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1 Introduction

In survival analysis, the Cox (Cox, 1972) multiplicative hazards model has been extensively

used. In this model, the hazard rate function of the survival time given an external (possibly

time-dependent) covariate vector Z(t) is assumed to be

λ(t|Z(t)) = λ(t) exp{βTZ(t)},

where λ(t) is an unknown and unspecified baseline hazard function and β is the regression co-

efficient for Z(t). An efficient estimate for β can be obtained by maximizing a partial likelihood

function (Cox, 1975; Andersen and Gill, 1982). Since the proportionality in the multiplicative

hazards model does not hold in many applications, one alternative form to model the hazard

rate function is to assume that the hazard risks are additive across covariates; i.e.,

λ(t|Z(t)) = µ(t) + βTZ(t),

where µ(t) is an unknown baseline hazard function. The additive hazards model has been

studied by Lin and Ying (1994). Furthermore, to accommodate both the multiplicative and

additive hazards structures, Lin and Ying (1995) proposed a multiplicative-additive hazards

model where the hazard function takes the form

λ(t|Z1(t),Z2(t)) = λ(t) exp{βT
1 Z1(t)}+ βT

2 Z2(t),

where Z1(t) and Z2(t) are different covariates of Z(t). However, all these hazard-based re-

gression models are restrictive in practice, since they may not be flexible enough to entertain

situations where hazard risks are neither multiplicative nor additive among groups. Therefore,

it is desirable to obtain a class of hazard-based models that allows a wide range of hazard struc-

tures, while at the same time retains the simple structures of the multiplicative and additive

hazards models.

This paper proposes a unified family of hazard-based regression models. We propose a

class of transformed hazards models by imposing both an additive structure and a known

transformation G(·) on the hazard function. In this class, the hazard function for the survival

times given covariate Z(t) takes the form

G{λ(t|Z(t))} = µ(t) + βTZ(t), (1)

where β is the unknown regression coefficient vector, µ(t) is an unknown baseline hazard func-

tion and G(·) is a known and increasing transformation function. Essentially, model (1) can be
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regarded as a partial linear regression model for the transformed hazard function. One example

of the transformation G(·) is the Box-Cox transformation (Box and Cox, 1964) in which G(x)

is given by

G(x) = (xs − 1)/s (2)

for s > 0 and we define G(x) = log(x) if s = 0. Within the Box-Cox transformation family,

when s = 1 in (2), (1) is the additive hazards model, and if s = 0, then (1) becomes the

multiplicative hazards model. Thus, the transformed model in (1) with G(·) given by (2) can

be considered as a smoothed class of hazards models linking the additive and multiplicative

hazards models, which are the extremes of this class if s is restricted to the range of [0, 1].

Since our proposed class (1) allows a much broader class of hazard patterns than those of the

proportional hazards model and the additive hazards model, it provides us with more flexible

models for analyzing survival data.

Our goal in this paper is to provide a unified framework in deriving an efficient estimate for

β in model (1) for any given transformation G, where G−1 is continuously three times differ-

entiable. In particular, we use the sieve maximum likelihood estimation approach to construct

an estimate of β. We then examine the asymptotic properties of the resulting estimator.

The rest of this article is organized as follows. In Section 2, we present a general framework

of sieve maximum likelihood estimation. In Section 3, we derive the asymptotic properties of

the estimator, including consistency and asymptotic normality. In Section 4, simulation studies

are conducted to examine the numerical properties of the proposed method in small samples. In

Section 5, a lung cancer dataset is analyzed using the proposed class of models and estimation

procedure. We present a brief discussion in Section 6. Proofs of all theorems are given in the

Appendix.

2 Inference Procedure

Suppose that we observe survival data with n independent and identically distributed (i.i.d.)

observations in a study with termination time τ . We denote the observation for subject i as

(Yi = Ti ∧ Ci, ∆i = I(Ti ≤ Ci), {Zi(t) : t ∈ [0, τ ]}), where Ti is the failure time of subject i, Ci

is the censoring time, {Zi(t) : t ∈ [0, τ ]} denotes the external covariate process, “∧” denotes

the minimum of two values, and I(·) is the indicator function.

We assume that Ci is independent of Ti conditional on the covariates. Under the assumption
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that the transformation G(·) in the model (1) is strictly increasing and differentiable, the

observed likelihood function of the parameters (β, µ) can be written as

Ln(β, µ) =
n∏

i=1

{
H(µ(Yi) + βTZ(Yi))

}∆i

exp

{
−

∫ Yi

0
H(µ(t) + βTZ(t))dt

}
, (3)

where H(·) is the inverse function of G(·).
To obtain estimates for β and µ(t), we wish to maximize Ln(β, µ) in (3). However, such a

maximum does not exist since one can always find some function µ(t) such that Ln(β, µ) = ∞.

Therefore, we must restrict µ(t) to some smaller functional space to ensure that the maximum

of Ln(β, µ) exists. One important method is sieve maximum likelihood estimation, which has

been used in many semiparametric estimation problems (Shen and Wong, 1994; Shen, 1997,

1998). In the sieve estimation method, the infinite-dimensional functional parameter µ(t) is

restricted to a functional space with finite dimension, which is called the sieve space for µ(t).

Moreover, the size of this sieve space increases with sample size n, and as n → ∞, the sieve

space approximates the whole space for µ(t). However, for fixed sample size n, the choice of the

sieve space for µ(t) cannot be arbitrary: the space should be chosen large enough so that the

bias of the sieve estimate for µ(t) does not dominate; on the other hand, the space cannot be

chosen too large so that the variation in estimating µ(t) dominates the variation in estimating

β, which is the main parameter of interest. Once a sieve space is chosen, maximizing the

likelihood function can be carried out on this space, which contains only a finite number of

parameters.

Usually, the sieve space for µ(t) is constructed from a linear space with a finite number

of basis functions. Many basis functions can be used for this purpose. The most commonly

used basis functions include B-splines and wavelet basis functions. In this paper, we choose

wavelet basis functions to construct a sieve space for µ(t) for reasons of both mathematical and

computational convenience, as will be seen in the subsequent arguments. A sequence of wavelet

basis functions can be obtained from a single function φ(t), which is called the father wavelet,

and satisfies:

(i) {φ(t− k) : k ∈ Z} is an orthonormal system in L2(R), where Z consists of all the integers,

(ii) denote Vj = {∑k ckφ(2jt− k) :
∑

k |ck|2 < ∞} for any j ≥ 0, then V0 ⊂ V1 ⊂ . . ., and

∪j≥0Vj is dense in L2(R).

The sequence {Vj : j = 0, 1, . . .} is called a multi-resolution approximation in the wavelet
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analysis (Section 7.1, Mallat, 1998). From (ii), the basis functions {φ(2jt − k)} from Vj for

some suitable j can be candidates for constructing a sieve space. Furthermore, the orthogonality

given in (i) concludes that the L2-distance between any two functions in the sieve space can

be expressed as the summed square difference of the coefficients of the basis functions, which

does not hold for B-spline sieves. We note that Vj is still of infinite dimension. However, since

our function µ(t) is of interest only for t ∈ [0, τ ], the basis functions in Vj whose supports do

not overlap with [0, τ ] can be discarded. Thus, the number of those remaining basis functions

is finite, particularly if we choose φ(t) to have a compact support. Furthermore, φ(t) needs

to be smooth to ensure the approximation of the sieve space to the whole space for µ(t). In

summary, we assume that the father wavelet φ(t) satisfies:

(iii) φ(t) has a finite support [0, τ ] and φ ∈ W 3,2[0, τ ], where W 3,2[0, τ ] is a Sobolev space

containing all the functions whose third derivatives are L2-integrable in [0, τ ] (c.f. Chapter

1, Adams, 1975).

Typical choices of φ(t) satisfying (iii) are the Daubechies wavelets (Daubechies, 1992), after

suitable shifting and scaling. In the commercial package MATLAB, the Wavelet Toolbox pro-

vides a number of these choices.

After φ(t) is given, we can approximate the function µ(t), t ∈ [0, τ ], using the functions

in the Kn-level multi-resolution VKn . We choose the basis functions from {φ(2Knt − k + 1) :

1− τ ≤ k ≤ 2Knτ + 1} whose supports overlap with [0, τ ]. Let B1(t), . . . , Bmn(t) denote these

basis functions, where mn is the number of integers between 1−τ and 2Knτ +1. Additionally, we

impose an upper bound Mn for the summation of absolute values of all the wavelet coefficients

to prevent the divergence of these coefficients in the maximization. As a result, a sieve space

for the parameters (β, µ) is proposed as

Sn =

{
(β, µ(t)) : µ(t) =

mn∑

k=1

αkBk(t), Bk(t) = φ(2Knt− k + 1),
mn∑

k=1

|αk| ≤ Mn,

β ∈ B0, B0 is a known bounded open set containing the true value of β} ,

where Mn is a constant depending on n and the choice of Mn is discussed in Section 3.

We thus maximize the likelihood function Ln(β, µ) over Sn. The maximization is carried

out by an optimum search over the space
{

(β, α1, . . . , αmn) : β ∈ B0,
mn∑

k=1

|αk| ≤ Mn

}
.
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Many optimization algorithms can be implemented to estimate the parameters. Particularly,

in the numerical computations of Section 4, we use the algorithm for searching the optimum in

MATLAB. The details of the computational procedure are discussed in Section 4.

We denote the sieve maximum likelihood estimate for (β, µ) as (β̂, µ̂). Our subsequent

results show that
√

n(β̂ − β0) has an asymptotically normal distribution with mean zero and

covariance matrix Σ, which is equal to the semiparametric efficiency bound for β. Unfortu-

nately, Σ does not have an explicit expression. Thus, to estimate the asymptotic covariance of

β̂, we propose the following sieve profile likelihood function. We define

pln(β) = max
µ∈Sn

log Ln(β, µ).

Then for any constant vector e, we can approximate eTΣ−1e by

− 1

nh2
n

{
pln(β̂ + hne)− 2pln(β̂) + pln(β̂ − hne)

}
,

where hn is a constant of order 1/
√

n. The sieve profile likelihood function imitates the profile

likelihood function investigated in Murphy and van der Vaart (2000), and has been discussed

by Fan and Wong (2000). Additionally, likelihood ratio inference based on the sieve likelihood

function has been recently studied by Shen and Zhang (2004) and Fan and Zhang (2004). Our

simulation study in Section 4 shows that for moderate sample sizes, the profile sieve likelihood

approach gives valid estimates of the variance.

3 Asymptotic Properties

In this section, we obtain the asymptotic properties for β̂. In particular, we show that the

sieve maximum likelihood estimate (β̂, µ̂) is consistent under some suitable metric. Next, we

show that
√

n(β̂ − β0) converges in distribution to a normal distribution and the asymptotic

variance attains the semiparametric efficiency bound (c.f., Chapter 3, Bickle, Klaassen, Ritov

and Wellner, 1993). All proofs are given in the appendix.

To establish these results, we assume that the following conditions hold:

(C.1) With probability one, {Z(t) : t ∈ [0, τ ]} is a bounded process. Moreover, if there exists

some vector β̃ such that, β̃
T
Z(t) = c(t) for some deterministic function c(t), then β̃ = 0

and c(t) = 0.
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(C.2) C is independent of T given {Z(t) : t ∈ [0, τ ]}. Moreover, with probability one,

inf
z(t),t∈[0,τ ]

P (C ≥ τ |Z(t) = z(t), t ∈ [0, τ ]) = inf
z(t),t∈[0,τ ]

P (C = τ |Z(t) = z(t), t ∈ [0, τ ]) > 0.

(C.3) Denote the true values of (β, µ) by (β0, µ0). Assume that β0 ∈ B0 and µ0(t) is a contin-

uously three times differentiable function in [0, τ ]. Moreover, assume

inf
t∈[0,τ ]

H(µ0(t) + βT
0 Z(t)) > 0, sup

t∈[0,τ ]
|µ′′′0 (t)| < ∞.

Assumption (C.1) ensures the identifiability of β in model (1). (C.2) implies that the

distribution for the censoring times is not informative, and therefore Ln(β, µ) is the only part

in the full likelihood function we need to maximize. The second part of (C.2) is equivalent to

saying that any subjects surviving to at least τ are considered as right-censored at τ . Both

(C.1) and (C.2) are standard assumptions in the Cox proportional hazards model. Assumption

(C.3) implies that the true conditional hazard rate for T given the covariates is bounded away

from zero.

We also need assumptions for the choices of mn (or Kn) and Mn. Specifically, we assume

that the number of basis functions in the sieve space increases with sample size n but at a low

rate. Moreover, we assume that the upper bound Mn in the sieve space should tend toward

infinity at an appropriate rate depending on the transformation function H. The details are

given in the following theorem.

Theorem 1. In addition to conditions (C.1)-(C.3), for each Mn > 0, define

γ1(Mn) = 2H(Mn+B), γ2(Mn) = sup
x∈[−Mn−B,Mn+B]

H ′(x), γ3(Mn) =

{
inf

x∈[−Mn−B,Mn+B]
H ′(x)

}−1

,

where B is the upper bound of |βTZ(t)|. Assume that

(C.4) mn satisfies that mn →∞ and m7
n/n → 0. Moreover, Mn satisfies

M1/3
n ξ(Mn)2/3




√√√√m
7/6
n

n1/6
+

1

mn


 → 0,

where ξ(Mn) = M2
nγ1(Mn)2γ2(Mn)4γ3(Mn)2.

Then β̂ and µ̂(·) are consistent in the sense that |β̂−β0|+ ‖µ̂− µ0‖L2[0,τ ] → 0 in probability.
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The first part of (C.4) stipulates that the number of basis functions in the sieve space, mn,

increases at a lower rate than n1/7. We also remark that Mn satisfying (C.4) always exists for a

given mn and n. Some particular choices of mn and Mn for the class of Box-Cox transformations

are given at the end of this section. The convergence rates of (β̂, µ̂) are obtained explicitly in

the following theorem.

Theorem 2. Under conditions (C.1)-(C.4),

∫ τ

0

{
(µ̂(t)− µ0(t)) + (β̂ − β0)

TZ(t)
}2

dt ≤ op(
1√
n

) + Op(
1

m6
n

).

Finally, the asymptotic distribution for β̂ can be summarized in the following theorem.

Theorem 3. In addition to conditions (C.1)-(C.4), suppose that with probability one, Z(t) is

continuously three times differentiable in [0, τ ], and with respect to some dominating measure,

the conditional density of C given {Z(t) : t ∈ [0, τ ]} is three times continuously differentiable.

Moreover, H = G−1 is continuously three times differentiable and mn satisfies

(C.5)
√

n/m6
n → 0.

Then
√

n(β̂−β0) converges weakly to a normal distribution with mean zero and its asymptotic

variance attains the semiparametric efficiency bound.

The regularity condition for Z(t) in Theorem 3 holds when Z(t) is time-independent. Since

from Theorem 2, the bias of the sieve estimate µ̂(t) is of the order m−12
n , assumption (C.5)

implies that the square of this bias does not dominate the variation of β̂, which is of the order

n−1/2.

The choices of Kn and Mn satisfying (C.4) and (C.5) exist. For large n, we can choose

Kn = θ log n/ log 2 (thus mn = nθ), where θ is a constant in the interval (1/12, 1/7). If G is the

Box-Cox transformation, Mn can be particularly chosen to be of the order log n.

4 Simulation Study

We conducted simulation studies to examine the small-sample performance of our proposed

estimators. In the simulation, we generated two independent covariates Z1 and Z2 from
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Uniform(0, 1) and Bernoulli(0.5), respectively. The failure time was generated from the fol-

lowing model:
{λ(t|Z1, Z2)}s − 1

s
=

t

2
+ β1Z1 + β2Z2,

where β1 = 0.7 and β2 = 0.2. We varied the choices of s using the values of 0, 0.25, 0.5, 0.75

and 1. Thus, when s = 0, the failure time was generated from a proportional hazards regression

model with baseline hazard, exp(t/2); when s = 1, the failure time was from an additive hazards

model with baseline hazard, t/2 + 1. The censoring time was taken as the minimum of 1 and

C∗ where C∗ ∼ Uniform(0.5, 1.5) and the censoring rates varied from 20% to 25% for s = 0 to

s = 1.

For each s, we simulated 500 data sets, and for each data realization, the proposed sieve max-

imum likelihood estimation approach was used to estimate the regression coefficients. In sieve

estimation, we chose the Db4-father wavelet (Daubechies, 1992) for φ(t) and used resolution

level Kn = 3 to estimate the nuisance parameter µ(t). The sieve maximum likelihood estimates

were obtained by the algorithm for searching the optimum in the Optimization Toolbox in MAT-

LAB. This algorithm is a subspace trust region method and is based on the interior-reflective

Newton method (Coleman and Li, 1994; 1996), after both gradients and Hessian derivatives

of the objective function are provided. Since the objective function may not be concave in

the parameters, choosing initial values can be very important. In our experience, when the

initial values were chosen not too far away from the true values, the estimates at convergence

were very similar. In the simulation study, the optimum search usually converged within a few

iterations when either the step size of the search or the gradient of the function was very small.

The sieve profile likelihood function was used to estimate the asymptotic variance of β̂, where

we chose hn = n−1/2. In the simulation study, we also used Kn = 4, 5 and hn = 0.1n−1/2, 5n−1/2

and found the results to be fairly robust with respect to these choices.

Table 1 summarizes the simulation results for different choices of s values for n = 200 and

n = 400, respectively. The columns after the true value correspond to the average values of the

estimates, the standard errors of the estimates, the average estimates of the asymptotic standard

errors, and the coverage proportions of the 95% confidence intervals, based on the normal

distribution. The results in Table 1 indicate that the sieve maximum likelihood estimates

for the regression coefficients have a small bias; the estimated standard errors based on the

sieve profile likelihood function are close to the empirical standard errors; and the coverage

proportions of 95% confidence intervals are accurate. Increasing the sample size from 200 to
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400 decreases both the bias and the standard errors of the estimates.

5 Application

The proposed approach was applied to a lung cancer dataset from a recent phase III clinical

trial (Socinski et al., 2002) of non-small-cell lung cancer (NSCLC), which is the leading cause

of cancer-related mortality. In the year 2001, among approximately 170,000 patients newly

diagnosed, more than 90% died from NSCLC and approximately 35% of all new cases were

stage IIIB/IV (malignant pleural effusion) the disease. A randomized, two-armed, multi-center

trial was initiated in 1998 with the aim to determine the optimal duration of chemotherapy

by comparing four cycles of therapy versus continuous therapy in advanced NSCLC. Patients

were randomized to two treatment arms: four cycles of carboplatin at an area under the curve

of 6 and paclitaxel 200 mg/m2 every 21 days (arm A), or continuous treatment with carbo-

platin/paclitaxel until progression (arm B). At progression, all patients on both arms received

second-line weekly paclitaxel at 80 mg/m2. One of the primary endpoints was survival, which

could be right-censored due to loss to follow-up. The original dataset had 230 NSCLC patients,

and 4 cases were missing follow-up times, and hence our analysis is based on n = 226 cases, of

which 113 were in arm A and 113 were in arm B. The censoring rate was approximately 32%.

We illustrate the proposed additive transformation hazards models with these NSCLC data

and demonstrate the flexibility and generality of this class of models. The covariates included

in the model were treatment (0=arm A, 1=arm B), sex (0=female, 1=male) and age at entry.

In this population, 63% of the patients were male, and the age at entry ranged from 32 to 82

with a mean of 62 years. In the analysis, we re-scaled the time axis to the interval [0, 1].

We fit a class of Box-Cox transformed hazard models to the NSCLC data. The parameter s

in the transformation was chosen as 0, 0.25, 0.5, 0.75 and 1; the multi-resolution level Kn was

chosen from 2, 3, 4 and 5. The Akaike information criteria (AIC), defined as twice the negative

log-likelihood function plus twice the number of the parameters, was used as a criterion to select

the best fitting model. Using the AIC by varying s and Kn ensured the best model choice in

terms of both model structure and parsimony, although it is difficult to distinguish whether the

best fit is due to the transformation or the choice of basis functions. We also penalized those

choices of s and Kn for which the estimated parameters induced negative predicted values for the

hazard function. If the estimated hazard rate was negative, we set the objective function that

needed to be maximized, to be a very small negative number. Thus, the best model using AIC
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always ensures that the predicted hazard function is positive. From the analysis, we found that

increasing the number of basis functions dramatically increased the value of AIC and the model

with s = 0.5 and Kn = 2 yielded the minimal AIC value. The estimates and standard errors for

the coefficients of the three covariates are: β̂treat = −0.1176(0.2841), β̂sex = 0.7086(0.2966), and

β̂age = 0.6568(0.5332). Thus, only the covariate sex is significantly predictive of hazard risk.

The male patients had a higher risk than the females. Neither treatment nor age is significant.

We also plotted the predicted survival curves versus the Kaplan-Meier survival curves in Figure

1. Each plot in Figure 1 represents the predicted survival curves and the Kaplan-Meier curves

stratified by treatment and sex, where the age value is substituted with its median value 63.

The plots indicate that the best model (s = 0.5, K = 2) indeed provides a good fit to the data.

6 Discussion

We have proposed a class of transformation models for modelling the hazard function. This

class of models contains both multiplicative and additive hazards models as special cases. A

unified estimation procedure has been proposed, where the sieve maximum likelihood estimates

were obtained by maximizing the observed likelihood function over a sieve space of wavelets.

The resulting estimators for the regression coefficients have been shown to be asymptotically

normal. Simulation studies indicated that the proposed estimates performed well for sample

sizes of 200 and 400. Applying the Box-Cox transformed hazards model to the lung cancer data

demonstrated that the best model might not be either the multiplicative or additive hazards

model.

In the optimization for computing the maximum likelihood estimates, choosing initial val-

ues is an important issue. Although our numerical studies indicate that if initial values are

not far from true values, convergence is often satisfactory, one has to guess an initial value

in practice. One possible way is to use the estimates from the proportional hazards model,

which corresponds to transformation H(x) = exp{x} and which has the concave log-likelihood

function, as the initial values. Another more general solution is to choose a few widespread

points in the parameter domain as initial values and among all the estimates starting from these

initial values, the one with the maximal likelihood function is considered to be the maximum

likelihood estimate.

Although in our theoretical derivations, a high-order smooth father wavelet is required to

ensure that the asymptotic results hold for the regression parameters, our simulation study and
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data application showed that using a low-order smooth father wavelet (e.g., the Db4 wavelet)

works quite well. In practice, if one is only interested in inference on the regression coefficients,

a low-order smooth wavelet basis such as the Db4 wavelet may be used; while a high-order

smooth wavelet should be used if one is interested in obtaining a smooth predicted function of

the hazard rate.

In many other nonparametric estimation contexts, it is important to choose a suitable

smoothing parameter. In the sieve maximum likelihood estimation we have proposed, such a

parameter is the multi-resolution level Kn (thus mn). In the data application, we have used

the AIC criterion to choose Kn. In fact, some other criteria can be used in choosing Kn: one

possibility is to replace the negative log-likelihood function in the AIC criterion by a distance

measure, which is defined as the L2-distance between the predicted survival function based on

the model and the Kaplan-Meier survival function. The AIC criterion or the criterion proposed

above can also be used to choose the model that best fits the data from a class of transformed

hazards models, as we did in the data application. In all these model selection procedures, the

variation in choosing the best model is not accounted for in our inference for the regression

parameters. One possibility for accounting for such variation is to treat the transformation

G, indexed by the parameter s, as another model parameter; then we maximize the observed

likelihood function over all model parameters including the transformation G. However, the

asymptotic properties of the estimators for the regression coefficients are not yet available.

APPENDIX

A.1. Proof of Theorem 1

The consistency proof contains the following steps, where r = 3.

Step 1. We first choose µ̃(t) as the approximate function in the Knth multi-resolution to µ0(t)

such that (β0, µ̃) ∈ Sn. According to the results in the wavelet analysis (Section 9.4, Härdle,

Kerkyacharian, Picard and Tsybakov, 2000) ,

‖µ̃− µ0‖W 1,∞ ≤ O(1)
‖µ0‖W r,∞

mr−1
n

, ‖µ̃− µ0‖L∞ ≤ O(1)
‖µ0‖W r,∞

mr
n

,

where ‖µ‖W r,∞ = supl≤r supt∈[0,τ ] |µ(j)(t)| for k = 0, . . . , r. Moreover, the wavelet coefficients

for µ̃(t) =
∑mn

j=1 α̃jBj(t) satisfy that
∑mn

j=1 |α̃j| < ∞. Thus, (β0, µ̃) ∈ Sn.
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Step 2. We obtain a bound for the distance

d((β̂, µ̂), (β0, µ0)) ≡ |β̂ − β0|+ ‖µ̂− µ0‖L2 ,

where ‖µ‖L2 = {∫ τ
0 |µ(t)|2dt}1/2

. From the construction of µ̃, we immediately obtain that

Ln(β̂, µ̂) ≥ Ln(β0, µ̃). (4)

If we denote Pn as the empirical measure based on the n i.i.d observations and denote P as the

corresponding expectation, then after taking the log on both sides of (4) and dividing by n, we

have that

Pn

{
∆ log H(µ̂(Y ) + β̂

T
Z(Y ))−

∫ Y

0
H(µ̂(t) + β̂

T
Z(t))dt

}

≥ Pn

{
∆ log H(µ̃(Y ) + βT

0 Z(Y )−
∫ Y

0
H(µ̃(t) + βT

0 Z(t))dt

}
.

Note that the function ∆ log H(·) − ∫ Y
0 H(·)dt is concave in H(·). Thus, for any δn > 0, if we

define

Hδn(t) = δnH(µ̂(t) + β̂
T
Z(t)) + (1− δn)H(µ̃(t) + βT

0 Z(t)),

then we have

Pn

{
∆ log Hδn(Y )−

∫ Y

0
Hδn(t)dt

}
≥ Pn

{
∆ log H(µ̃(Y ) + βT

0 Z(Y ))−
∫ Y

0
H(µ̃(t) + βT

0 Z(t))dt

}
.

Thus,

n−1/2Gn

{
∆ log Hδn(Y )−

∫ Y

0
Hδn(t)dt−∆ log H(µ̃(Y ) + βT

0 Z(Y )) +
∫ Y

0
H(µ̃(t) + βT

0 Z(t))dt

}

≥ −P

{
∆ log Hδn(Y )−

∫ Y

0
Hδn(t)dt−∆ log H(µ̃(Y ) + βT

0 Z(Y )) +
∫ Y

0
H(µ̃(t) + βT

0 Z(t))dt

}
,

(5)

where Gn denotes the empirical process
√

n(Pn −P).

We now want to bound the left-hand side of (5) using the results of the empirical pro-

cess theory. Towards this goal, we choose δn such that for some small constant δ0, δn =

δ0/{Mnγ1(Mn)γ2(Mn)}, where γ1(Mn) = 2H(Mn+B) and γ2(Mn) = supx∈[−Mn−B,Mn+B] H ′(x).

Hence,

‖Hε(t)−H(µ̃(t) + βT
0 Z(t))‖L∞ ≤ δn‖H(µ̂(t) + β̂

T
Z(t))−H(µ̃(t) + βT

0 Z(t))‖L∞ ≤ δ0.

13



Moreover, we define a class of functions

Hn =
{
δnH(µ(t) + βTZ(t)) + (1− δn)H(µ̃(t) + βT

0 Z(t)) : (β, µ) ∈ Sn

}
.

By the property of the father wavelet, for any (β, µ) ∈ Sn,

|µ′(t)| ≤
mn∑

j=1

|αj||B′
j(t)| ≤ c0mnMn

for some constant c0 so the ε-bracket covering number for the class of such µ with respect

to L2(P )-norm is of the order exp{O(Mnmn/ε)} (Corollary 2.7.2, van der Vaart and Wellner,

1996). By the monotonicity of H(·), we thus can construct the exp{O(Mnmn/ε)} brackets to

cover Hn such that within each bracket, any two functions indexed by (β1, µ1) and (β2, µ2)

respectively satisfy |β1 − β2|+ ‖µ1 − µ2‖L2(P ) ≤ ε. However, since

δnH ′(x)
∣∣∣
x=µ(t)+βT

Z(t)
≤ δnO(γ2(Mn)) ≤ O(1)

Mn

,

for these two functions,

‖δnH(µ1(t) + βT
1 Z(t))− δnH(µ2(t) + βT

2 Z(t))‖L2(P ) ≤ O(ε/Mn).

We thus conclude that

N[ ](ε,Hn, L2(P )) ≤ O(exp{O(mn/ε)}).

Consequently, another class of functions, which is defined as

Fn =

{
∆ log Hδn(Y )−

∫ Y

0
Hδn(t)dt : Hδn ∈ Hn

}
,

has the bracket covering number of the order

N[ ](ε,Fn, L2(P )) ≤ O(exp{O(mn/ε)}).

Note that Fn has a bounded covering function. According to Lemma 19.38, van der Vaart

(1998), we obtain that

E∗
p‖Gn‖Fn ≤

∫ O(1)

0

√
log N[ ](ε,Fn, L2(P ))dε ≤ O(

√
mn).

This implies that the left-hand side of (5) is bounded by Op(
√

mn/
√

n).

On the other hand, the right-hand side of (5) can be written as

−P

{
∆ log Hδn(Y )−∆ log H(µ0(Y ) + βT

0 Z(Y ))−
∫ Y

0
Hδn(t)dt +

∫ Y

0
H(µ0(t) + βT

0 Z(t))dt

}

14



−P
{
∆ log H(µ0(Y ) + βT

0 Z(Y ))−∆ log H(µ0(Y ) + βT
0 Z(Y ))

−
∫ Y

0
H(µ0(t) + βT

0 Z(t))dt +
∫ Y

0
H(µ̃(t) + βT

0 Z(t))dt

}
. (6)

We denote the two terms in (6) as (I) and (II) and denote H0(Y ) as H(µ0(Y )+βT
0 Z(t)). Then

applying the mean value theorem to the term (I) yields

(I) = −P

{
∆

H0(Y )
(Hδn(Y )−H0(Y ))−

∫ Y

0
(Hδn(t)−H0(t))dt

}

+P

{
∆

H̃(Y )2
(Hδn(Y )−H0(Y ))2

}
,

where H̃ is a function between H0 and Hδn . Since (β0, µ0) maximizes P
{
∆ log H(µ(Y ) + βTZ(Y ))

− ∫ Y
0 H(µ(t) + βTZ(t))dt

}
, the derivative of the previous function along the submodel β =

β0, µ(t) = µ0(t) + εq(t), ε ∈ (0, ε0), where ε0 is a small positive constant and q(t) is any

measurable function in L2(P ), should be zero. This gives that

P

{
∆

H0(Y )
H ′(µ0(Y ) + βT

0 Z(Y ))q(Y )−
∫ Y

0
H ′(µ0(t) + βT

0 Z(t))q(t)dt

}
= 0.

Thus, the first part of the right-hand side in (I) is zero. Since H̃(Y ) is smaller than some

constant and H ′(x) ≥ 1/γ3(Mn) for x ∈ [−Mn −B, Mn + B] , we have that

(I) ≥ O(1)P

{
∆

H̃(Y )2
(Hδn(Y )−H0(Y ))2

}

≥ O(1)
δ2
n

γ2(Mn)2
E

[{
(µ̂(Y )− µ0(Y )) + (β̂ − β0)

TZ(Y )
}2

]
−O(γ3(Mn)2‖µ̃(t)− µ0‖2

L2
).

Similarly, we apply the expansion to the second term (II) of (6) around the true parame-

ter (β0, µ0). The fist order in the expansion vanishes and the second order is bounded by

O(1)
∫ τ
0 (µ̃(t) − µ0(t))

2dt ≤ O(1/m2r
n ) from the construction of µ̃(t). Thus, the term (II) is at

least −c0/m
2r
n for some positive constant c0.

Hence, we obtain that

E
[{

(µ̂(Y )− µ0(Y )) + (β̂ − β0)
TZ(Y )

}2
]

≤ O(1)

{
M2

nγ1(Mn)2γ2(Mn)4√mn√
n

+
γ1(Mn)2γ2(Mn)4γ3(Mn)2

m2r
n

}

≤ O(1)ξ(Mn)2

{√
mn√
n

+
1

m2r
n

}
.

Since {Z(t) : t ∈ [0, τ ]} is external and linearly independent with the constant, we obtain that

E
{
(µ̂(Y )− µ0(Y ))2

}
+ (β̂ − β0)

T E
{
Z(Y )Z(Y )T

}
(β̂ − β0) ≤ O(1)ξ(Mn)2

(√
mn√
n

+
1

m2r
n

)
.
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Furthermore, by assumption (C.4), E{Z(Y )TZ(Y )} > 0. Then it follows that

∫ τ

0
(µ̂(t)− µ0(t))

2dt + |β̂ − β0|2 ≤ O(1)ξ(Mn)2

(√
mn√
n

+
1

m2r
n

)
.

Thus, by the choices of Mn and Kn in (C.4), Theorem 1 holds.

A.2. Proof of Theorem 2

To prove Theorem 2, we need a consistency result of µ̂ under a stronger norm than the L2-norm.

First, from the construction of Sn,

‖µ̂− µ0‖W r,2 ≤ O(
mn∑

j=1

|α̂j|‖Bj(t)‖W r,2) ≤ O(Mn)mr
n.

Then according to the Sobolev interpolation theorem (Adams, 1975), it holds that

‖µ̂′(t)− µ′0(t)‖L2 ≤ c1‖µ̂− µ0‖1/r
W r,2‖µ̂− µ0‖1−1/r

L2

for some constant c1. Then,

‖µ̂′(t)− µ′0(t)‖L2 ≤ O(1)mnM1/r
n

[
ξ(Mn)

{
m1/4

n

n1/4
+

1

mr
n

}]1−1/r

≤ O(1)M1/r
n ξ(Mn)1−1/r

[
m5/4−1/4r

n

n1/4−1/4r
+

1

mr−2
n

]
.

Based on the choice of Mn and Kn in (C.4), this term converges to zero. We thus conclude

that in probability,

|β̂ − β0| → 0, ‖µ̂− µ0‖W 1,2 → 0.

Additionally, from the Sobolev embedding theorem (Adams, 1975), we have that in probability,

‖µ̂− µ0‖L∞ → 0.

We further improve the convergence rate of β̂ and µ̂. We simply repeat Step 2 in proving

Theorem 1 and obtain a similar inequality as (5) but δn is set to 1. Then, the left-hand side of

(5) belongs to the process n−1/2Gn(F∗
n), where

F∗
n =

{
∆ log H(µ(Y ) + βTZ(Y ))−∆ log H(µ̃(Y ) + βT

0 Z(Y ))

−
∫ Y

0
H(µ(t) + βTZ(t))dt +

∫ Y

0
H(µ̃(t) + βT

0 Z(t))dt : |β − β0| < ε, ‖µ− µ0‖W 1,2 < ε

}
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for any small number ε. Hence, Fn is P-Donsker; thus, the left-hand side is bounded by

op(n
−1/2). We again apply a Taylor’s series expansion to the right-hand side of (5) but in this

case, the bounds γ1(Mn), γ2(Mn), γ3(Mn) can all be replaced by constants independent of n

due to the fact that ‖µ̂− µ0‖L∞ → 0. Thus, we conclude that

∫ τ

0

{
(µ̂(t)− µ0(t)) + (β̂ − β0)

TZ(t)
}2

dt ≤ op(
1√
n

) + Op(
1

m2r
n

).

A.3. Proof of Theorem 3

The proof of asymptotic normality is outlined as follows: We first obtain the least-favorable

direction for β0 then expand the score equation for β̂ and µ̂ along an approximate least-favorable

model. Here, the least-favorable direction for β0 is defined as a tangent function at µ0, denoted

by q(t), such that l∗µlµ[q(t)] = l∗µlβ, where lβ is the score function for β0, lµ[q(t)] is the score

function for µ0 along the submodel µ0(t) + εq(t), and l∗µ is the dual operator of lµ. Thus, we in

turn prove the following steps.

Step 1. We first show that the least-favorable direction q(t) exists. Recall H0(Y ) = H(µ0(Y )+

βT
0 Z(Y )) and Ψ(Y ) = H ′(x)

∣∣∣
x=µ0(Y )+βT

0 Z(Y )
By simple algebraic manipulations, we obtain that

lβ =
∆Ψ(Y )

H0(Y )
Z(Y )−

∫ Y

0
Ψ(t)Z(t)dt,

lµ[q(t)] =
∆Ψ(Y )

H0(Y )
q(Y )−

∫ Y

0
Ψ(t)q(t)dt.

Moreover, the closed linear space spanned by the score functions for µ in L2(ν), where ν is the

dominating measure, is given by
{

∆Ψ(Y )

H0(Y )
q(Y )−

∫ Y

0
Ψ(t)q(t)dt : q(t) ∈ L2[0, τ ]

}
.

Thus, lµ is a linear operator from L2[0, τ ] to L2(ν). Its dual operator l∗µ satisfies that for

any q ∈ L2[0, τ ] and a measurable function g(∆, Y,Z) (Z abbreviates the covariate process

{Z(t) : t ∈ [0, τ ]}),
E[lµ[q]g(∆, Y,Z)] =

∫ τ

0
l∗µ[g(∆, Y,Z)]q(t)dt.

We expand both sides, and after comparison, we obtain that

l∗µ[g(∆, Y,Z)] = EZ[
Ψ(t)

H0(t)
g(1, t,Z)SC(t|Z)fT (t|Z)]

−{ET,Z[I(T ≥ t)Ψ(t)g(1, T,Z)SC(T |Z)] + EC,Z[I(C ≥ t)Ψ(t)g(0, C,Z)ST (C|Z)]} ,
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where ST (·|Z) and SC(·|Z) are the conditional survival functions for T and C given Z, respec-

tively. Therefore,

l∗µlµ[q] = q(t)E[
Ψ(t)2

H0(t)2
SC(t|Z)fT (t|Z)] +

∫
q(s)k(s, t)ds,

where

k(s, t) = −EZ[fT (t|Z)SC(t|Z)I(t ≥ s)Ψ(s)
Ψ(t)

H0(t)
]− EZ[fT (s|Z)SC(s|Z)I(s ≥ t)Ψ(t)

Ψ(s)

H0(s)
]

+EY,Z[Ψ(t)Ψ(s)I(Y ≥ t)I(Y ≥ s)].

Note that k(s, t) is a continuous function of (t, s) based on (C.5). Therefore, the equation

l∗µlµ[q] = l∗µlβ is a Fredholm-type equation and the existence of the solution is equivalent to

showing that l∗µlµ[q̃] = 0 has a trivial solution. The latter is clear from the following arguments:

if l∗µlµ[q̃] = 0, then E{lµ[q̃]lµ[q̃]} = 0. Thus, lµ[q̃] = 0, so it is clear that q̃(t) ≡ 0. We conclude

that there exists a solution q(t) such that l∗µlµ[q(t)] = l∗µlβ. Clearly, from the equation for q(t)

and condition (C.5) as well as the smoothness condition in Theorem 2, q(t) is continuously

three times differentiable in [0, τ ].

Step 2. We choose an approximate submodel (β̂ + εb, µ̂ + εq̂), where q̂ is the approximate

wavelet function for q in the sieve space Sn, and thus q̂ ∈ W r,2 and ‖q̂−q‖L2 ≤ O(1/mr
n). Since

(β̂, µ̂) maximizes the observed likelihood function along this submodel, we immediately obtain

that

Pn

{
lβ(β̂, µ̂) + lµ(β̂, µ̂)[q̂]

}
= 0,

where lβ(β̂, µ̂) is the score function for β evaluated at (β̂, µ̂) and lµ(β̂, µ̂)[q̂] is the score function

for µ evaluated at (β̂, µ̂). Thus,

Gn

{
lβ(β̂, µ̂) + lµ(β̂, µ̂)[q̂]

}
= −√nP

{
lβ(β̂, µ̂) + lµ(β̂, µ̂)[q̂]

}
.

Since the function lβ(β̂, µ̂) + lµ(β̂, µ̂)[q̂] belongs to a P-Donsker class, the above equation

becomes

Gn

{
lβ(β0, µ0) + lµ(β0, µ0)[q]

}
+ op(1) = −√nP

{
lβ(β̂, µ̂) + lµ(β̂, µ̂)[q̂]

}
.

We perform a Taylor’s series expansion of the right-hand side at (β0, µ0), and obtain

Gn

{
lβ(β0, µ0) + lµ(β0, µ0)[q]

}
+ op(1) = −√nP

{
lββ(β0, µ0) + lβµ

(β0, µ0)[q]
}

(β̂ − β0)

−√nP
{
lβµ

(β0, µ0)[µ̂− µ0] + lµµ(β0, µ0)[q, µ̂− µ0]
}

+
√

nO(|β̂−β0|2 +‖µ̂−µ0‖2
L2

+‖q̂−q‖2
L2

).

(7)
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Here, lβµ
(β0, µ0)[µ̂ − µ0] is the derivative of lβ along the path β = β0, µ = µ0 + ε(µ̂ − µ0)

and lµµ(β0, µ0)[q, µ̂ − µ0] is the derivative of lµ[q] along the path β = β0, µ = µ0 + ε(µ̂ − µ0).

The second term on the right-hand side of (7) is zero since q(t) satisfies l∗µlµ[q(t)] = l∗µlβ; the

third term on the right-hand side of (7) is op(1) based on the results of the convergence rate

for (β̂, µ̂), and the condition that
√

n/m2r
n → 0. Hence,

−√nP
{
lββ(β0, µ0) + lβµ

(β0, µ0)[q]
}

(β̂−β0) = Gn

{
lβ(β0, µ0) + lµ(β0, µ0)[q]

}
+ op(1). (8)

Step 3. We show that the matrix P
{
lββ(β0, µ0) + lβµ

(β0, µ0)[q]
}

is non-singular. If not,

there exists a non-zero vector b such that

bTP
{
lββ(β0, µ0) + lβµ

(β0, µ0)[q]
}

b = 0.

That is, P
[{

bT lβ + bT lµ[q]
}2

]
= 0. Then, bT lβ + bT lµ[q] = 0. It is easy to see that bTZ(t) +

q(t) = 0. We thus obtain a contradiction.

Step 4. Finally, from (8), we obtain that

√
n(β̂ − β0) = −

[
P

{
lββ(β0, µ0) + lβµ

(β0, µ0)[q]
}]−1

Gn

{
lβ(β0, µ0) + lµ(β0, µ0)[q]

}
+ op(1).

Therefore,
√

n(β̂ − β0) converges to a normal distribution and has influence function given by

[
P

{
lββ(β0, µ0) + lβµ

(β0, µ0)[q]
}]−1 {

lβ(β0, µ0) + lµ(β0, µ0)[q]
}

.

Since this influence function is on the linear space spanned by the score functions lβ and

lµ[q], the influence function is the same as the efficient influence function for β0. Hence, the

asymptotic variance of
√

n(β̂ − β0) attains the semiparametric efficiency bound.
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Table 1: Simulation Results from 500 Repetitions
s n Coef. True value Estimate SE Est. SE CP

0 200 β1 0.7 0.703 0.236 0.234 0.948
β2 0.2 0.207 0.156 0.151 0.942

400 β1 0.7 0.701 0.160 0.165 0.966
β2 0.2 0.192 0.108 0.107 0.936

0.25 200 β1 0.7 0.691 0.260 0.278 0.968
β2 0.2 0.203 0.182 0.179 0.960

400 β1 0.7 0.708 0.190 0.194 0.956
β2 0.2 0.195 0.126 0.125 0.956

0.5 200 β1 0.7 0.708 0.327 0.317 0.930
β2 0.2 0.210 0.207 0.203 0.948

400 β1 0.7 0.691 0.224 0.222 0.936
β2 0.2 0.194 0.136 0.142 0.956

0.75 200 β1 0.7 0.678 0.356 0.349 0.936
β2 0.2 0.191 0.212 0.222 0.964

400 β1 0.7 0.693 0.251 0.249 0.950
β2 0.2 0.208 0.166 0.158 0.950

1 200 β1 0.7 0.735 0.384 0.379 0.944
β2 0.2 0.172 0.254 0.241 0.928

400 β1 0.7 0.695 0.286 0.273 0.934
β2 0.2 0.203 0.170 0.173 0.960

NOTE. SE is the standard error, Est. SE is the average of the profile likelihood estimated

standard errors, and CP is the 95% coverage proportion, respectively.
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Figure 1: Predicated survival curves (dashed lines) based on the best model vs the Kaplan-
Meier curves (solid lines): (a) Arm A, female; (b) Arm A, male; (c) Arm B, female; (d) Arm
B, male.
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