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1 Introduction

In time-to-event data arising from cancer and AIDS clinical trials, it is often observed that a proportion

of subjects will never fail. For analyzing such data, cure rate models have been proposed and studied

extensively. One type of commonly used cure rate model is the so-called two-component mixture cure

model (Berkson and Gage, 1952), which treats the whole population as a mixture of cured subjects

and non-cured subjects. This mixture model has been studied by many authors, including Gray and

Tsiatis (1989), Sposto, Sather, and Baker (1992), Laska and Meisner (1992), Kuk and Chen (1992),

Taylor (1995), Sy and Taylor (2000), Lu and Ying (2004) among others. The book by Maller and

Zhou (1996) gives an detailed discussion of frequentist methods of inference for the two-component

mixture cure model.

Although the mixture cure model is intuitively attractive, it does have several drawbacks, both

from a Bayesian and frequenstist perspective, as pointed out by Chen, Ibrahim and Sinha (1999) and

Ibrahim, Chen and Sinha (2001). An alternative cure rate model with desirable properties, called

the promotion time cure model, has been proposed and studied by Yakovlev and Tsodikov (1996),

Tsodikov (1998), and Chen, Ibrahim and Sinha (1999). In this model, the cured subjects are assumed

to have survival time equal to infinity and the survival distribution for either cured subjects or non-

cured subjects can be integrated into one single formulation: for the ith individual with covariate Xi

in the population, the survival function of subject i is given by

S(t|Xi) = exp{−θ(Xi)F (t)}, (1)

where θ(·) is a known link function and F (t) is a distribution function. Under the promotion time

cure model (1), the cure rate is S(∞|Xi) = exp{−θ(Xi)} and the hazard rate at time t for subject

i is equal to θ(Xi)f(t), where f(t) = dF (t)/dt. Thus, we see that model (1) has the proportional

hazards structure when the covariates are modeled through θ(·). Moreover, when θ(Xi) = exp(βTXi)

and β contains an intercept term β0, model (1) becomes the usual Cox (1972) proportional hazards

model subject to the restriction of a bounded cumulative baseline hazard function, given by Λ(t) =

F (t) exp(β0). Thus, any cure rate model has a bounded cumulative hazard, leading to an improper

survival function (i.e., S(∞) > 0), whereas non-cure models, such as the Cox model (Cox, 1972), have

an unbounded cumulative hazard, thus leading to a proper survival function (i.e., S(∞) = 0).

Yakovlev and Tsodikov (1996) and Chen, Ibrahim and Sinha (1999) provide a biological derivation

for model (1). The motivation comes from studying the time to relapse of cancer for patients with

or without tumor cells. Specially, the promotion time cure model is derived as follows. For the ith

2



subject, let Ni denote the number of tumor cells that have the potential of metastasizing, i.e., the

number of metastasis-competent tumor cells. The Ni’s are unobservable latent variables. We assume

that Ni has a Poisson distribution with Poisson rate (mean) θ(Xi). We denote the promotion time for

the kth tumor cell by T̃k (k = 1, . . . , Ni) which is the time for the kth metastasis-competent tumor cell

to produce a detectable tumor mass. The T̃k’s are also unobservable quantities. Conditional on Ni,

the T̃k’s are independent and identically distributed (i.i.d.) as F , where F is sometimes referred to as

the promotion time cumulative distribution function. Then the time to relapse of cancer, defined as

T = min(T̃1, . . . , T̃Ni), which is the observed event time, has the survival function

S(t|Xi) = P (Ni = 0) +
∑

k≥1

P (T̃1 > t, . . . , T̃k > t|Ni = k)P (Ni = k)

= exp{−θ(Xi)}+
∞∑

k=1

{1− F (t)}k θ(Xi)k exp{−θ(Xi)}
k!

= exp{−θ(Xi)F (t)}.

In the derivation of (1), one critical assumption is that conditional on the number of tumor cells

Ni = k, (T̃1, . . . , T̃k) are mutually independent. This assumption may be unrealistic since (T̃1, . . . , T̃k)

are unobserved random variables taken on the same subject. One possible relaxation and remedy

of this assumption is to introduce a subject-specific frailty ξi such that conditional on both Ni = k

and ξi, (T̃1, . . . , T̃k) are mutually independent with distribution function F (t). Moreover, we assume

that conditional on Xi and ξi, Ni has a Poisson distribution with rate ξiθ(Xi); thus, ξi represents the

heterogeneity of the Poisson rates in the Ni’s. Following the same derivation as before, we then obtain

that the survival function for the time to relapse, T , is

S(t|Xi) = Eξi

[
e−θ(Xi)F (t)ξi

]
,

where Eξi denotes the expectation with respect to ξi. For example, when ξi has a gamma distribution

with mean one, that is, ξi has the density {γ1/γΓ(1/γ)}−1ξ
1/γ−1
i exp(−ξi/γ), then after simple algebra,

we obtain

S(t|Xi) = {1 + γθ(Xi)F (t)}−1/γ .

Equivalently, we can write

S(t|Xi) = Gγ{θ(Xi)F (t)}, (2)

where Gγ(·) is the transformation

Gγ(x) =
{

(1 + γx)−1/γ γ > 0
e−x γ = 0.

(3)
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Through (2) and (3), we obtain a very general class of transformation cure models, and note that

the proportional hazards cure rate model in (1) is a special case of this class which corresponds to

γ = 0. There are also other interesting special cases arising from (2) and (3). When γ = 1, we obtain

a proportional odds type of cure model, similar in flavor to the proportional odds models with proper

survival functions considered by Pettitt (1982) and Bennett (1983). Moreover, the general form of

the class in (2) not only has a strong biological motivation, but also it can reduce to the usual linear

transformation models studied by Cheng, Wei and Ying (1995) under a special choice of θ(·). For

instance, if we choose θ(Xi) = exp(β0 + βT
1 Zi) with Xi = (1,ZT

i )T , β = (β0, β
T
1 )T and β0 being the

intercept term in the regression, then model (2) is equivalent to S(t|Zi) = Gγ{exp(βT
1 Zi)Λ(t)} where

Λ(t) = F (t) exp(β0) is the cumulative baseline hazard. However, when θ(Xi) has a form other than

θ(Xi) = exp(βTXi), for example, if θ(Xi) = exp(βTXi)/{1 + exp(βTXi)}, then model (2) is quite

different from the linear transformation model.

When γ, which specifies transformations in (3), is treated as an unknown parameter, the model

parameters may not be identifiable. For example, suppose that θ(X) = exp(β0). Then for any γ 6= γ̃,

we can find a β̃0, different from β0, such that
{

1 + γeβ0

}−1/γ
=

{
1 + γ̃eβ̃0

}−1/γ̃
.

Thus, for any distribution function F (t), we define F̃ (t) so that
{

1 + γeβ0F (t)
}−1/γ

=
{

1 + γ̃eβ̃0F̃ (t)
}−1/γ̃

.

Clearly, F̃ (t) is also a distribution function. Consequently, the two sets of parameters (γ, β0, F ) and

(γ̃, β̃0, F̃ ) give the same survival function so they are not distinguishable from the observed data.

More identifiability results are given in Section 4. Additionally, in most practical applications, there

is little information in the data to estimate γ with a reasonable degree of precision for small to even

moderately large sample sizes. In these situations, the likelihood function of γ is flat. Our experience

shows that γ can be well estimated when the sample size is very large, such as n = 1500 or larger.

Due to these limitations, we will focus on the γ fixed case throughout the development of our model

and asymptotic theory. However, in Section 4, we will discuss estimation of γ when it is identifiable

and also suggest a model selection strategy for choosing γ in the γ fixed case.

The transformation in (2) may not necessarily be from the family (3); different transformations

are possible when ξ takes other distributions. For example, we may consider the following Box-Cox

type transformations:

Gγ(x) =

{
exp{− (1+x)γ−1

γ } γ > 0
1/(1 + x) γ = 0.

(4)
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In this family, γ = 1 yields the proportional hazards model while γ = 0 yields the proportional

odds model. In this paper, we study general classes of transformations G(·) and link functions θ(·),
and examine inference based on maximum likelihood estimation. However, for ease and clarity of

exposition, we will focus on the class in (3) or (4), and θ(Xi) = exp(βTXi) in the examples of

Section 5. In addition, the promotion time cumulative distribution functions, F (t), will be completely

unspecified, and thus estimated nonparametrically throughout.

The rest of the paper is organized as follows. In Section 2, we introduce notation and propose

an efficient computational algorithm for the maximum likelihood estimation procedure. In Section 3,

we derive the asymptotic properties of the parameter estimates, including consistency and asymptotic

normality. In Section 4, we discuss important issues of model selection, including estimation of γ

when it is identifiable as well as the selection of γ when it is treated as fixed. In Section 5, we conduct

simulation studies to evaluate the finite sample properties of the estimators and also illustrate the

proposed model with a real dataset. Some concluding remarks are given in Section 6. Technical

details for the proofs of the theorems are given in the Appendix.

2 Maximum Likelihood Estimation

Suppose that there are n i.i.d. right-censored observations, {Yi = Ti ∧ Ci,Xi, ∆i = I(Ti ≤ Ci); i =

1, . . . , n}, where Ti∧Ci = min(Ti, Ci) and I(·) is the indicator function. We assume that the follow-up

time is infinite and a proportion of subjects never experience failure or right-censoring, that is Yi = ∞
(so Ci = ∞) with probability one for some subjects. The right-censoring time Ci is assumed to be

conditionally independent of Ti given Xi and has a finite hazard rate almost everywhere. We assume

that model (2) is used to link Ti with the covariate vector Xi, where θ(Xi) = η(βTXi), η(·) is a known

and strictly positive link function, and β includes an intercept term.

Thus, the observed-data likelihood function of the parameters (β, F ) is given by

n∏

i=1

{ [{−G′(η(βTXi)F (Yi))η(βTXi)f(Yi)
}∆i

{
G(η(βTXi)F (Yi))

}(1−∆i)
]I(Yi<∞)

× [
G(η(βTXi))

]I(Yi=∞)

}
, (5)

where G′(x) denotes the derivative of G with respect to x, and f(·) is the density function corre-

sponding to the distribution function F (·) with respect to Lebesgue measure. We wish to maximize

the above likelihood function to obtain the maximum likelihood estimates for β and F . However,

this maximum does not exist since one can choose f(Yi) = ∞ for some Yi with ∆i = 1. Thus, we
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apply a nonparametric maximum likelihood estimation (NPMLE) approach, where F is allowed to be

a right-continuous function. Instead of maximizing (5), we maximize the following modified function,

n∏

i=1

{ [{−G′(η(βTXi)F (Yi))η(βTXi)F{Yi}
}∆i

{
G(η(βTXi)F (Yi))

}(1−∆i)
]I(Yi<∞)

× [
G(η(βTXi))

]I(Yi=∞)

}
, (6)

where F{Yi} is the jump size of F at Yi. The maximum likelihood estimate for F is termed the

NPMLE for F and it is easy to show that the estimate for F must be a distribution function only with

point masses at the observed Yi with ∆i = 1. In order to estimate F (t) nonparametrically, we must

decide upon a follow-up time such that all censored observations beyond that follow-up time, called

the cure threshold, are treated as “Yi = ∞” (i.e., observed to be cured) and all observations lower

than this threshold are treated as Yi < ∞ (i.e., observed to be either failures or right-censored). This

assumption is needed so that the model is identifiable in (β, F ), as shown in Section 3. Note that if

a parametric form is assumed for F , as in Ibrahim, Chen and Sinha (2001), then the condition that

some of the Yi’s are observed to be infinity is not needed.

To compute the maximum likelihood estimates, we first derive the F which maximizes (6) for fixed

β. Equivalently, we maximize the logarithm of (6) which is equal to
n∑

i=1

I(Yi < ∞)
[
∆i log pi + ∆i log{−G′(η(βTXi)Fi)}+ (1−∆i) log G(η(βTXi)Fi)

]
,

subject to the constraint
∑

j ∆jI(Yj < ∞)pj = 1, where pi = F{Yi} denotes the jump size of F at

Yi and Fi =
∑

Yj≤Yi,∆j=1 pj . If we order the observed failure times from the smallest to the largest

and use the indices (1), . . . , (m) for the ordered times, Y(1) < · · · < Y(m), where m =
∑

i ∆iI(Yi < ∞),

then after introducing the Lagrange-multiplier λ, we obtain p(i) by solving the equation

1
p(i)

+
n∑

j=1

{
∆j

G′′(η(βTXj)Fj)η(βTXj)I(Y(i) ≤ Yj < ∞)

G′(η(βTXj)Fj)

+(1−∆j)
G′(η(βTXj)Fj)η(βTXj)I(Y(i) ≤ Yj < ∞)

G(η(βTXj)Fj)

}
− λ = 0,

where G′′(x) denotes the second derivative of G with respect to x. Thus, it follows that

1
p(i+1)

=
1

p(i)
+

∑

Y(i)≤Yj<Y(i+1)

{
∆j

G′′(η(βTXj)Fj)η(βTXj)
G′(η(βTXj)Fj)

+ (1−∆j)
G′(η(βTXj)Fj)η(βTXj)

G(η(βTXj)Fj)

}
.

Equivalently,

1
p(i+1)

=
1

p(i)
+

G′′(η(βTX(i))F(i))η(βTX(i))

G′(η(βTX(i))F(i))
+

∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)F(i))η(βTXj)

G(η(βTXj)F(i))
, (7)
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where F(i) = p(1) + . . . + p(i). Using the fact that
∑m

i=1 p(i) = 1, we can also write (7) as

1
p(i)

=
1

p(i+1)
− G′′(η(βTX(i))(1− S(i+1)))η(βTX(i))

G′(η(βTX(i))(1− S(i+1)))

−
∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)(1− S(i+1)))η(βTXj)

G(η(βTXj)(1− S(i+1)))
, (8)

where S(i+1) = p(i+1) +p(i+2) + . . .+p(m). From (7), we obtain a recursive formula of calculating p(i+1)

from p(i) and F(i); while from (8), we obtain another recursive formula of calculating p(i) from p(i+1)

and S(i+1). When G′′ > 0 and G′ < 0, we prefer to using (8) since it ensures that 0 < p(i) < p(i+1)

once p(i+1) > 0 and S(i+1) < 1.

Hence, from (8), we can treat β, α ≡ p(m) > 0 and λ as independent parameters, and p(1), . . . ,

p(m−1) are functions of β and α. Then, the constrained maximum likelihood equations for β and

p(1), . . . , p(m) can be reduced to solving the following score equations for β, α and λ,

0 =
m∑

i=1

1
p(i)

∂

∂β
p(i) +

m∑

i=1

G′′(η(βTX(i))F(i))

G′(η(βTX(i))F(i))

{
η′(βTX(i))X(i)F(i) + η(βTX(i))

∂

∂β
F(i)

}

+
m∑

i=1

∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)F(i))

G(η(βTXj)F(i))

{
η′(βTXj)XjF(i) + η(βTXj)

∂

∂β
F(i)

}

+
n∑

j=1

∆jXj +
n∑

j=1

I(Yj = ∞)
G′(η(βTXj))
G(η(βTXj))

η′(βTXj)Xj − λ

m∑

i=1

∂

∂β
p(i),

0 =
m∑

i=1

1
p(i)

∂

∂α
p(i) +

m∑

i=1

G′′(η(βTX(i))F(i))

G′(η(βTX(i))F(i))
η(βTX(i))

∂

∂α
F(i)

+
m∑

i=1

∑

Y(i)<Yj<Y(i+1)

G′(η(βTXj)F(i))

G(η(βTXj)F(i))
η(βTXj)

∂

∂α
F(i) − λ

m∑

i=1

∂

∂α
p(i),

0 =
m∑

i=1

p(i) − 1. (9)

After eliminating λ from the first two equations, the Newton-Raphson algorithm can be used to solve

the system of equations in (9). The first and second derivatives of p(i) with respect to β and α can be

computed using the recursive formula (8).

We denote the maximum likelihood estimators for β and α by β̂n and α̂n, respectively. We can

estimate the asymptotic variance of (β̂n, α̂n) based on the profile log-likelihood function for (β, α),

which is defined as the maximum value of the logarithm of (6) for any fixed (β, α) and is denoted

by pln(β, α). The asymptotic variance of (β̂n, α̂) can be estimated using the negative inverse of the
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curvature of pln(β, α) at (β̂n, α̂n), i.e.,

−
( ∂2

∂β2 pln(β, α) ∂2

∂β∂α
pln(β, α)

∂2

∂α∂β
pln(β, α) ∂2

∂α2 pln(β, α)

)−1 ∣∣∣
β=

ˆβn,α=α̂n

.

Specifically, the second derivative of pln(β, α) with respect to β and α can be calculated based on the

following chain rule and the recursive formula (8):

∂

∂β
pln(β, α) =

∂

∂β
ln(β, F ) +

m−1∑

i=1

∂ln(β, F )
∂p(i)

∂p(i)

∂β
,

∂

∂α
pln(β, α) =

∂

∂α
ln(β, F ) +

m−1∑

i=1

∂ln(β, F )
∂p(i)

∂p(i)

∂α
,

where ln(β, F ) is the logarithm value of (6). The justification of the above variance estimation method

is based on the profile likelihood theory in Murphy and van der Vaart (2000), and is discussed in the

Appendix.

3 Asymptotic Properties

In this section, we establish theorems characterizing the asymptotic properties of (β̂n, α̂n). In order

to achieve consistency and asymptotic normality, we first need the following assumptions:

(C1) The covariate X is bounded with probability one, and if there exists a vector β̃ such that

β̃
T
X = 0 with probability one, then β̃ = 0.

(C2) Conditional on X, the right-censoring time C is independent of T , and P (C = ∞|X) > 0.

(C3) The true value of β, denoted as β0, belongs to the interior of a known compact set B0, and the

true promotion time cumulative distribution function F0 is differentiable with F ′
0(x) > 0 for all

x ∈ R+.

(C4) The link function η(·) is strictly increasing and twice-continuously differentiable with η(·) > 0.

Furthermore, the transformation G satisfies

G(0) = 1, G(x) > 0, G′(x) < 0, G(3)(x) exists and is continuous,

where G(3)(x) is the third derivative of G(x).

Condition (C1) is the usual condition for a design matrix in regression settings. The condition

P (C = ∞|X) in (C2) ensures that at least some cured subjects are not right-censored; otherwise, if
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all subjects either fail or are right-censored, then intuitively, one would be unable to identify the cure

rate. In (C3), β is assumed to be bounded. Such an assumption is often imposed in semiparametric

inference, as practical calculation is always performed within a reasonable bounded set. Many link

functions η(·) and G(·) satisfy the conditions in (C4). Some examples of η(·) include η(x) = ex,

η(x) = ex/(1+ex), η(x) = Φ(x) where Φ is the cumulative distribution function of the standard normal

distribution. Examples of transformations satisfying (C4) include the transformations (1 + γx)−1/γ

for γ > 0 and exp(−x) for γ = 0, as well as some others, such as G(x) = {1 + log(1 + x)}−γ for γ > 0

and G(x) = exp{−((1 + x)γ − 1)/γ} for γ > 0.

Before stating the main results, we first show that under conditions (C1) - (C4), the parameters β

and F are identifiable. Suppose that two sets of parameters (β, F ) and (β̃, F̃ ) give the same likelihood

function for the observed data. We claim that β = β̃ and F = F̃ . Since
[{−G′(η(βTX)F (Y ))η(βTX)f(Y )

}∆ {
G(η(βTX)F (Y ))

}(1−∆)
]I(Y <∞)

× [
G(η(βTX))

]I(Y =∞)

=
[{
−G′(η(β̃

T
X)F̃ (Y ))η(β̃

T
X)f̃(Y )

}∆ {
G(η(β̃

T
X)F̃ (Y ))

}(1−∆)
]I(Y <∞)

×
[
G(η(β̃

T
X))

]I(Y =∞)
, (10)

we choose Y = ∞. Then from the monotonicity of both G and η, it follows that βTX = β̃
T
X. Thus,

condition (C1) gives β = β̃. Furthermore, by letting ∆ = 1 and Y = y and integrating both sides of

(10) from 0 to y, we have G(η(βTX)F (y)) = G(η(β̃
T
X)F̃ (y)). Therefore, F (y) = F̃ (y).

The following theorem establishes the consistency of the maximum likelihood estimator.

Theorem 1. Under conditions (C1) - (C4), with probability one,

|β̂n − β0| → 0 and sup
t∈R+

|F̂n(t)− F0(t)| → 0,

i.e., both β̂n and F̂n are strongly consistent.

The basic idea in proving Theorem 1 is as follows: Suppose that β̂n and F̂n converge to β∗ and

F ∗, respectively. We first construct an empirical distribution function F̃n converging to F0. Then

since
{

ln(β̂n, F̂n)− ln(β0, F̃n)
}

/n ≥ 0, where ln(β, F ) denotes the observed log-likelihood function at

(β, F ), and this difference converges to the negative Kullback-Leibler divergence between (β∗, F ∗) and

(β0, F0), the identifiability result gives β∗ = β0 and F ∗ = F0. This establishes the consistency result

in Theorem 1. Constructing the empirical function F̃n and using the Kullback-Leibler divergence to

prove consistency has been used by many others in semiparametric theory, including Murphy (1994),

Murphy, Rossini and van der Vaart (1997), Parner (1998), Slud and Vonta (2004), and Kosorok, Lee

9



and Fine (2004) among others. However, observing the fact that F̂n is a distribution function, proving

the convergence of the Kullback-Leibler divergence is not trivial in our case, as shown in the Appendix.

Our second result concerns the joint asymptotic distribution of β̂n and F̂n. In order to obtain the

joint asymptotic distribution for (β̂n, F̂n), we first introduce the set

H =
{

(h1, h2) : h1 ∈ Rd, ‖h1‖ < 1 ,

h2 is a function in [0,∞) with its total variation bounded by 1} .

Here, the total variation of a function h2 is defined as the supremum of
∑m

i=1 |h2(ti+1) − h2(ti)| over

all finite partitions 0 = t1 < t2 < . . . < tm+1 = ∞. We use ‖h2‖V to denote the total variation of h2.

Then
√

n(β̂n − β0, F̂n − F0) can be treated as a linear functional in l∞(H), the space of all bounded

linear functionals on H, which is defined as

√
n(β̂n − β0, F̂n − F0)[h1, h2] =

√
n(β̂n − β0)

Th1 +
√

n

∫
h2(t)d(F̂n − F0).

The next theorem establishes the asymptotic distribution of
√

n(β̂n−β0, F̂n−F0) in the metric space

l∞(H).

Theorem 2. Under conditions (C1)-(C4),
√

n(β̂n − β0, F̂n − F0) converges weakly to a zero-mean

Gaussian process in l∞(H). Furthermore, β̂n is efficient; equivalently, its asymptotic variance attains

the semiparametric efficiency bound for β0.

The covariance matrix of the asymptotic Gaussian process is given in the Appendix. The defini-

tion of the semiparametric efficiency bound can be found in Chapter 3 of Bickel, Klaassen, Ritov and

Wellner (1993). Thus, Theorem 2 establishes that the maximum likelihood estimators are asymptoti-

cally normal and efficient. The proof of Theorem 2 is standard in most of the current semiparametric

literature, including Murphy (1995), Parner (1998) and Kosorok et al. (2004). The proof relies on the

linearization of the likelihood equations for β̂n and F̂n and uses Theorem 3.3.1 of van der Vaart and

Wellner (1996). In the proof, the verification of some Donsker classes and proving the invertibility of

the information operator are the key steps. Both issues are discussed in detail in the Appendix for

the proposed model.

Theorem 2 has many useful applications. By letting h2(·) = I(· ≤ t) for any t ≥ 0, we obtain that
√

n(β̂n − β0, F̂ (t)− F0(t)) converges weakly to a zero-mean Gaussian process in l∞(Rd × [0,∞)). As

a result, for fixed t0,
√

n(F̂n(t0) − F0(t0)) has an asymptotic normal distribution with mean zero. If

its asymptotic variance can be estimated, one can easily construct a confidence interval for F0(t0).

Special choices of t0 can be the quantiles of F0. Furthermore, when interest is to test whether the
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true promotion distribution function is equal to a given distribution function F0, we can construct a

test statistic
√

n supt≥0 |F̂n(t)− F0(t)|, similar to the Kolmogrov-Smirnov statistic. Then Theorem 2

implies that such a statistic has an asymptotic distribution which is the same as the supremum of

a Gaussian process. We remark that in the above cases, the asymptotic covariance function of the

Gaussian process in Theorem 2 needs to be estimated. One practical way of estimating this function

is through a bootstrapping approach. The justification of the bootstrapping procedure can be shown

using the same techniques as in Kosorok et al. (2004). We will not pursue this issue further here but

rather focus only on inference for regression coefficients in the subsequent development.

4 Estimation of the Transformation G(·)

In the forgoing sections, the transformation G(·) was assumed to be known. One important practical

issue is how to estimate G(·) using the observed data. We discuss two possible methods to estimate

this transformation.

The first approach is to consider G(·) from a parametric transformation family {Gγ : γ ∈ Γ},
where Γ is a compact set in Euclidean space. For example, Gγ arises from the family given in (3)

or (4). Using the observed data, we then estimate γ along with β and F . However, as noted in the

introduction, one serious problem with this approach is the possible nonidentifiability of γ. However,

for some special families of transformations, the parameters (γ, β, F ) are identifiable, as given in the

following proposition.

Proposition 1. Let X = (1,WT )T and β0 as (β01, β
T
0w)T , respectively. Assume that W has support

containing a nonempty open interior and βT
0wW 6= 0. Then for transformations from the family (3)

and η(x) = exp(x), β0, F0 and γ0 are identifiable.

Proof. Suppose that (β̃, F̃ , γ̃) gives the same observed likelihood function as (β0, F0, γ0). That is,

[{−G′
γ0

(η(βT
0 X)F0(Y ))η(βT

0 X)f0(Y )
}∆ {

Gγ0(η(βT
0 X)F0(Y ))

}(1−∆)
]I(Y <∞)

× [
Gγ0(η(βT

0 X))
]I(Y =∞)

=
[{
−G′

γ̃(η(β̃
T
X)F̃ (Y ))η(β̃

T
X)f̃(Y )

}∆ {
Gγ̃(η(β̃

T
X)F̃ (Y ))

}(1−∆)
]I(Y <∞)

×
[
Gγ̃(η(β̃

T
X))

]I(Y =∞)
, (11)

where Gγ(x) = (1 + γx)−1/γ . We choose Y = ∞ in (11) and obtain

{
1 + γ̃ exp(β̃

T
X)

}1/γ̃
=

{
1 + γ0 exp(βT

0 X)
}1/γ0

.

11



Since both sides are analytic in W, this equality holds for any W in real space. If γ0 < γ̃, then from

the monotonicity of (1 + γx)1/γ , we have βT
0 X > β̃

T
X for any X. Immediately, we conclude that

β̃0w = β0w and β01 < β̃01. As a result, we have

{
1 + γ̃ exp(β̃01 + βT

0wW)
}1/γ̃

=
{
1 + γ0 exp(β01 + βT

0wW)
}1/γ0

,

and this holds for any real W. Letting βT
0wW →∞, we then obtain γ0 = γ̃ and β01 = β̃01. Further-

more, choosing ∆ = 1 and Y = y and integrating from 0 to y in (11), we obtain F̃ (y) = F0(y).

Proposition 1 states that if a continuous covariate has a non-zero effect, then γ can be identified.

When model parameters are identifiable, with some additional regularity conditions beyond (C.1)-

(C.4), the nonparametric maximum likelihood estimators for β, F and γ are strongly consistent and

asymptotically normal. The details are given in the remarks of the Appendix. This approach utilizes

the observed data to estimate the transformation parameter and our proposed algorithm can be

easily adapted to incorporate this extra parameter estimation. However, this approach may not be

useful for practical applications for the following reasons: First, with no prior knowledge about the

true covariate effects, there is always the concern regarding identifying all of the parameters in the

model since nonidentifiability can cause numerical instability in the computations. Second, even if the

parameters are identifiable, our experience indicates that for small samples, the likelihood function is

typically quite flat as a function of γ. Thus, to obtain an accurate estimate of γ, a very large sample

size is required and this may not be practical in many biomedical studies. Third, when the choices

of transformations are from multiple families of transformations which are parameterized differently,

this approach is no longer feasible.

Hence, we suggest the following approach for estimating the transformation G in practice. When

many transformations are under consideration, we can calculate the NPMLEs under each transfor-

mation then choose the transformation which maximizes the Akaike information criterion (AIC). The

AIC is defined as the twice log-likelihood function minus twice the number of parameters. In some

applications, to obtain algebraically simple transformations, one may also penalize the complexity of

the transformation. Some possible choices of a penalty can be the maximal difference between G(x)

and exp(−x), so that we can choose a model close to the proportional hazards model; or, the choice

can be the maximal difference between G(x) and 1/(1+x), so that we can choose a model close to the

proportional odds model. However, the determination of the transformation complexity remains an

unsolved issue so we defer further discussion to future work. Besides the AIC criterion, other criteria

can also be used as well, including the Bayesian information criterion (BIC, Schwarz, 1978), the L

measure (Ibrahim and Laud, 1994), or likelihood-based cross-validation. As an additional note, in
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most practice, the inference is solely based on the selected model; therefore, the variance estimate

does not reflect the variation due to the model selection procedure. The correction of the variance

estimate, sometimes called post-model-selection inference, is still an open problem in semiparametric

inference.

In the subsequent simulation study, we will examine the performance of the NPMLEs for a fixed

transformation; while, in the data application, the AIC will be used to select the best transformation

to fit the data.

5 Numerical Studies

5.1 Simulation

We conducted simulation studies to examine the small-sample performance of our proposed method-

ology. In the first simulation study, the transformation cure model had survival function of the form

S(t|X1, X2) = {1 + γ exp(β0 + β1X1 + β2X2)F (t)}−1/γ ,

where X1 was a uniformly distributed random variable in [0, 1], X2 was a Bernoulli random variable,

β0 = 0.5, β1 = 1, β2 = −0.5, and F (t) = 1 − exp(−t). We chose γ to vary from 0 to 1. Moreover,

each subject had a 40% chance of being right-censored and the censoring time was generated from

an exponential distribution with mean 1. The censoring proportions varied from 17% to 22% as γ

changed from 0 to 1; while the cure rate could be as low as 8% when γ = 0 and became 20% when

γ = 1. For each simulated dataset, the proposed method of Section 2 was implemented to calculate

the maximum likelihood estimates of β and its corresponding variance estimate. In solving the score

equations using the Newton-Raphson iterations, the initial values for β were set to zero and the initial

value for α was set to 1/n, with n being the sample size. Other initial values were also tested in the

simulation study and results were very robust to those choices. The convergence of each simulation

was fast and often obtained within ten iterations.

Table 1 summarizes the results from 1000 replications for each combination of γ and n: the column

labeled “Estimate” denotes the average values of the estimates; “SE” is the sample standard error

of the estimates; “ESE” is the average of the estimated standard errors; and “CP” is the coverage

proportion of 95% confidence intervals constructed based on the asymptotic normal approximation.

The results in Table 1 indicate that the proposed estimation method performs well with sample sizes of

100 and 200: the biases are small, the estimated standard errors agree well with the sample standard

errors, and the coverage probabilities are accurate.
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In the second simulation study, we generated the failure time from the transformation cure model

with survival function

S(t|X1, X2) = exp [−{(1 + γ exp(β0 + β1X1 + β2X2)F (t))γ − 1} /γ] ,

where F (t) = 1 − exp(−t) and the covariates and censoring time were generated using the same

distributions as in the first simulation. In this setting, we also varied γ from 0 to 1, where γ = 0

corresponds to the proportional odds cure model and γ = 1 corresponds to the proportional hazards

cure model. The censoring proportion and the cure rate were 22% and 20% when γ = 0 and became

17% and 8% when γ = 1. The results based on 1000 repetitions for sample sizes 100 and 200 are

summarized in Table 2. From Table 2, we obtain the same conclusions as in the first simulation study.

Thus, we conclude that the maximum likelihood estimation procedure proposed here not only provides

an asymptotically efficient estimator, but also yields good inferential properties for small sample sizes.

Since the proportional hazards cure model and the proportional odds cure model are commonly

used in practice, we also conducted a simulation study to examine the performance of the estimates

based on these two models when data were generated from a different model. Specifically, we utilized

the same setting for generating the covariates and censoring time as in the other two simulations

described above, while we generated the survival time either from the model with a transformation

(1 + x/2)−2 or exp{−2((1 + x)1/2 − 1)}; equivalently, γ = 1/2 in both classes of (3) and (4). Both

choices corresponded to a model between the proportional hazards cure model and the proportional

odds cure model. The results based on 1000 replications are reported in Table 3. From Table 3, we

observe that both the proportional hazards cure model and proportional odds cure models produce

notable bias. Interestingly, both models estimate the direction of the coefficients correctly and the

proportional hazards cure model tends to bias towards zero while the opposite is observed for the

proportional odds cure model. The bias for the intercept term in both models is large but the bias

for other covariate effects are relatively small. We also observe that even with sizable bias, standard

error estimates of the regression coefficients corresponding to the covariates appear to be correct.

Finally, we considered the estimation of γ. We generated failure times using the cure model for the

transformation class G(x) = (1 + γx)−1/γ . The simulation study, which is not shown here, indicates

that the performance of the NPMLEs is poor and the convergence in calculating the NPMLEs is often

problematic with a sample size of n = 400. This is due to the fact that the likelihood function tends

to be flat when γ varies around the true value.

14



5.2 Application to Melanoma Data

As an illustration, we applied the transformation cure model in (2) to a phase III melanoma clinical

trial conducted by the Eastern Cooperative Oncology Group (ECOG), labeled E1690 (Kirkwood et

al., 2000). This trial consisted of two treatment arms with a total of n = 427 patients on the combined

treatment arms, of which 241 patients experienced the event (cancer relapse). The response variable

was relapse-free survival (RFS) time (in years). The covariates included in this analysis were treatment

(high-dose interferon=1, observation=0), age (a continuous variable which ranged from 19.13 to 78.05

with a mean of 47.93 years), sex (female=1, male=0) and nodal category (taking a value of 0 if there

were zero positive nodes, or 1 if there were one or more positive nodes). The median follow-up time

for this study was 4.33 years, which is considered as a sufficient length of follow-up for this disease.

The solid and dotted curves in Figure 1 show the Kaplan-Meier survival curves for the two treatment

arms. We see that a reasonable plateau has been reached at the tails of the survival curves, and it

appears that based on this period of follow-up, a cure rate model would be a suitable approach for

the data. Cure rate models for the E1690 data were also considered in Chen, Harrington and Ibrahim

(2002), and were shown to fit better than proper survival models. Based on Figure 1, we considered

the subjects as “cured” if they were censored at 5.5 years or beyond. In the dataset, 30 subjects had

censored RFS times greater than or equal to 5.5 years (Yi = ∞). Patients with observed times less

than 5.5 years were either failures or right-censored, and some of those right-censored subjects might

indeed have been “cured” patients, but we cannot determine that due to the right-censoring.

We fit the proposed model in (2), where G(x) comes from the family (3) as well as the family (4).

We considered values of γ in [0, 2]. The maximum likelihood estimates for the regression coefficients of

the proposed class of semiparametric transformation cure models were computed using the proposed

method. Furthermore, we selected the best transformation among these two classes as the one that

maximized the AIC criterion, which is equivalent to the observed log-likelihood function in this case

since the number of parameters is constant. Figure 2 plots the observed log-likelihood functions

obtained using the two classes of transformations. Interestingly, both classes select out the same best

transformation, which corresponds to the proportional hazards cure model.

Consequently, we report the results from the proportional hazards cure model in the second panel

of Table 4. The results show that both interferon treatment and sex did not significantly affect RFS,

while age and nodal category did. Younger patients or those with zero positive nodes had significantly

better RFS and thus were more likely to be “cured”, that is, not to have recurrence of melanoma. The

results can also be used to estimate the cure rate for each group. For example, the estimated cure
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rates for a 50 year old female patient with positive nodes under the interferon treatment is 41.0%.

Furthermore, we plot in Figure 1 the fitted survival function within each treatment group, where the

survival function is calculated as the empirical average of the predicted survival functions within each

group. The dashed and dot-dashed lines in Figure 1 present the predicted survival functions and they

agree with the Kaplan-Meier curves quite well.

As noted earlier, we treated censored subjects with RFS times 5.5 years or greater as “cured”

to estimate the parameters. The choice of such a threshold value can be artificial unless it has some

biological meaning. Thus, we also studied the sensitivity of the estimates to the choice of this threshold

value. To do this, we varied the threshold value larger than the last failure (5 years), using values of

5.1, 5.5, 6, 6.5 and 7 years. The estimates of the coefficients only differ in the third decimal point, as

shown in Table 4.

6 Discussion

We have proposed a class of semiparametric transformation cure models which are motivated by a

specific biological process. This class is quite broad and it includes the well-known proportional hazards

and proportional odds structures as two special cases. We have provided an efficient algorithm for

calculating the maximum likelihood estimates. The maximum likelihood estimation procedure yields

efficient estimators of the regression parameters. As one by-product, since model (2) reduces to a

linear transformation model with a special choice of the link function θ(·), the algorithm in Section

2 provides a simple way of calculating the maximum likelihood estimates for linear transformation

models in general. Specifically, for a linear transformation model with S(t|Zi) = G{exp(βT
1 Zi)Λ(t)},

we can reparameterize to make it a cure rate model by defining F (t) = Λ(t)/Λ(τ) and adding an

intercept term log Λ(τ) into the regression. Here, τ refers to the termination time of the study. Thus,

treating any subjects censored at time τ as “cured”, we then implement our proposed algorithm to

calculate the maximum likelihood estimates of the parameters.

The cure threshold for the E1690 melanoma data was taken to be 5.5 years. The choice of this

cutoff value heavily depends on the dataset at hand and other practical elements, including the type of

disease, the severity or stage, the corresponding treatment, and other patient prognostic factors that

require expert opinion from the physician. A simple guideline is that there should not be any failures

after the cure threshold. In fact, the estimates from the proposed method are very robust with respect

to the choice of this threshold, as shown in Table 4.

The transformation G(x) can be misspecified in practice due to limited knowledge or complex
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relationships between the covariates and the time-to-event variable. Kosorok et al. (2004) gives some

examples in univariate survival data showing that the regression parameters can be estimated up to the

correct direction even if G(x) is misspecified. The same ideas can be extended to our proposed model.

However, the computation of such estimable quantities in the presence of nonidentifiable parameters

is a very challenging problem.

In deriving (2), we assumed that the promotion time survival function, S∗(t) = 1 − F (t), is the

same for all tumor cells. One possible generalization to this is to incorporate covariates into S∗(t),

for example, to allow them to be different across treatments. In this case, the survival function of the

tumor cell for the ith subject would be exp{−Λ(t)eζ
T
Zi}, where Zi is a covariate vector for treatment

and other risk factors, and Zi may share the same components as Xi. Thus, the population survival

function of interest for subject i is

S(t|Xi,Zi) = G{(1− e−Λ(t)eζ
T

Zi )θ(Xi)}.

Issues regarding model identifiability and maximum likelihood estimation in these general models are

currently being investigated.

Appendix

A.1 Proof of Theorem 1

We introduce the following notation. Let Pn and P denote the empirical measure of n i.i.d observations

and the expectation, respectively; i.e., for any measurable function g(∆, Y,X) in L2(P ) ,

Pn [g(∆, Y,X)] =
1
n

n∑

i=1

g(∆i, Yi,Xi), P [g(∆, Y,X)] = E [g(∆, Y,X)] .

From the Lagrange-multiplier calculation, F̂n satisfies the equation that for Yi < ∞,

∆i

F{Yi} +
∑

∞>Yj≥Yi

{
∆j

G′′(η(β̂
T

nXj)F (Yj))η(β̂
T

nXj)

G′(η(β̂
T

nXj)F (Yj))

+(1−∆j)
G′(η(β̂

T

nXj)F (Yj))η(β̂
T

nXj)

G(η(β̂
T

nXj)F (Yj))

}
= nλ̂n.

We multiply both sides by F̂n{Yi} and sum over Yi such that Yi < ∞. We get

λ̂n =
1
n

n∑

i=1

∆iI(Yi < ∞) +
∫ ∞

0
Hn(y, β̂n, F̂n)dF̂n(y), (A.1.1)
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where

Hn(y, β̂n, F̂n) =
1
n


 ∑

Yj<∞

{
∆j

G′′(η(β̂
T

nXj)F̂n(Yj))η(β̂
T

nXj)I(Yj ≥ y)

G′(η(β̂
T

nXj)F̂n(Yj))

+(1−∆j)
G′(η(β̂

T

nXj)F̂n(Yj))η(β̂
T

nXj)I(Yj ≥ y)

G(η(β̂
T

nXj)F̂n(Yj))

}]
.

Hence, F̂n{Yi} = ∆i/n(λ̂n − Hn(Yi, β̂n, F̂n)). Obviously, from (A.1.1), λ̂n should be bounded by a

constant with probability one. Thus, by choosing a subsequence, still indexed by {n}, we assume

λ̂n → λ∗. By choosing a further subsequence, we assume β̂n → β∗ and F̂n → F ∗ pointwise.

We consider the following class

A1 =
{

∆
G′′(η(βTX)F (Y ))η(βTX)I(∞ > Y ≥ y)

G′(η(βTX)F (Y ))
+(1−∆)

G′(η(βTX)F (Y ))η(βTX)I(∞ > Y ≥ y)
G(η(βTX)F (Y ))

:

F is a distribution function, β ∈ B0, y ∈ [0,∞)
}

.

First,
{
βTX : β ∈ B0

}
and {F (Y ) : F is a distribution function} are both Donsker classes, where the

latter follows from Theorem 2.7.5 of van der Vaart and Wellner (1996). Since G, G′, G′′ and η are

continuously differentiable functions, the preservation of the Donsker property based on Theorem

2.10.6 of van der Vaart and Wellner (1996) implies that the classes

{
G(k)(η(βTX)F (Y )) : β ∈ B0, F is a distribution function

}
, k = 0, 1, 2,

and
{
η(βTX) : β ∈ B0

}
are Donsker classes. Furthermore, we note G′(x) and G(x) are both bounded

away from zero when x is in a compact set. Thus, the preservation of the Donsker property under the

summation, product and quotient, as given in Examples 2.10.7-2.10.9 of van der Vaart and Wellner

(1996) gives that the class A1 is a Donsker class so is also a Glivenko-Cantelli class. As a result of

the Glivenko-Cantelli theorem and the bounded convergence theorem, we conclude that uniformly in

y, Hn(y, β̂n, F̂n) → H∗(y), where

H∗(y) = E
[
∆

G′′(η(β∗TX)F ∗(Y ))η(β∗TX)I(∞ > Y ≥ y)
G′(η(β∗TX)F ∗(Y ))

+(1−∆)
G′(η(β∗TX)F ∗(Y ))η(β∗TX)I(∞ > Y ≥ y)

G(η(β∗TX)F ∗(Y ))

]
.

Moreover, the right-hand side of (A.1.1) converges to

λ∗ = E{∆I(Y < ∞)}+ E{I(Y < ∞)
∫ Y

0
H∗(y)dF ∗(y)}.
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Now we wish to show that |λ∗ −H∗(y)| > δ∗ for some positive constant δ∗. To see that, we first

note that from
∑n

i=1 F̂n{Yi} = 1, then

1 =
n∑

i=1

I(Yi < ∞)
∆i

n(λ̂n −Hn(Yi, β̂n, F̂n))
=

n∑

i=1

I(Yi < ∞)
∆i

n|λ̂n −Hn(Yi, β̂n, F̂n)|

≥ 1
n

n∑

i=1

I(Yi < ∞)
∆i

|λ̂n −Hn(Yi, β̂n, F̂n)|+ ε
, (A.1.2)

for any positive constant ε. Since Hn(y, β̂n, F̂n) converges uniformly to H∗(y),

1
n

n∑

i=1

I(Yi < ∞)
∆i

|λ̂n −Hn(Yi, β̂n, F̂n)|+ ε
− 1

n

n∑

i=1

I(Yi < ∞)
∆i

|λ∗ −H∗(Yi)|+ ε
→ 0.

Then after taking limits on both sides, we obtain 1 ≥ E {∆I(Y < ∞)/(|λ∗ −H∗(Y )|+ ε)} . Letting

ε → 0, by the monotone convergence theorem, we have

1 ≥
∫ ∞

0

c0dy

|λ∗ −H∗(y)| , (A.1.3)

where c0 is a positive constant. Thus, if infy |λ∗ − H∗(y)| = 0, we claim that there exists a finite

y0 such that H∗(y0) = λ∗. Otherwise, H∗(∞) = λ∗ = 0. Then, for large y, |λ∗ − H∗(y)| < 1

which makes (A.1.3) impossible. Now suppose that there exists a finite y0 such that λ∗ = H∗(y0).

Then (A.1.3) becomes 1 ≥ c0

∫∞
0 dy/|H∗(y0)−H∗(y)|. This is impossible since H∗(y) is continu-

ously differentiable in a neighborhood of y0. Therefore, there exists a positive constant δ∗ such

that |λ∗ − H∗(y)| > δ∗. This implies that when n is large, |λ̂n − Hn(y, β̂n, F̂n)| > δ∗. Note

that F̂n(y) = n−1
∑n

i=1 ∆iI(Yi ≤ y)/|λ̂n −Hn(Yi, β̂n, F̂n)| so F̂n(y) converges uniformly to F ∗(y) =

E {∆I(Y ≤ y)/|λ∗ −H∗(Y )|} .

We now show that β∗ = β0, F
∗ = F0. To do so, we construct another function F̃ which has jumps

only at Yi such that ∆i = 1 and Yi < ∞. Moreover,

F̃n{Yi} =
1

ncn

∆i

λ̃n −Hn(Yi, β0, F0)
,

where λ̃n satisfies a similar equation to (A.1.1) and it is given by

λ̃n =
1
n

n∑

i=1

∆iI(Yi < ∞) +
∫ ∞

0
Hn(y, β0, F0)dF0(y)

and cn is a constant such that
∑n

i=1 F̃n{Yi} = 1. Furthermore, using the argument of the Glivenko-

Cantelli property as before, we can easily show that uniformly in y, Hn(y, β0, F0) converges to

H̃(y) = E

{
∆

G′′(η(β0
TX)F0(Y ))η(β0

TX)I(∞ > Y ≥ y)
G′(η(β0

TX)F0(Y ))
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+(1−∆)
G′(η(β0

TX)F0(Y ))η(β0
TX)I(∞ > Y ≥ y)

G(η(β0
TX)F0(Y ))

}
,

which, after integration by part, is equal to E
[
η(βT

0 X)G′(η(βT
0 X)F0(y))Sc(y|X)

]
, where Sc is the

conditional survival function of the censoring time. Consequently, direct calculation gives that λ̃n

converges to 0. Furthermore, from equation

cnF̃n(y) =
1
n

n∑

i=1

∆iI(Yi ≤ y)
λ̃n −Hn(Yi, β0, F0)

,

we obtain that uniformly in y, cnF̃n(y) converges to

E

[
∆I(Y ≤ y)

−E
{
Sc(ỹ|X)η(βT

0 X)G′(η(βT
0 X)F0(ỹ))

} |ỹ=Y

]
= F0(y).

Hence, cn → 1 and F̃n(y) converges to F0(y) uniformly.

Note that F̂n is absolutely continuous with respect to F̃n(y) with

F̂n(y) =
∫ y

0

|λ̃n − H̃n(t, β0, F0)|
|λ̂n −Hn(t, β̂n, F̂n)|dF̃n(t). (A.1.4)

From the forgoing arguments, the integrand in (A.1.4) is bounded and uniformly converges to |H̃(t)|
/|λ∗ −H∗(t)|. We conclude that F ∗(y) =

∫ y
0 |H̃(t)|dF0(t)/|λ∗ −H∗(t)|. This implies that F ∗ is abso-

lutely continuous with respect to F0. Therefore, F ∗ is also differentiable and we denote its density

function by f∗.

On the other hand, since the observed log-likelihood function at (β̂n, F̂n) is larger than or equal

to the observed log-likelihood function at (β0, F̃n), we have

1
n

n∑

i=1

I(Yi < ∞)∆i log
F̂n{Yi}
F̃n{Yi}

+
1
n

n∑

i=1

{
I(Yi = ∞) log

G(η(β̂
T

nXi))
G(η(βT

0 Xi))

}

+
1
n

n∑

i=1

I(Yi < ∞)

{
∆i log

G′(η(β̂
T

nXi)F̂n(Yi))η(β̂
T

nXi)
G′(η(βT

0 Xi)F̃n(Yi))η(βT
0 Xi)

+ (1−∆i) log
G(η(β̂

T

nXi)F̂n(Yi))
G(η(βT

0 Xi)F̃n(Yi))

}
≥ 0.

We take limits on both sides and note that

1
n

n∑

i=1

∆iI(Yi < ∞) log
F̂n{Yi}
F̃n{Yi}

→ E

{
∆I(Y < ∞) log

f∗(Y )
f0(Y )

}
.

We obtain −K((β∗, F ∗), (β0, F0)) ≥ 0, where K(·, ·) denotes the Kullback-Leibler information of

(β∗, F ∗) with respect to the true parameters. Immediately, we obtain

{
−G′(η(β∗TX)F ∗(Y ))η(β∗TX)f∗(Y )

}∆I(Y <∞) {
G(η(β∗TX)F ∗(Y ))

}(1−∆)I(Y <∞)+I(Y =∞)

=
{−G′(η(βT

0 X)F0(Y ))η(βT
0 X)f0(Y )

}∆I(Y <∞) {
G(η(βT

0 X)F0(Y ))
}(1−∆)I(Y <∞)+I(Y =∞)

(A.1.5)
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for almost every (∆, X, Y ) in its support. According to the second paragraph in Section 3, we obtain

β∗ = β0 and F ∗ = F0.

We have shown that for almost every sample in the probability space, we can always choose a

subsequence of (β̂n, F̂n) so that it converges to (β0, F0). Hence, with probability one, β̂n → β0 and

F̂n(y) → F0(y) for every y ∈ [0,∞). Particularly, we obtain supy |F̂n(y) − F0(y)| → 0 due to the

continuity of F0.

Remark A.1 When transformation G depends on some unknown parameter γ, where γ belongs to a

compact set Γ, the proof of the consistency applies when assumptions (C1) and (C3) are replaced by

(C1’). Parameters (β0, γ0, F0) are identifiable.

(C3’). Gγ(x) is three times differentiable with respect to γ and x and all the derivatives are uniformly

bounded with G′
γ(x) > 0.

Especially, (C3’) ensures the classes of random functions in the above proof to be the Glivenko-Cantelli

classes while (C1’) ensures the limit of (β̂n, γ̂n, F̂n) must be the true parameters.

A.2 Proof of Theorem 2

To prove the asymptotic properties of (β̂n, F̂n), we recall the definition of H in Section 3. Furthermore,

we abbreviate l(β, F ) as the log-likelihood function of (5), given by

l(β, F ) = I(Y < ∞)
[
∆log f + ∆ log

{−G′(η(βTX)F (Y ))η(βTX)
}

+(1−∆) log G(η(βTX)F (Y ))
]
+ I(Y = ∞) log G(η(βTX)).

Denote lβ(β, F ) as the derivative of l(β, F ) with respect to β and denote lF (β, F )[
∫

(h2−QF [h2])dF ]

as the derivative of l(β, F ) along the path (β, Fε = F + ε
∫

QF (h2)dF ), ε ∈ (−ε0, ε0) for a small

constant ε0, where QF [h2] = h2(t) −
∫∞
0 h2(t)dF (t). Additionally, we can define the derivative of

lβ(β, F ) with respect to β, denoted by lββ(β, F ), the derivative of lβ(β, F ) with respect to F along

the path F + ε(F̂n − F ), denoted by lβF [F̂n − F ], and the derivative of lF (β, F )[
∫

QF (h2)dF ] with

respect to β, denoted by lFβ(β, F )[
∫

QF (h2)dF ], the derivative lF (β, F )[
∫

QF (h2)dF ] with respect to

F along the path F + ε(F̂n − F ), denoted by lFF (β, F )[
∫

QF (h2)dF, F̂n − F ]. Furthermore, we define

Ψ1(∆, Y,X) = I(Y < ∞)∆

{
G(3)(η(βTX)F (Y ))
G′(η(βTX)F (Y ))

− G′′(η(βTX)F (Y ))2

G′(η(βTX)F (Y ))2

}

+
{

(1−∆)I(Y < ∞) + I(Y = ∞)
}G′′(η(βTX)F (Y ))

G(η(βTX)F (Y ))

−
{

(1−∆)I(Y < ∞) + I(Y = ∞)
}G′(η(βTX)F (Y ))2

G(η(βTX)F (Y ))2
,
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Ψ2(∆, Y,X) = I(Y < ∞)∆
G′′(η(βTX)F (Y ))
G′(η(βTX)F (Y ))

+
{

(1−∆)I(Y < ∞) + I(Y = ∞)
}G′(η(βTX)F (Y ))

G(η(βTX)F (Y ))
.

Since (β̂n, F̂n) maximizes Pnl(β, F ), for any (h1, h2) ∈ H, it follows that

Pn

{
lβ(β̂n, F̂n)Th1 + lF (β̂n, F̂n)[

∫
QF̂n

(h2)dF̂n]
}

= 0.

Note that P
{

lβ(β0, F0)Th1 + lF (β0, F0)[
∫

QF0(h2)dF0]
}

= 0. Thus, we obtain

√
n(Pn −P)

{
lβ(β̂n, F̂n)Th1 + lF (β̂n, F̂n)[

∫
QF̂n

(h2)dF̂n]
}

= −√nP
{

lβ(β̂n, F̂n)Th1 + lF (β̂n, F̂n)[
∫

QF̂n
(h2)dF̂n]

}

+
√

nP
{

lβ(β0, F0)Th1 + lF (β0, F0)[
∫

QF0(h2)dF0]
}

. (A.2.1)

First, by the same arguments in the consistency proof, the classes of

A2 =
{

G′(x)
G(x)

,
G′′(x)
G′(x)

∣∣∣
x=η(βT

X)F (Y )
: ‖β − β0‖ < δ0, sup

y
|F (y)− F0(y)| < δ0

}
,

A3 =
{

η′(βTX)F (Y ), η(βTX)F (Y ) : ‖β − β0‖ < δ0, sup
y
|F (y)− F0(y)| < δ0

}

are P-Donsker. Additionally, it is clear to see both classes
{
QF (h2) : ‖h2‖V ≤ 1, supy |F (y)− F0(y)| < δ0

}

and
{∫ Y

0 QF (h2)dF : ‖h2‖V ≤ 1, supy |F (y)− F0(y)| < δ0

}
contain the functions of Y with bounded

variations so they are also P-Donsker. Therefore, from the explicit expression of lβ and lF , the

preservation of the Donsker classes under algebraic operations implies that the class

A4 =
{

lβ(β, F )Th1 + lF (β, F )[
∫

QF (h2)dF ] : ‖h1‖ ≤ 1, ‖h2‖V ≤ 1, ‖β − β0‖+ sup
y
|F (y)− F0(y)| < δ0

}

is P-Donsker. On the other hand, it is straightforward to show that

lβ(β̂n, F̂n)Th1 + lF (β̂n, F̂n)[
∫

QF̂n
(h2)dF̂n] → lβ(β0, F0)Th1 + lF (β0, F0)[

∫
QF0(h2)dF0]

uniformly in (h1, h2) ∈ H. Thus, the left-hand side of (A.2.1) is equal to

√
n(Pn −P)

{
lβ(β0, F0)Th1 + lF (β0, F0)[

∫
QF0(h2)dF0]

}
+ op(1),

where op(1) is a random variable that converges to zero in probability in the metric space l∞(H). As

a result, the left-hand side of (A.2.1) converges weakly to a zero-mean Gaussian process in l∞(H).
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Second, simple algebra shows that uniformly in (h1, h2) ∈ H,

∣∣∣lβ(β̂n, F̂n)Th1 + lF (β̂n, F̂n)[
∫

QF̂n
(h2)dF̂n]− lβ(β0, F0)Th1 − lF (β0, F0)[

∫
QF0(h2)dF0]

−
{

(β̂n − β0)
T lββ(β0, F0)h1 + (β̂n − β0)

T lFβ(β0, F0)[
∫

QF0(h2)dF0]

+hT
1 lβF [F̂n − F0] + lFF (β0, F0)[

∫
QF0(h2)dF0, F̂n − F0]

}∣∣∣

≤ op

{
‖β̂n − β0‖+ ‖F̂n − F0‖l∞

}
.

Thus, combining with the expressions of lββ, lβF , lFβ and lFF , we obtain that the right-hand side of

(A.2.1) equals

−√n

{
(β̂n − β0)

T Ωβ(h1, QF0(h2)) +
∫ ∞

0
ΩF (h1, QF0(h2))d(F̂n − F0)(y)

}

+o
{√

n(‖β̂n − β0‖+ ‖F̂n − F0‖l∞)
}

,

where

Ωβ(h1, QF0(h2)) = E

[
I(Y < ∞)∆

η′′(βTX)η(βTX)− η′(βTX)2

η(βTX)2
XXTh1

]

+E
[{

Ψ0
1(∆, Y,X)η′(βT

0 X)2F0(Y )2 + Ψ0
2(∆, Y,X)η′′(βT

0 X)F0(Y )
}
XXTh1

]

+E
[{

Ψ0
1(∆, Y,X)η(βT

0 X)η′(βT
0 X)F0(Y ) + Ψ0

2(∆, Y,X)η′(βT
0 X)F0(Y )

}
X

×
∫ Y

0
QF0(h2)dF0

]
,

ΩF (h1, QF0(h2)) = −E
[
I(Y < ∞)∆ + Ψ0

2(∆, Y,X)η(βT
0 X) {F0(Y )− I(Y ≥ y)}] QF0 [h2]

+E
[{

Ψ0
1(∆, Y,X)η(βT

0 X)η′(βT
0 X)F0(Y ) + Ψ0

2(∆, Y,X)η′(βT
0 X)F0(Y )

}

×XTh1I(Y ≥ y)
]

+E

[
I(Y ≥ y)Ψ0

1(∆, Y,X)η(βT
0 X)2

∫ Y

0
QF0(h2)dF0

]
,

where Ψ0
1 and Ψ0

2 have the same expressions as Ψ1 and Ψ2 respectively but with β and F replaced by

β0 and F0.

Third, the linear operator (Ωβ, ΩF ) is a bounded linear operator from the linear space

S = Rd ×
{

h̃2 : ‖h̃2‖V < ∞,

∫ ∞

0
h̃2(y)dF0(y) = 0

}

to itself. We wish to show that (Ωβ,ΩF ) is invertible. From the direct calculation, we have

−E
[
I(Y < ∞)∆ + Ψ0

2(∆, Y,X)η(βT
0 X) {F0(Y )− I(Y ≥ y)}] = E

[
G′(η(βT

0 X)F0(y))η(βT
0 X)Sc(y|X)

]
,
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which is negative. Thus, (Ωβ,ΩF ) can be written as the summation of an invertible operator and a

compact operator. By Rudin (1973), to prove the invertibility of (Ωβ,ΩF ), it is sufficient to show

that (Ωβ,ΩF ) is one-to-one. That is, if there exists some (h1, h̃2) ∈ S such that Ωβ(h1, h̃2) = 0

and ΩF (h1, h̃2) = 0, we need to show h1 = 0 and h̃2 = 0. However, we notice that according to the

derivation of Ω’s, it holds that

hT
1 Ωβ(h1, h̃2) +

∫ ∞

0
Ωβ(h1, h̃2)h̃2dF0 = −E

{
lβ(β0, F0)Th1 + lF (β0, F0)[h̃2]

}2
.

We thus obtain that with probability one,

lβ(β0, F0)Th1 + lF (β0, F0)[h̃2] = 0.

Particularly, we choose Y = ∞ and obtain h1 = 0; then we let Y < ∞ and ∆ = 1 and obtain a

homogeneous integral equation for h̃2. Such an equation has one trivial solution h̃2 = 0.

Finally, using the inverse of (Ωβ, ΩF ), denoted by (Ω̃β, Ω̃F ), the equation (A.2.1) can be written

as

√
n

{
(β̂n − β0)

Th1 +
∫ ∞

0
h̃2d(F̂n − F0)

}

= −√n(Pn −P)
{

lβ(β0, F0)T Ω̃β(h1, h̃2) + lF (β0, F0)T Ω̃F (h1, h̃2)
}

+op(1)
{√

n(‖β̂n − β0‖+ ‖F̂n − F0‖l∞)
}

,

where op(1) converges to zero in probability uniformly in (h1, h̃2) ∈ S0, where S0 contains all (h1, h̃2) ∈
S such that ‖h1‖ ≤ 1 and ‖h̃2‖V ≤ 1. This immediately implies that

√
n(‖β̂n − β0‖+ ‖F̂n − F0‖l∞) = Op(1).

Hence,
√

n

{
(β̂n − β0)

Th1 +
∫ ∞

0
h̃2d(F̂n − F0)

}

= −√n(Pn −P)
{

lβ(β0, F0)T Ω̃β(h1, h̃2) + lF (β0, F0)T Ω̃F (h1, h̃2)
}

+ op(1). (A.2.2)

Then
√

n
{

(β̂n − β0)Th1 +
∫∞
0 h̃2d(F̂n − F0)

}
converges weakly to a Gaussian process, denoted by

GP (h1, h̃2). The covariance between GP (h1, h̃2) and GP (h∗1, h̃
∗
2) is given by

E
[{

lβ(β0, F0)T Ω̃β(h1, h̃2) + lF (β0, F0)[Ω̃F (h1, h̃2)]
}

×
{

lβ(β0, F0)T Ω̃β(h∗1, h̃
∗
2) + lF (β0, F0)[Ω̃F (h∗1, h̃

∗
2)]

}]
.

Since for any h2,
∫

h2d(F̂n−F0) =
∫

QF0(h2)d(F̂n−F0), the above convergence result also implies the

weak convergence result in Theorem 2.
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Specifically, if we choose in equation (A.2.2) that h̃2 = 0, then we conclude that β̂
T

nh1 is an

asymptotic linear estimator for βT
0 h1 with its influence function given by

lβ(β0, F0)T Ω̃β(h1, 0) + lF (β0, F0)[Ω̃F (h1, 0)].

This implies that β̂n is semiparametrically efficient since the influence function is on the linear space

spanned by the score functions for β0 and F0.

Remark A.2.1. When the transformation depends on some parameter γ, the above proof can be

easily adapted to this case by introducing one more parameter γ. The results hold if γ0 is assumed

to belong to the interior of Γ, (C1) and (C3) are replaced by assumptions (C1’) and (C3’), and the

following assumption also holds:

(C5’) If with probability one,

G′
γ(η(βT

0 X))η′(βT
0 X)XTh1 + Ġγ(η(βT

0 X))h3 = 0,

where h1 and h3 are constant vectors and Ġγ denotes the derivative with respect to γ, then h1 = 0

and h3 = 0.

Note that (C5’) is particularly used for proving the invertibility of Ω’s.

Remark A.2.2. The profile likelihood function can be used to give a consistent estimate for the

asymptotic variance of β̂n. Its justification follows from verifying all the conditions of Theorem 1

in Murphy and van der Vaart (2000). Especially, from the invertibility of Ω’s, we conclude that the

information operator for (β0, F0) is invertible. Therefore, there exits a vector of functions h with

bounded variation such that l∗F lF [
∫

QF0(h)dF0] = l∗F lβ, where l∗F is the dual operator of lF . The

function
∫

QF0(h)dF0 is called the least favorable direction in Murphy and van der Vaart (2000). We

then consider the submodel (ε, Fε) where (ε, Fε), where Fε = F + (ε − β)
∫

QF (h)dF and ε ∈ Rd.

It is clear that such submodel satisfies conditions (8) and (9) in Murphy and van der Vaart (2000).

Furthermore, for any β̃n, we let F̃n be the distribution function maximizing (6) in which β = β̃n.

From the proof of Theorem 1, the same arguments imply that F̃n uniformly converges to F0 with

probability one. We thus verify condition (10) in Murphy and van der Vaart (2000). As in the proof

of Theorem 2, we linearize the likelihood function for F̃n, which is equal to

0 = Pn

{
lF (β̃n, F̃n)[

∫
QF̃n

(h2)dF̃n]
}

.

Following the same expansion and using the P-Donsker property as in proving Theorem 2, we obtain

√
n

∫
ΩF (0, QF0(h2))d(F̃n − F0) =

√
n(Pn −P)

{
lF (β0, F0)[

∫
QF0 [h2]dF0]

}
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−√nP
[
lF (β̃n, F0)[

∫
QF0 [h2]dF0]− lF (β0, F0)[

∫
QF0 [h2]dF0]

]
+ op(1).

From the invertibility of ΩF (0, ·) and noting that

∣∣∣P
[
lF (β̃n, F0)[

∫
QF0 [h2]dF0]− lF (β0, F0)[

∫
QF0 [h2]dF0]

] ∣∣∣ ≤ Op(‖β̃n − β0‖).

We obtain
√

n‖F̃n − F0‖l∞ = Op(
√

n +
√

n‖β̃n − β0‖). This immediately implies condition (11), i.e.,

the no-bias condition, in Murphy and van der Vaart (2000). Furthermore, by the same arguments as

in proving Theorem 1, it is straightforward to check that the class
{

∂

∂ε
l(ε, Fε) : ‖ε− β0‖+ ‖β − β0‖+ ‖F − F0‖ < δ0

}

is P-Donsker and the class
{

∂2

∂ε2
l(ε, Fε) : ‖ε− β0‖+ ‖β − β0‖+ ‖F − F0‖ < δ0

}

is P-Glivenko-Cantelli. Thus, all the conditions in Theorem 1 of Murphy and van der Vaart (2000)

hold so the results of Theorem 1 in Murphy and van der Vaart (2000) are true. One conclusion of this

theorem shows the consistency of the variance estimator based on the profile likelihood function.
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Figure 1: Kaplan-Meier curves and predicted survival curves of the interferon and observation groups
in the E1690 data: the solid line and the dotted line are the Kaplan-Meier curves; the dashed line and
the dot-dashed line are the predicted survival curves, respectively.
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Table 1: Simulation results from 1000 replications under the transformation G(x) = (1 + γx)−1/γ

Model n Parameter True Value Estimate SE ESE CP (%)
γ = 0 100 β0 0.5 0.490 0.289 0.312 97.7

β1 1 1.033 0.433 0.427 94.9
β2 -0.5 -0.519 0.242 0.242 95.7

200 β0 0.5 0.502 0.200 0.218 96.1
β1 1 1.019 0.300 0.296 94.6
β2 -0.5 -0.509 0.167 0.168 95.9

γ = 0.25 100 β0 0.5 0.476 0.341 0.350 95.6
β1 1 1.036 0.512 0.493 94.0
β2 -0.5 -0.490 0.280 0.281 96.0

200 β0 0.5 0.499 0.236 0.245 95.6
β1 1 1.006 0.356 0.344 95.1
β2 -0.5 -0.507 0.194 0.197 95.5

γ = 0.5 100 β0 0.5 0.477 0.380 0.388 96.3
β1 1 1.022 0.550 0.554 95.4
β2 -0.5 -0.518 0.320 0.318 95.1

200 β0 0.5 0.488 0.271 0.273 95.5
β1 1 1.015 0.400 0.388 94.9
β2 -0.5 -0.505 0.225 0.222 95.1

γ = 0.75 100 β0 0.5 0.487 0.410 0.423 95.7
β1 1 0.995 0.601 0.607 95.1
β2 -0.5 -0.491 0.359 0.348 94.2

200 β0 0.5 0.486 0.284 0.298 96.5
β1 1 1.022 0.426 0.425 94.7
β2 -0.5 -0.494 0.241 0.244 95.4

γ = 1 100 β0 0.5 0.455 0.426 0.458 96.7
β1 1 1.043 0.637 0.658 96.1
β2 -0.5 -0.498 0.375 0.378 95.4

200 β0 0.5 0.482 0.310 0.321 95.4
β1 1 1.015 0.458 0.460 94.8
β2 -0.5 -0.502 0.258 0.264 95.8
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Table 2: Simulation results from 1000 replications under the transformation G(x) = exp[−{(1+x)γ −
1}/γ]

Model n Parameter True Value Estimate SE ESE CP (%)
γ = 0 100 β0 0.5 0.465 0.442 0.458 96.6

β1 1 1.026 0.632 0.658 96.4
β2 -0.5 -0.510 0.387 0.378 94.8

200 β0 0.5 0.498 0.318 0.321 95.4
β1 1 0.995 0.474 0.461 93.9
β2 -0.5 -0.504 0.263 0.264 95.0

γ = 0.25 100 β0 0.5 0.500 0.391 0.406 95.2
β1 1 0.994 0.568 0.585 96.3
β2 -0.5 -0.501 0.328 0.335 95.7

200 β0 0.5 0.489 0.283 0.285 94.8
β1 1 1.010 0.397 0.409 95.9
β2 -0.5 -0.502 0.237 0.235 94.7

γ = 0.5 100 β0 0.5 0.459 0.356 0.364 95.8
β1 1 1.081 0.545 0.523 94.7
β2 -0.5 -0.500 0.297 0.299 95.8

200 β0 0.5 0.502 0.247 0.256 96.3
β1 1 1.005 0.360 0.365 95.4
β2 -0.5 -0.502 0.214 0.209 93.6

γ = 0.75 100 β0 0.5 0.471 0.318 0.332 96.8
β1 1 1.069 0.479 0.469 93.9
β2 -0.5 -0.505 0.264 0.267 95.3

200 β0 0.5 0.506 0.228 0.233 95.8
β1 1 1.000 0.327 0.326 94.8
β2 -0.5 -0.500 0.192 0.187 94.2

γ = 1 100 β0 0.5 0.509 0.289 0.314 97.8
β1 1 1.008 0.419 0.423 95.5
β2 -0.5 -0.516 0.245 0.242 94.2

200 β0 0.5 0.508 0.205 0.219 97.1
β1 1 1.010 0.296 0.296 95.2
β2 -0.5 -0.508 0.172 0.168 94.1
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Table 3: Simulation results from 1000 replications under misspecified transformation (n = 100)
Model Parameter True Value Estimate SE ESE CP (%)

True Transformation: G(x) = (1 + x/2)−2

Proportional Hazards Model β0 0.5 0.165 0.290 0.311 82.6
β1 1 0.799 0.450 0.446 92.5
β2 -0.5 -0.404 0.248 0.255 94.2

Proportional Odds Model β0 0.5 0.818 0.456 0.466 90.8
β1 1 1.240 0.672 0.654 93.0
β2 -0.5 -0.578 0.375 0.373 95.1

True Transformation: G(x) = exp[−2{(1 + x)1/2 − 1}]

Proportional Hazards Model β0 0.5 0.189 0.304 0.311 84.1
β1 1 0.868 0.464 0.442 91.9
β2 -0.5 -0.411 0.254 0.252 92.7

Proportional Odds Model β0 0.5 0.960 0.463 0.472 84.4
β1 1 1.205 0.650 0.652 94.8
β2 -0.5 -0.606 0.363 0.373 95.0
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Table 4: Estimates of regression coefficients in the proportional hazards cure model for the E1690 data
Cure Threshold Covariate Estimate Std. Err. p-value

5.1 years Intercept -0.7977 0.3147 0.0113
Treatment -0.2200 0.1298 0.0901
Age 0.0115 0.0050 0.0220
Sex -0.2209 0.1371 0.1072
Nodal category 0.5519 0.1599 0.0006

5.5 years Intercept -0.8027 0.3156 0.0110
Treatment -0.2197 0.1300 0.0911
Age 0.0115 0.0050 0.0225
Sex -0.2208 0.1374 0.1081
Nodal category 0.5520 0.1603 0.0006

6 years Intercept -0.7988 0.3151 0.0112
Treatment -0.2199 0.1298 0.0902
Age 0.0115 0.0050 0.0220
Sex -0.2209 0.1372 0.1074
Nodal category 0.5519 0.1600 0.0006

6.5 years Intercept -0.7969 0.3147 0.0113
Treatment -0.2200 0.1297 0.0898
Age 0.0115 0.0050 0.0219
Sex -0.2210 0.1371 0.1070
Nodal category 0.5518 0.1599 0.0006

7 years Intercept -0.7972 0.3148 0.0113
Treatment -0.2200 0.1297 0.0898
Age 0.0115 0.0050 0.0219
Sex -0.2209 0.1371 0.1071
Nodal category 0.5518 0.1599 0.0006
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Figure 2: The observed log-likelihood functions from different transformations in the E1690 data: the
left plot is the log-likelihood functions from transformations G(x) = (1+ γx)−1/γ ; the right plot is the
log-likelihood functions from transformations G(x) = exp{−((1 + x)γ − 1)/γ}.
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