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LIKELIHOOD APPROACH FOR MARGINAL PROPORTIONAL
HAZARDS REGRESSION IN THE PRESENCE

OF DEPENDENT CENSORING1

BY DONGLIN ZENG

University of North Carolina at Chapel Hill

In many public health problems, an important goal is to identify the
effect of some treatment/intervention on the risk of failure for the whole
population. A marginal proportional hazards regression model is often used
to analyze such an effect. When dependent censoring is explained by many
auxiliary covariates, we utilize two working models to condense high-
dimensional covariates to achieve dimension reduction. Then the estimator
of the treatment effect is obtained by maximizing a pseudo-likelihood
function over a sieve space. Such an estimator is shown to be consistent
and asymptotically normal when either of the two working models is correct;
additionally, when both working models are correct, its asymptotic variance
is the same as the semiparametric efficiency bound.

1. Introduction. In many public health problems, an important goal is
to study the effect of some treatment or intervention on the risk of failure.
A commonly used model to analyze such an effect is via the proportional hazards
regression model:

hT |V (t |v) = λ(t)eαv,(1.1)

where V denotes the measurement of treatment,T denotes failure time and
hT |V (t |v) denotes the hazard rate function ofT given V . In the model (1.1),
λ(t) is an unknown baseline hazard rate function andα is an unknown parameter
describing the effect ofV . A marginal regression model such as (1.1) is often
useful in public health problems, since in that field the scientific goal is to identify
the effect of treatment for the whole population regardless of heterogeneity within
the population; in other words, we would not adjust for other covariates in the
regression model (1.1) even if such covariates are measured at the same time
of data collection. Some other reasons why additional covariates would not be
adjusted for in the regression model for epidemiologic studies can be seen in
Robins, Rotnitzky and Zhao (1994).
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Dependent right-censoring is common in failure time data, where subjects may
drop out or be censored during the studies. The censorship can be caused by many
factors, such as the feeling of patients about participation in the studies, the social
supports for patients, patients’ accessibility to the studies, biological information
of patients, and so on. In practice, when a large amount of such information is
collected, it is safe to assume that the dependence between the failure time and the
censoring time is fully explained by all the collected covariates. In mathematical
notation, if we denoteC as censoring time and denoteX as other auxiliary
covariates besidesV , then we assume that, conditional onX and V , T and C

are independent.
Supposen i.i.d. right-censored observations are available and we denote them

as(Yi = Ti ∧ Ci, Ri = I (Ti ≤ Ci), Xi,Vi), i = 1, . . . , n. Our goal is to estimate
the treatment effectα in the model (1.1). It is well known that, in the presence of
dependent censoring, simply performing the Cox regression usingV as covariates
gives an inconsistent estimate. In order to adjust for dependent censoring, one
intuitive approach tends to estimate the distribution ofT given (X,V ) either
nonparametrically or semiparametrically. However, two weak points can restrain
the use of this approach: one is that nonparametric estimation is not feasible with
moderate samples whenX has more than three dimensions, which is known as the
curse of the dimensionality; the other is that many semiparametric models ofT

given(X,V ) are generally not compatible with (1.1) while the latter, as indicated
above, is of main scientific interest. Recently, an estimating equation approach was
proposed by Robins, Rotnitzky and Zhao (1994) and was successfully applied to
missing longitudinal data; however, to our knowledge, such an approach has not
been applied to regression problems for survival data, except for a brief discussion
in Robins, Rotnitzky and Zhao (1994). Furthermore, the implementation of the
estimating equation approach relies on the derivation of the efficient score function
for α, which is implicit and difficult for the model (1.1).

In this paper, we propose a likelihood-based approach to estimate the parameters
in the marginal proportional hazards model (1.1). The ideas of handling dependent
censoring are similar to those in one of our previous papers [Zeng (2004)]. Briefly,
we first condense the high-dimensional covariates(X,V ) by utilizing two working
models for the distribution ofT given (X,V ) and the distribution ofC given
(X,V ). Then an estimate for the coefficientα in (1.1) is obtained by maximizing
a pseudo-likelihood function of a reduced datum, which consists of the observed
event times, the censoring status, the treatment and the condensed covariates. In
the maximization, the nuisance parameters forα are profiled out over a sieve space
consisting of B-splines. At the end of this paper we demonstrate that the estimator
for α has the following properties: if either of the two working models is correct,
the estimator is consistent and asymptotically normal; if both working models are
correct, the estimator’s asymptotic variance attains the semiparametric efficiency
bound. The first property is called double robustness by Robins, Rotnitzky and
van der Laan (2000). The details of the proofs are given in the Appendix.
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2. Estimation. For convenience, we denotefZ1|Z2(·|·) as the conditional
density of a random vectorZ1 given another random vectorZ2 and abbreviate
(XT ,V )T asW .

2.1. Estimation procedure. First we utilize two working models for the
distribution ofT andC givenW .

WORKING MODEL 1. We tentatively assume thatT is independent ofX
givenV sofT |W(y|w) = fT |V (y|v).

WORKING MODEL 2. We tentatively assume that the model ofC givenW is
a proportional hazards model, that is,hC|W(y|w) = hc(y)eγ T W for an unknown
vectorγ and an unknown baseline hazard rate functionhc(·).

REMARK. In fact, any model can be used for Working Model 1 and there are
two reasons for us to choose the current form: first, this is a simple one to work
with; second, our later results show that, to ensure our proposed estimator is more
likely to be consistent, such a working model has to satisfy the constrained form
in (1.1). Obviously, the current Working Model 1 is the most convenient choice.

To illustrate the estimation procedure, we suppose that either working model is
correct and thatγ is a known constant. We let[a(γ, v), b(γ, v)] be the support of
the conditional distribution ofγ T W givenV = v and define

U(γ ) = [γ T W − a(γ,V )]/[b(γ,V ) − a(γ,V )]
for fixed γ . Then the conditional distribution ofU(γ ) given V has support
[0,1]. As shown in Lemma 3.1 of Zeng (2004),T andC are independent given
(U(γ ),V ) when either working model is correct; in other words, the dependence
betweenT and C can be fully explained by the two-dimensional condensed
information(U(γ ),V ). We replace the observed statisticsW with (U(γ ),V ) and
obtain reduced data(Yi,Ri,Ui,Vi), whereUi = γ T Wi , i = 1, . . . , n. Therefore,
the observed likelihood function of the reduced data concerning the joint
distribution of(T ,U(γ )) givenV is

n∏
i=1

{[
fT |U(γ ),V (Yi |Ui,Vi)

]Ri

[∫ ∞
Yi

fT |U(γ ),V (s|Ui,Vi) ds

]1−Ri

fU(γ )|V (Ui |Vi)

}
.

In order to absorb the marginal model (1.1) into the observed likelihood
function, a natural reparameterization is to use the conditional density ofU(γ )

givenT andV and the conditional density ofT givenV as the new parameters.
The latter contains the parametersλ(y) andα. However, sinceT is only observable
in [0, τ ) whereτ is the end time of the study, the conditional density ofU(γ ) given
T andV is not identifiable forT ≥ τ . Therefore, we introduce a modified new
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variableT̃ = T I (T < τ)+ τI (T ≥ τ); that is,T̃ is the same asT if T is observed
within the study time frame and̃T is equal toτ if T is out of the observable range.
Then it is easy to calculate the density function forT̃ givenV = v as

I (t < τ)λ(t)eαv exp{−eαv�(t)} + δ(t = τ)exp{−eαv�(τ)},
where δ(·) is the Dirac function. Moreover, we denotefU(γ )(·|y, v) as the
conditional density ofU(γ ) given T̃ = y and V = v for y ∈ (0, τ ) and
denote gU(γ )(u|τ, v) as the conditional density ofU(γ ) given T̃ = τ and
V = v. Thus,fU(γ )(·|y, v) is the same as the conditional density ofU(γ ) given
T = y and V = v and gU(γ )(·|τ, v) is the same as the conditional density
of U(γ ) given T ≥ τ and V = v. Since the observed data are equivalent
to (Ui,Vi,Ri = I (T̃i ≤ Ci), Yi = T̃i ∧ Ci), in terms of the new parameters
(α,λ(y), fU(γ )(u|y, v), gU(γ )(u|τ, v)) the observed likelihood function can be
written as

n∏
i=1

{[
exp{−eαVi�(Yi)}eαViλ(Yi)fU(γ )(Ui |Yi,Vi)

]Ri

×
[∫ τ−

Yi

exp{−eαVi�(s)}eαViλ(s)fU(γ )(Ui |s,Vi) ds(2.1)

+ exp{−eαVi�(τ)}gU(γ )(Ui |τ,Vi)

]1−Ri
}
.

Clearly, all the parameters are distinct and identifiable.
Finally, we maximize the function (2.1) over a sieve space of the parameters

(α,λ(y), fU(γ )(u|y, v), gU(γ )(u|τ, v)) for some estimate ofγ . In the following
sections, we describe how to obtain an estimate ofγ and how to construct a sieve
space for the parameters.

2.2. An estimate for γ . We estimateγ by performing the proportional hazards
regression using the censored observations. That is, we maximize the following
pseudo-partial likelihood function forγ :

n∏
i=1

[
eγ T Wi∑

Yj≥Yi
eγ T Wj

]1−Ri

.

The estimator forγ is denoted aŝγn. As shown in Theorem 3.1 of Zeng (2004),
under some regular conditionŝγn should converge to a constantγ ∗ almost surely
and

√
n(γ̂n−γ ∗) has an asymptotically linear expansion with its influence function

denoted byS(Y,R,W ;γ ∗).
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2.3. Sieve space Sn for the parameters (α,λ(y), fU(γ )(u|y, v), gU(γ )(u|τ, v)).
We propose a sieve space consisting of B-splines forfU(γ )(u|y, v), gU(γ )(u|τ, v)

andλ(y) in maximizing (2.1). We suppose that 0≤ V ≤ 1 and that|α| ≤ M for a
known constantM .

We reparameterize(fU(γ )(u|y, v), gU(γ )(u|τ, v), λ(y)) by introducing

fU(γ )(u|y, v) = exp{η1(u, y, v)}∫ 1
0 exp{η1(u, y, v)}du

,

gU(γ )(u|τ, v) = exp{η2(u, v)}∫ 1
0 exp{η2(u, v)}du

,

andλ(y) = exp{ξ(y)}, whereη1(u, y, v) andη2(u, v) satisfy thatη1(0, y, v) = 0,
η2(0, v) = 0. After the reparameterization, the new parameters are(α, ξ(y),

η1(u, y, v), η2(u, v)) in which 0≤ u, v ≤ 1, 0≤ y ≤ τ . A sieve space consisting
of B-splines is defined for these new parameters as follows: First, we obtain an
extended partition with equal length 1/Kn for the interval[0,1]:

	e = {
s−m = · · · = s−1 = 0 = s0 < s1 < · · · < sKn = 1= · · · = sKn+m

}
,

where m (independent ofn) and Kn are two integers to be chosen later. Let
{Nm

j (s)}Kn+m
j=1 be a normalized B-spline basis associated with	e [cf. Schumaker

(1981)]. Then the sieve space for the parameters(α, ξ(y), η1(u, y, v), η2(u, v)) is
defined as

Sn(m,Kn,Mn)

=
{(

α, ξ(y), η1(u, y, v), η2(u, v)
)
: |α| ≤ M,

η1(u, y, v) =
m+Kn∑

i1,i2,i3=1

η1
i1,i2,i3

Nm
i1

(u)Nm
i2

(y/τ)Nm
i3

(v),

(2.2)
η2(u, v) =

m+Kn∑
i1,i2=1

η2
i1,i2

Nm
i1

(u)Nm
i2

(v), ξ(y) =
m+Kn∑
i=1

ξiN
m
i (y/τ),

m+Kn∑
i1,i2,i3=1

∣∣η1
i1,i2,i3

∣∣ ≤ Mn,

m+Kn∑
i1,i2=1

|η2
i1,i2

| ≤ Mn,

m+Kn∑
i=1

∣∣ξi

∣∣ ≤ Mn,

m+Kn∑
i1=1

η1
i1,i2,i3

Nm
i1

(0) = 0,

m+Kn∑
i1=1

η2
i1,i2

Nm
i1

(0) = 0

}
.

In other words, we use a finite linear combination of the B-splines to approximate
each nonparametric function. The use of the last two constraints in the conditions
of the sieve space ensures thatη1(0, y, v) = 0 andη2(0, v) = 0. The constants
Mn andKn depend onn and will be chosen later.
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2.4. Maximization. Let Pn,P denote the empirical measure and the true
probability measure of(Y,R,W), respectively, and letÛ = [γ̂ T

n W − a(γ̂n,

V )]/[b(γ̂n,V ) − a(γ̂n,V )]. We maximize the function

Pn

{
R log

[
exp

{
−

∫ Y

0
eξ(s)+αV ds

}
eξ(Y )+αV exp{η1(Û , Y,V )}∫ 1

0 exp{η1(u,Y,V )}du

]}

+ Pn

{
(1− R) log

[∫ τ−
Y

exp
{
−

∫ s

0
eξ(s′)+αV ds′

}
eξ(s)+αV

(2.3)

× exp{η1(Û , s,V )}∫ 1
0 exp{η1(u, s,V )}du

ds

+ exp
{
−

∫ τ

0
eξ(s)+αV ds

}
exp{η2(Û ,V )}∫ 1

0 exp{η2(u,V )}du

]}
over the sieve spaceSn(m,Kn,Mn). One possible choice of(m,Kn,Mn) is
(k + 2, M̃nβ, M̃

√
logn ) for some given constant̃M , a known integerk ≥ 11 and

a constantβ satisfying 1
2k

< β < 3
4k+9.

It will be shown later that|a(γ̂n, v)−b(γ̂n, v)| has a positive limit for anyv with
probability 1. Then the arguments of the maximum exist since we are maximizing
the function over a compact set in a finite-dimensional space. However, the
solution itself may not be unique. We simply select any one of these maximizers
and denote it as(α̂n, ξ̂n(y), η̂1n(u, y, v), η̂2n(u, v)). Respectively, we obtain the
estimatorŝαn = α̂n, λ̂n(y) = exp{ξ̂n(y)} and

f̂n(u|y, v) = exp{η̂1n(u, y, v)}∫ 1
0 exp{η̂1n(u, y, v)}du

, ĝn(u|τ, v) = exp{η̂2n(u, v)}∫ 1
0 exp{η̂2n(u, v)}du

.

Computationally, many constrained optimization algorithms such as the quasi-
Newton method, combined with the use of either a penalty or a barrier function,
can be applied to find the arguments of the maximization.

3. Asymptotic results. We provide the main results in this section. Espe-
cially, the consistency and asymptotic distribution forα̂n are derived. The proofs
for all the theorems are given in Section 6.

3.1. Assumptions. In addition to the assumption thatT andC are independent
givenW , we need the following conditions.

ASSUMPTIONA1. V has support in[0,1] andX has bounded support inRd

whered is the dimension ofX. Moreover, if there exist a constantc0 and a constant
vectorγ̃ such thatγ̃ T W = c0 almost surely, thenc0 = 0 andγ̃ = 0.
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ASSUMPTIONA2. With probability 1, there exists a positive constantθ0 such
that P(C ≥ τ |W) = P(C = τ |W) ≥ θ0 andP(T > τ |W) ≥ θ0. That is, at least
some subjects do not fail at the end timeτ and by definition they are considered to
be right-censored atτ .

ASSUMPTIONA3. For a known integerk ≥ 11, the conditional density ofX
givenT̃ andV , denoted asfX|T̃ ,V , and the true baseline hazard rate,λ0(y), satisfy

logfX|T̃ ,V (x|y, v) ∈ Wk+4,2(Rd+2), logλ0(y) ∈ Wk+4,2(R),

after appropriate extension to the whole space. Here,Wk+4,2(Rl) is a Sobolev
space consisting of the functions with(k+4)th derivatives inL2(R

l). Furthermore,
we assume that

logfC|W(y|w) ∈ Wk+4,2((0, τ ) × Rd+1),
logP(C = τ |W = w) ∈ Wk+4,2(Rd+1).

ASSUMPTION A4. There exists a known constantM such that the true
treatment effectα0 satisfies|α0| ≤ M . Moreover, the equation

P[(1− R)W ] = P
{
(1− R)

[
P[IY≥yWeγ T W ]
P[IY≥yeγ T W ]

]∣∣∣∣
y=Y

}
has a unique solutionγ ∗ in [−M,M]d+1. In addition, for anyγ in a small neigh-
borhoodO of γ ∗, the conditional distribution ofγ T W given V = v has support
[a(γ, v), b(γ, v)] satisfying: both the functiona(·) and the functionb(·) are two
known functions and they are continuously differentiable with respect toγ ; as
functions ofv, a(γ, v) andb(γ, v) belong toWk+4,2(R); minv∈[0,1],γ∈O |b(γ, v)−
a(γ, v)| > 0.

ASSUMPTIONA5. (Mn,Kn) satisfyMn,Kn → ∞ and

e13Mn

Kk
n

+ e16MnK
4k/3+3
n (logKn)

2

n
→ 0.

ASSUMPTIONA6. Kn satisfies
√

n = o(K2k
n ).

REMARK. Theorem 3.1 of Zeng (2004) showed that the asymptotic limit of
γ̂n is equal toγ ∗ given by Assumption A4. It is also implied by Assumption A4
that one of the firstd components ofγ ∗ is nonzero. Thus, if we suppose
the first component ofγ ∗ = (γ ∗

1 , . . . , γ ∗
d , γ ∗

d+1) is not zero, then in terms of

fX|T̃ ,V (x|y, v), the conditional density ofU∗ = γ ∗T W given (T̃ = y,V = v),
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which is denoted asfU∗(u|y, v) for T̃ < τ and asgU∗(u|τ, v) for T̃ = τ , can be
expressed as

	(v)

|γ ∗
1 |

∫
fX|T̃ ,V

(
u	(v) + a(γ ∗, v) − ∑d

i=2 γ ∗
i xi − γ ∗

d+1v

γ ∗
1

,

x2, . . . , xd |y, v

)
dx2 · · · dxd,

where 	(v) = b(γ ∗, v) − a(γ ∗, v). Hence, Assumption A3 implies that
fU∗(u|y, v) and gU∗(u|τ, v) are bounded away from 0 and their(k + 4)th
derivatives are alsoL2-integrable. Furthermore, by the embedding theorem in
Sobolev space [cf. Adams (1975)], this gives that each of logfU∗|T ,V (u|y, v),

loggU∗(u|τ, v), logfC|U∗,V (y|u, v), logλ0(y) is in Wk,∞ space; that is, theirkth
derivatives are bounded essentially.

REMARK. Assumptions A5 and A6 determine the size of the sieve space in
terms of the number of knots in the partition (Kn) and the bounds of the sieve
functions (Mn). Whenk ≥ 11, suchKn satisfying both Assumptions A5 and A6
exists. For example, we can chooseKn = nβ , 1

2k
< β < 3

4k+9. Additionally, the
choice ofMn can be of order

√
logn.

Although all these assumptions guarantee the validity of the following argu-
ments, they are not minimal assumptions.

3.2. Asymptotic results.

THEOREM 3.1 (Consistency of̂αn). Suppose that either of the two working
models is true. Under Assumptions A1–A5, α̂n is a consistent estimator of the true
coefficient α0.

We can further obtain the consistency of the nuisance parameters in a Sobolev-
norm.

THEOREM 3.2 (Consistency of nuisance parameters).Suppose that either of
the two working models is true. Under Assumptions A1–A5,

‖λ̂n(Y ) − λ0(Y )‖W1,∞(P )

p→ 0,

‖f̂n(U
∗|Y,V ) − fU∗(U∗|Y,V )‖W1,∞(P )

p→ 0,

‖ĝn(U
∗|τ,V ) − gU∗(U∗|τ,V )‖W1,∞(P )

p→ 0.

Here ‖h(U∗, Y,V )‖W1,∞(P ) is defined as ‖h(U∗, Y,V )‖L∞(P ) + ‖∇h(U∗, Y,

V )‖L∞(P ), where P is the probability measure given by (U∗, Y,V ,R).
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The result in Theorem 3.2 can help to obtain a useful convergence rate of the
estimators inL2-norm, which is stated in Theorem 3.3.

THEOREM 3.3 (Convergence rate).Suppose that either of the two working
models is true. Under Assumptions A1–A5, it holds that

|α̂n − α0|2 + ‖λ̂n(Y ) − λ0(Y )‖2
L2(P ) ≤ Op

(
1

K2k
n

)
+ op

(
1√
n

)
,

‖f̂n(U
∗|Y,V ) − fU∗(U∗|Y,V )‖2

L2(P ) ≤ Op

(
1

K2k
n

)
+ op

(
1√
n

)
and

‖ĝn(U
∗|τ,V ) − gU∗(U∗|τ,V )‖2

L2(P ) ≤ Op

(
1

K2k
n

)
+ op

(
1√
n

)
.

Finally, we derive the asymptotic distribution for
√

n(α̂n − α0).

THEOREM 3.4 (Asymptotic normality ofα̂n). Under Assumptions A1–A6,
when either of the two working models is correct,

√
n(α̂n − α0) is asymptotically

normal. Furthermore, when both working models are correct, the asymptotic
variance of

√
n(α̂n − α0) is the same as the semiparametric efficiency bound.

3.3. Variance estimation. We propose the following steps to estimate the
asymptotic variance of̂αn with no attempt to justify them rigorously. Our way
is to directly estimate the influence function ofα̂n.

DefineO = (Y,R,W) and defineψ as the nuisance parameters consisting of
(fU(γ )(u|y, v), gU(γ )(u|τ, v), λ(y)). Let l(ψ,α;γ ) be the log-likelihood function
from a single observed statistic and letlα be the derivative ofl(ψ,α;γ ) with
respect toα and lψ be the differential operator ofl(ψ,α;γ ) with respect toψ .
According to the proof of Theorem 3.4, there exists a functionh(u, y, v) =
(h1(u, y, v), h2(u, v), h3(y)) solving the equationl∗ψlψ [h] = l∗ψlα , wherel∗ψ is the
dual operator oflψ . Moreover,

√
n(α̂n − α0) is shown to have the asymptotic

variance

E[
(ψ0, α0, γ
∗)−1�(O;ψ0, α0, γ0) + ω(ψ0, α0, γ0)S(O;γ ∗)]⊗2.(3.1)

Here, 
(ψ,α, γ ) = −P[lψα[h] + lαα] is the efficient information matrix forα
for fixed γ , �(O;ψ,α,γ ) = lα − lψ [h] is the efficient score function forα for
fixed γ , ω(ψ,α, γ ) = −{P[lψα[h] + lαα]}−1P[∇γ (lψ [h] + lα)], andS(O;γ ∗) is
the influence function of̂γn.

To estimate (3.1), we wish to estimate each of the four terms including

(ψ0, α0, γ

∗), �(O;ψ0, α0, γ0), ω(ψ0, α0, γ0) andS(O;γ ∗). At first, we define
a pseudo-profile likelihood function aspln(α, γ ) = n−1 ∑n

i=1 li(ψ̂(α, γ ),α;γ ),
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whereli(·) is the value ofl(·) at theith observation and̂ψ(α,γ ) is the argument
of ψ in the maximization of Section 2 whenα andγ are fixed. Then each of the
four terms in (3.1) can be estimated using the following approach.

First, since
(ψ0, α0, γ
∗) is the semiparametric efficiency information forα in

the likelihood function of(Y,R,U∗,V ) when assumingγ ∗ is known, according
to Murphy and van der Vaart (2000), we can estimate it by


̂n = −pln(α̂n + εn, γ̂n) − 2pln(α̂n, γ̂n) + pln(α̂n − εn, γ̂n)

ε2
n

whereεn is a constant of ordern−1/2.
Next, sinceψ̂(α, γ̂n) maximizesPnl(α,ψ; γ̂n), it holds that

Pn

[
lψ

(
ψ̂(α, γ̂n), α; γ̂n

)[h̃]] = 0

for any tangent functioñh of ψ . We differentiate the above equation with respect
to α, then evaluate it at̂αn. This gives

Pnlαψ

(
ψ̂(α̂n, γ̂n), α̂n; γ̂n

)[h̃] = Pnlψψ

(
ψ̂(α̂n, γ̂n), α̂n; γ̂n

)[∇αψ̂(α̂n, γ̂n), h̃].
Whenn goes to infinity, this equation approximates the equation whichh(u, y, v)

solves. Thus, we expect that∇αψ̂(α̂n, γ̂n) ≈ h(u, y, v). As a result,�(Oi;ψ0,

α0, γ
∗) ≈ ∇αli(ψ̂(α̂n, γ̂n), α̂n; γ̂n), while the latter can be evaluated using the

numerical differenceε−1
n {li(ψ̂(α̂n + εn, γ̂n), α̂n + εn; γ̂n)− li(ψ̂(α̂n, γ̂n), α̂n; γ̂n)}.

Third, we defineα̂(γ ) as the estimate ofα maximizing pln(α, γ ) when
γ is held fixed. Using the argument similar to that in Zeng (2004), we
can estimateω(ψ0, α0, γ

∗) by a vector ω̂n with its j th element equal to
ε̃−1
n (α̂(γ̂n + ε̃nej ) − α̂n) for thej th canonical baseej andε̃n satisfyingε̃n = o(1)

and
√

nε̃n → ∞.

Finally, S(O;γ ∗) can be estimated bŷSn(O; γ̂n) using an explicit expression
given in Zeng (2004).

Hence, the expression in (3.1) can be estimated by

1

n

n∑
i=1

[

̂−1

n

li(ψ̂(α̂n + εn), α̂n + εn; γ̂n) − li(ψ̂, α̂n; γ̂n)

εn

+ ω̂nŜn(Oi, γ̂n)

]2

.

4. Simulation study. A simulation study is conducted to illustrate our ap-
proach. In the simulation, for convenience of computationV is chosen to be a
binary variable with equal probabilities. Conditional onV , the lifetimeT is gener-
ated from a proportional hazards regression model with hazard rate 3t exp{V }. One
surrogate variableX1 is generated from the modelX1 = β0T + 0.5θ , whereθ is
uniformly distributed in(−0.5,0.5) andβ0 may take different values in the sim-
ulation study. The study end time,τ , is chosen to be 1. Additionally, we generate
another irrelevant covariateX2 from the uniform distribution in[0,1] and gener-
ate the right-censoring time from a proportional hazards model with hazard rate
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4exp{2X1 − 4X2 − 0.1V }. In other words, the simulation imitates the situation in
which lifetime and censoring time are dependent and their dependence is explained
by treatmentV , a surrogate variableX1 and a censorship related variableX2.

According to our approach, the estimation ofα is obtained by maximizing a
pseudo-likelihood function over a sieve space, which is constructed similar to
Section 2.3, with the choiceKn = 5 and m = 3 (other choices ofKn and m

have little effect on the results, but largeKn significantly increases computation
time). SinceV is binary, for either value ofV , η1(U,Y,V ) is given as a linear
combination ofNm

i1
(U)Nm

i1
(Y ) and η2(U,V ) is given as a linear combination

of Nm
i1

(U). To prevent the parameters in the maximization from being unbounded,

a penalty function, equal to 10−3 times the sum of squares of the spline
coefficients, is subtracted from the pseudo-likelihood function. In the optimization,
searching for the maximum starts from the initial values thatα = 1 and all the
spline coefficients are zero. Our simulations show that the optimum search usually
converges within 10 iterations when either the search-move step or the norm of the
search direction is small enough.

The asymptotic variance of̂αn is estimated using the approach described
in Section 3.3. Particularly, we chooseεn = n−1/2,3n−1/2,6n−1/2 and ε̃n =
n−1/3,5n−1/3 in evaluating
̂−1

n and ω̂n. The results indicate that the estimates
of the variance are pretty robust to these choices. Thus, only the results from
εn = n−1/2 andε̃n = n−1/3 are reported here.

We chooseβ0 = 0 or β0 = 1.5 in the simulation. Whenβ0 = 0, the working
model forT is correct and the theoretical censoring rate is 18%; whenβ0 = 1.5,
the working model forT is misspecified and the theoretical censoring rate
becomes 36%. Table 1 summarizes the results from 500 repetitions with sample
sizen = 200 for these two choices. In the table, the first column gives the true
value of the parameterβ0. The second column gives the working models used in
the estimation (e.g.,T |V means that the working model forT is a proportional
hazards model withV as independent variable) and the superscript star in the
column list indicates that the indexed working model is misspecified. In the third
column, we report the naive estimates ofα by regressingT on V directly. The
remaining columns in turn report the average estimates ofα̂n, the standard errors
of all the estimates, the median values of the estimated standard errors forα̂n

TABLE 1
Simulation results from 500repetitions with sample size 200

β0 Working models Naive est. α̂n se(α̂n) med(ŝe) 95% CI

0 (T |V ), (C|X1,X2,V ) 1.004 0.974 0.169 0.172 0.956
(T |V ), (C|X2,V )∗ 1.004 0.975 0.169 0.172 0.954

1.5 (T |V )∗, (C|X1,X2,V ) 0.835 0.915 0.189 0.234 0.976
(T |V )∗, (C|X2,V )∗ 0.835 0.802 0.186 0.208 0.868
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FIG. 1. Histograms of α̂n from 500repetitions: (a) both working models for T and C are correct,
(b) the working model for T is correct but the working model for C is misspecified, (c) the working
model for T is misspecified but the working model for C is correct, (d) both working models are
misspecified.

and the coverage proportion of 95% confidence intervals based on the normal
distribution approximation. Additionally, Figure 1 plots the histograms ofα̂n from
the simulations.

The simulation results indicate that when either working model is correct, the
estimates produce small bias and moreover, our variance estimation approach gives
fairly accurate estimates and valid coverage probabilities. Specifically, whenT is
not fully predicted byV and the working model for the censorship is correct, our
estimate has smaller bias than the naive estimate. The simulation also shows that
using the correct working model forT may give a more efficient estimate. The
amount of bias in̂αn observed in Table 1 can be due to the small sample size and
the smallKn, as well as the imprecise evaluation of the integral in the likelihood
function.

5. Discussion. For right-censored data, when the dependence between life-
time and censoring time is explained by many covariates, we utilize two working
models to condense this high-dimensional information and thus derive the estima-
tor of the treatment effect by maximizing some pseudo-likelihood function. We
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have shown that the estimator is consistent and asymptotically normal when either
working model is correct.

For simplicity, the working model forT givenW given in Section 2 is assumed
to be the same asT givenV . This may seem very restrictive. However, in practice
any semiparametric model can be adopted as the working model forT givenW .
For example, suppose that we use a semiparametric model forT given W as
follows: fT |W(y|w) = p(y,βT w); then the condensed information will include
(U1 = βT W, U2 = γ T W,V ). Hence, the estimator ofα can be derived by
maximizing

Pn

{
R log

[
eαV λ(Y )exp{−�(Y)eαV }fU1,U2(Û1, Û2|Y,V )

]}
+ Pn

{
(1− R) log

[∫ τ−
Y

eαV λ(s)exp{−�(s)eαV }fU1,U2(Û1, Û2|s,V ) ds

+ exp{−�(τ)eαV }fU1,U2(Û1, Û2|T ≥ τ,V )

]}
over a sieve space of the parameters(α,fU1,U2(u1, u2|T = y, v) fU1,U2(u1, u2|T ≥
τ, v), λ(y)), whereÛ1 = β̂T

n W andÛ2 = γ̂ T
n W for some estimatorŝβn, γ̂n. The

slight difference from the previous context is that B-splines in the sieve space
are constructed on a four-dimensional space. Consequently, under some regular
conditions, one of the following two conclusions is expected to be true: if the
semiparametric working model forT givenW does not satisfy the constraint that
hT |V (y|v) = λ(y)eαT v , that is, the working model is misspecified, the consistency
of α̂n holds if the working model forC given W is correct; on the contrary, if
the working model forT given W satisfies the constraint, the double robustness
of α̂n given in Theorem 3.4 holds as well. However, it is often difficult to specify a
correct working model forT givenW satisfying the constraint (1.1) except in the
simplest situation thatT depends onW only via V , which has been used in this
paper.

Our approach can be easily extended to the situation whenV is multidimen-
sional and possibly discrete. IfV is multidimensional, the sieve space needs to be
constructed on a real space of all ofU , Y and the multidimensionalV . However, if
V is discrete, the sieve space only needs to be constructed on a real spaceU andY

for each category ofV . The latter has already been implemented in the simulation
study.

We acknowledge that our approaches are not easily generalized to the situation
with a time-dependent component inX, since whenX contains time-dependent
covariates the condensed information using working models still depends on time,
so its dimensionality is not reduced essentially. Further investigation is being
conducted to solve this problem.

6. Proofs. For convenience of writing, we assumeτ = 1 and denoteGn as the
empirical process

√
n(Pn − P).
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PROOF OFTHEOREM 3.1. The whole proof can be divided into three steps:
first, we construct some functions in the sieve space which approximate the true
parameters; then by using empirical process theory, we obtain one key inequality;
finally, this inequality is used to obtain the consistency.

Step 1. We construct some functions inSn(m,Kn,Mn) to approximate the true
parameters. To do that, we need the following general result. From the properties
of B-spline functions [cf. Schumaker (1981)], we can define a linear operatorQp

mappingWk,∞([0,1]p) to the sieve space; that is, for anyg ∈ Wk,∞([0,1]p),

Qp[g] =
m+Kn∑

i1,...,ip=1

�i1,...,ip [g]Nm
i1

(x1) . . .Nm
ip

(xp),

where�i1,...,ip are the linear functionals inL∞([0,1]p). Moreover,

m+Kn∑
i1,...,ip

∣∣�i1,...,ip [g]∣∣ ≤ (2m + 1)p9p(m−1)‖g‖L∞([0,1]p),

and according to Schumaker [(1981), Theorem 12.7],

‖Qp[g] − g‖L∞([0,1]p) ≤ C(m)

Kk
n

‖g‖Wk,∞([0,1]p).

Thus, we defineη1n(u, y, v) = Q3[logfU∗] − Q3[logfU∗]|u=0, η2n(u, v) =
Q2[loggU∗] − Q2[loggU∗]|u=0 and ξn(y) = Q1[logλ0]. Correspondingly, we
obtain

fn(u|y, v) = exp{η1n(u, y, v)}∫ 1
0 exp{η1n(u, y, v)}du

, gn(u|τ, v) = exp{η2n(u, v)}∫ 1
0 exp{η2n(u, v)}du

,

and λn(y) = exp{ξn(y)}. As a result of the fact that
∑m+Kn

i1=1 Nm
i1

(u) = 1,
(α0, ξn(y), η1n(u, y, v), η2n(u, v)) is in the sieve spaceSn(m,Kn,Mn) and more-
over,

‖fn − fU∗‖L∞([0,1]3) ≤ O(1)‖ logfU∗ − Q3[logfU∗]‖L∞([0,1]3) ≤ O

(
1

Kk
n

)
and the same bound holds for‖gn − gU∗‖L∞([0,1]2) and‖λn − λ0‖L∞([0,1]).

Step 2. We obtain a key inequality using empirical process theory. To
simplify the notation, for any functionsf1(u, y, v), f2(u, v) andf3(y), we denote
G(r,f1, f2, f3, α;γ ) as the likelihood function from one single observation with
parameters(α,f3, f1, f2). Since(α̂n, λ̂n, f̂n, ĝn) maximizesPn[logG(R,f1, f2,

f3, α; γ̂n)] over the sieve space, it follows that

Pn[logG(R, f̂n, ĝn, λ̂n, α̂n; γ̂n)] ≥ Pn[logG(R,fn, gn, λn,α0; γ̂n)].
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Equivalently,

n−1/2Gn

[
log

G(R, f̂n, ĝn, λ̂n, α̂n; γ̂n)

G(R,fn, gn, λn,α0; γ̂n)

]

≥ P
[
log

G(R,fn, gn, λn,α0; γ̂n)

G(R,fU∗, gU∗, λ0, α0;γ ∗)

]
(6.1)

+ P
[
log

G(R,fU∗, gU∗, λ0, α0;γ ∗)
G(R, f̂n, ĝn, λ̂n, α̂n; γ̂n)

]
,

where we recall thatfU∗ andgU∗ are the conditional densities ofU∗ given(T ,V )

and(T ≥ τ,V ), respectively.
We want to bound the left-hand side of (6.1) using empirical process theory. For

this purpose, we consider a class of functionsLn defined by{
log

G(r, f̃n, g̃n, λ̃n, α; γ̂n)

G(r, fn, gn, λn,α0; γ̂n)
: λ̃n(y) = eξ̃(y),

f̃n(u|y, v) = exp{η̃1(u, y, v)}∫ 1
0 exp{η̃1(ũ, y, v)}dũ

,

g̃n(u|τ, v) = exp{η̃2(u, v)}∫ 1
0 exp{η̃2(ũ, v)}dũ

,

(α, ξ̃ , η̃1, η̃2) ∈ Sn(m,Kn,Mn)

}
.

Since‖Nm
i (.)‖L∞([0,1]) = 1, any function off̃n, g̃n, λ̃n given in Ln is bounded

by O(e2Mn). By Assumptions A1 and A2,G(r,fn, gn, λn,α0; γ̂n) is bounded
away from 0. Hence, the classLn has an upper boundOp(Mn). Moreover, this
class can be regarded as the class of functions indexed byα, {η̃1

i1,i2,i3
}m+Kn

i1,i2,i3=1,

{η̃2
i1,i2

}m+Kn

i1,i2=1 and {ξ̃i}m+Kn

i=1 , which are the respective B-spline coefficients of

η̃1, η̃2 and ξ̃ in Sn(m,Kn,Mn). Tedious checking indicates that the function
in Ln is Lipschitz continuous with respect to all these parameters and the
Lipschitz constant is bounded byOp(e6Mn). In addition, since|η̃1

i1,i2,i3
|, |η2

i1,i2
|

and |ξ̃i | are bounded byMn and |α| is bounded byM , they lie in a hypercube
of a real spaceRNn+1 where Nn = (m + Kn)

3 + (m + Kn)
2 + m + Kn.

Therefore, for anyε > 0, if we partition this hypercube into subcubes with scale
length ε, the total number of subcubes is at mostO((Mn/ε)

Nn). According
to the Lipschitz property of the functions inLn, the L∞-distance between
any two functions ofLn with respective indexes in the same subcube is no
more thanOp(e6Mn)Nnε. Consequently, we obtain that the bracketing number
for Ln satisfiesN[·](Op(e6Mn)Nnε,Ln,L∞) ≤ O(1)(Mn/ε)

Nn. According to
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van der Vaart [(1998), Theorem 19.35], in probability we have

√
nE∗

P ‖Pn − P‖Ln ≤ Op(1)

∫ O(Mn)

0

√√√√log
(

2Mne6Mn(m + Kn)3

ε

)2(m+Kn)3

dε

≤ Op(1)K3/2
n (logKn)M

2
n.

Thus, the left-hand side of inequality (6.1) is bounded byOp(M2
nK

3/2
n logKn/√

n ) from above.
We denote the two terms in the right-hand side of (6.1) as(I ) and(II) and wish

to bound them from below. Since the functionalG(·) is Lipschitz continuous with
each component, we have that

(I ) ≥ −Op(1)
{‖fn − fU∗‖L∞ + ‖gn − gU∗‖L∞ + ‖λn − λ0‖L∞ + |γ̂n − γ ∗|}

≥ −Op(1)

(
1

Kk
n

+ 1√
n

)
.

On the other hand, by Schumaker [(1981), Theorem 4.22]|dNm
i1

(u)/du| ≤ O(Kn).
We can easily verify that

|G(R, f̂n, ĝn, ξ̂ , α̂n; γ̂n) − G(R, f̂n, ĝn, ξ̂ , α̂n;γ ∗)| ≤ O(e2MnMnKn)|γ̂n − γ ∗|.
Therefore,

(II) ≥ −Op(e2Mn)MnKn|γ̂n − γ ∗| + P
[
log

G(R,fU∗, gU∗, λ0, α0;γ ∗)
G(R, f̂n, ĝn, λ̂n, α̂n;γ ∗)

]
.

However, the last term in the above is the Kulback–Leibler information. We
linearize the last term. The first-order term in the expansion vanishes while the
second-order term in the expansion is bounded from below by

O(e−3Mn)‖G(R,fU∗, gU∗, λ0, α0;γ ∗) − G(R, f̂n, ĝn, λ̂n, α̂n;γ ∗)‖2
L2(P ).

Combining the above results and noting that the probability measureP is
equivalent to the product measure of the Lebsgue measure in[0,1]3 and the
counting measure for{0,1}, we obtain that forr = 0,1,

Op(1)

(
e5MnMnKn√

n
+ e3Mn

Kk
n

+ e3MnM2
nK

3/2
n logKn√
n

)
(6.2) ≥

∫
[0,1]3

[G(r,fU∗, gU∗, λ0, α0;γ ∗)

− G(r, f̂n, ĝn, λ̂n, α̂n;γ ∗)]2 dudy dv.



MARGINAL PROPORTIONAL HAZARDS REGRESSION 517

Step 3. We obtain theL2-convergence of the estimators. Suppose we select
Kn andMn such that they satisfy Assumption A5. Equation (6.2) implies that this
upper bound holds for the squareL2-distance between

∫ s
0

∫ 1
0 G(1, fU∗, gU∗, λ0,

α0;γ ∗) dudy and
∫ s
0

∫ 1
0 G(1, f̂n, ĝn, λ̂n, α̂n;γ ∗) dudy for any s ∈ [0,1]. After

simplification, we obtain that∫ [
exp

{−eα̂nv�̂n(s)
} − exp{−eα0v�0(s)}]2

dv

(6.3)

≤ Op(1)

(
e3Mn

Kk
n

+ e6MnK
3/2
n logKn√

n

)
.

By choosing a subsequence, we supposeα̂n → α∗. From the above inequality
and Assumption A1,α∗ = α0 and �̂n(y) converges pointwise to�0(y) for
y ∈ [0,1]. Furthermore, since�0 is continuous,‖�̂(y) − �0(y)‖L∞([0,1]) → 0.
This completes the proof of Theorem 3.1.�

PROOF OFTHEOREM 3.2. From the last inequality and Assumption A1, we
immediately obtain that

|α̂n − α0|2 ≤ Op(1)

(
e3Mn

Kk
n

+ e6MnK
3/2
n logKn√

n

)
.

After repeating using (6.2) forR = 1 andR = 0, we can further obtain that the
same bound holds for‖λ̂n − λ0‖2

L2(P ), ‖f̂n − fU∗‖2
L2(P ) and‖ĝn − gU∗‖2

L2(P ).

On the other hand, from Schumaker [(1981), Theorem 4.22] and Assump-
tion A3, we have that

‖∇k1
u ∇k2

y ∇k3
v η̂1n(u, y, v)‖L∞(P ) ≤ CKk

n

m+Kn∑
i1,i2,i3=1

∣∣η̂i1,i2,i3

∣∣ ≤ O(MnK
k
n),

wherek1 + k2 + k3 = k. Thus,‖∇k1
u ∇k2

y ∇k3
v f̂n(u|y, v)‖L∞(P ) ≤ Ce(k+1)MnMnK

k
n.

According to the Sobolev interpolation inequality [cf. Adams (1975)], we obtain
that

‖∇(f̂n − fU∗)‖L∞(P ) ≤ Ce(k+2)Mnτ1Kkτ1
n

(
e3Mn

Kk
n

+ e6MnK
3/2
n logKn√

n

)(1−τ1)/2

,

where τ1 = 5/2
k

. By the choice ofKn and Mn in Assumption A5,‖∇(f̂n −
fU∗)‖L∞(P ) converges to zero. Similarly, this is true for̂gn and λ̂n. Thus,
Theorem 3.2 holds.�

PROOF OFTHEOREM 3.3. Using the results from Theorems 3.1 and 3.2, redo
the proof of Theorem 3.1. We defineLn as a class as before, but the functions
in Ln are indexed by(α, ξ, fU(γ ), gU(γ )), which belongs to a bounded set in
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R × {W1,∞(P )}3. Thus,Ln has a bounded covering function and the integration
of the entropy for the classLn is finite. Moreover, the function in the left-hand side
of (6.1) converges to zero uniformly. Thus, we can apply Theorem 2.11.23 of van
der Vaart and Wellner (1996), to obtain that the left-hand side of inequality (6.1)
is bounded byop(1/

√
n ). For the right-hand side of (6.1), we still perform Taylor

expansion at the true parameters. Since each parameter is in a small neighborhood
of the true parameters, the right-hand side of (6.1) is bounded from below by

−Op

{|γ̂n − γ ∗|2 + ‖fn − fU∗‖2
L2(P ) + ‖gn − gU∗‖2

L2(P ) + ‖λn − λ0‖2
L2(P )

}
+ Op(1)‖G(R,fU∗, gU∗, λ0, α0;γ ∗) − G(R, f̂n, ĝn, λ̂n, α̂n;γ ∗)‖2

L2(P ).

Recall the construction offn, gn andξn in the first step of proving Theorem 3.1;
we obtain that

op(1)√
n

+ Op(1)

K2k
n

≥ ‖G(R,fU∗, gU∗, λ0, α0;γ ∗) − G(R, f̂n, ĝn, λ̂n, α̂n;γ ∗)‖2
L2(P ).

The results of Theorem 3.3 thus follow from the same arguments as in the proof
of Theorem 3.2. �

PROOF OFTHEOREM 3.4. We will write
√

n(α̂n − α0) as a linear functional
of the empirical processGn. The whole proof can be divided into the following
five steps.

Step 1. We define a pseudo least favorable direction forα0 whenγ ∗ is known.
The nuisance parameters forα are(fU∗ ,gU∗ , λ) and are denoted asψ . The tangent
space forψ is thus given by

H =
{
h(u, y, v) = (

h1(u, y, v), h2(u, v), h3(y)
)
:
∫ 1

0
h1(u, y, v) du = 0,

∫ 1

0
h2(u, v) du = 0, h(u, y, v) ∈ L2([0,1]3)

}
.

Let l(ψ,α;γ ∗) be as defined in Section 3.3. Then a pseudo least favorable
direction forα0 is defined as a tangent functionh(u, y, v) ∈ H for ψ that satisfies

l∗ψ(ψ0, α0;γ ∗)lψ(ψ0, α0;γ ∗)[h] = l∗ψ(ψ0, α0;γ ∗)lα(ψ0, α0;γ ∗) a.s.,

where lψ(ψ0, α0;γ ∗)[h] is the derivative ofl(·) with respect toψ along the
directionh, l∗ψ(ψ0, α0;γ ∗) is the adjoint operator oflψ(ψ0, α0;γ ∗) in the Hilbert
spaceL2(P ) andlα(ψ0, α0;γ ∗) is the derivative ofl respective toα.
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Step 2. We prove the existence of the pseudo least favorable direction. We note
thatH is a Hilbert space with〈h,h〉H given by

‖h1(u, y, v)‖2
L2([0,1]3) + ‖h2(u, v)‖2

L2([0,1]2) + ‖h3(y)‖2
L2([0,1]).

Then the following lemma holds.

LEMMA 6.1. Under Assumptions A1–A4, there exists a unique h ∈ H such
that

l∗ψ(ψ0, α0;γ ∗)lψ(ψ0, α0;γ ∗)[h] = l∗ψ(ψ0, α0;γ ∗)lα(ψ0, α0;γ ∗) a.s.

PROOF. DefineA as a linear operator fromL2([0,1]) to L2([0,1]2), given by
A[h3] = −eα0v

∫ y
0 h3(s) ds + h3(y)/λ0(y). After some calculation and using the

property
∫ 1
0 h1(u, y, v) du = 0, we have

‖lψ(ψ0, α0;γ ∗)[h]‖2
L2(P )

≥
∥∥∥∥R[

A[h3] + h1(U
∗, Y,V )

fU∗(U∗|Y,V )

]∥∥∥∥2

L2(P )

+
∥∥∥∥(1− R)I (Y = τ)

h2(U
∗,V )

gU∗(U∗|τ,V )

∥∥∥∥2

L2(P )

≥ O(1)

[∫
[0,1]2

A[h3]2 dy dv + ‖h1‖2
L2([0,1]3)

]
+ ‖h2‖2

L2([0,1]2).

SinceA is invertible,‖A[h3‖ ≥ ‖A−1‖−1‖h3‖. Thus, the last term is bounded
from below byO(1)〈h,h〉H . By the Lax–Milgram theorem [Evans (1998)], the
operatorl∗ψ(ψ0, α0;γ ∗)lψ(ψ0, α0;γ ∗) is invertible. Lemma 6.1 is proved.�

Step 3. The proof for the smoothness of the least favorable direction is
technical so we leave it to one of our technical reports, which is available from
the author. There we show:

LEMMA 6.2. Under Assumptions A1–A4, h(u, y, v) ∈ Wk,∞(P ).

Step 4. We construct the projection ofh(u, y, v) on the tangent space of the
sieve space. First, by simple computation, the tangent vectorshn(u, y, v) for the
nuisance parameters atψ̂n = (f̂n(u|y, v), ĝn(u|τ, v), λ̂n(y)) have the form(

f̂n(u|y, v)ξ1(u, y, v) − f̂n(u|y, v)

∫ 1
0 exp{η̂1n(u, y, v)}ξ1(u, y, v) du∫ 1

0 exp{η̂1n(u, y, v)}du
,

ĝn(u|τ, v)ξ2(u, v) − ĝn(u|τ, v)

∫ 1
0 exp{η̂2n(u, v)}ξ2(u, v) du∫ 1

0 exp{η̂2n(u, v)}du
, λ̂n(y)ξ3(y)

)
,
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where ξ1(u, y, v), ξ2(u, v) and ξ3(y) have the same forms asη1(u, y, v),
η2(u, y, v) and ξ(y) in the sieve space. Then, one good approximation to
the pseudo least favorable direction is to choosehn(u, y, v) = (hn

1, h
n
2, h

n
3)

so that their corresponding(ξ1(u, y, v), ξ2(u, v), ξ3(y)) satisfy ξ1(u, y, v) =
Q3[h1/fU∗] −Q3[h1/fU∗]|u=0, ξ2(u, v) = Q2[h2/gU∗] − Q2[h2/gU∗]|u=0 and
ξ3(y) = Q1[h3/λ0]. Here the operatorQp was defined in the proof of Theorem 3.1.
Thus, the results in Theorem 3.3 and Lemma 6.2 imply that

‖hn(U
∗, Y,V ) − h(U∗, Y,V )‖2

L2(P ) ≤ O

(
1

K2k
n

)
+ op

(
1√
n

)
.

Step 5. We derive the empirical process for
√

n(α̂n − α0). Since (ψ̂n, α̂n)

maximizes the log-likelihood in the sieve space, the score along the path(α̂ +
ε, ψ̂ + εhn) is zero whenε = 0. Then it holds that

Gn{lψ(ψ̂n, α̂n; γ̂n)[hn] + lα(ψ̂n, α̂n; γ̂n)}
= −√

nP{lψ(ψ̂n, α̂n; γ̂n)[hn] + lα(ψ̂n, α̂n; γ̂n)}.
For the left-hand side of the above equation, we apply Theorem 2.11.23 of van der
Vaart and Wellner (1996). Note that the function in the left-hand side, indexed by
both(ψ̂n, hn) ∈ W1,∞ and(α̂n, γ̂n) ∈ [−M,M]d+2, belongs to aP -Donsker class.
Moreover, we linearize the right-hand side at the true parameters and approximate
hn by h. SinceP{lψψ(ψ0, α0;γ ∗)[ψ̂n − ψ0, h] + lαψ(ψ0, α0;γ ∗)[ψ̂n − ψ0]} = 0,

we obtain that

−P{lψα(ψ0, α0;γ ∗)[h] + lαα(ψ0, α0;γ ∗)}√n(α̂n − α0)

= Gn{lψ(ψ0, α0;γ ∗)[h] + lα(ψ0, α0;γ ∗)}
+ P{lψγ (ψ0, α0;γ ∗)[h] + lαγ (ψ0, α0;γ ∗)}√n(γ̂n − γ ∗)

+ √
nOp

(‖ψ̂n − ψ0‖2
L2(P ) + |α̂ − α0|2 + ‖hn − h‖2

L2(P ) + |γ̂n − γ ∗|2).
The last term isop(1) from Theorem 3.3 and Assumption A6. Hence, the
asymptotic normality of

√
n(α̂n − α0) holds if we can prove the following lemma.

LEMMA 6.3. −P{lψα(ψ0, α0;γ ∗)[h] + lαα(ψ0, α0;γ ∗)} > 0.

PROOF. We note that

−P{lψα(ψ0, α0;γ ∗)[h] + lαα(ψ0, α0;γ ∗)}
= P{lα(ψ0, α0;γ ∗) + lψ(ψ0, α0;γ ∗)[h]}2 ≥ 0.

Moreover, iflα(ψ0, α0;γ ∗) + lψ(ψ0, α0;γ ∗)[h] is zero, then forR = 1,

0= h1(U
∗, Y,V )

fU∗(U∗|Y,V )
+

{
h3(Y )

λ0(Y )
− eα0V

∫ Y

0
h3(s) ds

}
− V e−α0V �0(Y ) + V.
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Let Y = 0. Multiply both sides byfU∗ , then integrate both sides overU∗ from
a(γ ∗) to b(γ ∗). We haveV = −h3(0)/λ0(0). This is a contradiction. �

Furthermore, we obtain the influence function ofα̂n to be

−{P[lψα(ψ0, α0;γ ∗)[h] + lαα(ψ0, α0;γ ∗)]}−1

× {lψ(ψ0, α0;γ ∗)[h] + lα(ψ0, α0;γ ∗)
+ P[lψγ (ψ0, α0;γ ∗)[h] + lαγ (ψ0, α0;γ ∗)]S(Y,R,W ;γ ∗)},

whereS(Y,R,W ;γ ∗) is the influence function of̂γn. When both working mod-
els are correct,l(ψ0, α0;γ ) is always the logarithm of the density for(T ∧
C,R,U(γ ),V ) whatever valueγ takes. SoP[lψ(ψ0, α0;γ )[h] + lα(ψ0, α0;γ )]
is an expectation of a score function; thus, it is equal to 0. This implies
P[lψγ (ψ0, α0;γ ∗)[h] + lαγ (ψ0, α0;γ ∗)] = 0. Hence,α̂n has an influence func-
tion equal to−{P[lψα(ψ0, α0;γ ∗)[h] + lαα(ψ0, α0;γ ∗)]}−1{lψ(ψ0, α0;γ ∗)[h] +
lα(ψ0, α0;γ ∗)}, which is exactly the efficient influence function forα. Conse-
quently, the asymptotic variance of

√
n(α̂n − α0) is equal to the semiparametric

efficiency bound. �
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