s) d�

)}�Ni(t)

× exp

{
−G

(∫ τ

0
I(Ci ≥ t)eβT Xi(t)+bT

i Zi(t) d�

)}
× ψ(bi;γ )dbi

]
×

[∫
bi

∏
t≤τ

{
ebT

i Zi(t)

× G′
(∫ t

0
I(Ci ≥ s)eβT Xi(s)+bT

i Zi(s) d�

)}�Ni(t)

× exp

{
−G

(∫ τ

0
I(Ci ≥ t)eβT Xi(t)+bT

i Zi(t) d�

)}

× ψ(bi;γ )dbi

]−1
. (B.1)

The integrations in this formula are evaluated by numerical approx-
imations (e.g., Evans and Swartz 2000, chap. 4). In the M-step, we
maximize the objective function

M(�, θ) =
n∑

i=1

(∫ τ

0
[log�{t} + βT Xi(t)]dNi(t)

+
∫ τ

0
Ê

[
bT

i Zi(t)

+ log G′
(∫ t

0
I(Ci ≥ s)eβT Xi(s)+bT

i Zi(s) d�

)]
dNi(t)

− Ê

[
G

(∫ τ

0
I(Ci ≥ t)eβT Xi(t)+bT

i Zi(t) d�

)]
+ Ê[logψ(bi;γ )]

)
.

Clearly, γ can be updated by maximizing
∑n

i=1 Ê[logψ(bi;γ )]. It
remains to update the values for � and β in the M-step.

Define F(t) = �(t)/�(τ). If we expand Xi(t) to [1,Xi(t)], still de-
noted by Xi(t), and expand β to [log�(τ),β], still denoted by β , then
the objective function in the M-step is equivalent to

M̃(F,β) =
n∑

i=1

(∫ τ

0
[log F{t} + βT Xi(t)]dNi(t)

− Ê

[
G

(∫ τ

0
I(Ci ≥ t)eβT Xi(t)+bT

i Zi(t) dF

)]
+

∫ τ

0
Ê

[
bT

i Zi(t) + log G′
(∫ t

0
I(Ci ≥ s)

× eβT Xi(s)+bT
i Zi(s) dF

)]
dNi(t)

)
,

with constraint
∑n

i=1
∫ τ

0 F{t}dNi(t) = 1. The constraint means that the
sum of the jump sizes of the normalized � is 1. We order the observed
event times as ω1 < ω2 < · · · < ωm. In addition, we let F{ωj} = f̃j and

F̃j = F(ωj). Then the objective function becomes

M̃(F,β) =
m∑

j=1

log f̃j +
n∑

i=1

(ni−1∑
k=1

βT Xi(Tik)

− Ê

[
G

( ∑
ωj≤Ci

eβT Xi(ωj)+bT
i Zi(ωj )̃fj

)]

+
ni−1∑
k=1

Ê

[
bT

i Zi(Tik)

+ log G′
( ∑

ωj≤Tik

eβT Xi(ωj)+bT
i Zi(ωj )̃fj

)])
.

By introducing the Lagrange multiplier µ, we then solve the equations

0 =
n∑

i=1

(ni−1∑
k=1

Xi(Tik) − Ê

[
G′

( ∑
ωj≤Ci

eβT Xi(ωj)+bT
i Zi(ωj )̃fj

)

×
{ ∑

ωj≤Ci

Xi(ωj)e
βT Xi(ωj)+bT

i Zi(ωj )̃fj

}]

+
ni−1∑
k=1

Ê

[G′′(∑ωj≤Tik
eβT Xi(ωj)+bT

i Zi(ωj )̃fj)

G′(∑ωj≤Tik
eβT Xi(ωj)+bT

i Zi(ωj )̃fj)

×
{ ∑

ωj≤Tik

Xi(ωj)e
βT Xi(ωj)+bT

i Zi(ωj )̃fj

}])
(B.2)

and

µ = 1

f̃j
+

n∑
i=1

(
−Ê

[
G′

( ∑
ωs≤Ci

eβT Xi(ωs)+bT
i Zi(ωs )̃fs

)

× {
I(ωj ≤ Ci)e

βT Xi(ωj)+bT
i Zi(ωj)

}]

+
ni−1∑
k=1

Ê

[
G′′(∑ωs≤Tik

eβT Xi(ωs)+bT
i Zi(ωs )̃fs)

G′(∑ωs≤Tik
eβT Xi(ωs)+bT

i Zi(ωs )̃fs)

× {
I(ωj ≤ Tik)e

βT Xi(ωj)+bT
i Zi(ωj)

}])
. (B.3)

When both X and Z are time-independent, (B.3) becomes

µ = 1

f̃j
−

n∑
i=1

Ê
[
G′(eβT Xi+bT

i Zi F(Ci)
)
eβT Xi+bT

i Zi
]
I(Ci ≥ ωj)

+
n∑

i=1

ni−1∑
k=1

Ê

[
G′′(eβT Xi+bT

i Zi F(Tik))

G′(eβT Xi+bT
i Zi F(Tik))

eβT Xi+bT
i Zi

]
× I(Tik ≥ ωj). (B.4)

Thus

1

f̃j
= 1

f̃j+1
+

n∑
i=1

Ê
[
G′(eβT Xi+bT

i Zi F̃j
)
eβT Xi+bT

i Zi
]

× I(ωj+1 > Ci ≥ ωj)

−
n∑

i=1

ni−1∑
k=1

Ê

[
G′′(eβT Xi+bT

i Zi F̃j)

G′(eβT Xi+bT
i Zi F̃j)

eβT Xi+bT
i Zi

]
× I(Tik = ωj).

Because F̃j = 1 − (̃fj+1 +· · ·+ f̃m), (B.4) provides a recursive formula
for calculating f̃m−1, . . . , f̃1 from f̃m. If we denote α = f̃m and treat



180 Journal of the American Statistical Association, March 2007

f̃m−1, . . . , f̃1 as functions of α and β , then (B.2) and (B.3) become

(ni − 1)

n∑
i=1

Xi

−
n∑

i=1

Ê
[
G′(eβT Xi+bT

i Zi F(Ci)
)
eβT Xi+bT

i Zi
]
F(Ci)Xi

+
n∑

i=1

ni−1∑
k=1

Ê

[
G′′(eβT Xi+bT

i Zi F(Tik))

G′(eβT Xi+bT
i Zi F(Tik))

eβT Xi+bT
i Zi

]
× F(Tik)Xi = 0 (B.5)

and
m∑

j=1

f̃j = 1. (B.6)

We can use the Newton–Raphson method to solve these equations.
In the Newton–Raphson iterations, the derivatives of f̃j with respect to
α and β can be calculated using the recursive formula given in (B.4)
with the initial values ∂̃fm/∂α = 1 and ∂̃fm/∂β = 0. Thus in the M-
step we can reduce solving a large equation system to solving only a
few equations.

Denote the ith term in the complete-data log-likelihood function as
li(bi;�, θ). Then the observed information matrix can be evaluated by

−
n∑

i=1

Ê[∇2li(bi;�, θ)]

−
n∑

i=1

(
Ê[∇li(bi;�, θ)⊗2] − Ê[∇li(bi;�, θ)]⊗2)

,

where a⊗2 = aaT and ∇ and ∇2 denote the first and the second deriv-
atives with respect to θ and the jump sizes of �.

[Received March 2006. Revised July 2006.]
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