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LIKELIHOOD APPROACH FOR MARGINAL PROPORTIONAL
HAZARDS REGRESSION IN THE PRESENCE
OF DEPENDENT CENSORING!

BY DONGLIN ZENG
University of North Carolina at Chapel Hill

In many public health problems, an important goal is to identify the
effect of some treatment/intervention on the risk of failure for the whole
population. A marginal proportional hazards regression model is often used
to analyze such an effect. When dependent censoring is explained by many
auxiliary covariates, we utilize two working models to condense high-
dimensional covariates to achieve dimension reduction. Then the estimator
of the treatment effect is obtained by maximizing a pseudo-likelihood
function over a sieve space. Such an estimator is shown to be consistent
and asymptotically normal when either of the two working models is correct;
additionally, when both working models are correct, its asymptotic variance
is the same as the semiparametric efficiency bound.

1. Introduction. In many public health problems, an important goal is
to study the effect of some treatment or intervention on the risk of failure.
A commonly used model to analyze such an effect is via the proportional hazards
regression model:

(1.1) hry (tlv) = A(r)e”?,

where V denotes the measurement of treatmeéhtdenotes failure time and
hrv(t|lv) denotes the hazard rate function Bfgiven V. In the model (1.1),

A(?) is an unknown baseline hazard rate function arid an unknown parameter
describing the effect o¥/. A marginal regression model such as (1.1) is often
useful in public health problems, since in that field the scientific goal is to identify
the effect of treatment for the whole population regardless of heterogeneity within
the population; in other words, we would not adjust for other covariates in the
regression model (1.1) even if such covariates are measured at the same time
of data collection. Some other reasons why additional covariates would not be
adjusted for in the regression model for epidemiologic studies can be seen in
Robins, Rotnitzky and Zhao (1994).
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Dependent right-censoring is common in failure time data, where subjects may
drop out or be censored during the studies. The censorship can be caused by many
factors, such as the feeling of patients about participation in the studies, the social
supports for patients, patients’ accessibility to the studies, biological information
of patients, and so on. In practice, when a large amount of such information is
collected, it is safe to assume that the dependence between the failure time and the
censoring time is fully explained by all the collected covariates. In mathematical
notation, if we denoteC as censoring time and denofé as other auxiliary
covariates beside¥®, then we assume that, conditional &handV, T and C
are independent.

Suppose: i.i.d. right-censored observations are available and we denote them
as(Y; =T, ANC;, Ri =I1(T; <Cy), X;,V;),i =1,...,n. Our goal is to estimate
the treatment effeat in the model (1.1). It is well known that, in the presence of
dependent censoring, simply performing the Cox regression t5iag covariates
gives an inconsistent estimate. In order to adjust for dependent censoring, one
intuitive approach tends to estimate the distribution7ofgiven (X, V) either
nonparametrically or semiparametrically. However, two weak points can restrain
the use of this approach: one is that nonparametric estimation is not feasible with
moderate samples whéhhas more than three dimensions, which is known as the
curse of the dimensionality; the other is that many semiparametric modéls of
given (X, V) are generally not compatible with (1.1) while the latter, as indicated
above, is of main scientific interest. Recently, an estimating equation approach was
proposed by Robins, Rotnitzky and Zhao (1994) and was successfully applied to
missing longitudinal data; however, to our knowledge, such an approach has not
been applied to regression problems for survival data, except for a brief discussion
in Robins, Rotnitzky and Zhao (1994). Furthermore, the implementation of the
estimating equation approach relies on the derivation of the efficient score function
for «, which is implicit and difficult for the model (1.1).

In this paper, we propose a likelihood-based approach to estimate the parameters
in the marginal proportional hazards model (1.1). The ideas of handling dependent
censoring are similar to those in one of our previous papers [Zeng (2004)]. Briefly,
we first condense the high-dimensional covariatesV) by utilizing two working
models for the distribution of" given (X, V) and the distribution ofC given
(X, V). Then an estimate for the coefficientn (1.1) is obtained by maximizing
a pseudo-likelihood function of a reduced datum, which consists of the observed
event times, the censoring status, the treatment and the condensed covariates. In
the maximization, the nuisance parametersifare profiled out over a sieve space
consisting of B-splines. At the end of this paper we demonstrate that the estimator
for o has the following properties: if either of the two working models is correct,
the estimator is consistent and asymptotically normal; if both working models are
correct, the estimator’s asymptotic variance attains the semiparametric efficiency
bound. The first property is called double robustness by Robins, Rotnitzky and
van der Laan (2000). The details of the proofs are given in the Appendix.
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2. Estimation. For convenience, we denotgz, z,(:|-) as the conditional
density of a random vectar, given another random vectdf, and abbreviate
xT, »T asw.

2.1. Estimation procedure. First we utilize two working models for the
distribution of 7 andC given W.

WORKING MODEL 1. We tentatively assume thdt is independent ofY
givenV so friw (y|lw) = friv(ylv).

WORKING MODEL 2. We tentatively assume that the modellofiiven W is

a proportional hazards model, that ig;w (y|w) = hc(y)eVTW for an unknown
vectory and an unknown baseline hazard rate functip).

REMARK. In fact, any model can be used for Working Model 1 and there are
two reasons for us to choose the current form: first, this is a simple one to work
with; second, our later results show that, to ensure our proposed estimator is more
likely to be consistent, such a working model has to satisfy the constrained form
in (1.1). Obviously, the current Working Model 1 is the most convenient choice.

To illustrate the estimation procedure, we suppose that either working model is
correct and thay is a known constant. We ¢t (y, v), b(y, v)] be the support of
the conditional distribution of 7 W given V = v and define

Uy)=ly"W —aly, V1/Iby, V) —a(y, V)]

for fixed y. Then the conditional distribution of/(y) given V has support

[0, 1]. As shown in Lemma 3.1 of Zeng (2004),and C are independent given
(U(y), V) when either working model is correct; in other words, the dependence
betweenT and C can be fully explained by the two-dimensional condensed
information(U (y), V). We replace the observed statistigswith (U (y), V) and
obtain reduced daté;, R;, U;, V;), whereU; = yTW;, i = 1,...,n. Therefore,

the observed likelihood function of the reduced data concerning the joint
distribution of (T, U (y)) givenV is

n 00 1-R;
H{[fﬂU(y),v(YilUi,W)]Ri[/y fT|U(y),v(S|Ui,Vi)dS} fU(y)lV(Ui|Vi)}-
i=1 i

In order to absorb the marginal model (1.1) into the observed likelihood
function, a natural reparameterization is to use the conditional densiti(oj
givenT andV and the conditional density df given V as the new parameters.
The latter contains the paramete(s) anda. However, sincd’ is only observable
in [0, ) wheret is the end time of the study, the conditional density/@f ) given
T andV is not identifiable forT > t. Therefore, we introduce a modified new



504 D. ZENG

variableT = TI(T < t)+tI(T > 7); thatis,T is the same a% if T is observed
within the study time frame andl is equal tor if T is out of the observable range.
Then it is easy to calculate the density functionfogivenV = v as

[(t <A@ exp{—e* " A@t)} +8(t = 1) exp(—e*  A(7)},

where §(-) is the Dirac function. Moreover, we denotg;,)(-|y,v) as the
conditional density ofU(y) given T =y and V = v for y € (0,7) and
denote gy, (u|t,v) as the conditional density ot/(y) given T =1 and

V =v. Thus, fy)(-ly, v) is the same as the conditional densitylofy) given

T =y and V=v and gyq,)(-|r,v) is the same as the conditional density
of U(y) given T > t and V = v. Since the observed data are equivalent
to (U;,Vi,Ri = I(T; < C;),Y; = T; A C;), in terms of the new parameters
(o0, A(Y), fup)(uly,v), guy)(ult,v)) the observed likelihood function can be
written as

n

H{[exp{—eavfA(Y»}e“Vm(Y,-)fU(y)(Ui|Yl-, v &
i=1

(2.1) X [/Yr_ exp{—e“v"A(s)}e“vi)»(s)fy(y)(Uils, Vi)ds

1-R;
+exp{—e“VfA(r>}gU<y><U,-|r,vi)] }

Clearly, all the parameters are distinct and identifiable.

Finally, we maximize the function (2.1) over a sieve space of the parameters
(o, A(Y), fup)(uly,v), gu)(ult, v)) for some estimate of. In the following
sections, we describe how to obtain an estimatg ahd how to construct a sieve
space for the parameters.

2.2. Anegtimatefor y. We estimates by performing the proportional hazards
regression using the censored observations. That is, we maximize the following
pseudo-partial likelihood function for:

Al ]

TWA
i=1 ZYJZY,- e’ M

The estimator fory is denoted ag,. As shown in Theorem 3.1 of Zeng (2004),
under some regular conditiogs should converge to a constant almost surely
and./n(y, —y*) has an asymptotically linear expansion with its influence function
denoted b\S(Y, R, W; y*).
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2.3. Seve space 4, for the parameters (o, A(y), fu)(uly, v), guy)(ult, v)).
We propose a sieve space consisting of B-splineg{or) (u|y, v), gu(y)(ult, v)
andA(y) in maximizing (2.1). We suppose thatQV < 1 and thaf«e| < M for a
known constani/.

We reparameterizefy ) (uly, v), guy)(u|t, v), A(y)) by introducing

exp(ni(u, y,v)}
Jo explna(u, y, v)}du’

exp{nz2(u, v)}
Jo explnz(u, v)} du’
andi(y) = explé(y)}, whereni(u, y, v) andna(u, v) satisfy thaty1(0, y, v) =0,
n2(0,v) = 0. After the reparameterization, the new parameters (agé(y),
n1(u, y,v), n2(u,v)) inwhichO<u,v <1, 0<y < r. A sieve space consisting

of B-splines is defined for these new parameters as follows: First, we obtain an
extended partition with equal lengthi K,, for the interval[0, 1]:

fug)ly,v) =

guy)(ult,v) =

Ae={s_m=-=s5s1=0=s0<s1<---<sk,=1=-=sg,4m},
wherem (independent ok) and K,, are two integers to be chosen later. Let
{N}" (s)}ff’" be a normalized B-spline basis associated with[cf. Schumaker

(1981)]. Then the sieve space for the parametiers(y), n1(u, y, v), n2(u, v)) is
defined as

/S}’l(mv K}’lv Ml’l)

=1 (0, ), mau, y, v), n2(u, v)) el <M,

m+Ky,
m@,y,v)= Y. np o NE@NE (/TN ),
i1,in,iz=1
m+Ky m+K,
n2u,v)= Y i  ,NE@NE@), EG)= Y &N/ (y/1),
ilsi2=l l:].
m+K, m+K, m+Kj,
1 2
Z |77i1,i2,i3’ =M,, Z 1ni,.i,] < My, Z |&i| < M,
i1,i2,i3=1 i1,io=1 i=1
m+Kpy m+Kpy 5
1
Z nilqi2qi3Nin11(0) :O’ Z nil,izNiT(o) :0 .
i1=1 i1=1

In other words, we use a finite linear combination of the B-splines to approximate
each nonparametric function. The use of the last two constraints in the conditions
of the sieve space ensures thatO, y, v) = 0 andn2(0, v) = 0. The constants

M, andK, depend om and will be chosen later.
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2.4. Maximization. Let P,, P denote the empirical measure and the true
probability measure of(Y, R, W), respectively, and leU = [p]W — a(}y,
WI1/[b(Pn, V) — a(p,, V)]. We maximize the function

Pn{Rlog[exp{—/Yes“)*"“’ds}eé(””“’ expim(U. ¥, V)) “
0 J-expni(u, Y, V)}du

T— s , '
+ Pn{(l —R) Iog[/ exp{—/ LGN FaV ds/}es“)*“"
Y 0

expni(U. s, V)}
folexp{nl(u,s, V)}du

+ exp{—/r eg(s)"'“vds} expinz(U, V) “
0 fol exp{n2(u, V)}du
over the sieve spacd,(m, K, M,)). One p033|ble choice ofm, K,, M,)) is
(k +2, Mn?, M«/Iogn) for some given constari, a known integek > 11 and
a constanp satisfying; < 8 < 7.

It will be shown later thata (7, v) —b(y,, v)| has a positive limit for any with
probability 1. Then the arguments of the maximum exist since we are maximizing
the function over a compact set in a finite-dimensional space. However, the
solution itself may not be unique. We simply select any one of these maximizers

and denote it a$an,$n(y) nl,,(u v, v), f2,(u, v)). Respectively, we obtain the
estimatorsy, = &y, in ()= exp{sn (y)} and

(2.3)

2 expi (u, y, v)} A explizn (u, v)}
fnuly, v) = — - , gn(ult,v) = — ~ .
Jo explin(u, y,v)}du Jo explizn (u, v)} du
Computationally, many constrained optimization algorithms such as the quasi-
Newton method, combined with the use of either a penalty or a barrier function,
can be applied to find the arguments of the maximization.

3. Asymptotic results. We provide the main results in this section. Espe-
cially, the consistency and asymptotic distribution &grare derived. The proofs
for all the theorems are given in Section 6.

3.1. Assumptions. In addition to the assumption th&tandC are independent
given W, we need the following conditions.

ASSUMPTIONAL. V has support iri0, 1] and X has bounded support iR?
whered is the dimension ok . Moreover, if there exist a constasgtand a constant
vectory such thaty” W = ¢g almost surely, theng = 0 andy = 0.
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ASSUMPTIONAZ2. With probability 1, there exists a positive constégsuch
that P(C > t|W) = P(C =t|W) > 6g and P(T > t|W) > 0g. That is, at least
some subjects do not fail at the end timand by definition they are considered to
be right-censored at.

AS§UMPT|ONA3. For a known integet > 11, the conditional density of
givenT andV, denoted ag’y 7 y, and the true baseline hazard rate(y), satisfy

log fx7.y (x]y, v) € WFH2(RI¥2) | logho(y) € WHHH2(R),

after appropriate extension to the whole space. H&ret*2(R!) is a Sobolev
space consisting of the functions wittH-4)th derivatives in_o(R'). Furthermore,
we assume that

log feyw(ylw) € Wk+4’2((0, ) x RITL),
log P(C = 7|W = w) € WKT4H2(RIHY,

ASSUMPTION A4. There exists a known constaM such that the true
treatment effecig satisfiedog| < M. Moreover, the equation

o)

has a unique solutiop* in [—M, M]¢*1. In addition, for anyy in a small neigh-
borhood® of y*, the conditional distribution of " W given V = v has support
[a(y,v), b(y, v)] satisfying: both the function(-) and the functiorb(-) are two
known functions and they are continuously differentiable with respegt;tas
functions ofv, a(y, v) andb(y, v) belong toW*+42(R); minye[0,1),yco [b(y, v) —
a(y,v)| > 0.

P[IyEyWeVTW]]

Pl[l-R)W]=Py(1-R
(a-pwi=pla-n) TR

ASSUMPTIONAS. (M,, K,) satisfyM,,, K, — oo and

o13My  ,16M, Kf,‘k/g”LS(log K,)?

+ — 0.
K,’; n

ASSUMPTIONAG. K, satisfies,/n = o(K?).

REMARK. Theorem 3.1 of Zeng (2004) showed that the asymptotic limit of
7, 1S equal toy™* given by Assumption A4. It is also implied by Assumption A4
that one of the firstd components ofy* is nonzero. Thus, if we suppose
the first component of* = (y{,...,y;, v 1) is not zero, then in terms of

= v (x|y, v), the conditional density ot/* = y*’ W given (T =y, V = v),
X|T.v
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which is denoted agy«(u|y, v) for T < t and asgy«(u|z, v) for T = 7, can be
expressed as

A(v) i (uA(v) +aly*,v) = Syt — vy
T X|T,v ¥
ly1 | V1

’

X2, ..., Xqly, v) dxp - dxq,

where A(v) = b(y*,v) — a(y*,v). Hence, Assumption A3 implies that
fux(u|y,v) and gy=(u|t,v) are bounded away from 0 and theik + 4)th
derivatives are alsd.»-integrable. Furthermore, by the embedding theorem in
Sobolev space [cf. Adams (1975)], this gives that each offlegr v (uly, v),

log gu=(u|t, v), l0g feju= v (ylu, v), logro(y) is in Wk space; that is, theith
derivatives are bounded essentially.

REMARK. Assumptions A5 and A6 determine the size of the sieve space in
terms of the number of knots in the partitiok,{) and the bounds of the sieve
functions (4,,). Whenk > 11, suchk,, satisfying both Assumptions A5 and A6
exists. For example, we can chookg = n?, 1

% < B < 755 Additionally, the
choice ofM,, can be of ordex/logn.

Although all these assumptions guarantee the validity of the following argu-
ments, they are not minimal assumptions.

3.2. Asymptotic results.

THEOREM 3.1 (Consistency ofi,). Suppose that either of the two working
modelsistrue. Under Assumptions A1-A5, &, isa consistent estimator of the true
coefficient ag.

We can further obtain the consistency of the nuisance parameters in a Sobolev-
norm.

THEOREM 3.2 (Consistency of nuisance parametersuppose that either of
the two working modelsistrue. Under Assumptions A1-A5,

in(¥) = 20(¥) | aoe(py = O,
| £ (UAIY. V) = fus (U, V) llproo(py = O,

A p
18, (U* |7, V) — gu=(U*|t, V)l yroo(py = O.

Here [[R(U*,Y, V)llyiwpy is defined as [|h(U*, Y, V)P + IVA(U*,Y,
V)l Lo (P), Where P isthe probability measure given by (U*, Y, V, R).
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The result in Theorem 3.2 can help to obtain a useful convergence rate of the
estimators inLo>-norm, which is stated in Theorem 3.3.

THEOREM 3.3 (Convergence rate).Suppose that either of the two working
modelsistrue. Under Assumptions A1-A5, it holds that

. . 1 1
n a0l + 170(Y) = 20V py = O () + o,,(ﬁ),
A (U*|Y, V UHY. V)2 < O, .
| fn(UT|Y, V) — fu«(U"|Y, )||L2(P)— P\ x2x +o0p %
n

and

1 1
d U* ’V B ) U* ’V i <0 <—> <_>'
180U, V) = g0 U2 V) ) < O a1 ) + o 2

Finally, we derive the asymptotic distribution fofn (&, — «o).

THEOREM 3.4 (Asymptotic normality ofx,). Under Assumptions A1-A6,
when either of the two working models is correct, \/n(&, — «g) is asymptotically
normal. Furthermore, when both working models are correct, the asymptotic
variance of v/n (&, — «p) isthe same as the semiparametric efficiency bound.

3.3. Variance estimation. We propose the following steps to estimate the
asymptotic variance aof,, with no attempt to justify them rigorously. Our way
is to directly estimate the influence functiondf.

Define O = (Y, R, W) and defineyr as the nuisance parameters consisting of
(fue)ly,v), guy)(ult, v), A(y)). Letl(y, a; y) be the log-likelihood function
from a single observed statistic and Igtbe the derivative of (v, «; ) with
respect tax and/y, be the differential operator dfv/, «; y) with respect toy .
According to the proof of Theorem 3.4, there exists a functign, y, v) =
(h1(u, y,v), ho(u, v), h3(y)) solving the equation‘(/jll/,[h] = lj;la, Wherel;’;/ is the
dual operator of,,. Moreover, \/n(&, — ao) is shown to have the asymptotic
variance

(3.1) E[Z(Yo, @0, ¥*)1Q2(0; Yo, @0, y0) + @ (Yo, a0, y0)S(O; y*)1®2.

Here, (Y, a, y) = —Pllya[h] + lsa] is the efficient information matrix foe
for fixed y, Q(O; ¥, a, y) =l — ly[h] is the efficient score function far for
fixed y, oy, &, y) = —{Pllyqalh] +laa]}_1P[Vy(1w[h] + )], and S(0; y*) is
the influence function of,,.

To estimate (3.1), we wish to estimate each of the four terms including
> (Yo, ag, ¥*), Q(O; Yo, oo, Y0), @ (Yo, o, yo) andS(0; y*). At first, we define
a pseudo-profile likelihood function g¥, (a, y) = n‘lz?zlli(&(a, V), a;y),
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wherel; () is the value of (-) at theith observation and?(oz, y) is the argument
of ¢ in the maximization of Section 2 whenandy are fixed. Then each of the
four terms in (3.1) can be estimated using the following approach.

First, sincex (v, o, ¥ *) is the semiparametric efficiency information tein
the likelihood function of(Y, R, U*, V) when assuming * is known, according
to Murphy and van der Vaart (2000), we can estimate it by

i . pln(&n + &n, );n) - 2Pln(07n, );n) + Pln(&n — &n, );n)
n= 2
&n

whereg, is a constant of order~1/2,
Next, sincey (a, y,) maximizesP,l(«, ¥; 7,), it holds that

Pully (¥ (. Pn). @: P) [R]] = O

for any tangent function of v . We differentiate the above equation with respect
to «, then evaluate it at,. This gives

Pnlou// (@(&n7 );n)a &n; );n)[ﬁ] = Pnlilll// (&(‘Qn’ ?n), &n; ?n)[va‘/’}(&m );n)a ﬁ]

Whenn goes to infinity, this equation approximates the equation whiahy, v)
solves. Thus, we expect th%lﬁ(&n, ) ~ h(u, y,v). As a result,2(0;; Yo,
ag, Y¥) ~ Voli (U (&, n), O V), While the latter can be evaluated using the
numerical difference,  {1; ( (& + &n. Pa). &n + &n: Pn) = L (F @, D). G D)}

Third, we definea(y) as the estimate ofr maximizing pl,(«, y) when
y is held fixed. Using the argument similar to that in Zeng (2004), we
can estimatew (Yo, oo, y*) by a vector®, with its jth element equal to
5;1(&()7,1 +&,ej) — &y,) for the jth canonical base; andé, satisfyingé, = o(1)
and./né&, — oo.

Finally, S(O; y*) can be estimated b§,(0O; 7,) using an explicit expression
given in Zeng (2004).

Hence, the expression in (3.1) can be estimated by

2
n +C?)nSn(0ia )Qn)] .
&n

E i[i_lli(W(&n +&n), Op + &4 ),/\n) —L; (Y, n; );n)
n i=1
4. Simulation study. A simulation study is conducted to illustrate our ap-

proach. In the simulation, for convenience of computations chosen to be a
binary variable with equal probabilities. Conditional Bnthe lifetimeT is gener-
ated from a proportional hazards regression model with hazardrrex@3d’}. One
surrogate variabl&; is generated from the mod&l; = BoT + 0.56, wheref is
uniformly distributed in(—0.5, 0.5) and 8o may take different values in the sim-
ulation study. The study end time, is chosen to be 1. Additionally, we generate
another irrelevant covariat€, from the uniform distribution irf0, 1] and gener-
ate the right-censoring time from a proportional hazards model with hazard rate
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dexpg2X1 —4Xo> — 0.1V}, In other words, the simulation imitates the situation in
which lifetime and censoring time are dependent and their dependence is explained
by treatment®/, a surrogate variabl&, and a censorship related variable.

According to our approach, the estimationoofs obtained by maximizing a
pseudo-likelihood function over a sieve space, which is constructed similar to
Section 2.3, with the choic&,, =5 andm = 3 (other choices ofK,, and m
have little effect on the results, but lardgg, significantly increases computation
time). SinceV is binary, for either value o¥, n1(U, Y, V) is given as a linear
combination ofN;’f(U)N{f(Y) and n2(U, V) is given as a linear combination
of Nl."f(U). To prevent the parameters in the maximization from being unbounded,
a penalty function, equal to 18 times the sum of squares of the spline
coefficients, is subtracted from the pseudo-likelihood function. In the optimization,
searching for the maximum starts from the initial values that 1 and all the
spline coefficients are zero. Our simulations show that the optimum search usually
converges within 10 iterations when either the search-move step or the norm of the
search direction is small enough.

The asymptotic variance af, is estimated using the approach described
in Section 3.3. Particularly, we choosg = n=%2 3n~%2 6n=1/2 and ¢, =
n~13,5,=1/3 in evaluating>; ! and&,. The results indicate that the estimates
of the variance are pretty robust to these choices. Thus, only the results from
en =n~ Y2 andé, = n~/3 are reported here.

We chooseBp = 0 or g = 1.5 in the simulation. WherBy = 0, the working
model forT is correct and the theoretical censoring rate is 18%; whesa 1.5,
the working model for7 is misspecified and the theoretical censoring rate
becomes 36%. Table 1 summarizes the results from 500 repetitions with sample
sizen = 200 for these two choices. In the table, the first column gives the true
value of the parametedp. The second column gives the working models used in
the estimation (e.gT|V means that the working model f@rt is a proportional
hazards model witi/ as independent variable) and the superscript star in the
column list indicates that the indexed working model is misspecified. In the third
column, we report the naive estimatescoby regressingl’ on V directly. The
remaining columns in turn report the average estimates, pthe standard errors
of all the estimates, the median values of the estimated standard errais for

TABLE 1
Smulation results from 500 repetitions with sample size 200

Bo Working models Naiveest. @&, Se(@n) med(&®) 95% CI

0 (T|V),(C|X1,X2,V) 1.004 0.974 0.169 0.172 0.956
(T|V), (C|X2, V)* 1.004 0.975 0.169 0.172 0.954
15 (T|V)* (C|X1, X2, V) 0.835 0.915 0.189 0.234 0.976
(TIV)*, (C| X2, V)* 0.835 0.802 0.186 0.208 0.868
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Fic. 1. Histograms of &, from 500 repetitions: (a) both working models for T and C are correct,
(b) the working model for T is correct but the working model for C is misspecified, (c) the working
model for T is misspecified but the working model for C is correct, (d) both working models are
misspecified.

and the coverage proportion of 95% confidence intervals based on the normal
distribution approximation. Additionally, Figure 1 plots the histogram&,ofrom
the simulations.

The simulation results indicate that when either working model is correct, the
estimates produce small bias and moreover, our variance estimation approach gives
fairly accurate estimates and valid coverage probabilities. Specifically, @hgsn
not fully predicted byV and the working model for the censorship is correct, our
estimate has smaller bias than the naive estimate. The simulation also shows that
using the correct working model fdf may give a more efficient estimate. The
amount of bias in¥, observed in Table 1 can be due to the small sample size and
the smallK,,, as well as the imprecise evaluation of the integral in the likelihood
function.

5. Discussion. For right-censored data, when the dependence between life-
time and censoring time is explained by many covariates, we utilize two working
models to condense this high-dimensional information and thus derive the estima-
tor of the treatment effect by maximizing some pseudo-likelihood function. We
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have shown that the estimator is consistent and asymptotically normal when either
working model is correct.

For simplicity, the working model fof' given W given in Section 2 is assumed
to be the same &B given V. This may seem very restrictive. However, in practice
any semiparametric model can be adopted as the working modél fren W.
For example, suppose that we use a semiparametric moddl fgiven W as
follows: friw(ylw) = p(y, BT w); then the condensed information will include
(Up = BTW, U = yTW, V). Hence, the estimator ok can be derived by
maximizing

P,{Rlog[e®V A(Y) exp(—A(Y)e*Y) fu,.u,(U1, UalY, V)]}

+ Pn{(l —R) |og[/;_ eV r(s) exp{—A()e*Y ) fu,.v,(U1, Uls, V) ds

+expl— A"} fuy v, (U1, Ua| T > 7, V)“

over a sieve space of the parametes;sfv, v, (u1, u2|T =y, v) fu,,v,(u1, uz|T >

7,v), A(y)), whereU; = BT W and U, = 7T W for some estimatorg, ., 7,. The

slight difference from the previous context is that B-splines in the sieve space
are constructed on a four-dimensional space. Consequently, under some regular
conditions, one of the following two conclusions is expected to be true: if the
semiparametric working model f@r given W does not satisfy the constraint that

hryv(ylv) = K(y)eaT”, that is, the working model is misspecified, the consistency
of &, holds if the working model folC given W is correct; on the contrary, if
the working model forT" given W satisfies the constraint, the double robustness
of &, given in Theorem 3.4 holds as well. However, it is often difficult to specify a
correct working model fof” given W satisfying the constraint (1.1) except in the
simplest situation thal' depends oW only via V, which has been used in this
paper.

Our approach can be easily extended to the situation whé multidimen-
sional and possibly discrete. ¥f is multidimensional, the sieve space needs to be
constructed on a real space of alliof Y and the multidimensional. However, if
V is discrete, the sieve space only needs to be constructed on a real/spad&
for each category oV . The latter has already been implemented in the simulation
study.

We acknowledge that our approaches are not easily generalized to the situation
with a time-dependent component i since whenX contains time-dependent
covariates the condensed information using working models still depends on time,
so its dimensionality is not reduced essentially. Further investigation is being
conducted to solve this problem.

6. Proofs. For convenience of writing, we assume= 1 and denoté&s,, as the
empirical procesg/n(P, — P).
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PrROOF OFTHEOREM 3.1. The whole proof can be divided into three steps:
first, we construct some functions in the sieve space which approximate the true
parameters; then by using empirical process theory, we obtain one key inequality;
finally, this inequality is used to obtain the consistency.

Sepl. We construct some functions ) (m, K,,, M,) to approximate the true
parameters. To do that, we need the following general result. From the properties
of B-spline functions [cf. Schumaker (1981)], we can define a linear opetgor
mappingW*>°([0, 1]7) to the sieve space; that is, for agye W*>°([0, 1]7),

m+K,
Qplgl= Y Tipi [gIN] (k1) ... N (xp),
il,...,ip=1
wherel’;; . i, are the linear functionals ib ([0, 1]7). Moreover,
m+K,
Y iy 8] < @m+ PP Diig) L o1,
i1,....0p
and according to Schumaker [(1981), Theorem 12.7],
C(m)
1€pl8] — 8llLoo.17) < Wﬂgllwkm([o,m)-
n

Thus, we defineny, (u, y, v) = Qz[log fu+] — @z[log fu+1lu=0, n2:(u,v) =
Qzlloggy+] — @2lloggu+1lu=0 and &,(y) = Qi[logio]. Correspondingly, we
obtain
exp{ni, (u, y, v)} exp{na, (u, v)}

; gn(ult,v) = ,
Jo expinw: (. y, v)} du JEexpinz. (u, v)) du
and A,(y) = expl&,(y)}. As a result of the fact thaE;’Iif" Ni"f(”) =1,

over,

fn(ub’, U) =

1
I fn — fusllp o3 < Ollog fux — @Qsllog fu«lll ., o,13) = 0(?)
n

and the same bound holds fi6g, — gu=ll._ j0.152) andllAn — Aoll Lo (0.1

Sep 2. We obtain a key inequality using empirical process theory. To
simplify the notation, for any functiong («, y, v), f2(u, v) and f3(y), we denote
G(r, f1, f2, f3,a; ) as the likelihood function from one single observation with
parametersa, fa, f1, f2). SINCE(&y, An, fu, &n) MaximizesP,[logG(R, fi, fo,
f3,a; yn)] over the sieve space, it follows that

Pn[|09G(R, fn» éna 5\'1‘15 Qn; ];n)] > Pn[|09G(R, s 8ny An, @0; J,)n)]
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Equivalently,
n_l/an[Iog G(R7 fn, gn,)\na&m )fn):|
G(R, fn» 8n> An, 00; )/n)
G(R, fu: &n» An,00; ¥
(6.1) zP[Iog (R, fus 8n» Ans 005 Vi) i|
G(R, fu*, gu*, ro, a0; ¥*)

G(R, fu+, gu~, ro, a0; V*)}
G(R, fu, gl’lv An, Oy );n)
where we recall thafy« andgy+ are the conditional densities of* given (T, V)
and(T > 1, V), respectively.
We want to bound the left-hand side of (6.1) using empirical process theory. For
this purpose, we consider a class of functiaf)sdefined by

+ P[Iog

{I G o 8o 6 10) 7 () O,
G(}’, fn’ gn’ )“na 0lO§ )/n)
~ exp{ﬁl(u’ y’ U)}
Fululy, v) = ,
Jdexplin(i, y, v)} di
exp{nz(u, v)}
Jo expliia(ii, v)}dii

gn(ult,v) =

(C(, éa ﬁl, ﬁZ) e 5n(m’ K}’lv Mn)}

Since [N ()l L..qo.1p = 1, any function off,, ., A, given in £, is bounded
by O(eZM"). By Assumptions Al and A2G(r, fu, g, A, a0; Yn) iS bounded
away from 0. Hence, the class, has an upper boun@,(M,). Moreover, this

class can be regarded as the class of functions indexed b?}l iy i3}ﬁf2Ki"3:1,

{’7121,12}?17;2@1 and {§,~}?":+1K", which are the respective B-spline coefficients of
i1, 72 and & in 8,(m, K,, M,). Tedious checking indicates that the function
in £, is Lipschitz continuous with respect to all these parameters and the
Lipschitz constant is bounded k9, (¢%"n). In addition, sincel7i} ; . |.1n2 ;|

and |;| are bounded by, and |«| is bounded byM, they lie in a hypercube

of a real spaceR™*! where N, = m + K,)° + (m + K,)2 + m + K,,.
Therefore, for any > 0, if we partition this hypercube into subcubes with scale
length ¢, the total number of subcubes is at mast(M,/¢)V). According

to the Lipschitz property of the functions ii,, the L.-distance between
any two functions ofL, with respective indexes in the same subcube is no
more thanO,,(eGM")Nne. Consequently, we obtain that the bracketing number
for £, satisfiesN{1(0,(e®M")Nye, £, Los) < O(1)(M, /). According to
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van der Vaart [(1998), Theorem 19.35], in probability we have

de

2Mn86M" (m + Kn)3>2(m+Kn)3
&

O(My)
VRE}IP, —Ple, =0, [ Jiog(
< 0,()KY?*(logK,) M?.

Thus, the left-hand side of inequality (6.1) is bounded(by(M,fK,?/zlog K,/
+/n) from above.

We denote the two terms in the right-hand side of (6.1)/agnd(l1) and wish
to bound them from below. Since the functioral-) is Lipschitz continuous with
each component, we have that

(D) = =0, (D{Ilfu = fusllLe + 1gn — UL + k0 — Aol Loy + 170 — V7
> -0 (1)( ! + 1 )
- PU\kE i)

On the other hand, by Schumaker [(1981), Theorem 442123;’ (u)/du| < O(K,).
We can easily verify that

|G (R, fna gn, és Qn; );n) — G(R, fm gn, é, On; V*)| = O(EZM”MnKn)h}n - V*l-

Therefore,

G R, *, *7)\‘ , ; *
(”)Z—Op(eZM”)MnKnh}n_y*|+p[|og (R, fu+, gu+, ho, @0; ¥ )].

G(R, fn, gn, j\\n»&n; )/*)
However, the last term in the above is the Kulback-Leibler information. We

linearize the last term. The first-order term in the expansion vanishes while the
second-order term in the expansion is bounded from below by

0(e M) IG(R, fu=. gu+ 20.00: ¥*) = G(R. fu. &n hn: Qn: v )

Combining the above results and noting that the probability meaBure
equivalent to the product measure of the Lebsgue measuf@, i® and the
counting measure fd0, 1}, we obtain that for =0, 1,

(MK M e3M M2K Y2 log K,
O ="+ S =

(62) > / [G(r, fU*’ gu*, Ao, QQ; )/*)
[0,13

- G(r’ fn» (éfh Xna &ny V*)]Zdu dyd'U
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Sep 3. We obtain theLs-convergence of the estimators. Suppose we select
K, andM,, such that they satisfy Assumption A5. Equation (6.2) implies that this

upper bound holds for the squate-distance betweerf) folG(l, fu=, gu*, Ao,
ao; y*)dudy and [3 folG(l, Fas 8ns sy Gy y*) dudy for any s € [0, 1]. After
simplification, we obtain that

/[exp{—e&””f\n(s)} — eXp[—e“OvAo(s)}]zdv
6.3)

3M, 6M, 3/2
< 0,,(1)<6Kk LK IogK”).

; Ji
By choosing a subsequence, we supp@ése~> «*. From the above inequality
and Assumption Alg* = g and A,(y) converges pointwise ta\g(y) for
y € [0, 1]. Furthermore, sincé\g is continuous,||f\(y) — Ao lzyqo.1y) — O.
This completes the proof of Theorem 3.1

PROOF OFTHEOREM 3.2. From the last inequality and Assumption Al, we
immediately obtain that

o3Mn N oM K,:f/zlog Kn)
Kk Jn '
After repeating using (6.2) foR =1 andR = 0, we can further obtain that the
same bound holds fdf, — )\0”%2([))7 I fn — fU*H%Z(P) and||g, — gU*IIEZ(p)-

On the other hand, from Schumaker [(1981), Theorem 4.22] and Assump-
tion A3, we have that

6 — ol < 0,,<1>(

m+Kpy
VAV 1, 3, ) Loy S CKE Y |figinis] < O(MuKD),
i1,in,iz=1
whereky + ko + k3 = k. Thus, | Vet Vy2 Vi3 fo (uly, v) [l 1o (p) < Ce®TDMnp, KK
According to the Sobolev interpolation inequality [cf. Adams (1975)], we obtain
that

3M, 6M, x3/2 (1-11)/2
A e e’ Ky "log K 1
V(fu — fu < Ce(“z)MﬂlK’”l( ! ”)

IV(fn = fudllLep) < n\kE NG

where 11 = % By the choice ofK, and M, in Assumption A5,||V(fn —

fu)llL.py converges to zero. Similarly, this is true fg@y, and An. Thus,
Theorem 3.2 holds. O

9

PROOF OFTHEOREM3.3. Using the results from Theorems 3.1 and 3.2, redo
the proof of Theorem 3.1. We defing, as a class as before, but the functions
in £, are indexed by, &, fu(,), gu)), Which belongs to a bounded set in
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R x {WL(P)}3. Thus, £, has a bounded covering function and the integration

of the entropy for the classg,, is finite. Moreover, the function in the left-hand side

of (6.1) converges to zero uniformly. Thus, we can apply Theorem 2.11.23 of van
der Vaart and Wellner (1996), to obtain that the left-hand side of inequality (6.1)

is bounded by, (1/+/n). For the right-hand side of (6.1), we still perform Taylor
expansion at the true parameters. Since each parameter is in a small neighborhood
of the true parameters, the right-hand side of (6.1) is bounded from below by

—O0p{19n = V* P+ 1 fa = fullZ,ipy + llgn — 8U=IZ,cpy + 120 — A0llZ ,py )
+ 0, (DIIG(R, fur. gu+. 10.00: ¥*) — G(R, fu. &n. dons Gn: YT -

Recall the construction of,, g, andé, in the first step of proving Theorem 3.1;
we obtain that
Op(l) 4 Op(l)
vnoo K#
> |G(R, fu+. gu= 10, 00; ¥*) — G(R, fu, &n. dns @3 ¥, p)-

The results of Theorem 3.3 thus follow from the same arguments as in the proof
of Theorem 3.2. [J

PROOF OFTHEOREM 3.4.  We will write \/n(&, — ao) as a linear functional
of the empirical proces&,,. The whole proof can be divided into the following
five steps.

Sepl. We define a pseudo least favorable directiondgwheny * is known.
The nuisance parameters toare( fy+,gu+, ») and are denoted as. The tangent
space fony is thus given by

1
H= {h(u, y,v) = (halu, y, v), ha(u, v),h3(y))i/0 hi(u,y,v)du=0,

1
/O ho(u, v)du =0, h(u,y,v) € La([0, 1]3)}.

Let I(y,a; y*) be as defined in Section 3.3. Then a pseudo least favorable
direction forag is defined as a tangent functiaiu, y, v) € H for ¢ that satisfies

1y (Yo, ao; ¥ )y (Yo, aro; y )] = L, (Yo, 03 ¥ o (Yo, c0; v™) s,

where [y, (Yo, ao; y*)[h] is the derivative ofi(-) with respect toyr along the
direction, li}}(lﬁos ao; ¥*) is the adjoint operator dfy, (o, ag; y*) in the Hilbert
spaceL»(P) andl, (Yo, ao; y*) is the derivative of respective tar.
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Sep2. We prove the existence of the pseudo least favorable direction. We note

that H is a Hilbert space withih, k) given by
(e, y, IZ 0.1 + 1720, D2 (0,112 + 113 00,17

Then the following lemma holds.

LEMMA 6.1. Under Assumptions A1-A4, there exists a unique & € H such
that

1y, (Yo, ao; ¥ )1y (Yo, ao; y )] = L, (Yo, a0; ¥ o (Yo, 20 y™)  as.

PrRoOF DefineA as a linear operator from ([0, 1]) to L2([0, 1)), given by
Al[h3] = —e%0? foy ha(s)ds + h3(y)/ro(y). After some calculation and using the

property g h1(u, y, v) du = 0, we have

11y (Yo, @ ¥ )IRIZ ,p)

hi(U*,Y, v>} 2
> ||R|Alh3] + ————
—H [ sl v v e
ho(U*, V) |2
+1-RIY=7)————
H( N =0 OV | e

2 2 2
> 0(1) [ [, AthaPdyav+ ||h1||L2([0,1]3)} F1h2l2, g0 1
Since A is invertible, |A[h3| > ||A~Y|~Y||A3]. Thus, the last term is bounded
from below by O(1)(h, h)y. By the Lax—Milgram theorem [Evans (1998)], the
operatorl;;,(wo, ao; ¥ )y (Yo, ag; y*) is invertible. Lemma 6.1 is proved[]

Sep 3. The proof for the smoothness of the least favorable direction is

technical so we leave it to one of our technical reports, which is available from

the author. There we show:
LEMMA 6.2. Under Assumptions A1-A4, h(u, y, v) € W52 (P).

Sep 4. We construct the projection df(u, y, v) on the tangent space of the
sieve space. First, by simple computation, the tangent veatars y, v) for the
nuisance parametersm —(f,,(u|y v), gn(u|t, v), An (y)) have the form
Jo explin, (u, y, v)}Er(u, y, v) du

Jo explfin (u, y, v)} du

S explfion (u, v)}ea(u, v) du
Jo explizn (u, v)} du

(fn(my, Ve, v, v) — fauly, v)

BT, V)E2(, V) — Bn(ul7, V) ,in@)ss(y)),
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where &1(u, y,v), &(u,v) and &(y) have the same forms as(u, y,v),
n2(u, y,v) and &(y) in the sieve space. Then, one good approximation to
the pseudo least favorable direction is to chodsgu, y,v) = (A7, h%, h73)
so that their correspondingéi(u, y, v), &2(u, v), £3(y)) satisfy &1(u, y,v) =

Qslh1/fu+] —@Qslh1/fu+llu=0, &2(u, v) = Qalh2/gu+] — Q2lh2/gu+]lu=0 and
£3(y) = Q1[h3/A0]. Here the operata® , was defined in the proof of Theorem 3.1.
Thus, the results in Theorem 3.3 and Lemma 6.2 imply that

1

1
2
1ha (U, Y, V) = (U™, Y, V)T, p) < 0(@) +0‘”<%)'

Sep 5. We derive the empirical process fQfn(a, — ag). Since (U, Q)
maximizes the log-likelihood in the sieve space, the score along the(@ath
e, ¥ + &hy) is zero where = 0. Then it holds that

Gn{lvjl(v}na & Yo)lhn] + la(l&n, On; Yn)}

= —/nP{Ly (P & Pu)[An] + Lo G, G D).

For the left-hand side of the above equation, we apply Theorem 2.11.23 of van der
Vaart and Wellner (1996). Note that the function in the left-hand side, indexed by
both (Y7, h,) € W and(&,, 7,) € [—M, M19*2, belongs to &-Donsker class.
Moreover, we linearize the right-hand side at the true parameters and approximate

hy by h. SinceP{lyy (Yo, ao; V*)[lﬁn — Yo, h] + Loy (Yo, ao; V*)['&n —vol} =0,
we obtain that

—P{lyo (Yo, 20; ¥ )] + lae (Yo, a0; ¥ ) IV (6 — o)
= G, {ly (Yo, ao; ¥y O[] + o (Yo, 20; ¥™)}
+ P{ly, (V0. @0: ¥ A1 + Loy (Y0, 20; Y IR (D0 — ¥™)
+ V10, (10 — YollZ ,py + 1& — 0 + 1w — k11, py + |90 — ¥*17).
The last term iso,(1) from Theorem 3.3 and Assumption A6. Hence, the
asymptotic normality of /n(&,, — ) holds if we can prove the following lemma.

LEMMA 6.3. —P{lya (Yo, a0; y)[h] + laa (Y0, a0; )} > 0.

PROOF We note that
—P{lyo (Yo, ao; ¥y ) [h] + laa (Yo, a0; ¥ ™)}
= P{la (Y0, 20; ¥ *) + Ly (Yo, 0 ¥ *)[11}* = 0.
Moreover, ifly (Yo, ao; v*) + Ly (Yo, ao; y*)[h] is zero, then folR =1,

_ h(U%, Y, V) {hg(Y)_
~ furUFY, V) L ao(Y)

Y
e“OV/O h3(s)ds} — Ve %V Ag(Y) + V.
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Let Y = 0. Multiply both sides byfy+, then integrate both sides over* from
a(y™) tob(y*). We haveV = —h3(0)/A0(0). This is a contradiction. [

Furthermore, we obtain the influence functiorogfto be
~{Pllya (Yo, @0; ¥ )] + lua (Yo, a0; y*)1)
x {ly (Yo, a0; ¥y ™) [h] + lo (Yo, @03 ™)

+ Pllyy (Yo, a0; y )] + Loy (Yo, 005 y IS, R, W3 ™)},

whereS(Y, R, W; y*) is the influence function of,,. When both working mod-
els are correct/ (Yo, xo; y) is always the logarithm of the density faf" A
C,R,U(y), V) whatever valuey takes. SaP[ly, (Yo, ao; ¥)[1] + lu (Yo, xo; ¥)]

is an expectation of a score function; thus, it is equal to 0. This implies
Pllyy (Yo, @0; ¥y *)IA] + Iy, (Yo, @0; y*)] = 0. Hence,&, has an influence func-

tion equal to—{P[lya (Yo, @0; ¥ *)[h] + lea (Yo, @0; y )1}~ Hly (Yo, ao; y*)[h] +

lo (Yo, ao; ™)}, which is exactly the efficient influence function far Conse-
quently, the asymptotic variance Qfn (&, — ap) is equal to the semiparametric
efficiency bound. O
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