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A haplotype is a specific sequence of nucleotides on a single chromosome. The population associa-

tions between haplotypes and disease phenotypes provide critical information about the genetic basis

of complex human diseases. Standard genotyping techniques cannot distinguish the two homolo-

gous chromosomes of an individual so that only the unphased genotype (i.e., the combination of the

two homologous haplotypes) is directly observable. Statistical inference about haplotype-phenotype

associations based on unphased genotype data presents an intriguing missing-data problem, espe-

cially when the sampling depends on the disease status. The objective of this paper is to provide

a systematic and rigorous treatment of this problem. All commonly used study designs, including

cross-sectional, case-control and cohort studies, are considered. The phenotype can be a disease

indicator, a quantitative trait or a potentially censored time to disease variable. The effects of haplo-

types on the phenotype are formulated through flexible regression models, which can accommodate

a variety of genetic mechanisms and gene-environment interactions. Appropriate likelihoods are con-

structed, which may involve high-dimensional parameters. The identifiability of the parameters, and

the consistency, asymptotic normality and efficiency of the maximum likelihood estimators are estab-

lished. Efficient and reliable numerical algorithms are developed. Simulation studies show that the

likelihood-based procedures perform well in practical settings. An application to the Finland-United

States Investigation of NIDDM Genetics Study is provided. Areas in need of further development

are discussed.
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1. INTRODUCTION

In the early 1900’s, there was a fierce debate between Gregor Mendel’s followers and the biomet-

rical school led by Francis Galton and Karl Pearson as to whether the patterns of inheritance were

consistent with Mendel’s law of segregation or a “blending”-type theory. Fisher (1918) reconciled

the two conflicting schools by recognizing the difference in the genetic basis for the variation in the

trait being studied: for the traits Mendelists studied, the observed variation was due to a simple

difference at a single gene; for the traits studied by the biometrical school, individual differences

were attributed to many different genes, with no particular gene having a singly large effect.

Like the traits studied by Mendel, many genetic disorders, such as Huntington disease and cystic

fibrosis, are caused by mutations of single genes. The genes underlying a number of these Mendelian

syndromes have been discovered during the last twenty years through linkage analysis and positional

cloning (Risch, 2000). The same approach, however, is failing to unravel the genetic basis of complex

human diseases (e.g., hypertension, bipolar disorder, diabetes and schizophrenia), which are influ-

enced by a variety of genetic and environmental factors, just like the traits studied by the biometrical

school a century ago. It is widely recognized that genetic dissection of complex human disorders re-

quires large-scale association studies, which relate disease phenotypes to genetic variants, especially

single nucleotide polymorphisms (Risch, 2000; Botstein and Risch, 2003).

Single nucleotide polymorphisms or SNPs are DNA sequence variations that occur when a single

nucleotide in the genome sequence is altered. SNPs make up about 90% of all human genetic variation

and are believed to have a major impact on disease susceptibility. Aided by the sequencing of the

human genome (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001),

geneticists have identified several millions SNPs (International SNP Map Working Group, 2001).

With current technology, it is economically feasible to genotype thousands of subjects for thousands

of SNPs. These remarkable scientific and technological advances offer unprecedented opportunities

to conduct SNPs-based association studies to unravel the genetic basis of complex diseases.

There are three possible genotypes at each SNP site: homozygous with allele A, homozygous with

allele a, or heterozygous with one allele A and one allele a. Thus, the assessment of the association

between a SNP and a disease phenotype is a trivial three-sample problem. It is, however, desirable

to deal with multiple SNPs simultaneously. One appealing approach is to consider the haplotypes

for multiple SNPs within candidate genes (Hallman et al., 1999; International SNP Map Working

Group, 2001; Patil et al., 2001; Stephens et al., 2001).

The haplotype, which is a specific combination of nucleotides at a series of closely linked SNPs
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on the same chromosome of an individual, contains information about the protein products. Because

the actual number of haplotypes within a candidate gene is much smaller than the number of all

possible haplotypes, haplotyping serves as an effective data-reduction strategy. The use of SNPs-

based haplotypes may yield more powerful tests of genetic associations than the use of individual,

unorganized SNPs, especially when the causal variants are not measured directly or when there are

strong interactions of multiple mutations on the same chromosome (Akey et al., 2001; Fallin et al.,

2001; Li, 2001; Morris and Kaplan, 2002; Schaid et al., 2002; Zaykin et al., 2002; Schaid, 2004).

The determination of the haplotype requires the parental origin or gametic phase information,

which cannot be easily obtained with the current genotyping technology. As a result, only the

unphased genotype, i.e., the combination of the two homologous haplotypes, can be determined.

Statistically speaking, this is a missing-data problem in which the variable of interest pertains to two

ordered sequences of zeros and ones but only the summation of the two sequences is observed. This

type of missing-data problem has not been studied in the statistical literature.

Many authors (e.g., Clark, 1990; Excoffier and Slatkin, 1995; Stephens et al., 2001; Zhang et al.,

2001; Niu et al., 2002; Qin et al., 2002) proposed methods to infer haplotypes or estimate haplotype

frequencies from unphased genotype data. To make inference about haplotype effects, one may then

relate the probabilistically inferred haplotypes to the phenotype through a regression model (e.g.,

Zaykin et al., 2002). This approach does not account for the variation due to haplotype estimation,

and does not yield consistent estimators of regression parameters.

A growing number of papers have been published in genetic journals on how to make proper

inference about the effects of haplotypes on disease phenotypes. Most of these papers deal with case-

control studies. Specifically, Zhao et al. (2003) developed an estimating function which approximates

the expectation of the complete-data prospective-likelihood score function given the observable data.

This method assumes that the disease is rare and that haplotypes are independent of environmental

variables, and is not statistically efficient. Epstein and Satten (2003) derived a retrospective likelihood

for the relative risk, which does not accommodate environmental variables. Stram et al. (2003)

proposed a conditional likelihood for the odds ratio assuming that cases and controls are chosen

randomly with known probabilities from the target population, and did not consider environmental

variables either. The properties of the estimator were not investigated. Building on the earlier work

of Schaid et al. (2002), Lake et al. (2003) discussed likelihood-based inference for cross-sectional

studies under generalized linear models. Seltman, Roeder and Devlin (2003) provided a similar

discussion based on the cladistic approach. Recently, Lin (2004) showed how to perform the Cox
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(1972) regression when potentially censored age-at-onset of the disease observations are collected

in cohort studies. All the aforementioned work assumes Hardy-Weinberg equilibrium (Weir, 1996,

p. 40). Simulation studies (Epstein and Satten 2003; Lake et al. 2003; Satten and Epstein 2004)

revealed that viloation of this assumption can adversely affect the validity of the inference.

The aim of this paper is to address statistical issues in estimating haplotype effects in a systematic

and rigorous manner. For case-control studies, we allow environmental variables and derive efficient

inference procedures. For cross-sectional and cohort studies, we consider more versatile models

than the existing literature. For all study designs, we accommodate Hardy-Weinberg disequilibrium.

We construct appropriate likelihoods for a variety of models. Under the case-control sampling,

the likelihood pertains to the distribution of genotypes and environmental variables conditional on

the case-control status, which involves infinite-dimensional nuisance parameters if environmental

variables are continuous. In cohort studies, it is desirable not to parametrize the distribution of

time to disease, so that the likelihood also involves infinite-dimensional parameters. The presence

of infinite-dimensional parameters entails considerable theoretical and computational challenges. We

establish the theoretical properties of the maximum likelihood estimators by appealing to modern

asymptotic techniques, and develop efficient and stable algorithms to implement the corresponding

inference procedures. We assess the performance of the proposed methods through simulation studies

and provide an application to a major genetic study of Type 2 diabetes.

2. INFERENCE PROCEDURES

2.1. Preliminaries

We consider SNPs-based association studies of unrelated individuals. Suppose that each individ-

ual is genotyped at M biallelic SNPs within a candidate gene. At each SNP site, we indicate the two

possible alleles by the values 0 and 1. Thus, each haplotype h is a unique sequence of M numbers

from {0, 1}. The total number of possible haplotypes is K ≡ 2M . The actual number of haplotypes

consistent with the data is usually much smaller. For k = 1, . . . , K, let hk denote the kth possible

haplotype. Figure 1 shows the 8 possible haplotypes for 3 SNPs.

The human chromosomes come in pairs, one inherited from our mother and one from our father.

These pairs are called homologous chromosomes. Thus, each individual has a pair of homologous

haplotypes, which may or may not be identical. Routine genotyping procedures cannot separate the

two homologous chromosomes, so that only the (unphased) genotypes, i.e., the combinations of the

two homologous haplotypes, are directly observable. For each individual, the multi-SNP genotype is

an ordered sequence of M numbers from {0, 1, 2}.
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h1:
0 0 0

h2:
0 0 1

h3:
0 1 0

h4:
0 1 1

h5:
1 0 0

h6:
1 0 1

h7:
1 1 0

h8:
1 1 1

Fig. 1. Possible haplotype configurations with 3 SNPs.

Let H and G denote the pair of haplotypes and the genotype for an individual. We write

H = (hk, hl) if the individual’s pair of haplotypes are hk and hl, in which case G = hk + hl. The

ordering of the two homologous haplotypes within an individual is considered arbitrary. By allowing

genotypes to include missing SNP information, we may assume that G is known for each individual.

Given G, the value of H is unknown if the individual is heterozygous at more than 1 SNP or if any

SNP genotype is missing. For the case of M = 3 shown in Fig. 1, if G = (0, 2, 1), then H = (h3, h4);

if G = (0, 1, 1), then H = (h1, h4) or H = (h2, h3).

The goal of the association studies is to relate the pair of haplotypes to disease phenotypes or

traits. The simplest phenotype is the binary indicator for the disease status, which takes the value

1 if the individual is diseased and 0 otherwise. The diseased individuals may be further classified

into several categories corresponding to different types of disease or varying degrees of severity. If

the age of onset is likely to be genetically mediated, then it is desirable to use the age of onset as the

phenotype. One may also be interested in disease-related traits, such as blood pressures.

The data on the disease phenotype may be gathered in a number of manners. The simplest

approach is to obtain a random sample from the target population and to measure the phenotype

of interest on every individual in the sample. Such studies are referred to as cross-sectional studies,

which are feasible if the disease is relatively frequent or if one is only interested in some readily

measured traits that are related to the disease. If one is interested in the age at the onset of a disease,

then it is necessary to follow a cohort of individuals forward in time, in which case the phenotype,

i.e., time to disease occurrence, may be censored. When the disease is relatively rare, it is more cost-

effective to employ the case-control design, which collects data retrospectively on a sample of diseased

individuals and on a separate sample of disease-free individuals. It is often desirable to collect data

on environmental variables or covariates so as to investigate gene-environment interactions.

Let Y be the phenotype of interest, and X be the covariates. For cross-sectional and case-

control studies, the association between Y and (X, H) is characterized by the conditional den-

sity of Y = y given H = (hk, hl) and X = x, denoted by Pα,β,ξ(y|x, (hk, hl)), where α per-
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tains to the intercept(s), β to the regression effects and ξ to the nuisance parameters (e.g., vari-

ance and overdispersion parameters). There are considerable flexibilities in specifying the regres-

sion relationship. Suppose that h∗ is the target haplotype of interest and there are no covari-

ates. Then a linear predictor in the form of α + βI(hk = hl = h∗) pertains to a recessive model,

α+β{I(hk = h∗)+I(hl = h∗)−I(hk = hl = h∗)} to a dominant model, α+β{I(hk = h∗)+I(hl = h∗)}
to an additive model, and α + β1{I(hk = h∗) + I(hl = h∗)} + β2I(hk = hl = h∗) to a codominant

model, where I(·) is the indicator function. Clearly, the codominant model contains the other three

models as special cases. A codominant model with gene-environment interactions has the following

linear predictor

α + β1{I(hk = h∗) + I(hl = h∗)}+ β2I(hk = hl = h∗)

+βT
3 x + βT

4 {I(hk = h∗) + I(hl = h∗)}x + βT
5 I(hk = hl = h∗)x. (1)

Additional terms may be included so as to examine the effects of several haplotype configurations or

to investigate the joint effects of multiple candidate genes.

Although we are interested in the effects of H and X on Y , we observe G instead of H. As men-

tioned earlier, G is the summation of the paired sequences in H. Thus, we have a regression problem

with missing data in which the primary explanatory variable pertains to two ordered sequences of

numbers from {0, 1} but only the summation of the two sequences is observed. We assume that X is

independent of H conditional on G and that (1,XT ) is linearly independent with positive probability.

Write πkl = P{H = (hk, hl)} and πk = P (h = hk), k, l = 1, . . . ,K. As will be demonstrated in

this paper, it is sometimes possible to make inference about haplotype effects without imposing any

structures on {πkl}, although the estimation of {πk} and the testing of no haplotype effects require

some restrictions on {πkl}. Under Hardy-Weinberg equilibrium,

πkl = πkπl, k, l = 1, . . . ,K. (2)

We consider two specific forms of departures from Hardy-Weinberg equilibrium:

πkl = (1− ρ)πkπl + δklρπk, (3)

and
πkl =

(1− ρ + δklρ)πkπl

1− ρ + ρ
∑K

j=1 π2
j

, (4)

where 0 ≤ πk ≤ 1,
∑K

k=1 πk = 1, δkk = 1 and δkl = 0 (k 6= l). In (3), ρ is called the inbreeding

coefficient or fixation index (Weir, 1996, p. 93), and corresponds to Cohen (1960)’s kappa measure of

agreement. Equation (4) creates disequilibrium by giving different fitness values to the homozygous
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and heterozygous pairs (Niu et al, 2002). The denominator is a normalizing constant. Both (3)

and (4) reduce to (2) if ρ = 0. Excess homozygosity (i.e., πkk > π2
k, k = 1, . . . ,K) and excess

heterozygosity (i.e., πkk < π2
k, k = 1, . . . , K) arise when ρ > 0 and ρ < 0, respectively. Recently,

Satten and Epstein (2004) considered equation (3) for the control population under the case-control

design. We abuse the notation slightly in that {πk} in (4) do not pertain to the marginal distribution

of H unless ρ = 0.

Let h̃ denote a haplotype that differs from h only at one SNP. Write ∇xf(x, y) = ∂f(x, y)/∂x.

The lemma below states that, under equation (3) or (4), {πk} and ρ are identifiable from the data

on G and the data on G provides positive information about these parameters.

Lemma 1. Assume that either equation (3) or (4) holds. The parameters {πk} and ρ are

uniquely determined by the distribution of G. For non-degenerate distribution {πk}, if there ex-

ist a constant µ and a vector ν = (ν1, . . . , νK)T such that
∑K

k=1 νk = 0 and µ∇ρ log P (G =

g) +
∑K

k=1 νk∇πk
log P (G = g) = 0 for g = 2h, then µ = 0 and ν = 0.

In the sequel, G denotes the set of all possible genotypes, and S(G) the set of haplotype pairs

that are consistent with genotype G. We suppose that πk > 0 for all k = 1, . . . ,K, where K is now

interpreted as the total number of haplotypes that exist in the population. For any parameter θ,

we will use θ0 to denote its true value if the distinction is necessary. We assume that the true value

of any Euclidean parameter belongs to the interior of a known compact set within the domain of θ.

Lemma 1 and all the theorems are proved in the appendix.

2.2. Cross-Sectional Studies

There is a random sample of n individuals from the underlying population. The observable data

consists of (Yi,Xi, Gi), i = 1, . . . , n. The trait Y can be discrete or continuous, univariate or multi-

variate. As stated in §2.1, the conditional density of Y given X and H is given by Pα,β,ξ(Y |X,H).

For a univariate trait, this regression model may take the form of a generalized linear model (McCul-

lagh and Nelder, 1989) with the linear predictor given in (1). If the trait is measured repeatedly in

a longitudinal study, then generalized linear mixed models (Diggle et al., 2002, Ch. 9) may be used.

The following conditions are required for the estimation of (α, β, ξ):

Condition 1. If Pα,β,ξ(Y |X,H) = P
α̃,β̃,ξ̃

(Y |X,H) for any H = (hk, hk) and H = (hk, h̃k),

k = 1, . . . , K, then α = α̃, β = β̃ and ξ = ξ̃.

Condition 2. If there exists a constant vector ν such that νT∇α,β,ξ log Pα,β,ξ(Y |X, H) = 0 for

H = (hk, hk) and H = (hk, h̃k), then ν = 0.
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Remark 1. Condition 1 ensures that the parameters of interest are identifiable from the genotype

data. The linear independence of the score function stated in Condition 2 ensures the nonsingularity

of the information matrix. The reason for considering H = (hk, hk) and H = (hk, h̃k) is that these

haplotype pairs can be inferred with certainty due to the unique decompositions of the corresponding

genotypes g = 2hk and g = hk+h̃k. All the commonly used regression models, particularly generalized

linear (mixed) models with linear predictors in the form of (1), satisfy Conditions 1 and 2.

We show in Appendix A.2.1 that it is possible to estimate the regression parameters without

imposing any structure on the joint distribution of H. However, the estimation requires the knowledge

about whether or not the dominant effects exist. Specifically, if there are no dominant effects, then

only (α, β, ξ) and P (G = g) are identifiable; otherwise, (α, β, ξ), P (G = g) and P (H = (h∗, g − h∗))

are identifiable. If either equation (3) or (4) holds, then it follows from Lemma 1 and Condition 1 that

all the parameters are identifiable regardless of the genetic mechanism. Denote the joint distribution

of H by Pγ(H = (hk, hl)), where γ consists of the identifiable parameters in the distribution of

H. Under equation (3) or (4), γ = (ρ, π1, . . . , πK)T . When the distribution of H is unspecified, γ

pertains to the aspects of the distribution of H that are identifiable.

Write θ = (α, β,γ, ξ). The likelihood for θ based on the cross-sectional data is proportional to

Ln(θ) ≡
n∏

i=1

∏

g∈G
{mg(Yi,Xi;θ)}I(Gi=g) , (5)

where

mg(y,x; θ) =
∑

(hk,hl)∈S(g)

Pα,β,ξ(y|x, (hk, hl))Pγ(hk, hl).

The maximum likelihood estimator (MLE) θ̂ can be obtained by maximizing (5) via the Newton-

Raphson algorithm or an optimization algorithm. It is generally more efficient to use the expectation-

maximization (EM) algorithm (Dempster et al., 1977), especially when the distribution of H satisfies

equation (3) with ρ ≥ 0; see Appendix A.2.2 for detail.

By the classical likelihood theory, we can show that θ̂ is consistent, asymptotically normal and

asymptotically efficient under Conditions 1 and 2 and the following condition:

Condition 3. If there exists a constant vector ν such that νT∇θ log mg(Y,X; θ0) = 0, then ν = 0.

Remark 2. Condition 3 ensures the nonsingularity of the information matrix. This condition can

be easily verified when the joint distribution of H is unspecified, and is implied by Lemma 1 and

Condition 2 when the distribution satisfies equation (3) or (4).
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2.3. Case-Control Studies With Known Population Totals

We consider case-control data supplemented by information on population totals (Scott and Wild,

1997). There is a finite population of N individuals which is regarded as a random sample from the

joint distribution of (Y,X,H), where Y is a categorical response variable. All that is known about

the finite population is the total number of individuals in each category of Y = y. A sample of size

n stratified on the disease status is drawn from the finite population, and the values of X and G

are recorded for each sampled individual. The supplementary information on population totals is

often available from hospital records, cancer registries and official statistics. If a case-control sample

is drawn from a cohort study, then the cohort serves as the finite population. The observable data

consists of (Yi, Ri, RiXi, RiGi), i = 1, . . . , N, where Ri indicates, by the values 1 versus 0, whether

or not the ith individual in the finite population is selected into the case-control sample.

The association between Y and (X, H) is characterized by Pα,β,ξ(Y |X,H), where α, β and ξ

pertain to the intercept(s), regression effects and overdispersion parameters (McCullagh and Nelder

1989), respectively. In the case of a binary response variable, important examples of Pα,β,ξ(Y |X,H)

include the logistic, probit and complementary log-log regression models. When there are more

than two categories, examples include the proportional odds model, the multivariate probit and

multivariate logistic regression models. Since the data associated with Ri = 1 yields the same form

of likelihood as that of a cross-sectional study and the data associated Ri = 0 yields a missing-data

likelihood, all the identifiability results stated in §2.2 apply to the current setting. We again write

θ = (α, β, ξ, γ), where γ consists of the identifiable parameters in the distribution of H.

Let Fg(·) be the cumulative distribution function of X given G = g, and let fg(x) be the density

of Fg(x) with respect to a dominating measure µ(x). Note that Fg(·) is infinite-dimensional if X

has continuous components. The joint density of (Y = y, G = g,X = x) is mg(y,x; θ)fg(x). The

likelihood concerning θ and {Fg} takes the form

Ln(θ, {Fg}) =
N∏

i=1


∏

g∈G
{mg(Yi,Xi; θ)fg(Xi)}I(Gi=g)




Ri

∑

g∈G

∫
mg(Yi,x; θ)dFg(x)




1−Ri

. (6)

Unlike the likelihood for the cross-sectional design given in (5), the density functions of X given G

cannot be factored out of the likelihood given in (6) and thus cannot be omitted from the likelihood.

We maximize (6) to obtain the MLEs θ̂ and {F̂g(·)}. The latter is an empirical function with

point masses at the observed Xi such that Gi = g and Ri = 1. The maximization can be carried out

via the Newton-Raphson, profile-likelihood or large-scale optimization methods. An alternative way

of calculating the MLEs is via the EM algorithm described in Appendix A.3.1.
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We impose the following regularity condition and state the asymptotic results in Theorem 1.

Condition 4. For any g ∈ G, fg(x) is positive in its support and continuously differentiable with

respect to a suitable measure.

Theorem 1. Under Conditions 1–4, θ̂ and {F̂g(·)} are consistent in that |θ̂−θ0|+supx,g |F̂g(x)−
Fg(x)| → 0 almost surely. In addition, n1/2(θ̂− θ0) converges in distribution to a zero-mean normal

random vector whose covariance matrix attains the semiparametric efficiency bound.

Let pln(θ) be the profile log-likelihood for θ, i.e., pln(θ) = max{Fg} log Ln(θ, {Fg}). Then the

(s, t)th element of the covariance matrix of θ̂ can be estimated by −ε−2
n {pln(θ̂+εnes +εnet)−pln(θ̂+

εnes − εnet) −pln(θ̂ − εnes + εnet) + pln(θ̂)}, where εn is a constant of the order n−1/2, and es and

et are the sth and tth canonical vectors, respectively. The function pln(θ) can be calculated via the

EM algorithm by holding θ constant in both the E-step and the M-step.

Remark 3. If N is much larger than n or if the population frequencies rather than the totals are

known, then we maximize
∏n

i=1

∏
g∈G {mg(Yi,Xi; θ)fg(Xi)}I(Gi=g) subject to the constraints that

∑
g∈G

∫
mg(y,x; θ)dFg(x) = py, where py is the population frequency of Y = y. The resultant

estimator of θ0 is consistent, asymptotically normal and asymptotically efficient. The results in this

section can be extended straightforwardly to accommodate stratifications on covariates.

2.4. Case-Control Studies With Unknown Population Totals

We consider the classical case-control design, which measures X and G on n1 cases (Y = 1) and

n0 controls (Y = 0) and which requires no knowledge about the finite population. With the notation

introduced in the previous section, the likelihood contribution from one individual takes the form

RL(θ, {Fg}) =

∏
g∈G {mg(y,X; θ)fg(X)}I(G=g)

∑
g∈G

∫
mg(y,x; θ)dFg(x)

, (7)

where we use y instead of Y to emphasize that y is not random.

Define

f †g (x) =
mg(0,x; θ)fg(x)∫
mg(0,x; θ)dFg(x)

, qg =
∫

mg(0,x; θ)dFg(x)∑
g̃∈G

∫
mg̃(0,x;θ)dFg̃(x)

.

Clearly, f †g (x) is the conditional density of X given G = g and Y = 0, and qg is the conditional

probability of G = g given Y = 0. Let g0 and x0 be some specific values of G and X. Write

F †
g (x) =

∫ x
0 f †g (s)dµ(s). We can express (7) as

RL(θ, {F †
g }, {qg}) =

∏
g∈G

{
η(y,X, g;θ)f †g (x)qg

}I(G=g)

∑
g∈G qg

{∫
η(y,x, g; θ)dF †

g (x)
} , (8)
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where

η(y,x, g;θ) =
mg(y,x; θ)mg0(0,x0; θ)
mg(0,x;θ)mg0(y,x0; θ)

.

We refer to η as the generalized odds ratio (Liang and Qin, 2000), which reduces to the ordinary

odds ratio when S(g) is a singleton.

Remark 4. The parameter qg is a functional of f †g and θ because
∫

mg(0,x; θ)dFg(x) =
{ ∫

m−1
g (0,x; θ)dF †

g (x)
}−1

. This constraint makes it very difficult to study the identifiability of the

parameters. Thus, we treat qg as a free parameter in our development.

For traditional case-control data, the odds ratio is identifiable (whereas the intercept is not) and

its MLE can be obtained by maximizing the prospective likelihood (Prentice and Pyke, 1979). Similar

results hold when the exposure is measured with error (Roeder, Carroll and Lindsay, 1996); however,

the distribution of the measurement error needs to be estimated from a validation set or an external

source. With unphased genotype data, identifiability is much more delicate. We show in Appendix

A.4.1 that the components of θ that are identifiable from the retrospective likelihood are exactly

those that are identifiable from the generalized odds ratio. Thus, we assume that the generalized

odds ratio only depends on a set of identifiable parameters, still denoted by θ; otherwise, the inference

is not tractable. For the logistic link function with linear predictor (1), we show in Appendix A.4.2

that if there are no dominant effects, then θ only consists of β; if there are no covariate effects but

there exists a dominant main effect, then β is identifiable and P (H = (h∗, g − h∗))/P (G = g) is

identifiable up to a scalar constant; if the dominant effect depends on a continuous covariate or if the

dominant main effect and the main effect of a continuous covariate are non-zero, then θ consists of

α, β and P (H = (h∗, g − h∗))/P (G = g). For the probit and complementary log-log link functions,

we show in Appendix A.4.3 that if there are dominant effects and at least one continuous covariate

has an effect, then θ consists of α, β and P (H = (h∗, g − h∗))/P (G = g).

We maximize the product of (8) over the n ≡ n1 + n0 individuals in the case-control sample to

produce the MLEs θ̂, {F̂ †
g (·)} and {q̂g}. Although {F †

g (·)} are high-dimensional, we show in Appendix

A.4.4 that θ̂ can be obtained by profiling a likelihood function over a scalar nuisance parameter.

To state the asymptotic properties of the MLEs, we impose the following conditions:

Condition 5. If there exists a vector v such that vT∇θ log η(1,x, g; θ) is a constant with proba-

bility 1, then v = 0.

Condition 6. The function f †g is positive in its support and continuously differentiable.

Condition 7. The fraction n1/n → % ∈ (0, 1).
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Remark 5. Condition 5 implies the nonsingularity of the information matrix for θ0, and can be

shown to hold for the logistic, probit and complementary log-log link functions. Condition 7 ensures

that there are both cases and controls in the sample.

Theorem 2. Under Conditions 5–7, |θ̂ − θ0|+ supg |q̂g − qg|+ supx,g |F̂ †
g (x)− F †

g (x)| → 0 almost

surely. In addition, n1/2(θ̂−θ0) converges in distribution to a normal random vector whose covariance

matrix attains the semiparametric efficiency bound.

In most case-control studies, the disease is (relatively) rare. When the disease is rare, considerable

simplicity arises because of the following approximation for the logistic regression model:

Pα,β(Y |X,H) ≈ exp{Y (α + βTZ(X,H))},

where Z(X,H) is a specific function of X and H. We assume that either equation (3) or (4) holds.

The likelihood based on (Xi, Gi, yi), i = 1, . . . , n, can be approximated by

L̃n(θ, {Fg}) =
n∏

i=1

(∏
g∈G [fg(Xi)

∑
(hk,hl)∈S(g) exp{βTZ(Xi, hk, hl)}Pγ(hk, hl)]I(Gi=g)

∑
g∈G

∫
x

∑
(hk,hl)∈S(g) exp{βTZ(x, hk, hl)}Pγ(hk, hl)dFg(x)

)yi

×
[∏

g∈G

{
fg(Xi)

∑

(hk,hl)∈S(g)

Pγ(hk, hl)
}I(Gi=g)

]1−yi

. (9)

We impose the following condition:

Condition 8. If α+βTZ(X,H) = α̃+ β̃
TZ(X,H) for H = (hk, hk) and H = (hk, h̃k), then α = α̃

and β = β̃.

This condition is similar to Condition 1 stated in §2.2, and it holds for the codominant model. Under

this condition, it follows from Lemma 1 that no two sets of parameters can give the same likelihood

with probability 1. Thus, the maximizer of (9), denoted by (θ̂, {F̂g}), is locally unique. We show in

Appendix A.4.5 that θ̂ can be easily obtained by profiling over a small number of parameters.

To derive the asymptotic properties, we provide a mathematical definition of rare disease:

Condition 9. For i = 1, . . . , n, the conditional distribution of Yi given (Xi,Hi) satisfies that

P (Yi = 1|Xi,Hi) = an exp{βT
0 Z(Xi,Hi)}/[1 + an exp{βT

0Z(Xi,Hi)}], where an = o(n−1/2).

Theorem 3. Under Conditions 6–9, |θ̂ − θ0| + supx,g |F̂g(x) − Fg(x)| →Pn 0, where Pn is the

probability measure given by Condition 9. Furthermore, n1/2(θ̂ − θ0) converges in distribution to a

normal random vector whose covariance matrix achieves the semiparametric efficiency bound.

2.5. Cohort Studies
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In a cohort study, Y represents the time to disease occurrence, which is subject to right censorship

by C. The data consists of (Ỹi,∆i,Xi, Gi), i = 1, . . . , n, where Ỹi = min(Yi, Ci), and ∆i = I(Yi ≤ Ci).

We relate Yi to (Xi,Hi) through a class of semiparametric linear transformation models

Γ(Yi) = −βTZ(Xi,Hi) + εi, i = 1, . . . , n, (10)

where Γ is an unknown increasing function, Z(X,H) is a known function of X and H, and the εi are

independent errors with a known distribution function F . We may rewrite (10) as

P (Yi ≤ t|Xi, Hi) = Q(Λ(t)eβ
TZ(Xi,Hi)),

where Λ(t) = eΓ(t), and Q(x) = F (log x) (x > 0). The choices of the extreme-value and standard

logistic distributions for F , or equivalently Q(x) = 1 − e−x and Q(x) = 1 − (1 + x)−1, yield the

proportional hazards model and the proportional odds model (Pettitt, 1984), respectively.

We impose Condition 8. Under this condition, β and Λ(·) are identifiable from the observable

data. The identifiability of the distribution of H is the same as in the case of cross-sectional studies.

Under equation (3) or (4) and Condition 8, all the parameters including β, Λ(·) and γ are identifiable.

This is shown in Appendix A.5.1.

The following assumption on censoring is required in the construction of the likelihood:

Condition 10. Conditional on X and G, the censoring time C is independent of Y and H.

Let θ = (β,γ). The likelihood concerning θ and Λ takes the form

Ln(θ,Λ) =
n∏

i=1

[ ∑

(hk,hl)∈S(Gi)

{
Λ̇(Ỹi)eβ

TZ(Xi,(hk,hl))Q̇(Λ(Ỹi)eβ
TZ(Xi,(hk,hl)))

}∆i

×
{

1−Q(Λ(Ỹi)eβ
TZ(Xi,(hk,hl)))

}1−∆i

Pγ(hk, hl)

]
. (11)

Here and in the sequel, ḟ(x) = df(x)/dx and f̈(x) = d2f(x)/dx2. Like (6), (8) and (9), this likelihood

involves infinite-dimensional parameters. If Λ is restricted to be absolutely continuous, then as in

the case of density estimation, there is no maximizer of this likelihood. Thus, we relax Λ to be

right-continuous and replace Λ̇(Ỹi) in (11) by the jump size of Λ at Ỹi. By the arguments of Zeng et

al. (2004), the resultant MLE, denoted by (θ̂, Λ̂), exists, and Λ̂ is a step function with jumps only

at the observed Ỹi for which ∆i = 1. The maximization can be carried out through an optimization

algorithm. Furthermore, the covariance matrix of θ̂ can be estimated by the profile likelihood method,

as discussed in Zeng et al. (2004).
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Lin (2004) considered the special case of the proportional hazards model under condition (2), and

provided an EM algorithm for obtaining the MLEs. We can modify that algorithm to accommodate

Hardy-Weinberg disequilibrium along the lines of Appendix A.2.2. In addition, the EM-algorithm

can be used to evaluate the profile likelihood.

We assume the following regularity conditions for the asymptotic results:

Condition 11. There exists some positive constant δ0 such that P (Ci ≥ τ |Xi, Gi) = P (Ci =

τ |Xi, Gi) ≥ δ0 almost surely, where τ corresponds to the end of the study.

Condition 12. The true value Λ0(t) of Λ(t) is a strictly increasing function in [0, τ ] and is contin-

uously differentiable. In addition, Λ0(0) = 0, Λ0(τ) < ∞ and Λ̇0(0) > 0.

Theorem 4. Under Conditions 8 and 10–12, n1/2(θ̂ − θ0, Λ̂ − Λ0) converges weakly to a Gaussian

process in Rd × l∞([0, τ ]), where d is the dimension of θ0, and l∞([0, τ ]) is the space of all bounded

functions on [0, τ ] equipped with the supremum norm. Furthermore, θ̂ is asymptotically efficient.

3. SIMULATION STUDIES

We used Monte Carlo simulation to evaluate the proposed methods in realistic settings. We

considered the 5 SNPs on chromosome 22 from the Finland-United States Investigation of NIDDM

Genetics (FUSION) Study described in the next section. We obtained the πk from the frequencies

shown in Table 1 by assuming 7% disease rate, and generated haplotypes under equation (3) with

ρ = 0.05. The R2
h in Table 1 is Stram et al. (2003)’s measures of haplotype certainty. We focused

on h∗ = (0, 1, 1, 0, 0), and considered case-control and cohort studies.

Table 1. Observed Haplotype Frequencies in the FUSION Study

Frequencies Frequencies
Haplotype Controls Cases R2

h Haplotype Controls Cases R2
h

00011 .0042 .0066 .388 10010 < 10−4 .0012 .500
00100 .0035 .0034 .336 10011 .3573 .2883 .727
00110 .0018 .0007 .377 10100 .0521 .0597 .402
01011 .1292 .1344 .592 10110 .0317 .0318 .554
01100 .2514 .3183 .738 11011 .1392 .1290 .560
01101 .0012 < 10−4 .450 11100 .0109 .0092 .266
01110 < 10−4 .0045 .499 11110 < 10−4 .0014 < 10−4

01111 .0019 < 10−4 .325 11111 .0020 < 10−4 .338
10000 .0136 .0114 .456

For the cohort studies, we generated ages of onset from the proportional hazards model

λ{t|x, (hk, hl)} = 2t exp [β1{I(hk = h∗) + I(hl = h∗)}+ β2x + β3{I(hk = h∗) + I(hl = h∗)}x] ,
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where X is a Bernoulli variable with P (X = 1) = 0.2 that is independent of H. The censoring times

were generated from the uniform (0, τ) distribution, where τ was chosen to yield approximately 250,

500 and 1000 cases under n = 5000. We let β1 = β2 = 0.25 and varied β3 from −0.5 to 0.5.

As shown in Table 2, the maximum likelihood estimator is virtually unbiased, the likelihood

ratio test has proper type I error, and the confidence interval has reasonable coverage. Additional

simulation studies revealed that the proposed methods also perform well for making inference about

other parameters and under other genetic models.

Table 2. Simulation Results for the Haplotype-Environment Interactions in Cohort Studies

β3 cases Bias SE CP Power
0 250 –.010 .232 .949 .051

500 –.005 .157 .953 .047
1000 –.003 .114 .954 .045

–.25 250 –.014 .256 .950 .190
500 –.008 .172 .949 .334
1000 –.004 .122 .952 .554

–.5 250 –.014 .287 .949 .500
500 –.011 .192 .949 .763
1000 –.004 .133 .950 .883

.25 250 –.007 .216 .947 .207
500 –.002 .146 .953 .395
1000 –.001 .109 .954 .614

.5 250 –.003 .204 .943 .693
500 –.001 .140 .951 .940
1000 –.001 .105 .952 .998

NOTE: Bias and SE are the bias and standard error of β̂3. CP is the coverage probability of the 95%

confidence interval for β3. Power pertains to the 0.05-level likelihood ratio test of H0 : β3 = 0. Each

entry is based on 5,000 replicates.

For the case-control studies, we used the same distributions of H and X and considered the same

h∗ as the cohort studies. We generated disease incidence from the logistic regression model:

logitP{Y = 1|x, (hk, hl)} = α + β1{I(hk = h∗) + I(hl = h∗)}+ β2x + β3{I(hk = h∗) + I(hl = h∗)}x.

(12)

For making inference on β1, we set β2 = β3 = 0.25 and varied β1 from −0.5 to 0.5; for making

inference on β3, we set β1 = β2 = 0.25 and varied β3 from −0.5 to 0.5. We chose α = −3 or
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−4, yielding disease rates between 1.6% and 7%. We let n1 = n0 = 500 or 1000. We considered

both the situations of known and unknown population totals, N being 15 and 30 times of n under

α = −3 and −4, respectively. For known population totals, we used the EM algorithm described

in Appendix A.3.1 and evaluated the inference procedures based on the likelihood ratio statistic.

For unknown population totals, we used the profile-likelihood method for rare diseases described in

Appendix A.4.5 and set the π̂k less than 2/n to 0 to improve numerical stability. The results for β1

and β3 are displayed in Tables 3 and 4, respectively.

Table 3. Simulation Results for the Main Effects of the Haplotype in Case-Control Studies

Known Totals Unknown Totals
n1 = n0 α β1 Bias SE CP Power Bias SE SEE CP Power

500 –3 –.5 –.003 .117 .952 .987 .019 .121 .124 .951 .979
–.25 –.002 .109 .954 .587 .014 .112 .117 .960 .525
0 –.001 .104 .951 .049 .009 .109 .112 .955 .045

.25 –.001 .102 .950 .641 .002 .105 .108 .961 .646
.5 .000 .099 .948 .996 -.005 .103 .106 .958 .998

–4 –.5 .001 .112 .954 .987 .022 .119 .124 .951 .977
–.25 –.002 .104 .955 .574 .013 .114 .117 .952 .529
0 .002 .101 .950 .050 .004 .109 .112 .953 .047

.25 .003 .094 .956 .661 -.003 .103 .108 .959 .640
.5 –.000 .094 .950 .999 -.009 .102 .105 .956 .997

1000 –3 –.5 .000 .081 .956 1.00 .005 .087 .087 .949 1.00
–.25 –.000 .074 .960 .871 .005 .081 .082 .948 .853
0 –.001 .073 .951 .049 .005 .077 .077 .954 .046

.25 –.001 .071 .953 .898 .004 .075 .076 .948 .920
.5 –.001 .070 .953 1.00 .003 .075 .075 .946 1.00

–4 –.5 –.000 .079 .948 1.00 .005 .087 .088 .947 1.00
–.25 –.001 .072 .960 .873 .005 .081 .083 .954 .847
0 .000 .070 .951 .043 .002 .079 .079 .949 .051

.25 –.001 .066 .960 .914 .000 .074 .076 .955 .909
.5 –.001 .066 .958 1.00 -.002 .073 .074 .954 1.00

NOTE: Bias and SE are the bias and standard error of β̂1. SEE is the mean of the standard error

estimator for β̂1. CP is the coverage probability of the 95% confidence interval for β1. Power pertains

to the 0.05-level test of H0 : β1 = 0. Each entry is based on 5,000 replicates.
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Table 4. Simulation Results for the Haplotype-Environment Interactions in Case-Control Studies

Known Totals Unknown Totals
n1 = n0 α β3 Bias SE CP Power Bias SE SEE CP Power

500 –3 –.5 –.008 .205 .949 .729 .030 .187 .195 .953 .692
–.25 –.002 .186 .949 .271 .016 .169 .176 .961 .244
0 –.001 .173 .946 .054 -.006 .155 .162 .963 .037

.25 .002 .165 .949 .334 -.038 .144 .151 .958 .287
.5 .006 .161 .947 .885 -.088 .138 .143 .915 .831

–4 –.5 –.009 .198 .950 .763 .012 .194 .195 .950 .720
–.25 –.005 .181 .949 .309 .006 .172 .176 .953 .264
0 –.002 .168 .945 .055 -.007 .156 .161 .956 .044

.25 –.001 .157 .944 .370 -.022 .146 .149 .948 .333
.5 .001 .148 .945 .926 -.047 .136 .141 .945 .904

1000 –3 –.5 –.004 .147 .943 .953 .027 .134 .136 .950 .953
–.25 –.003 .133 .946 .493 .013 .122 .123 .949 .477
0 –.001 .123 .951 .049 -.005 .114 .113 .948 .052

.25 .002 .115 .957 .590 -.034 .107 .106 .934 .535
.5 .002 .117 .947 .994 -.080 .102 .101 .870 .986

–4 –.5 –.005 .140 .945 .969 .010 .137 .136 .949 .965
–.25 –.002 .126 .947 .535 .005 .124 .123 .951 .505
0 –.003 .115 .956 .044 -.004 .113 .113 .947 .053

.25 –.000 .108 .949 .626 -.016 .104 .105 .952 .601
.5 .002 .105 .949 .998 -.037 .099 .099 .937 .995

NOTE: Bias and SE are the bias and standard error of β̂3. SEE is the mean of the standard error

estimator for β̂3. CP is the coverage probability of the 95% confidence interval for β3. Power pertains

to the 0.05-level test of H0 : β3 = 0. Each entry is based on 5,000 replicates.

For known population totals, the proposed estimators are virtually unbiased, and the likelihood

ratio statistics yield proper tests and confidence intervals. For unknown population totals, β̂1 has little

bias, especially for large n, while β̂3 tends to be slightly biased downward; the variance estimators

are fairly accurate, and the corresponding confidence intervals have reasonable coverage probabilities

except for {α = −3, β3 = 0.5}. The method with known population totals yields slightly higher

power than the method with unknown population totals.

All the aforementioned results pertain to haplotype 01100, which has a relatively high frequency

and a large value of R2
h; the covariate is binary, and ρ is 0.05, which is relatively large. Additional

simulation studies showed that the above conclusions continue to hold for other haplotypes, other

values of ρ and continuous covariates. Table 5 reports some results for haplotype 10100, which has
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a frequency of about 5% and R2
h of 0.4. We generated disease incidence from the logistic regression

model:

logitP{Y = 1|X1, X2, (hk, hl)} = α + βh{I(hk = h∗) + I(hl = h∗)}

+βx1X1 + βx2X2 + βhx2{I(hk = h∗) + I(hl = h∗)}X2,

where h∗ = (10100), X1 is Bernoulli with 0.2 success probability, and X2 is uniform(0,1). We set

ρ = 0.01, α = −3.7, βh = 0, and βx1 = βx2 = −βx2h = 0.5, yielding an overall disease rate of

7%. We assumed unknown population totals and used the profile-likelihood method for rare diseases

described in Appendix A.4.5. The method performs remarkly well.

Table 5. Simulation Results for Haplotype 10100 in Case-Control Studies

n1 = n0 Parameter True value Bias SE SEE CP Power
500 βh 0 -.030 .400 .401 .957 .043

βx1 0.5 .002 .151 .152 .951 .917
βx2 0.5 .001 .228 .230 .953 .584
βx2h -0.5 .015 .641 .644 .956 .118

1000 βh 0 -.017 .275 .277 .953 .047
βx1 0.5 .002 .107 .107 .954 .997
βx2 0.5 .000 .162 .161 .950 .871
βx2h -0.5 .012 .441 .443 .950 .198

NOTE: Bias and SE are the bias and standard error of the parameter estimator. SEE is the mean of

the standard error estimator. CP is the coverage probability of the 95% confidence interval. Power

pertains to the 0.05-level test of zero parameter value. Each entry is based on 5,000 replicates.

4. APPLICATION TO THE FUSION STUDY

Type 2 diabetes or NIDDM is a complex disease characterized by resistance of peripheral tissues

to insulin and a deficiency of insulin secretion. Approximately 7% of adults in developed countries

suffer from the disease. The FUSION study is a major effort to map and clone genetic variants that

predispose to Type 2 diabetes (Valle et al., 1998). We consider a subset of data from this study.

A total of 796 cases and 415 controls were genotyped at five SNPs in a putative susceptibility

region on chromosome 22, 131 cases and 82 controls having missing genotype information for at least

one SNP. If Gi is missing, the set S(Gi) is enlarged accordingly in the analysis. Table 1 displays the

estimated haplotype frequencies under equation (3) separated by the cases and controls, along with

Stram et al. (2003)’s R2
h for the controls. We estimated ρ at 0.0002 for controls and 0.03 for cases.
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We use the method based on (9) to estimate the effects of the haplotypes whose observed fre-

quencies in the controls are greater than 2%. As shown in Table 6, the results are significant for the

two most common haplotypes: haplotype 01100 increases the risk of disease whereas haplotpye 10011

is protective against diabetes. Epstein and Satten (2003) also reported the estimates for these two

haplotypes, which agree with our numbers. Although they did not report standard error estimates,

their confidence intervals are similar to those based on Table 6. The results under the codominant

model as well as the calculations of the Akaike (1985) information criterion (AIC) suggest that the

additive model fits the data the best for both haplotypes 01100 and 10011.

Table 6. Estimates of Haplotype Effects Under Various Genetic Models for the FUSION Study

Recessive Dominant Additive Codominant model
Haplotype model model model Additive Recessive

01011 .319 (.266) –.017 (.133) .056 (.128) .005 (.135) .315 (.283)
01100 .318 (.143) .268 (.107) .352 (.097) .328 (.111) .070 (.163)
10011 –.225 (.150) –.330 (.105) –.332 (.092) –.352 (.105) .063 (.173)
10100 –1.030 (1.014) .224 (.194) .141 (.189) .196 (.192) –1.156 (1.021)
10110 .856 (.743) –.014 (.241) .052 (.241) .008 (.245) .851 (.762)
11011 –.221 (.317) –.088 (.132) –.120 (.126) –.101 (.132) –.148 (.332)

NOTE: Standard error estimates are shown in parentheses.

The FUSION investigators are currently exploring gene-environment interactions on chromosome

22, so that the covariate information is confidential at this stage. To illustrate our method for

detecting gene-environment interactions, we artificially created a binary covariate X by setting X = 1

for the first 600 individuals in the data set. Under the additive genetic model for haplotype 01100, the

estimate of the interaction is 0.047 with an estimated standard error of 0.110. For further illustration,

we generated a binary covariate from the conditional distribution of X given Y and G under model

(12) with α = −3.7, β1 = 0.32 and β2 = 0.25. Based on 5000 replicates, the power for testing

H0 : β3 = 0 is estimated at 0.053, 0.479 or 0.974 under β3 = 0, 0.25 or 0.5.

5. DISCUSSION

Inferring haplotype-disease associations is an interesting and difficult statistical problem. The

presence of infinite-dimensional nuisance parameters in the likelihoods for case-control and cohort

studies entails considerable theoretical and computational challenges. Although we have conducted

a systematic and rigorous investigation, providing powerful new methods, there remain substantial

open problems. We list below some directions for future research.

19



Case-control studies. It is numerically difficult to maximize (6) when N is much larger than n,

while algorithms for implementing the constrained maximization mentioned in Remark 3 have yet

to be developed. For case-control studies with unknown population totals, identifiability is a thorny

issue. We have provided a simple and efficient method under the rare disease assumption, which

appears to work well even when the disease is not rare. But can one do better?

Model selection and model assessment. Since our approach is built on likelihood, we can apply

likelihood-based model selection criteria, such as the AIC used in §4. Lin (2004) showed that the

AIC performs well for the proportional hazards model. It is unclear how to apply the traditional

residual-based methods for assessing model adequacy since the haplotypes are not directly observable.

Other genetic variants. We have focused on SNPs-based haplotypes. The proposed inference

procedures are potentially applicable to microsatellite loci and other genotype data, although the

identifiability of parameters needs to be verified for each kind of genotype data.

Other study designs. It is sometimes desirable to employ the matched case-control design in

which one or more controls are individually matched to each case. In large cohort studies with rare

diseases, it is cost-effective to adopt the case-cohort design or nested case-control design, so that

only a subset of the cohort members needs to be genotyped. We are currently developing efficient

inference procedures for such designs.

Population substructure. The presence of latent population substructure can cause bias in as-

sociation studies of unrelated individuals. There exist several statistical methods to adjust for the

effects of population substructure with the aid of genomic markers. It should be possible to extend

the proposed methods so as to accommodate potential population substructure.

Studies of related individuals. This paper is concerned with studies of unrelated individuals. Many

genetic studies involve multiple family members or relatives. Haplotype ambiguity can potentially be

reduced by using the genotype information from related individuals. Inference on haplotype effects

needs to account for the intra-class correlation.

Genotyping error and DNA pooling. Laboratory genotyping is prone to error. It is sometimes

necessary to pool DNA samples rather genotyping individual samples (Wang, Kidd and Zhao, 2003).

Such data creates additional complexity in haplotype analysis.

Many SNPs. The traditional EM algorithm works well for a small number of SNPs. When the

number of SNPs is large, the partition-ligation method of Niu et al. (2002) and Qin et al. (2002) and

other modifications can potentially be adapted to reduce computing burden. However, the haplotype

analysis may not be very useful if the SNPs are weakly linked.
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Many haplotypes and rare haplotypes. The approach taken in this paper assumes that one is

interested in a small number of haplotype configurations that are relatively frequent. If there are

many haplotypes, then we are confronted with the problem of multiple comparisons and sparse data.

Schaid (2004) discussed some possible solutions.

Large-scale studies. There is an increasing interest in genome-wide association studies. With

a large number of SNPs, one possible approach is to use the sliding windows of 5-10 SNPs and

test for the haplotype-disease association in each window. Since most of the SNPs are common

between adjacent windows, the test statistics tend to be highly correlated, so that the Bonferroni-

type correction for multiple comparisons would be extremely conservative. To properly adjust for

multiple comparisons, one needs to ascertain the joint distribution of the test statistics. This can be

done by permuting the data or by evaluating the asymptotic multivariate normal distribution of the

test statistics; see Lin (2004).

We hope that other statisticians will join us in tackling the above problems and other challenges

in genetic association studies.

APPENDIX. TECHNICAL AND COMPUTATIONAL DETAILS

A.1. Proof of Lemma 1

We shall provide a proof under equation (3). The proof under equation (4) is simpler and omitted.

To prove the first part of the lemma, we suppose that two sets of parameters ({πk}, ρ) and ({π̃k}, ρ̃)

yield the same distribution of G. We wish to show that these two sets are identical. Consider g = 2hk.

For such a choice of g, the set S(g) is a singleton. Clearly, (1 − ρ)π2
k + ρπk = (1 − ρ̃)π̃2

k + ρ̃π̃k. We

denote this constant by ck. Then 0 ≤ ck ≤ 1 for all k, and 0 < ck < 1 for at least one k. Since

πk ≥ 0, we have πk = [−ρ + {ρ2 + 4ck(1 − ρ)}1/2]/2(1 − ρ). Thus, (1 − ρ)−1 satisfies the equation
∑

k[(1− x) + {(x− 1)2 + 4ckx}1/2] = 2, and (1− ρ̃)−1 satisfies the same equation. It can be shown

that the first derivative of (1 − x) + {(x − 1)2 + 4ckx}1/2 is non-positive, and is strictly negative

for at least one k. Thus, the foregoing equation has a unique solution for x > 1, which implies

that ρ = ρ̃. It follows immediately that πk = π̃k for all k. To prove the second part of the lemma,

we choose g = 2hk to obtain νk {2πk(1− ρ) + ρ} + µπk(1 − πk) = 0. Since
∑

k νk = 0, we have
∑

k{µπk(1− πk)}/{2πk(1− ρ) + ρ} = 0. Therefore, µ = 0 and ν = 0.

A.2. Cross-Sectional Studies

A.2.1. Identifiability Under Arbitrary Distributions of H

21



Under Condition 1, (α, β, ξ) is identifiable. The identifiability of the distribution of H depends

on the structure of Pα,β,ξ. For concreteness, we consider the codominant logistic regression model

for a binary trait. We divide G into three categories: G1 = {g ∈ G : g = h + h or g = h + h̃},
G2 = {g ∈ G − G1 : g is not ≥h∗}, and G3 = G − G1 − G2. We shall derive the expression for

mg(y,x;θ) when g belongs to each of the three categories.

For g ∈ G1, S(g) = {(h, h)} or {(h, h̃)}, so that mg(y,x; θ) = Pα,β,ξ(Y = y|X = x,H =

(h, h))P (H = (h, h)) or mg(y,x; θ) = Pα,β,ξ(Y = y|X = x,H = (h, h̃))P (H = (h, h̃)). For g ∈ G2,

Pα,β,ξ(Y = y|X = x,H = (hk, hl)) does not depend on (hk, hl) ∈ S(g), so that mg(y,x;θ) =

Pα,β,ξ(Y = y|X = x,H = (hk, hl))P (G = g), where (hk, hl) ∈ S(g). For g ∈ G3,

mg(y,x; θ) =
exp{y(α + β1 + βT

3 x + βT
4 x)}

1 + exp(α + β1 + βT
3 x + βT

4 x)
π1(g) +

exp{y(α + βT
3 x)}

1 + exp(α + βT
3 x)

π2(g),

where π1(g) = 2P (H = (h∗, g − h∗), and π2(g) = P (H = (hk, hl) : hk + hl = g, hk 6= h∗, hl 6= h∗).

Let θ0 denote the true value of θ, P0(G = g) the true value of P (G = g), and π0j(g) the

true values πj(g), j = 1, 2. We have the following conclusions: (1) when β01 = 0 and β04 = 0,

mg(y,x;θ) = mg(y,x; θ0) if and only if α = α0, β = β0 and P (G = g) = P0(G = g) for any g ∈ G;

(2) when either β01 or β04 is nonzero, mg(y,x; θ) = mg(y,x; θ0) if and only if α = α0, β = β0,

P (G = g) = P0(G = g) for g ∈ G1∪G2, and πj(g) = π0j(g) for g ∈ G3 and j = 1, 2. These conclusions

hold for any generalized linear model with the linear predictor given in (1).

A.2.2. EM Algorithm

The complete-data likelihood is proportional to
∏n

i=1

{
Pα,β,ξ(Yi|Xi,Hi)Pγ(Hi)

}
. The expecta-

tion of the logarithm of this function conditional on the observable data (Yi,Xi, Gi), i = 1, . . . , n,

is
n∑

i=1

∑

(hk,hl)∈S(Gi)

pikl(θ)
{

log Pα,β,ξ(Yi|Xi, (hk, hl)) + log Pγ(hk, hl)
}

,

where

pikl(θ) =
Pα,β,ξ(Yi|Xi, (hk, hl))Pγ(hk, hl)∑

(hk,hl)∈S(Gi)
Pα,β,ξ(Yi|Xi, (hk, hl))Pγ(hk, hl)

.

Thus, in the (m + 1)th iteration of the EM algorithm, we evaluate pikl(θ) at the current estimate

θ̂
(m)

, and obtain θ̂
(m+1)

by solving the following equations through the Newton-Raphson algorithm
n∑

i=1

∑

(hk,hl)∈S(Gi)

pikl(θ̂
(m)

)∇α,β,ξ log Pα,β,ξ(Yi|Xi, (hk, hl)) = 0,

n∑

i=1

∑

(hk,hl)∈S(Gi)

pikl(θ̂
(m)

)∇γ log Pγ(hk, hl) = 0. (A.1)
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Under equation (3) with ρ ≥ 0, the estimate of γ ≡ (ρ, {πk}) can be obtained in a closed form

rather than by solving equation (A.1). Let B be a Bernoulli variable with success probability ρ, Q1

a discrete random variable taking values in H with P (Q1 = (hk, hl)) = δklπk, and Q2 be another

discrete random variable taking values in H with P (Q2 = (hk, hl)) = πkπl. Then H has the same

distribution as BQ1 + (1−B)Q2. The complete-data likelihood can be represented by
n∏

i=1

{
Pα,β,ξ(Yi|Xi,Hi)

∏

k

π
I(Q1i=(hk,hk))Bi

k

∏

k,l

(πkπl)I(Q2i=(hk,hl))(1−Bi)ρBi(1− ρ)1−Bi

}
.

The corresponding score equations for {πk} and ρ satisfy

πk = c−1

{
n∑

i=1

BiI(Q1i = (hk, hk)) + 2
n∑

i=1

K∑

l=1

(1−Bi)I(Q2i = (hk, hl))

}
,

ρ = n−1
n∑

i=1

Bi,

where c is a normalizing constant such that
∑

k πk = 1. Define

E{ω(Bi, Q1i, Q2i)|Yi,Xi, Gi} =

∑
bq1+(1−b)q2∈S(Gi)

ω(b, q1, q2)Pα,β,ξ(Yi|Xi, bq1 + (1− b)q2)p(b, q1, q2)∑
bq1+(1−b)q2∈S(Gi)

Pα,β,ξ(Yi|Xi, bq1 + (1− b)q2)p(b, q1, q2)
,

where ω(B,Q1, Q2) = BI(Q1 = (hk, hk)), (1−B)I(Q2 = (hk, hl)) or B, and

p(b, q1, q2) =
∏

k

π
bI(q1=(hk,hk))
k

∏

k,l

(πkπl)(1−b)I(q2=(hk,hl))ρb(1− ρ)1−b.

In the (m + 1)th iteration, the estimates of πk and ρ are obtained in closed forms

π
(m+1)
k =

1
c(m+1)

[
n∑

i=1

E(m){BiI(Q1i = (hk, hk))}+ 2
n∑

i=1

K∑

l=1

E(m){(1−Bi)I(Q2i = (hk, hl))}
]
,

ρ(m+1) = n−1
n∑

i=1

E(m)(Bi),

where E(m){ω(Bi, Q1i, Q2i)} is E{ω(Bi, Q1i, Q2i)|Yi,Xi, Gi} evaluated at θ = θ̂
(m)

, and c(m+1) is the

constant such that
∑

k π
(m+1)
k = 1.

A.3. Case-Control Studies With Known Population Totals

A.3.1. EM Algorithm

This is similar to the EM algorithm for cross-sectional studies, except that, in addition to unknown

H on all individuals, X is missing for the individuals not selected into the case-control sample and

that there are nonparametric components {Fg(·)}. The complete-data likelihood is

N∏

i=1

Pα,β,ξ(Yi|Xi,Hi)Pγ(Hi)
∏
g

{fg(Xi)}I(Gi=g) .
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The M-step solves the following equations for θ:

N∑

i=1

I(Ri = 1)E{∇α,β,ξ log Pα,β,ξ(Yi|Xi,Hi)|Yi,Xi, Gi}+
N∑

i=1

I(Ri = 0)E{∇α,β,ξ log Pα,β,ξ(Yi|Xi,Hi)|Yi} = 0,

N∑

i=1

I(Ri = 1)E{∇γ log Pγ(Hi)|Yi,Xi, Gi}+
N∑

i=1

I(Ri = 0)E{∇γ log Pγ(Hi)|Yi} = 0, (A.2)

and estimates Fg by an empirical function with the following point mass at the Xi for which (Gi =

g,Ri = 1)

Fg{Xi} =

∑N
j=1 I(Xj = Xi, Gj = g, Rj = 1) +

∑N
j=1 I(Rj = 0)E{I(Xj = Xi, Gj = g)|Yj}∑N

j=1 I(Gj = g, Rj = 1) +
∑N

j=1 I(Rj = 0)E{I(Gj = g)|Yj}
,

where the conditional expectations are evaluated at the current estimates of θ and {Fg} in the E-step.

For a random function ω(Yi,Xi,Hi), the conditional expectation takes the form
∑

(hk,hl)∈S(Gi)
w(Yi,Xi, (hk, hl))Pα,β,ξ(Yi|Xi, (hk, hl))Pγ(hk, hl)∑

(hk,hl)∈S(Gi)
Pα,β,ξ(Yi|Xi, (hk, hl))Pγ(hk, hl)

for Ri = 1, and
∑

g∈G
∑

x∈{Xi:Gi=g,Ri=1}
∑

(hk,hl)∈S(g) ω(Yi,x, (hk, hl))Pα,β,ξ(Yi|x, (hk, hl))Pγ(hk, hl)Fg{x}∑
g∈G

∑
x∈{Xi:Gi=g,Ri=1}

∑
(hk,hl)∈S(g) Pα,β,ξ(Yi|x, (hk, hl))Pγ(hk, hl)Fg{x}

for Ri = 0. Under equation (3) with ρ ≥ 0, the idea described in A.2.2 can be applied to (A.2) to

obtain a closed-form estimate of γ.

A.3.2. Proof of Theorem 1

The case-control design with known population totals is a special case of the two-phase designs

studied by Breslow et al. (2003). The likelihood given in (6) resembles (2.3) of Breslow et al. The key

difference is that the former involves several nonparametric components {Fg(·)} whereas the latter

involves only a single nonparametric function. Despite this difference, the arguments of Breslow et

al. can be used to prove Theorem 1 with little modifications. Specifically, the regularity conditions of

Breslow et al. hold under our Conditions 1–4. Thus, the consistency of (θ̂, {F̂g(·)}) follows from the

results of van der Vaart and Wellner (2001), while the weak convergence and asymptotic efficiency

can be established by applying the results of Murphy and van der Vaart (2000) via a least favorable

submodel, which can be constructed along the lines of Breslow et al. (2003, §3).

A.4. Case-Control Studies With Unknown Population Totals

A.4.1. Equivalence Class
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Suppose that two sets of parameters (θ, {F †
g }, {qg}) and (θ̃, {F̃ †

g }, {q̃g}) yield the same likelihood,

i.e.,

RL(θ, {F †
g }, {qg}) = RL(θ̃, {F̃ †

g }, {q̃g}). (A.3)

Since η(0,x, g;θ) = 1, (A.3) with y = 0 implies that f †g (x)qg/
∑

g̃∈G qg̃ = f̃ †g (x)q̃g/
∑

g̃∈G q̃g̃. Thus,

f †g (x) = f̃ †g (x) and qg = q̃g. It then follows from (A.3) that

η(y,x, g; θ) = C(y)η(y,x, g; θ̃), (A.4)

where C(y) depends only on y. By setting x = x0 and g = g0 in (A.4) and noting that η(y,x0, g0;θ) =

1, we conclude that C(y) = 1. Hence, the equivalence class for (θ, {F †
g }, {qg}) is

{
(θ̃, {F †

g }, {qg}) :

η(y,x, g; θ̃) = η(y,x, g; θ)
}
.

A.4.2. Identifiability for Logistic Link Function

Suppose that

η(y,x, g; θ̃) = η(y,x, g; θ) (A.5)

for two set of parameters θ̃ and θ. Let g0 = 0. As in Appendix A.2.1, we partition G into (G1,G2,G3).

For g ∈ G1, S(g) is a singleton, so that the generalized odds ratio reduces to the ordinary odds ratio

of Y given X and H. Thus, equation (A.5) is equivalent to β = β̃ under Condition 8. For g ∈ G2,

P (Y = 0|X = x,H = (hk, hl)) = {1 + exp(α + βT
3 x)}−1. Thus, (A.5) holds if and only if β̃3 = β3.

For g ∈ G3, both π1(g) and π2(g) are non-zero. Then equation (A.5) becomes

π̃1(g)(1 + eα̃+ψ2(x))/π̃2(g)(1 + eα̃+ψ1(x)) + eψ2(x)−ψ1(x)

π̃1(g)(1 + eα̃+ψ2(x))/π̃2(g)(1 + eα̃+ψ1(x)) + 1

=
π1(g)(1 + eα+ψ2(x))/π2(g)(1 + eα+ψ1(x)) + eψ2(x)−ψ1(x)

π1(g)(1 + eα+ψ2(x))/π2(g)(1 + eα+ψ1(x)) + 1
, (A.6)

where ψ1(x) = β1 + βT
3 x + βT

4 x and ψ2(x) = βT
3 x.

Without loss of generality, assume that 0 is in the support of X. We have the following results.

1. β1 = 0 and β4 = 0. Then (A.6) holds naturally.

2. β1 6= 0, β4 = 0 and β3 = 0. Then since the function (λ + c)/(λ + 1) is strictly monotone in λ

for c 6= 1, (A.6) yields
π̃1(g)
π̃2(g)

1 + eα̃

1 + eα̃+β1
=

π1(g)
π2(g)

1 + eα

1 + eα+β1
.

Thus, (A.6) is equivalent to

π̃1(g)/π̃2(g)
π̃1(g̃)/π̃2(g̃)

=
π1(g)/π2(g)
π1(g̃)/π2(g̃)

, for all g, g̃ ∈ G3.
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3. β1 6= 0, β4 = 0 and β3,z 6= 0, where β3,z is the component of β3 associated with a continuous

covariate Z. For x such that β3,zz 6= 0, (A.6) yields

π̃1(g)
π̃2(g)

1 + eα̃+β3,zz

1 + eα̃+β1+β3,zz
=

π1(g)
π2(g)

1 + eα+β3,zz

1 + eα+β1+β3,zz
.

The above equation holds for any z ∈ (−∞,∞) since the functions on the two sides are analytic

in z and z is continuous. Without loss of generality, assume that β3,z > 0. By letting z = −∞,

we have π̃1(g)/π̃2(g) = π1(g)/π2(g). Then by letting z = 0, we have α̃ = α. Thus, (A.6) is

equivalent to {α̃ = α, π̃1(g)/π̃2(g) = π1(g)/π2(g)}.

4. β4,z 6= 0, where β4,z is the component of β4 pertaining to z. Then (A.6) is equivalent to

π̃1(g)
π̃2(g)

1 + eα̃+ψ2(x)

1 + eα̃+ψ1(x)
=

π1(g)
π2(g)

1 + eα+ψ2(x)

1 + eα+ψ1(x)
(A.7)

for any x such that β1 + βT
4 x 6= 0. We set x except the component z to 0. By letting

z → −β1/β4,z, we have π̃1(g)/π̃2(g) = π1(g)/π2(g). Then by differentiating both sides of (A.7)

with respect to z and letting z → −β1/β4,z, we obtain α = α̃. Thus, (A.6) is equivalent to

{α̃ = α, π̃1(g)/π̃2(g) = π1(g)/π2(g)}.

A.4.3. Identifiability for Probit and Complementary Log-Log Link Functions

Assume that |β1|+ |β4| 6= 0. Also, there exists a continuous covariate in X, denoted by Z, such

as that the corresponding regression parameter βz is non-zero. Let x0 = 0 and g0 = 0. We claim

that under the probit and complementary log-log regression models, η(1,x, g; θ) = η(1,x, g; θ̃) for

two sets of parameters θ and θ̃ if and only if α = α̃, β = β̃ and π1(g)/π2(g) = π̃1(g)/π̃2(g) for g ∈ G3.

We first prove the above claim for the probit model. Suppose that η(1,x, g; θ) = η(1,x, g; θ̃).

Without loss of generality, assume that h∗ is a non-zero vector. Let g = 2h∗, h∗ + h̃∗ and 0 in turn.

Since S(g) has a single element for such g, we obtain

Φ(α)
1− Φ(α)

{
1/Φ(α + 2β1 + β2 + βT

3 x + 2βT
4 x + βT

5 x)− 1
}

=
Φ(α̃)

1− Φ(α̃)

{
1/Φ(α̃ + 2β̃1 + β̃2 + β̃

T

3 x + 2β̃
T

4 x + β̃
T

5 x)− 1
}

, (A.8)

Φ(α)
1− Φ(α)

{
1/Φ(α + β1 + βT

3 x + βT
4 x)− 1

}
=

Φ(α̃)
1− Φ(α̃)

{
1/Φ(α̃ + β̃1 + β̃

T

3 x + β̃
T

4 x)− 1
}

, (A.9)

Φ(α)
1− Φ(α)

{
1/Φ(α + βT

3 x)− 1
}

=
Φ(α̃)

1− Φ(α̃)

{
1/Φ(α̃ + β̃

T

3 x)− 1
}

, (A.10)

where Φ is the normal distribution function. In (A.10), we let x except the component z be 0. Then

Φ(α)
1− Φ(α)

{1/Φ(α + βzz)− 1} =
Φ(α̃)

1− Φ(α̃)

{
1/Φ(α̃ + β̃zz)− 1

}
.
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By letting z → ∞ or −∞, we conclude that βz and β̃z must have the same sign. Without loss of

generality, assume that βz > β̃z > 0. Then the left-hand side divided by the right-hand side goes to

0 as z →∞. This is a contradiction. Therefore, βz = β̃z. We differentiate both sides to obtain

Φ(α)
1− Φ(α)

φ(α + βzz)
Φ(α + βzz)2

=
Φ(α̃)

1− Φ(α̃)
φ(α̃ + βzz)
Φ(α̃ + βzz)2

.

By taking the ratio of the two sides and letting z → sgn(βz)∞, we immediately conclude that α = α̃.

Applying this result to (A.8)–(A.10), we obtain 2β1 + β2 + βT
3 x + 2βT

4 x + βT
5 x = 2β̃1 + β̃2 + β̃

T

3 x +

2β̃
T

4 x + β̃
T

5 x, β1 + βT
3 x + βT

4 x = β̃1 + β̃
T

3 x + β̃
T

4 x, and βT
3 x = β̃

T

3 x. Therefore, β = β̃. For g ∈ G3,

η(1,x, g;θ) =
1− Φ(α)

Φ(α)
Φ(α + β1 + βT

3 x + βT
4 x)π1(g)/π2(g) + Φ(α + βT

3 x)
{1− Φ(α + β1 + βT

3 x + βT
4 x)}π1(g)/π2(g) + 1− Φ(α + βT

3 x)
. (A.11)

It follows that π1(g)/π2(g) = π̃1(g)/π̃2(g). The other direction of the claim is obvious in view of

(A.11) and the expressions of η(1,x, g) for g ∈ G1 and g ∈ G2.

For the complementary log-log model, we obtain the same equations as (A.8)–(A.11) with Φ(x)

replaced by 1− exp(−ex). In particular, e−eα
(eeα+βzz − 1)/(1− e−eα

) = e−eα̃
(eeα̃+β̃zz − 1)/(1− e−eα̃

).

Taking the first and second derivatives of the two sides with respect to z and forming the ratio of

them, we obtain βz(eα+βzz + 1) = β̃z(eα̃+β̃zz + 1). Thus, α = α̃ and βz = β̃z. The rest of the proof is

the same as that of the probit model.

A.4.4. Profile Likelihood of θ Based on (8)

Suppose that there are J distinct observed values of (X, G), denoted by (x1, g1), . . . , (xJ , gJ). Let

n1j and n0j be the numbers of times (xj , gj) is observed in the cases and controls, respectively, and

let δj be the jump size of the estimated distribution of (X, G) at (xj , gj). Then the log-likelihood

based on (8) can be written as

ln(θ, {δj}) =
J∑

j=1

n1j log η(1,xj , gj ; θ)− n1 log
{ J∑

j=1

η(1,xj , gj ;θ)δj

}
+

J∑

j=1

n+j log δj ,

where n+j = n0j + n1j . Following Scott and Wild (1997), we introduce a Lagrange multiplier λ for

the constraint
∑

j δj = 1 and set the derivative with respect to δj to 0. Then we obtain

n+j

δj
− n1η(1,xj , gj ; θ)∑J

j=1 η(1,xj , gj ; θ)δj

+ λ = 0.

Multiplying both sides by δj and summing over j entails λ = n1 − n. Thus,

δj =
n+j

n− n1 + n1η(1,xj , gj ; θ)/µ
, (A.12)
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where µ =
∑J

j=1 η(1,xj , gj ; θ)δj . Plugging (A.12) into ln(θ, {δj}), we see that the objective function

to be maximized is, up to a constant Cn, equal to

l∗n(θ, µ) =
J∑

j=1

n1j log η(1,xj , gj ; θ)−
J∑

j=1

n+j log {(n1/n)η(1,xj , gj ; θ) + (1− n1/n)µ}+(n−n1) log µ.

Thus, max{δj} ln(θ, {δj}) ≤ maxµ l∗n(θ, µ) + Cn. If µ maximizes l∗n(θ, µ), then ∂l∗n(θ, µ)/∂µ = 0

and the δj given in (A.12) satisfy
∑J

j=1 δj = 1. Thus, maxµ l∗n(θ, µ) + Cn ≤ max{δj} ln(θ, {δj}).
Therefore, the profile log-likelihood function for θ based on ln(θ, {δj}) equals the profile function

based on l∗n(θ, µ), up to a constant Cn. We maximize l∗n(θ, µ) via the Newton-Raphson algorithm

to yield θ̂ and µ̂, where θ̂ is the MLE of θ. It can be shown that, up to a constant, l∗n(θ, µ) is the

log-likelihood based on a random sample of size n from a conditional distribution of Y given X and

G. Hence, the covariance matrix of (θ̂, µ̂) can be estimated by the inversed information matrix of

l∗n(θ, µ).

A.4.5. Profile Likelihood of θ Based on (9)

Suppose that equation (3) holds. Write θ = (β, {πk}, ρ). Also, define

ζ1(x, g;θ) =
∑

(hk,hl)∈S(g)

eβ
TZ(x,hk,hl) {ρπkδkl + (1− ρ)πkπl} , ζ0(g;θ) =

∑

(hk,hl)∈S(g)

{ρπkδkl + (1− ρ)πkπl} .

By a derivation similar to that of Appendix A.4.4, profiling (9) over {Fg(·)} is equivalent to profiling

the following function over {µg}

l̃∗n(θ, {µg}) =
n∑

i=1

{
yi log ζ1(Xi, Gi; θ) + (1− yi) log ζ0(Gi; θ)

}

−
n∑

i=1

∑
g

I(Gi = g) log
{

ζ1(Xi, Gi; θ) + n−1
1 ñg

∑

g̃

µg̃ − µg

}
+

n∑

i=1

(1− yi) log
{∑

g

µg

}
,

where ñg is the number of times G = g in the sample. The covariance matrix of θ̂ can be estimated

by the sandwich estimator or the profile likelihood method.

If X is independent of G, then we obtain the MLE θ̂ by maximizing the following function

l̃∗n(θ, µ) =
n∑

i=1

yi log ζ1(Xi, Gi;θ) +
n∑

i=1

(1− yi) log ζ0(Gi; θ) +
n∑

i=1

(1− yi) log µ

−
n∑

i=1

log
{

(1− r)µ + r
∑

g

ζ1(Xi, g; θ)
}

,
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where r = n1/n. Let H = BQ1 + (1 − B)Q2, where B is a Bernoulli variable, Q1 takes values in

{(hk, hk); k = 1, . . . , K} and Q2 takes values in {(hk, hl); k, l = 1, . . . , K}. Suppose that Y is a binary

variable and that the conditional distribution of (B, Q1, Q2, Y ) given X is characterized by

P (B, Q1, Q2, Y |X) =
exp{ϑTW(B,Q1, Q2, Y,X)}∑

B,Q1,Q2,Y exp{ϑTW(B, Q1, Q2, Y,X)} ,

where ϑ = (− log µ+log r/(1−r), β, log π1−log ρ/(1−ρ), . . . , log πK−log ρ/(1−ρ))T andW(B, Q1, Q2,

Y,X) = (Y, Y Z(X,H), BI(Q1 = (h1, h1)) + 2(1−B)
∑

l I(Q2 = (h1, hl)), . . . , BI(Q1 = (hK , hK)) +

2(1−B)
∑

l I(Q2 = (hK , hl)))T . It can be verified that l̃∗n(θ, µ) is equivalent to the log-likelihood

l̃∗n(ϑ) =
n∑

i=1

log


 ∑

BQ1+(1−B)Q2∈S(Gi)

exp{ϑTW(B,Q1, Q2, Yi,Xi)}∑
b,q1,q2,y exp{ϑTW(b, q1, q2, y,Xi)}


 .

We maximize l̃∗n(ϑ) through the EM-algorithm, in which (B, Q1, Q2) is treated as missing. The

estimation of the covariance matrix of θ̂ is based on the information matrix of l̃∗n(ϑ).

The complete-data score function is

n∑

i=1

[
W(Bi, Q1i, Q2i, Yi,Xi)−

n∑

i=1

∑
b,q1,q2,y W(b, q1, q2, y,Xi) exp{ϑTW(b, q1, q2, y,Xi)}∑

b,q1,q2,y exp{ϑTW(b, q1, q2, y,Xi)}

]
.

Thus, in E-step, we calculate the conditional expectation of W(Bi, Q1i, Q2i, Yi,Xi) given (Yi,Xi, Gi)

and the current parameter estimates:

E[W(Bi, Q1i, Q2i, Yi,Xi)|Yi,Xi, Gi]

=

∑
b,q1,q2

I(bq1 + (1− b)q2 ∈ S(Gi)) exp{ϑTW(b, q1, q2, Yi,Xi)}W(b, q1, q2, Yi,Xi)∑
b,q1,q2

I(bq1 + (1− b)q2 ∈ S(Gi)) exp{ϑTW(b, q1, q2, Yi,Xi)}
.

In the M-step, we use the one-step Newton-Raphson iteration to update the parameter estimates:

ϑ(k+1) = ϑ(k) −Σ−1 ×
n∑

i=1

[
E[W(B,Q1, Q2, Yi,Xi)|Yi,Xi, Gi]

−
n∑

i=1

∑
b,q1,q2,y W(b, q1, q2, y,Xi) exp{ϑTW(b, q1, q2, y,Xi)}∑

b,q1,q2,y exp{ϑTW(b, q1, q2, y,Xi)}

]
,

where

Σ = −
[

n∑

i=1

∑
b,q1,q2,y W⊗2(b, q1, q2, y,Xi) exp{ϑTW(b, q1, q2, y,Xi)}∑

b,q1,q2,y exp{ϑTW(b, q1, q2, y,Xi)}

]

+
n∑

i=1




{∑
b,q1,q2,y W(b, q1, q2, y,Xi) exp{ϑTW(b, q1, q2, y,Xi)}

}⊗2

{∑
b,q1,q2,y exp{ϑTW(b, q1, q2, y,Xi)}

}2


 ,

and a⊗2 = aaT .
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A.4.6. Proof of Theorem 2

Write Fx,g(x, g) = F †
g (x)qg and F̂x,g(x, g) = F̂ †

g (x)q̂g. Since θ̂ is bounded and F̂x,g is a probability

distribution, we can choose a subsequence such that θ̂ → θ∗ and F̂x,g(x, g) → F ∗
x,g(x, g) ≡ F ∗

g (x)q∗g ,

where q∗g > 0 for any g.

Since F̂ †
g maximizes the likelihood, there exists some Lagrange multiplier λ̂g such that

I(Gi = g)

F̂ †
g {Xi}

− n1η(1,Xi, g; θ̂)q̂g∫
x,g̃ η(1,x, g̃; θ̂)dF̂x,g(x, g̃)

− nλ̂g = 0,

where F̂ †
g {Xi} denotes the point mass of F̂ †

g at Xi, and the integral is interpreted as integration over

x and summation over g. Since
∑n

i=1 F̂ †
g {Xi} = 1, λ̂g satisfies the equation

n−1
n∑

i=1

I(Gi = g)

λ̂g + n1η(1,Xi, g; θ̂)q̂g{n
∫
x,g̃ η(1,x, g̃; θ̂)dF̂x,g(x, g̃)}−1

= 1, (A.13)

and

min
1≤i≤n

{
λ̂g +

n1η(1,Xi, g; θ̂)q̂g

n
∫
x,g̃ η(1,x, g̃; θ̂)dF̂x,g(x, g̃)

}
> 0.

Clearly, λ̂g must be bounded asymptotically. Thus, by choosing a subsequence, we assume that

λ̂g → λ∗g.

By (A.13) and the Lipschitz continuity of η(1,x, g;θ∗) in the continuous components of x, we

can show that there exists a positive constant δ such that

min
g,x

{∣∣∣λ∗g +
%η(1,x, g; θ∗)q∗g∫

x,g̃ η(1,x, g̃;θ∗)dF ∗
x,g(x, g̃)

∣∣∣
}

> δ.

Consequently, when n is sufficiently large,

F̂ †
g (x) = n−1

n∑

i=1

I(Gi = g,Xi ≤ x)

max
[|λ̂g + η(1,Xi, g; θ̂)q̂gn1{n

∫
x,g̃ η(1,x, g̃; θ̂)dF̂x,g(x, g̃)}−1|, δ]

.

We define an empirical function F̃ †
g whose jump size at Xi is proportional to

n−1I(Gi = g)
P (G = g, Y = 0) + η(1,Xi, g; θ0)qg%{

∫
x,g̃ η(1,x, g̃; θ0)dFx,g(x, g̃)}−1

.

Then it can be verified that F̃ †
g converges uniformly to F †

g . In addition, F̂ †
g is absolutely continu-

ous with respect to F̃ †
g , and the Radon-Nikodym derivative dF̂ †

g (x)/dF̃ †
g (x) is bounded and converges

uniformly to dF ∗
g (x)/dF †

g (x). Let F̃x,g(x, g) = F̃ †
g (x)qg, and let ln(θ, {F †

g }, {qg}) be the log-likelihood

based on (8). By the definition of the MLE, n−1ln(θ̂, {F̂ †
g }, {q̂g}) − n−1ln(θ0, {F̃ †

g }, {qg}) ≥ 0.

The limit of this difference is the negative Kullback-Leibler information of the distribution for
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(θ∗, {F ∗
g }, {q∗g}) with respect to (θ0, {F †

g }, {qg}) under P (Y = 1) = %. The identifiability condi-

tions then yield θ∗ = θ0, F
∗
g = F †

g and q∗g = qg. Thus, the consistency of θ̂ is established. Since Fx,g

is continuous, supx,g |F̂x,g(x, g)− Fx,g(x, g)| → 0 almost surely.

The derivation of the asymptotic distribution is similar to the proof of Theorem 1.2 in Murphy and

van der Vaart (2001). We first obtain a score function by differentiating ln(θ, {F †
g }, {qg}) with respect

to θ̂ along the direction v and with respect to F̂x,g along the path F̂ε = F̂x,g + ε
∫

ψ(x, g)dF̂x,g, where

v has a unit norm and ψ(·, g) is any function whose total variation is bounded by 1. The linearization

of the score function around the true parameter value yields

n1/2

{
(vTΩ11 + Ω21[ψ]T )(θ̂ − θ0) +

∫
(vTΩ12 + Ω22[ψ])d(F̂x,g − Fx,g)

}

= n−1/2
n∑

i=1

yi

{
vT lθ(1,Xi, Gi;θ0, Fx,g) + lF (1,Xi, Gi;θ0, Fx,g)

[ ∫
ψdFx,g

]}

+n−1/2
n∑

i=1

(1− yi)
{
vT lθ(0,Xi, Gi; θ0, Fx,g) + lF (0,Xi, Gi;θ0, Fx,g)

[ ∫
ψdFx,g

]}
+ op(1),

where Ω11 is a constant matrix, Ω12 is a vector function of x, Ω21[ψ] and Ω22[ψ] are linear operators

of ψ, and lθ and lF are the scores with respect to θ and Fx,g. The right-hand side of the above

equation converges weakly to a Gaussian process, which depends on (y1, y2, . . .) only through %. We

can show that the operator B[v, ψ] ≡ {
vTΩ11 + Ω21[ψ]T ,vTΩ12 + Ω22[ψ]

}T is invertible along the

lines of Murphy and van der Vaart (2001). It then follows from Theorem 3.3.1 of van der Vaart and

Wellner (1996) that n1/2(θ̂ − θ0, F̂x,g − Fx,g) converges weakly to a Gaussian process.

Since the asymptotic distribution depends on (y1, y2, . . .) only via %, we assume that (y1, y2, . . .)

are independent realizations from a Bernoulli distribution with mean %. By choosing some ψ such

that B[v, ψ] = (vT , 0)T for all v, we see that θ̂ is an asymptotically linear estimator for θ0 with the

influence function in the score space. It follows from Proposition 3.3.1 of Bickel et al. (1993) that

the limiting covariance matrix of n1/2(θ̂ − θ0) attains the semiparametric efficiency bound.

A.4.7. Proof of Theorem 3

We call the probability distribution induced by (9) the pseudo-probability law, denoted by P̃n. Let

f(y,x, g; θ, {Fg}, an) be the density function under the true probability law Pn. Since an = o(n−1/2),

dPn

dP̃n

= exp

{
an

n∑

i=1

∂ log f(yi,Xi, Gi;θ, {Fg}, a)
∂a

∣∣∣∣∣
a=0

+ o(1)

}
→P̃n 1.

Thus, any weak convergence under P̃n also holds for Pn. On the other hand, by the arguments in the

proof of Theorem 2, we can easily verify the results of Theorem 3 when the data is generated from

P̃n. Thus, Theorem 3 holds when the data is generated from Pn.
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A.5. Cohort Studies

A.5.1. Identifiability

We shall show that if two sets of parameters (θ,Λ) and (θ̃, Λ̃) yield the same joint distribution,

then θ = θ̃ and Λ = Λ̃. First, it follows from Lemma 1 that γ = γ̃. Suppose that

∑

H∈S(G)

{
˜̇Λ(Ỹ )eβ̃

T
Z(X,H)Q̇(Λ̃(Ỹ )eβ̃

T
Z(X,H))

}∆ {
1−Q(Λ̃(Ỹ )eβ̃

T
Z(X,H))

}1−∆

Pγ(H)

=
∑

H∈S(G)

{
Λ̇(Ỹ )eβ

TZ(X,H)Q̇(Λ(Ỹ )eβ
TZ(X,H))

}∆ {
1−Q(Λ(Ỹ )eβ

TZ(X,H))
}1−∆

Pγ(H).

By choosing ∆ = 1 and integrating Y from 0 to τ on both sides, we obtain

∑

H∈S(G)

Q(Λ̃(τ)eβ̃
T
Z(X,H))Pγ(H) =

∑

H∈S(G)

Q(Λ(τ)eβ
TZ(X,H))Pγ(H).

Since Q(·) is strictly increasing, the above equation implies that Λ̃(Ỹ )eβ̃
T
Z(X,H) = Λ(Ỹ )eβ

TZ(X,H)

for H = (h, h) and H = (h, h̃). It then follows from Condition 8 that β̃ = β and Λ̃ = Λ.

A.5.2. Proof of Theorem 4

Our problem is the same as that of Zeng et al. (2004) except that the integration over random

effects in that paper is replaced by the sum over H ∈ S(G). The asymptotic properties stated in the

theorem will follow from the identifiability shown in Appendix A.5.1 and the proofs of Zeng et al.

(2004) provided that we can verify the following result: if there exist a vector µ = (µβ, µγ) and a

function ψ(t) such that

µT lθ(θ0, Λ0) + lΛ(θ0, Λ0)
[ ∫

ψdΛ0

]
= 0, (A.14)

where lθ is the score function for θ and lΛ[
∫

ψdΛ0] is the score function for Λ along the submodel

Λ0 + ε
∫

ψdΛ0, then µ = 0 and ψ = 0.

To prove the desired result, we write out equation (A.14). We then let ∆ = 1 and integrate Y

from 0 to τ to obtain

∑

H∈S(G)

{
Q(Λ0(τ)eβ

T

0 Z(X,H))
}

Pγ(H)





Q̇(Λ0(τ)eβ
T

0 Z(X,H))Λ0(τ)eβ
T

0 Z(X,H)µT
βZ(X, H)

Q(Λ0(τ)eβ
T

0 Z(X,H))

+
Q̇(Λ0(τ)eβ

T

0 Z(X,H))
∫ τ
0 ψ(t)dΛ0(t)eβ

T

0 Z(X,H)

Q(Λ0(τ)eβ
T

0 Z(X,H))
+ µT

γ∇γ log Pγ(H)



 = 0. (A.15)
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On the other hand, by letting ∆ = 0 and Y = τ in (A.14), we have

∑

H∈S(G)

{
1−Q(Λ0(τ)eβ

T

0 Z(X,H))
}

Pγ(H)




−

Q̇(Λ0(τ)eβ
T

0 Z(X,H))Λ0(τ)eβ
T

0 Z(X,H)µT
βZ(X,H)

1−Q(Λ0(τ)eβ
T

0 Z(X,H))

−Q̇(Λ0(τ)eβ
T

0 Z(X,H))
∫ τ
0 ψ(t)dΛ0(t)eβ

T

0 Z(X,H)

1−Q(Λ0(τ)eβ
T

0 Z(X,H))
+ µT

γ∇γ log Pγ(H)



 = 0. (A.16)

The summation of (A.15) and (A.16) entails µT
γ∇γ log Pγ(H) = 0. From the proof of Lemma 1,

µγ = 0. We choose G = 2h or h+h̃ and let ∆ = 1 and Y = 0 in (A.14) to obtain µT
βZ(X,H)+ψ(0) =

0 for H = (h, h) and (h, h̃). Thus, µβ = 0 and ψ(0) = 0 under Condition 8. Finally, equation (A.14)

with ∆ = 1 implies that

ψ(Ỹ ) +
Q̈(Λ0(Ỹ )eβ

T

0 Z(X,H))
∫ Ỹ
0 ψ(t)dΛ0(t)eβ

T

0 Z(X,H)

Q̇(Λ0(Ỹ )eβ
T

0 Z(X,H))
= 0

for H = (h, h). Therefore, ψ = 0.
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