Introduction
• Why large sample theory

 – studying small sample property is usually difficult and complicated

 – large sample theory studies the limit behavior of a sequence of random variables, say X_n.

 – example: $\bar{X}_n \to \mu$, $\sqrt{n}(\bar{X}_n - \mu)$
Modes of Convergence
• Convergence almost surely

Definition 3.1 X_n is said to converge almost surely to X, denoted by $X_n \to_{a.s.} X$, if there exists a set $A \subset \Omega$ such that $P(A^c) = 0$ and for each $\omega \in A$, $X_n(\omega) \to X(\omega)$ in real space.
• Equivalent condition

\[\{ \omega : X_n(\omega) \to X(\omega) \}^c \]

\[= \bigcup_{\epsilon > 0} \bigcap_n \{ \omega : \sup_{m \geq n} |X_m(\omega) - X(\omega)| > \epsilon \} \]

\[\Rightarrow X_n \to_{a.s.} X \text{ iff } \]

\[P(\sup_{m \geq n} |X_m - X| > \epsilon) \to 0 \]
• Convergence in probability

Definition 3.2 X_n is said to converge in probability to X, denoted by $X_n \xrightarrow{p} X$, if for every $\epsilon > 0$,

\[P(|X_n - X| > \epsilon) \to 0. \]
• Convergence in moments/means

Definition 3.3 X_n is said to *converge in rth mean* to X, denote by $X_n \to_r X$, if

$$E[|X_n - X|^r] \to 0 \text{ as } n \to \infty$$

for functions $X_n, X \in L_r(P)$, where $X \in L_r(P)$ means $\int |X|^r dP < \infty$.
• **Convergence in distribution**

Definition 3.4 X_n is said to *converge in distribution* of X, denoted by $X_n \xrightarrow{d} X$ or $F_n \xrightarrow{d} F$ (or $L(X_n) \rightarrow L(X)$ with L referring to the “law” or “distribution”), if the distribution functions F_n and F of X_n and X satisfy

$$F_n(x) \rightarrow F(x) \text{ as } n \rightarrow \infty$$

for each continuity point x of F.

• Uniform integrability

Definition 3.5 A sequence of random variables \(\{X_n\} \) is **uniformly integrable** if

\[
\lim_{\lambda \to \infty} \lim_{n \to \infty} \sup E \{|X_n| I(|X_n| \geq \lambda)\} = 0.
\]

• A note

 – Convergence almost surely and convergence in probability are the same as we defined in measure theory.

 – Two new definitions are
 * convergence in rth mean
 * convergence in distribution
• “convergence in distribution”
 – is very different from others
 – example: a sequence X, Y, X, Y, X, Y, \ldots where X and Y are $N(0, 1)$; the sequence converges in distribution to $N(0, 1)$ but the other modes do not hold.
 – “convergence in distribution” is important for asymptotic statistical inference.
• Relationship among different modes

Theorem 3.1
A. If $X_n \rightarrow_{a.s.} X$, then $X_n \rightarrow_p X$.
B. If $X_n \rightarrow_p X$, then $X_{n_k} \rightarrow_{a.s.} X$ for some subsequence X_{n_k}.
C. If $X_n \rightarrow_r X$, then $X_n \rightarrow_p X$.
D. If $X_n \rightarrow_p X$ and $|X_n|^r$ is uniformly integrable, then $X_n \rightarrow_r X$.
E. If $X_n \rightarrow_p X$ and $\limsup_n E|X_n|^r \leq E|X|^r$, then $X_n \rightarrow_r X$.
F. If $X_n \rightarrow_r X$, then $X_n \rightarrow_{r'} X$ for any $0 < r' \leq r$.

G. If $X_n \rightarrow_p X$, then $X_n \rightarrow_d X$.

H. $X_n \rightarrow_p X$ if and only if for every subsequence $\{X_{n_k}\}$ there exists a further subsequence $\{X_{n_{k,l}}\}$ such that $X_{n_{k,l}} \rightarrow_{a.s.} X$.

I. If $X_n \rightarrow_d c$ for a constant c, then $X_n \rightarrow_p c$.
\[\xi_n \overset{\text{a.s.}}{\to} \xi \]

for a subsequence

\[\xi_n \overset{p}{\to} \xi \]

\[\xi_n \overset{d}{\to} \xi \]

\[|\xi_n|^r \text{ uniformly integrable} \]

\[\lim_{n \to \infty} E[|\xi_n|^r] \leq E[|\xi|^r] \]

\[\xi \text{ is a constant} \]
Proof

A and B follow from the results in the measure theory.

Prove C. Markov inequality: for any increasing function $g(\cdot)$ and random variable Y, $P(|Y| > \epsilon) \leq E\left[\frac{g(|Y|)}{g(\epsilon)}\right]$.

$\Rightarrow P(|X_n - X| > \epsilon) \leq E\left[\frac{|X_n - X|^r}{\epsilon^r}\right] \to 0.$
Prove D. It is sufficient to show that for any subsequence of \(\{X_n\} \), there exists a further subsequence \(\{X_{n_k}\} \) such that
\[
E|X_{n_k} - X|^r \to 0.
\]

For any subsequence of \(\{X_n\} \), from B, there exists a further subsequence \(\{X_{n_k}\} \) such that \(X_{n_k} \to_{a.s.} X \). For any \(\epsilon \), there exists \(\lambda \) such that \(\limsup_{n_k} E[|X_{n_k}|^r I(|X_{n_k}|^r \geq \lambda)] < \epsilon \).

Particularly, choose \(\lambda \) such that \(P(|X|^r = \lambda) = 0 \)
\[
\Rightarrow |X_{n_k}|^r I(|X_{n_k}|^r \geq \lambda) \to_{a.s.} |X|^r I(|X|^r \geq \lambda).
\]

\[
\Rightarrow \text{By the Fatou’s Lemma,}
\]
\[
E[|X|^r I(|X|^r \geq \lambda)] \leq \limsup_{n_k} E[|X_{n_k}|^r I(|X_{n_k}|^r \geq \lambda)] < \epsilon.
\]
\[
\begin{align*}
\Rightarrow \\
E[|X_{n_k} - X|^r] \\
\leq E[|X_{n_k} - X|^r I(|X_{n_k}|^r < 2\lambda, |X|^r < 2\lambda)] \\
+ E[|X_{n_k} - X|^r I(|X_{n_k}|^r \geq 2\lambda, \text{ or } |X|^r \geq 2\lambda)] \\
\leq E[|X_{n_k} - X|^r I(|X_{n_k}|^r < 2\lambda, |X|^r < 2\lambda)] \\
+ 2^r E[(|X_{n_k}|^r + |X|^r)I(|X_{n_k}|^r \geq 2\lambda, \text{ or } |X|^r \geq 2\lambda)],
\end{align*}
\]

where the last inequality follows from the inequality

\[(x + y)^r \leq 2^r (\max(x, y))^r \leq 2^r (x^r + y^r), x \geq 0, y \geq 0.\]

When \(n_k\) is large, the second term is bounded by

\[2 \times 2^r \{E[|X_{n_k}|^r I(|X_{n_k}| \geq \lambda)] + E[|X|^r I(|X| \geq \lambda)]\} \leq 2^{r+1}\epsilon.\]

\[\Rightarrow \limsup_n E[|X_{n_k} - X|^r] \leq 2^{r+1}\epsilon.\]
Prove E. It is sufficient to show that for any subsequence of \(\{X_n\} \), there exists a further subsequence \(\{X_{n_k}\} \) such that
\[
E[|X_{n_k} - X|^r] \to 0.
\]

For any subsequence of \(\{X_n\} \), there exists a further subsequence \(\{X_{n_k}\} \) such that \(X_{n_k} \to_{a.s.} X \). Define
\[
Y_{n_k} = 2^r (|X_{n_k}|^r + |X|^r) - |X_{n_k} - X|^r \geq 0.
\]

\[\Rightarrow\] By the Fatou’s Lemma,
\[
\int \lim \inf_{n_k} Y_{n_k} \, dP \leq \lim \inf_{n_k} \int Y_{n_k} \, dP.
\]

It is equivalent to
\[
2^{r+1} E[|X|^r] \leq \lim \inf_{n_k} \left\{ 2^r E[|X_{n_k}|^r] + 2^r E[|X|^r] - E[|X_{n_k} - X|^r] \right\}.
\]
Prove F. The Hölder inequality:

\[
\int |f(x)g(x)|d\mu \leq \left\{ \int |f(x)|^p d\mu(x) \right\}^{1/p} \left\{ \int |g(x)|^q d\mu(x) \right\}^{1/q},
\]

\[
\frac{1}{p} + \frac{1}{q} = 1.
\]

Choose \(\mu = P \), \(f = |X_n - X|^{r'} \), \(g \equiv 1 \) and \(p = r/r' \), \(q = r/(r - r') \) in the Hölder inequality

\[
\Rightarrow \quad E[|X_n - X|^{r'}] \leq E[|X_n - X|^{r}]^{r'/r} \to 0.
\]
Prove G. \(X_n \xrightarrow{p} X \). If \(P(X = x) = 0 \), then for any \(\epsilon > 0 \),

\[
P(|I(X_n \leq x) - I(X \leq x)| > \epsilon) \\
= P(|I(X_n \leq x) - I(X \leq x)| > \epsilon, |X - x| > \delta) \\
+ P(|I(X_n \leq x) - I(X \leq x)| > \epsilon, |X - x| \leq \delta) \\
\leq P(X_n \leq x, X > x + \delta) + P(X_n > x, X < x - \delta) \\
+ P(|X - x| \leq \delta) \\
\leq P(|X_n - X| > \delta) + P(|X - x| \leq \delta).
\]

The first term converges to zero since \(X_n \xrightarrow{p} X \).
The second term can be arbitrarily small if \(\delta \) is small, since

\[
\lim_{\delta \to 0} P(|X - x| \leq \delta) = P(X = x) = 0.
\]

\(\Rightarrow I(X_n \leq x) \xrightarrow{p} I(X \leq x) \)

\(\Rightarrow F_n(x) = E[I(X_n \leq x)] \to E[I(X \leq x)] = F(x). \)
Prove H. One direction follows from B.

To prove the other direction, use the contradiction. Suppose there exists $\epsilon > 0$ such that $P(|X_n - X| > \epsilon)$ does not converge to zero.
\Rightarrow find a subsequence $\{X_{n'}\}$ such that $P(|X_{n'} - X| > \epsilon) > \delta$ for some $\delta > 0$.

However, by the condition, there exists a further subsequence $X_{n''}$ such that $X_{n''} \rightarrow_{a.s.} X$ then $X_{n''} \rightarrow_p X$ from A. Contradiction!
Prove I. Let $X \equiv c$.

\[
P(|X_n - c| > \epsilon) \leq 1 - F_n(c + \epsilon) + F_n(c - \epsilon)
\]
\[
\rightarrow 1 - F_X(c + \epsilon) + F(c - \epsilon) = 0.
\]
Some counter-examples

(Example 1) Suppose that X_n is degenerate at a point $1/n$; i.e., $P(X_n = 1/n) = 1$. Then X_n converges in distribution to zero. Indeed, X_n converges almost surely.
(Example 2) X_1, X_2, \ldots are i.i.d with standard normal distribution. Then $X_n \rightarrow_d X_1$ but X_n does not converge in probability to X_1.
(Example 3) Let \(Z \) be a random variable with a uniform distribution in \([0, 1]\). Let

\[
X_n = I(m2^{-k} \leq Z < (m + 1)2^{-k}) \text{ when } n = 2^k + m
\]

where \(0 \leq m < 2^k \). Then it is shown that \(X_n \) converges in probability to zero but not almost surely. This example is already given in the second chapter.
(Example 4) Let Z be $Uniform(0, 1)$ and let $X_n = 2^n I(0 \leq Z < 1/n)$. Then $E[|X_n|^r] \to \infty$ but X_n converges to zero almost surely.
• Result for convergence in rth mean

Theorem 3.2 (Vitali’s theorem) Suppose that $X_n \in L_r(P)$, i.e., $\|X_n\|_r < \infty$, where $0 < r < \infty$ and $X_n \rightarrow_p X$. Then the following are equivalent:

A. $\{|X_n|^r\}$ are uniformly integrable.

B. $X_n \rightarrow_r X$.

C. $E[|X_n|^r] \rightarrow E[|X|^r]$.
One sufficient condition for uniform integrability

Liapunov condition: there exists a positive constant ϵ_0 such that $\limsup_n E[|X_n|^{r+\epsilon_0}] < \infty$

\[
E[|X_n|^r I(|X_n|^r \geq \lambda)] \leq \frac{E[|X_n|^{r+\epsilon_0}]}{\lambda^{\epsilon_0}}
\]
Integral inequalities
• Young’s inequality

\[|ab| \leq \frac{|a|^p}{p} + \frac{|b|^q}{q}, \quad a, b > 0, \]

where the equality holds if and only if \(a = b \).

\(\log x \) is concave:

\[\log\left(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q\right) \geq \frac{1}{p} \log |a|^p + \frac{1}{q} \log |b|. \]

Geometric interpretation (insert figure here):
• Hölder inequality

\[\int |f(x)g(x)| \, d\mu(x) \leq \left\{ \int |f(x)|^p \, d\mu(x) \right\}^{\frac{1}{p}} \left\{ \int |g(x)|^q \, d\mu(x) \right\}^{\frac{1}{q}}. \]

– in the Young’s inequality, let

\[a = f(x)/ \left\{ \int |f(x)|^p \, d\mu(x) \right\}^{1/p} \]
\[b = g(x)/ \left\{ \int |g(x)|^q \, d\mu(x) \right\}^{1/q}. \]

– when \(\mu = P \) and \(f = X(\omega), \, g = 1 \), \(\mu_r^{s-t} \mu_t^{r-s} \geq \mu_s^{r-t} \)

where \(\mu_r = E[|X|^r] \) and \(r \geq s \geq t \geq 0 \).

– when \(p = q = 2 \), obtain Cauchy-Schwartz inequality:

\[\int |f(x)g(x)| \, d\mu(x) \leq \left\{ \int f(x)^2 \, d\mu(x) \right\}^{\frac{1}{2}} \left\{ \int g(x)^2 \, d\mu(x) \right\}^{\frac{1}{2}}. \]
• *Minkowski’s inequality* $r > 1$,

$$\|X + Y\|_r \leq \|X\|_r + \|Y\|_r.$$

– derivation:

$$E[|X + Y|^r] \leq E[(|X| + |Y|)|X + Y|^{r-1}]$$

$$\leq E[|X|^r]^{1/r} E[|X+Y|^r]^{1-1/r} + E[|Y|^r]^{1/r} E[|X+Y|^r]^{1-1/r}.$$

– $\| \cdot \|_r$ in fact is a norm in the linear space \{ $X : \|X\|_r < \infty$ \}. Such a normed space is denoted as $L_r(P)$.

\begin{itemize}
 \item \textit{Markov’s inequality}
 \[P(|X| \geq \epsilon) \leq \frac{E[g(|X|)]}{g(\epsilon)}, \]
 where \(g \geq 0 \) is a increasing function in \([0, \infty)\).

 \text{-} Derivation:
 \[
P(|X| \geq \epsilon) \leq P(g(|X|) \geq g(\epsilon))
 = E[I(g(|X|) \geq g(\epsilon))] \leq E\left[\frac{g(|X|)}{g(\epsilon)}\right].
 \]

 \text{-} When \(g(x) = x^2 \) and \(X \) replaced by \(X - \mu \), obtain \textit{Chebyshev’s inequality}:
 \[
P(|X - \mu| \geq \epsilon) \leq \frac{Var(X)}{\epsilon^2}.
 \]
\end{itemize}
• Application of Vitali’s theorem

- \(Y_1, Y_2, ... \) are i.i.d with mean \(\mu \) and variance \(\sigma^2 \). Let \(X_n = \bar{Y}_n \).

- By the Chebyshev’s inequality,

\[
P(|X_n - \mu| > \epsilon) \leq \frac{Var(X_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0.
\]

\(\Rightarrow \) \(X_n \to_p \mu \).

- From the Liapunov condition with \(r = 1 \) and \(\epsilon_0 = 1 \), \(|X_n - \mu| \) satisfies the uniform integrability condition

\[
E[|X_n - \mu|] \to 0.
\]
Convergence in Distribution
“Convergence in distribution is the most important mode of convergence in statistical inference.”
Equivalent conditions

Theorem 3.3 (Portmanteau Theorem) The following conditions are equivalent.

(a). X_n converges in distribution to X.

(b). For any bounded continuous function $g(\cdot)$, $E[g(X_n)] \to E[g(X)]$.

(c). For any open set G in R, \[\liminf_n P(X_n \in G) \geq P(X \in G). \]

(d). For any closed set F in R, \[\limsup_n P(X_n \in F) \leq P(X \in F). \]

(e). For any Borel set O in R with $P(X \in \partial O) = 0$ where ∂O is the boundary of O, $P(X_n \in O) \to P(X \in O)$.
Proof

(a) ⇒ (b). Without loss of generality, assume \(|g(x)| \leq 1 \). We choose \([-M, M]\) such that \(P(|X| = M) = 0 \).

Since \(g \) is continuous in \([-M, M]\), \(g \) is uniformly continuous in \([-M, M]\).

⇒ Partition \([-M, M]\) into finite intervals \(I_1 \cup \ldots \cup I_m \) such that within each interval \(I_k \), \(\max_{I_k} g(x) - \min_{I_k} g(x) \leq \epsilon \) and \(X \) has no mass at all the endpoints of \(I_k \) (why?).
Therefore, if choose any point $x_k \in I_k, k = 1, \ldots, m,$

\[
\begin{align*}
|E[g(X_n)] - E[g(X)]| &\leq E[|g(X_n)|I(|X_n| > M)] + E[|g(X)|I(|X| > M)] \\
+ |E[g(X_n)I(|X_n| \leq M)] - \sum_{k=1}^{m} g(x_k)P(X_n \in I_k)| \\
+ \left| \sum_{k=1}^{m} g(x_k)P(X_n \in I_k) - \sum_{k=1}^{m} g(x_k)P(X \in I_k) \right| \\
+ |E[g(X)I(|X| \leq M)] - \sum_{k=1}^{m} g(x_k)P(X \in I_k)| \\
\leq P(|X_n| > M) + P(|X| > M) \\
+ 2\epsilon + \sum_{k=1}^{m} |P(X_n \in I_k) - P(X \in I_k)|.
\end{align*}
\]

$\Rightarrow \limsup_n |E[g(X_n)] - E[g(X)]| \leq 2P(|X| > M) + 2\epsilon$. Let $M \to \infty$ and $\epsilon \to 0.$
(b) ⇒ (c). For any open set G, define $g(x) = 1 - \frac{\epsilon}{\epsilon + d(x, G^c)}$, where $d(x, G^c)$ is the minimal distance between x and G^c, $\inf_{y \in G^c} |x - y|$.

For any $y \in G^c$, $d(x_1, G^c) - |x_2 - y| \leq |x_1 - y| - |x_2 - y| \leq |x_1 - x_2|$,
⇒ $d(x_1, G^c) - d(x_2, G^c) \leq |x_1 - x_2|$.
⇒ $g(x_1) - g(x_2) \leq \epsilon^{-1}d(x_1, G^c) - d(x_2, G^c) \leq \epsilon^{-1}|x_1 - x_2|$.
⇒ $g(x)$ is continuous and bounded.
⇒ $E[g(X_n)] \rightarrow E[g(X)]$.

Note $0 \leq g(x) \leq I_G(x)$
⇒
$$\liminf_n P(X_n \in G) \geq \liminf_n E[g(X_n)] \rightarrow E[g(X)].$$

Let $\epsilon \rightarrow 0 \Rightarrow E[g(X)]$ converges to $E[I(X \in G)] = P(X \in G)$.

(c) ⇒ (d). This is clear by taking complement of F.
(d)⇒(e). For any O with $P(X \in \partial O) = 0$,

$$\limsup_{n} P(X_n \in O) \leq \limsup_{n} P(X_n \in \bar{O}) \leq P(X \in \bar{O}) = P(X \in \bar{O}),$$

$$\liminf_{n} P(X_n \in O) \geq \liminf_{n} P(X_n \in O^o) \geq P(X \in O^o) = P(X \in O).$$

(e)⇒(a). Choose $O = (-\infty, x]$ with $P(X \in \partial O) = P(X = x) = 0$.
• **Counter-examples**

 – Let $g(x) = x$, a continuous but unbounded function. Let X_n be a random variable taking value n with probability $1/n$ and value 0 with probability $(1 - 1/n)$. Then $X_n \to_d 0$. However, $E[g(X)] = 1$ does not converge to 0.

 – The continuity at boundary in (e) is also necessary: let X_n be degenerate at $1/n$ and consider $O = \{x : x > 0\}$. Then $P(X_n \in O) = 1$ but $X_n \to_d 0$.
Weak Convergence and Characteristic Functions
Theorem 3.4 (Continuity Theorem) Let ϕ_n and ϕ denote the characteristic functions of X_n and X respectively. Then $X_n \xrightarrow{d} X$ is equivalent to $\phi_n(t) \to \phi(t)$ for each t.
Proof

To prove \Rightarrow direction, from (b) in Theorem 3.1,

$$
\phi_n(t) = E[e^{itX_n}] \rightarrow E[e^{itX}] = \phi(t).
$$

The proof of \Leftarrow direction consists of a few tricky constructions (skipped).
• One simple example $X_1, \ldots, X_n \sim Bernoulli(p)$

$$
\phi_{\bar{X}_n}(t) = E[e^{it(X_1+\ldots+X_n)/n}] = (1 = p + pe^{it/n})^n
$$

$$
= (1 - p + p + itp/n + o(1/n))^n \to e^{itp}.
$$

Note the limit is the c.f. of $X = p$. Thus, $\bar{X}_n \to_d p$ so \bar{X}_n converges in probability to p.

Generalization to multivariate random vectors

- \(X_n \rightarrow_d X \) if and only if
 \[E[\exp\{it'X_n\}] \rightarrow E[\exp\{it'X\}] \]
 where \(t \) is any \(k \)-dimensional constant

- Equivalently, \(t'X_n \rightarrow_d t'X \) for any \(t \)

- to study the weak convergence of random vectors, we can reduce to study the weak convergence of one-dimensional linear combination of the random vectors

- This is the well-known Cramér-Wold’s device
Theorem 3.5 (The Cramér-Wold device) Random vector X_n in \mathbb{R}^k satisfy $X_n \rightarrow_d X$ if and only $t'X_n \rightarrow_d t'X$ in \mathbb{R} for all $t \in \mathbb{R}^k$.
Properties of Weak Convergence
Theorem 3.6 (Continuous mapping theorem)
Suppose $X_n \rightarrow_{a.s.} X$, or $X_n \rightarrow_{p} X$, or $X_n \rightarrow_{d} X$. Then for any continuous function $g(\cdot)$, $g(X_n)$ converges to $g(X)$ almost surely, or in probability, or in distribution.
Proof

If $X_n \rightarrow_{a.s.} X$, then $g(X_n) \rightarrow_{a.s.} g(X)$.

If $X_n \rightarrow_{p} X$, then for any subsequence, there exists a further subsequence $X_{n_k} \rightarrow_{a.s.} X$. Thus, $g(X_{n_k}) \rightarrow_{a.s.} g(X)$. Then $g(X_n) \rightarrow_{p} g(X)$ from (H) in Theorem 3.1.

To prove that $g(X_n) \rightarrow_{d} g(X)$ when $X_n \rightarrow_{d} X$, use (b) of Theorem 3.1.
• **One remark**

Theorem 3.6 concludes that \(g(X_n) \to_d g(X) \) if \(X_n \to_d X \) and \(g \) is continuous. In fact, this result still holds if \(P(X \in C(g)) = 1 \) where \(C(g) \) contains all the continuity points of \(g \). That is, if \(g \)'s discontinuity points take zero probability of \(X \), the continuous mapping theorem holds.
Theorem 3.7 (Slutsky theorem) Suppose $X_n \rightarrow_d X$, $Y_n \rightarrow_p y$ and $Z_n \rightarrow_p z$ for some constant y and z. Then $Z_n X_n + T_n \rightarrow_d z X + y$.
Proof

First show that $X_n + Y_n \rightarrow_d X + y$.

For any $\epsilon > 0$,

$$P(X_n + Y_n \leq x) \leq P(X_n + Y_n \leq x, |Y_n - y| \leq \epsilon) + P(|Y_n - y| > \epsilon)$$

$$\leq P(X_n \leq x - y + \epsilon) + P(|Y_n - y| > \epsilon).$$

$$\Rightarrow \lim \sup_n F_{X_n+Y_n}(x) \leq \lim \sup_n F_{X_n}(x - y + \epsilon) \leq F_X(x - y + \epsilon).$$
On the other hand,

\[
P(X_n + Y_n > x) = P(X_n + Y_n > x, |Y_n - y| \leq \epsilon) + P(|Y_n - y| > \epsilon) \\
\leq P(X_n > x - y - \epsilon) + P(|Y_n - y| > \epsilon).
\]

\[\Rightarrow\]

\[
\limsup_n (1 - F_{X_n+Y_n}(x)) \leq \limsup_n P(X_n > x - y - \epsilon) \\
\leq \limsup_n P(X_n \geq x - y - 2\epsilon) \leq (1 - F_X(x - y - 2\epsilon)).
\]

\[\Rightarrow\ F_X(x - y - 2\epsilon) \leq \liminf_n F_{X_n+Y_n}(x) \leq \limsup_n F_{X_n+Y_n}(x) \leq F_X(x + y + \epsilon).
\]

\[\Rightarrow\]

\[
F_{X+Y}(x-) \leq \liminf_n F_{X_n+Y_n}(x) \leq \limsup_n F_{X_n+Y_n}(x) \leq F_{X+Y}(x).
\]
To complete the proof,

\[P(\left|(Z_n - z)X_n\right| > \epsilon) \leq P(\left|Z_n - z\right| \geq \epsilon^2) + P(\left|Z_n - z\right| \leq \epsilon^2, |X_n| > \frac{1}{\epsilon}). \]

\[\Rightarrow \]

\[\limsup_n P(\left|(Z_n - z)X_n\right| > \epsilon) \leq \limsup_n P(\left|Z_n - z\right| > \epsilon^2) \]

\[+ \limsup_n P(\left|X_n\right| \geq \frac{1}{2\epsilon}) \rightarrow P(\left|X\right| \geq \frac{1}{2\epsilon}). \]

\[\Rightarrow \text{that } (Z_n - z)X_n \rightarrow_p 0. \]

Clearly \(zX_n \rightarrow_d zX \Rightarrow Z_nX_n \rightarrow_d zX \) from the proof in the first half.

Again, using the first half’s proof, \(Z_nX_n + Y_n \rightarrow_d zX + y. \)
• **Examples**

 - Suppose \(X_n \to_d N(0, 1)\). Then by continuous mapping theorem, \(X_n^2 \to_d \chi_1^2\).

 - This example shows that \(g\) can be discontinuous in Theorem 3.6. Let \(X_n \to_d X\) with \(X \sim N(0, 1)\) and \(g(x) = 1/x\). Although \(g(x)\) is discontinuous at origin, we can still show that \(1/X_n \to_d 1/X\), the reciprocal of the normal distribution. This is because \(P(X = 0) = 0\). However, in Example 3.6 where \(g(x) = I(x > 0)\), it shows that Theorem 3.6 may not be true if \(P(X \in C(g)) < 1\).
The condition $Y_n \rightarrow_p y$, where y is a constant, is necessary. For example, let $X_n = X \sim Uniform(0, 1)$. Let $Y_n = -X$ so $Y_n \rightarrow_d -\tilde{X}$, where \tilde{X} is an independent random variable with the same distribution as X. However $X_n + Y_n = 0$ does not converge in distribution to $X - \tilde{X}$.
Let X_1, X_2, \ldots be a random sample from a normal distribution with mean μ and variance $\sigma^2 > 0$,

$$\sqrt{n} (\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2),$$

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \xrightarrow{a.s} \sigma^2.$$

$$\Rightarrow \quad \frac{\sqrt{n}(\bar{X}_n - \mu)}{s_n} \xrightarrow{d} \frac{1}{\sigma} N(0, \sigma^2) \approx N(0, 1).$$

$$\Rightarrow \text{in large sample, } t_{n-1} \text{ can be approximated by a standard normal distribution.}$$
Representation of Weak Convergence
Theorem 3.8 (Skorohod’s Representation Theorem) Let \(\{X_n\} \) and \(X \) be random variables in a probability space \((\Omega, \mathcal{A}, P)\) and \(X_n \xrightarrow{d} X \). Then there exists another probability space \((\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P})\) and a sequence of random variables \(\tilde{X}_n\) and \(\tilde{X}\) defined on this space such that \(\tilde{X}_n\) and \(X_n\) have the same distributions, \(\tilde{X}\) and \(X\) have the same distributions, and moreover, \(\tilde{X}_n \xrightarrow{a.s.} \tilde{X}\).
• Quantile function

\[F^{-1}(p) = \inf\{x : F(x) \geq p\}. \]

Proposition 3.1

(a) \(F^{-1} \) is left-continuous.

(b) If \(X \) has continuous distribution function \(F \), then \(F(X) \sim Uniform(0, 1) \).

(c) Let \(\xi \sim Uniform(0, 1) \) and let \(X = F^{-1}(\xi) \). Then for all \(x \), \(\{X \leq x\} = \{\xi \leq F(x)\} \). Thus, \(X \) has distribution function \(F \).
Proof

(a) Clearly, F^{-1} is nondecreasing. Suppose p_n increases to p then $F^{-1}(p_n)$ increases to some $y \leq F^{-1}(p)$. Then $F(y) \geq p_n$ so $F(y) \geq p$. $\Rightarrow F^{-1}(p) \leq y \Rightarrow y = F^{-1}(p)$.

(b) $\{X \leq x\} \subset \{F(X) \leq F(x)\} \Rightarrow F(x) \leq P(F(X) \leq F(x))$.
$\{F(X) \leq F(x) - \epsilon\} \subset \{X \leq x\} \Rightarrow P(F(X) \leq F(x) - \epsilon) \leq F(x) \Rightarrow P(F(X) \leq F(x) - \epsilon) \leq F(x)$.

Then if X is continuous, $P(F(X) \leq F(x)) = F(x)$.

(c) $P(X \leq x) = P(F^{-1}(\xi) \leq x) = P(\xi \leq F(x)) = F(x)$.
Proof

Let $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P})$ be $([0, 1], \mathcal{B} \cap [0, 1], \lambda)$. Define $\tilde{X}_n = F^{-1}_n(\xi)$, $\tilde{X} = F^{-1}(\xi)$, where $\xi \sim Uniform(0, 1)$. \tilde{X}_n has a distribution F_n which is the same as X_n.

For any $t \in (0, 1)$ such that there is at most one value x such that $F(x) = t$ (it is easy to see t is the continuous point of F^{-1}),

\Rightarrow for any $z < x$, $F(z) < t$
\Rightarrow when n is large, $F_n(z) < t$ so $F^{-1}_n(t) \geq z$.
\Rightarrow $\lim \inf F^{-1}_n(t) \geq z \Rightarrow \lim \inf F^{-1}_n(t) \geq x = F^{-1}(t)$.

From $F(x + \epsilon) > t$, $F_n(x + \epsilon) > t$ so $F^{-1}_n(t) \leq x + \epsilon$.
\Rightarrow $\lim \sup F^{-1}_n(t) \leq x + \epsilon \Rightarrow \lim \sup F^{-1}_n(t) \leq x$.

Thus $F^{-1}_n(t) \to F^{-1}(t)$ for almost every $t \in (0, 1) \Rightarrow \tilde{X}_n \to a.s. \tilde{X}$.
• Usefulness of representation theorem

 – For example, if $X_n \to_d X$ and one wishes to show some function of X_n, denote by $g(X_n)$, converges in distribution to $g(X)$:

 – see the diagram in Figure 2.
\[\bar{x}_n \xrightarrow{d} \bar{x} \quad \Rightarrow \quad g(\bar{x}_n) \xrightarrow{d} g(\bar{x}) \]

\[\bar{x}_* \xrightarrow{a.s.} \bar{X}_* \quad \Rightarrow \quad g(\bar{X}_*) \xrightarrow{a.s.} g(\bar{X}) \]
Alternative Proof for Slutsky Theorem

First, show \((X_n, Y_n) \to_d (X, y)\).

\[
|\phi_{(X_n,Y_n)}(t_1,t_2) - \phi_{(X,y)}(t_1,t_2)| = |E[e^{it_1X_n}e^{it_2Y_n}] - E[e^{it_1X}e^{it_2y}]| \\
\leq |E[e^{it_1X_n}(e^{it_2Y_n} - e^{it_2y})]| + |e^{it_2y}| |E[e^{it_1X_n}] - E[e^{it_1X}]| \\
\leq E[|e^{it_2Y_n} - e^{it_2y}|] + |E[e^{it_1X_n}] - E[e^{it_1X}]| \to 0.
\]

Thus, \((Z_n, X_n) \to_d (z, X)\). Since \(g(z, x) = zx\) is continuous,

\[
\Rightarrow Z_nX_n \to_d zX.
\]

Since \((Z_nX_n, Y_n) \to_d (zX, y)\) and \(g(x, y) = x + y\) is continuous,

\[
\Rightarrow Z_nX_n + Y_n \to_d zX + y.
\]
Summation of Independent R.V.s
• Some preliminary lemmas

Proposition 3.2 (Borel-Cantelli Lemma) For any events A_n,

$$\sum_{i=1}^{\infty} P(A_n) < \infty$$

implies $P(A_n, i.o.) = P(\{A_n\} \text{ occurs infinitely often}) = 0$; or equivalently, $P(\cap_{n=1}^{\infty} \cup_{m\geq n} A_m) = 0$.

Proof

$$P(A_n, i.o) \leq P(\cup_{m\geq n} A_m) \leq \sum_{m\geq n} P(A_m) \rightarrow 0, \text{ as } n \rightarrow \infty.$$
• One result of the first Borel-cantelli lemma

If for a sequence of random variables, \(\{Z_n\} \), and for any \(\epsilon > 0 \), \(\sum_n P(|Z_n| > \epsilon) < \infty \), then \(|Z_n| > \epsilon \) only occurs finite times.

\[\Rightarrow Z_n \to_{a.s.} 0. \]
Proposition 3.3 (Second Borel-Cantelli Lemma)

For a sequence of independent events A_1, A_2, \ldots, $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n, i.o.) = 1$.

Proof Consider the complement of $\{A_n, i.o\}$.

\[
P(\bigcup_{n=1}^{\infty} \cap_{m\geq n} A_m^c) = \lim_{n} P(\cap_{m\geq n} A_m^c) = \lim_{n} \prod_{m\geq n} (1 - P(A_m))
\]

\[
\leq \limsup_{n} \exp\{- \sum_{m \geq n} P(A_m)\} = 0.
\]
• **Equivalence lemma**

Proposition 3.4 $X_1, ..., X_n$ are i.i.d with finite mean.
Define $Y_n = X_n I(|X_n| \leq n)$. Then

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty.$$
Proof Since $E[|X_1|] < \infty$,

$$
\sum_{n=1}^{\infty} P(|X| \geq n) = \sum_{n=1}^{\infty} nP(n \leq |X| < (n + 1)) \leq \sum_{n=1}^{\infty} E[|X|] < \infty.
$$

From the Borel-Cantelli Lemma, $P(X_n \neq Y_n, i.o) = 0$.

For almost every $\omega \in \Omega$, when n is large enough, $X_n(\omega) = Y_n(\omega)$.
Weak Law of Large Numbers
Theorem 3.9 (Weak Law of Large Number) If $X, X_1, ..., X_n$ are i.i.d with mean μ (so $E[|X|] < \infty$ and $\mu = E[X]$), then $\bar{X}_n \to_p \mu$.
Proof

Define \(Y_n = X_n I(-n \leq X_n \leq n) \). Let \(\bar{\mu}_n = \frac{\sum_{k=1}^{n} E[Y_k]}{n} \).

\[
P(|\bar{Y}_n - \bar{\mu}_n| \geq \epsilon) \leq \frac{\text{Var}(\bar{Y}_n)}{\epsilon^2} \leq \frac{\sum_{k=1}^{n} \text{Var}(X_k I(|X| \leq k))}{n^2 \epsilon^2}.
\]

\[
\text{Var}(X_k I(|X| \leq k)) \leq E[X_k^2 I(|X| \leq k)]
\]

\[
= E[X_k^2 I(|X| \leq k, |X| \geq \sqrt{k \epsilon^2})] + E[X_k^2 I(|X| \leq k, |X| \leq \sqrt{k \epsilon^2})]
\]

\[
\leq k E[|X_k| I(|X_k| \geq \sqrt{k \epsilon^2})] + k \epsilon^4,
\]

\[
\Rightarrow \text{Var}(X_k I(|X| \leq k)) \leq \frac{\sum_{k=1}^{n} E[|X| I(|X| \geq \sqrt{k \epsilon^2})]}{n^2 \epsilon^2} + \epsilon^2 \frac{n(n+1)}{2n^2}.
\]

\[
\limsup_n P(|\bar{Y}_n - \mu| \geq \epsilon) \leq \frac{\epsilon^2}{2n^2} \Rightarrow \bar{Y}_n - \bar{\mu}_n \rightarrow_p 0.
\]

\[
\bar{\mu}_n \rightarrow \mu \Rightarrow \bar{Y}_n \rightarrow_p \mu. \text{ From Proposition 3.4 and subsequence arguments,}
\]

\[
\bar{X}_{nk} \rightarrow a.s. \mu \Rightarrow X_n \rightarrow_p \mu.
\]
Strong Law of Large Numbers
Theorem 3.10 (Strong Law of Large Number) If X_1, \ldots, X_n are i.i.d with mean μ then $\bar{X}_n \to_{a.s.} \mu$.
Proof

Without loss of generality, we assume $X_n \geq 0$ since if this is true, the result also holds for any X_n by $X_n = X_n^+ - X_n^-$. Similar to Theorem 3.9, it is sufficient to show $\bar{Y}_n \to_{a.s.} \mu$, where $Y_n = X_n I(X_n \leq n)$.

Note $E[Y_n] = E[X_1 I(X_1 \leq n)] \to \mu$ so

$$\sum_{k=1}^{n} E[Y_k]/n \to \mu.$$

\Rightarrow if we denote $\tilde{S}_n = \sum_{k=1}^{n} (Y_k - E[Y_k])$ and we can show $\tilde{S}_n/n \to_{a.s.} 0$, then the result holds.
\[
\text{Var}(\tilde{S}_n) = \sum_{k=1}^{n} \text{Var}(Y_k) \leq \sum_{k=1}^{n} E[Y_k^2] \leq nE[X_1^2 I(X_1 \leq n)].
\]

By the Chebyshev’s inequality,
\[
P\left(\left| \frac{\tilde{S}_n}{n} \right| > \epsilon \right) \leq \frac{1}{n^2 \epsilon^2} \text{Var}(\tilde{S}_n) \leq \frac{E[X_1^2 I(X_1 \leq n)]}{n \epsilon^2}.
\]

For any \(\alpha > 1 \), let \(u_n = [\alpha^n] \).
\[
\sum_{n=1}^{\infty} P\left(\left| \frac{\tilde{S}_{u_n}}{u_n} \right| > \epsilon \right) \leq \sum_{n=1}^{\infty} \frac{1}{u_n \epsilon^2} E[X_1^2 I(X_1 \leq u_n)] \leq \frac{1}{\epsilon^2} E[X_1^2 \sum_{u_n \geq X_1} \frac{1}{u_n}].
\]

Since for any \(x > 0 \), \(\sum_{u_n \geq x} \{\mu_n\}^{-1} < 2 \sum_{n \geq \log x / \log \alpha} \alpha^{-n} \leq K x^{-1} \)
for some constant \(K \), \(\Rightarrow \)
\[
\sum_{n=1}^{\infty} P\left(\left| \frac{\tilde{S}_{u_n}}{u_n} \right| > \epsilon \right) \leq \frac{K}{\epsilon^2} E[X_1] < \infty,
\]
\[
\Rightarrow \tilde{S}_{u_n} / u_n \rightarrow_{a.s.} 0.
\]
For any k, we can find $u_n < k \leq u_{n+1}$. Thus, since $X_1, X_2, \ldots \geq 0$,

$$\frac{\tilde{S}_{u_n}}{u_n} \frac{u_n}{u_{n+1}} \leq \frac{\tilde{S}_k}{k} \leq \frac{\tilde{S}_{u_{n+1}}}{u_{n+1}} \frac{u_{n+1}}{u_n}.$$

\[\Rightarrow \]

$$\frac{\mu}{\alpha} \leq \liminf_k \frac{\tilde{S}_k}{k} \leq \limsup_k \frac{\tilde{S}_k}{k} \leq \mu \alpha.$$

Since α is arbitrary number larger than 1, let $\alpha \to 1$ and we obtain $\lim_k \frac{\tilde{S}_k}{k} = \mu$.
Central Limit Theorems
• Preliminary result of c.f.

Proposition 3.5 Suppose $E[|X|^m] < \infty$ for some integer $m \geq 0$. Then

$$|\phi_X(t) - \sum_{k=0}^{m} \frac{(it)^k}{k!} E[X^k]|/|t|^m \to 0, \text{ as } t \to 0.$$
Proof

\[e^{itx} = \sum_{k=1}^{m} \frac{(itx)^k}{k!} + \frac{(itx)^m}{m!} [e^{it\theta x} - 1], \]

where \(\theta \in [0, 1] \).

\[\Rightarrow \]

\[|\phi_X(t) - \sum_{k=0}^{m} \frac{(it)^k}{k!} E[X^k]|/|t|^m \leq E[|X|^m |e^{it\theta X} - 1|]/m! \to 0, \]

as \(t \to 0. \)
• Simple versions of CLT

Theorem 3.11 (Central Limit Theorem) If $X_1, ..., X_n$ are i.i.d with mean μ and variance σ^2 then
$$\sqrt{n} (\bar{X}_n - \mu) \rightarrow_d N(0, \sigma^2).$$
Proof

Denote $Y_n = \sqrt{n}(\bar{X}_n - \mu)$.

$$\phi_{Y_n}(t) = \left\{ \phi_{X_1-\mu}(t/\sqrt{n}) \right\}^n.$$

$\Rightarrow \phi_{X_1-\mu}(t/\sqrt{n}) = 1 - \sigma^2 t^2 / 2n + o(1/n).$

\Rightarrow

$$\phi_{Y_n}(t) \rightarrow \exp\left\{-\frac{\sigma^2 t^2}{2}\right\}.$$
Theorem 3.12 (Multivariate Central Limit Theorem) If X_1, \ldots, X_n are i.i.d random vectors in \mathbb{R}^k with mean μ and covariance $\Sigma = E[(X - \mu)(X - \mu)']$, then $\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \Sigma)$.

Proof

Use the Cramér-Wold’s device.
Liapunov CLT

Theorem 3.13 (Liapunov Central Limit Theorem)
Let $X_{n1}, ..., X_{nn}$ be independent random variables with $\mu_{ni} = E[X_{ni}]$ and $\sigma^2_{ni} = Var(X_{ni})$. Let $\mu_n = \sum_{i=1}^{n} \mu_{ni}$, $\sigma^2_n = \sum_{i=1}^{n} \sigma^2_{ni}$. If

$$\sum_{i=1}^{n} \frac{E[|X_{ni} - \mu_{ni}|^3]}{\sigma^3_n} \to 0,$$

then $\sum_{i=1}^{n} (X_{ni} - \mu_{ni})/\sigma_n \to_d N(0, 1)$.
• Lindeberg-Feller CLT

Theorem 3.14 (Lindeberg-Fell Central Limit Theorem) Let X_{n1}, \ldots, X_{nn} be independent random variables with $\mu_{ni} = E[X_{ni}]$ and $\sigma_{ni}^2 = Var(X_{ni})$. Let $\sigma_n^2 = \sum_{i=1}^{n} \sigma_{ni}^2$. Then both $\sum_{i=1}^{n} \frac{(X_{ni} - \mu_{ni})}{\sigma_n} \xrightarrow{d} N(0,1)$ and $\max \{ \frac{\sigma_{ni}^2}{\sigma_n^2} : 1 \leq i \leq n \} \to 0$ if and only if the Lindeberg condition

$$\frac{1}{\sigma_n^2} \sum_{i=1}^{n} E[|X_{ni} - \mu_{ni}|^2 I(|X_{ni} - \mu_{ni}| \geq \epsilon \sigma_n)] \to 0, \text{ for all } \epsilon > 0$$

holds.
Proof of Liapunov CLT using Theorem 3.14

\[
\frac{1}{\sigma^2_n} \sum_{i=1}^{n} E[|X_{nk} - \mu_{nk}|^2 I(|X_{nk} - \mu_{nk}| > \epsilon \sigma_n)] \\
\leq \frac{1}{\epsilon^3 \sigma^3_n} \sum_{k=1}^{n} E[|X_{nk} - \mu_{nk}|^3].
\]
• Examples

- This is one example from a simple linear regression \(X_j = \alpha + \beta z_j + \epsilon_j \) for \(j = 1, 2, \ldots \) where \(z_j \) are known numbers not all equal and the \(\epsilon_j \) are i.i.d with mean zero and variance \(\sigma^2 \).

\[
\hat{\beta}_n = \frac{\sum_{j=1}^{n} X_j (z_j - \bar{z}_n)}{\sum_{j=1}^{n} (z_j - \bar{z}_n)^2} = \beta + \frac{\sum_{j=1}^{n} \epsilon_j (z_j - \bar{z}_n)}{\sum_{j=1}^{n} (z_j - \bar{z}_n)^2}.
\]

Assume

\[
\max_{j \leq n} (z_j - \bar{z}_n)^2/\sum_{j=1}^{n} (z_j - \bar{z}_n)^2 \rightarrow 0.
\]

\[
\Rightarrow \sqrt{n} \sqrt{\frac{\sum_{j=1}^{n} (z_j - \bar{z}_n)^2}{n}} (\hat{\beta}_n - \beta) \rightarrow_d N(0, \sigma^2).
\]
The example is taken from the randomization test for paired comparison. Let \((X_j, Y_j)\) denote the values of \(j\)th pairs with \(X_j\) being the result of the treatment and \(Z_j = X_j - Y_j\). Conditional on \(|Z_j| = z_j\),
\[Z_j = |Z_j| \text{sgn}(Z_j)\]
is independent taking values \(\pm |Z_j|\) with probability \(1/2\), when treatment and control have no difference. Conditional on \(z_1, z_2, \ldots\), the randomization \(t\)-test is the \(t\)-statistic \(\sqrt{n - 1} \bar{Z}_n / s_z\) where \(s_z^2\) is \(1/n \sum_{j=1}^n (Z_j - \bar{Z}_n)^2\). When

\[\max_{j \leq n} \frac{z_j^2}{\sum_{j=1}^n z_j^2} \to 0,\]

this statistic has an asymptotic normal distribution \(N(0, 1)\).
Delta Method
Theorem 3.15 (Delta method) For random vector X and X_n in \mathbb{R}^k, if there exists two constant a_n and μ such that $a_n(X_n - \mu) \xrightarrow{d} X$ and $a_n \to \infty$, then for any function $g : \mathbb{R}^k \mapsto \mathbb{R}^l$ such that g has a derivative at μ, denoted by $\nabla g(\mu)$

$$a_n(g(X_n) - g(\mu)) \xrightarrow{d} \nabla g(\mu)X.$$
Proof

By the Skorohod representation, we can construct \(\tilde{X}_n \) and \(\tilde{X} \) such that \(\tilde{X}_n \sim_d X_n \) and \(\tilde{X} \sim_d X \) (\(\sim_d \) means the same distribution) and \(a_n(\tilde{X}_n - \mu) \to_{a.s.} \tilde{X} \).

\[
\Rightarrow \\
a_n(g(\tilde{X}_n) - g(\mu)) \to_{a.s.} \nabla g(\mu) \tilde{X}
\]

\[
\Rightarrow \\
a_n(g(X_n) - g(\mu)) \to_d \nabla g(\mu) X
\]
• Examples

- Let X_1, X_2, \ldots be i.i.d with fourth moment and $s_n^2 = (1/n) \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$. Denote m_k as the kth moment of X_1 for $k \leq 4$. Note that $s_n^2 = (1/n) \sum_{i=1}^{n} X_i^2 - (\sum_{i=1}^{n} X_i/n)^2$ and

$$
\sqrt{n} \left[\left(\frac{\bar{X}_n}{(1/n) \sum_{i=1}^{n} X_i^2} \right) - \left(\begin{array}{c} m_1 \\ m_2 \end{array} \right) \right]
\rightarrow_d \mathcal{N} \left(0, \begin{pmatrix} m_2 - m_1 & m_3 - m_1 m_2 \\ m_3 - m_1 m_2 & m_4 - m_2^2 \end{pmatrix} \right),
$$

the Delta method with $g(x, y) = y - x^2$

$$
\Rightarrow \sqrt{n}(s_n^2 - \text{Var}(X_1)) \rightarrow_d \mathcal{N}(0, m_4 - (m_2 - m_1^2)^2).
$$
Let \((X_1, Y_1), (X_2, Y_2), \ldots\) be i.i.d bivariate samples with finite fourth moment. One estimate of the correlation among \(X\) and \(Y\) is

\[
\hat{\rho}_n = \frac{s_{xy}}{\sqrt{s_x^2 s_y^2}},
\]

where \(s_{xy} = (1/n) \sum_{i=1}^{n} (X_i - \bar{X}_n)(Y_i - \bar{Y}_n)\), \(s_x^2 = (1/n) \sum_{i=1}^{n} (X_i - \bar{X}_n)^2\) and \(s_y^2 = (1/n) \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2\). To derive the large sample distribution of \(\hat{\rho}_n\), first obtain the large sample distribution of \((s_{xy}, s_x^2, s_y^2)\) using the Delta method then further apply the Delta method with

\[
g(x, y, z) = x/\sqrt{y z}.
\]
The example is taken from the Pearson’s Chi-square statistic. Suppose that one subject falls into K categories with probabilities p_1, \ldots, p_K, where $p_1 + \ldots + p_K = 1$. The Pearson’s statistic is defined as

$$\chi^2 = n \sum_{k=1}^{K} \left(\frac{n_k}{n} - p_k \right)^2 / p_k,$$

which can be treated as

$$\sum (\text{observed count} - \text{expected count})^2 / \text{expected count}.$$

Note $\sqrt{n}(n_1/n - p_1, \ldots, n_K/n - p_K)$ has an asymptotic multivariate normal distribution. Then we can apply the Delta method to $g(x_1, \ldots, x_K) = \sum_{i=1}^{K} x_i^2.$
CHAPTER 3 LARGE SAMPLE THEORY

U-statistics
Definition 3.6 A \(U \)-statistics associated with \(\tilde{h}(x_1, \ldots, x_r) \) is defined as

\[
U_n = \frac{1}{r! \left(\begin{array}{c} n \\ r \end{array} \right)} \sum_{\beta} \tilde{h}(X_{\beta_1}, \ldots, X_{\beta_r}),
\]

where the sum is taken over the set of all unordered subsets \(\beta \) of \(r \) different integers chosen from \(\{1, \ldots, n\} \).
• Examples

- One simple example is \(\tilde{h}(x, y) = xy \). Then
 \[U_n = (n(n - 1))^{-1} \sum_{i \neq j} X_i X_j. \]

- \(U_n = E[\tilde{h}(X_1, \ldots, X_r) | X_{(1)}, \ldots, X_{(n)}] \).

- \(U_n \) is the summation of non-independent random variables.

- If define \(h(x_1, \ldots, x_r) \) as \((r!)^{-1} \sum (\tilde{x}_1, \ldots, \tilde{x}_r) \tilde{h}(\tilde{x}_1, \ldots, \tilde{x}_r) \),
 then \(h(x_1, \ldots, x_r) \) is permutation-symmetric
 \[U_n = \frac{1}{\binom{n}{r}} \sum_{\beta_1 < \ldots < \beta_r} h(\beta_1, \ldots, \beta_r). \]

- \(h \) is called the kernel of the U-statistic \(U_n \).
• CLT for U-statistics

Theorem 3.16 Let \(\mu = E[h(X_1, \ldots, X_r)] \). If \(E[h(X_1, \ldots, X_r)^2] < \infty \), then

\[
\sqrt{n}(U_n - \mu) - \sqrt{n} \sum_{i=1}^{n} E[U_n - \mu | X_i] \rightarrow_p 0.
\]

Consequently, \(\sqrt{n}(U_n - \mu) \) is asymptotically normal with mean zero and variance \(r^2 \sigma^2 \), where, with \(X_1, \ldots, X_r, \tilde{X}_1, \ldots, \tilde{X}_r \) i.i.d variables,

\[
\sigma^2 = Cov(h(X_1, X_2, \ldots, X_r), h(X_1, \tilde{X}_2, \ldots, \tilde{X}_r)).
\]
- Some preparation

- Linear space of r.v.: let \mathcal{S} be a linear space of random variables with finite second moments that contain the constants; i.e., $1 \in \mathcal{S}$ and for any $X, Y \in \mathcal{S}$, $aX + bY \in \mathcal{S}_n$ where a and b are constants.

- Projection: for random variable T, a random variable S is called the projection of T on \mathcal{S} if $E[(T - S)^2]$ minimizes $E[(T - \tilde{S})^2]$, $\tilde{S} \in \mathcal{S}$.
Proposition 3.7 Let \mathcal{S} be a linear space of random variables with finite second moments. Then \mathcal{S} is the projection of T on \mathcal{S} if and only if $S \in \mathcal{S}$ and for any $\tilde{S} \in \mathcal{S}$, $E[(T - S)\tilde{S}] = 0$. Every two projections of T onto \mathcal{S} are almost surely equal. If the linear space \mathcal{S} contains the constant variable, then $E[T] = E[S]$ and $Cov(T - S, \tilde{S}) = 0$ for every $\tilde{S} \in \mathcal{S}$.
Proof For any S and \tilde{S} in S,

$$E[(T - \tilde{S})^2] = E[(T - S)^2] + 2E[(T - S)\tilde{S}] + E[(S - \tilde{S})^2].$$

⇒ if S satisfies that $E[(T - S)\tilde{S}] = 0$, then $E[(T - \tilde{S})^2] \geq E[(T - S)^2]$. ⇒ S is the projection of T on S.

If S is the projection, for any constant α, $E[(T - S - \alpha\tilde{S})^2]$ is minimized at $\alpha = 0$. Calculate the derivative at $\alpha = 0$ ⇒ $E[(T - S)\tilde{S}] = 0$.

If T has two projections S_1 and S_2, ⇒ $E[(S_1 - S_2)^2] = 0$. Thus, $S_1 = S_2$, a.s. If the linear space S contains the constant variable, choose $\tilde{S} = 1$ ⇒ $0 = E[(T - S)\tilde{S}] = E[T] - E[S]$. Clearly, $Cov(T - S, \tilde{S}) = E[(T - S)\tilde{S}] = 0$.
• Equivalence with projection

Proposition 3.8 Let \(S_n \) be linear space of random variables with finite second moments that contain the constants. Let \(T_n \) be random variables with projections \(S_n \) on to \(S_n \). If \(\text{Var}(T_n)/\text{Var}(S_n) \to 1 \) then

\[
Z_n \equiv \frac{T_n - E[T_n]}{\sqrt{\text{Var}(T_n)}} - \frac{S_n - E[S_n]}{\sqrt{\text{Var}(S_n)}} \to_p 0.
\]
Proof. $E[Z_n] = 0$. Note that

$$Var(Z_n) = 2 - 2 \frac{Cov(T_n, S_n)}{\sqrt{Var(T_n)Var(S_n)}}.$$

Since S_n is the projection of T_n,

$Cov(T_n, S_n) = Cov(T_n - S_n, S_n) + Var(S_n) = Var(S_n)$. We have

$$Var(Z_n) = 2(1 - \sqrt{\frac{Var(S_n)}{Var(T_n)}}) \to 0.$$

By the Markov’s inequality, we conclude that $Z_n \to_p 0$.
• **Conclusion**

 - if S_n is the summation of i.i.d random variables such that $\frac{(S_n - E[S_n])}{\sqrt{\text{Var}(S_n)}} \to_d N(0, \sigma^2)$, so is $\frac{(T_n - E[T_n])}{\sqrt{\text{Var}(T_n)}}$. The limit distribution of U-statistics is derived using this lemma.
• Proof of CLT for U-statistics

Proof

Let \(\tilde{X}_1, ..., \tilde{X}_r \) be random variables with the same distribution as \(X_1 \) and they are independent of \(X_1, ..., X_n \). Denote \(\tilde{U}_n \) by

\[
\sum_{i=1}^n E[U - \mu | X_i].
\]

We show that \(\tilde{U}_n \) is the projection of \(U_n \) on the linear space

\[
S_n = \{ g_1(X_1) + ... + g_n(X_n) : E[g_k(X_k)^2] < \infty, k = 1, ..., n \},
\]

which contains the constant variables. Clearly, \(\tilde{U}_n \in S_n \). For any \(g_k(X_k) \in S_n \),

\[
E[(U_n - \tilde{U}_n)g_k(X_k)] = E[E[U_n - \tilde{U}_n | X_k]g_k(X_k)] = 0.
\]
\[
\tilde{U}_n = \sum_{i=1}^{n} \frac{\binom{n-1}{r-1}}{\binom{n}{r}} E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_i) - \mu|X_i] \\
= \frac{r}{n} \sum_{i=1}^{n} E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_i) - \mu|X_i].
\]

\[
\Rightarrow \quad Var(\tilde{U}_n) = \frac{r^2}{n^2} \sum_{i=1}^{n} E[(E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_i) - \mu|X_i)]^2]
\]

\[
= \frac{r^2}{n} Cov(E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_1)|X_1], E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_1)|X_1])
\]

\[
= \frac{r^2}{n} Cov(h(X_1, \tilde{X}_2, \ldots, \tilde{X}_r), h(X_1, X_2, \ldots, X_r)) = \frac{r^2\sigma^2}{n}.
\]
Furthermore,

\[
Var(U_n) = \binom{n}{r}^2 \sum_{\beta} \sum_{\beta'} Cov(h(X_{\beta_1}, \ldots, X_{\beta_r}), h(X_{\beta'_1}, \ldots, X_{\beta'_r}))
\]

\[
= \binom{n}{r}^2 \sum_{k=1}^{r} \sum_{\text{\beta and \beta' share } k \text{ components}} Cov(h(X_1, X_2, \ldots, X_k, X_{k+1}, \ldots, X_r), h(X_1, X_2, \ldots, X_k, \tilde{X}_{k+1}, \ldots, \tilde{X}_r)).
\]

\[
\Rightarrow Var(U_n) = \sum_{k=1}^{r} \frac{r!}{k!(r-k)!} \frac{(n-r)(n-r+1)\cdots(n-2r+k+1)}{n(n-1)\cdots(n-r+1)} c_k.
\]

\[
\Rightarrow Var(U_n) = \frac{r^2}{n} Cov(h(X_1, X_2, \ldots, X_r), h(X_1, \tilde{X}_2, \ldots, \tilde{X}_r)) + O\left(\frac{1}{n^2}\right).
\]

\[
\Rightarrow Var(U_n) / Var(\tilde{U}_n) \to 1.
\]

\[
\Rightarrow \frac{U_n - \mu}{\sqrt{Var(U_n)}} - \frac{\tilde{U}_n}{\sqrt{Var(\tilde{U}_n)}} \to_p 0.
\]
• Example

- In a bivariate i.i.d sample \((X_1, Y_1), (X_2, Y_2), \ldots\), one statistic of measuring the agreement is called *Kendall’s \(\tau\)-statistic*

 \[
 \hat{\tau} = \frac{4}{n(n - 1)} \sum \sum_{i<j} I \{(Y_j - Y_i)(X_j - X_i) > 0\} - 1.
 \]

 \[
 \Rightarrow \hat{\tau} + 1 \text{ is a U-statistic of order 2 with the kernel}
 \]

 \[
 2I \{(y_2 - y_1)(x_2 - x_1) > 0\}.
 \]

 \[
 \Rightarrow \sqrt{n}(\hat{\tau}_n + 1 - 2P((Y_2 - Y_1)(X_2 - X_1) > 0)) \text{ has an asymptotic normal distribution with mean zero.}
 \]
Rank Statistics
• Some definitions

- $X_1 \leq X_2 \leq \ldots \leq X_n$ is called order statistics

- The rank statistics, denoted by R_1, \ldots, R_n are the ranks of X_i among X_1, \ldots, X_n. Thus, if all the X’s are different, $X_i = X_{(R_i)}$.

- When there are ties, R_i is defined as the average of all indices such that $X_i = X_{(j)}$ (sometimes called midrank).

- Only consider the case that X’s have continuous densities.
• More definitions

 – a rank statistic is any function of the ranks

 – a linear rank statistic is a rank statistic of the special form \(\sum_{i=1}^{n} a(i, R_i) \) for a given matrix \((a(i, j))_{n \times n}\).

 – if \(a(i, j) = c_i a_j \), then such statistic with form \(\sum_{i=1}^{n} c_i a_{R_i} \) is called simple linear rank statistic: \(c \) and \(a \)'s are called the coefficients and scores.
• **Examples**

 - In two independent sample $X_1, ..., X_n$ and $Y_1, ..., Y_m$, a Wilcoxon statistic is defined as the summation of all the ranks of the second sample in the pooled data $X_1, ..., X_n, Y_1, ..., Y_m$, i.e.,

 $$W_n = \sum_{i=n+1}^{n+m} R_i.$$

 Other choices for rank statistics: for instance, the van der Waerden statistic $\sum_{i=n+1}^{n+m} \Phi^{-1}(R_i)$.

• Properties of rank statistics

Proposition 3.9 Let \(X_1, \ldots, X_n \) be a random sample from continuous distribution function \(F \) with density \(f \). Then

1. the vectors \((X_{(1)}, \ldots, X_{(n)})\) and \((R_1, \ldots, R_n)\) are independent;

2. the vector \((X_{(1)}, \ldots, X_{(n)})\) has density \(n! \prod_{i=1}^{n} f(x_i) \) on the set \(x_1 < \ldots < x_n \);

3. the variable \(X_{(i)} \) has density

\[
\binom{n-1}{i-1} F(x)^{i-1} (1 - F(x))^{n-i} f(x); \text{ for } F \text{ the uniform distribution on } [0, 1], \text{ it has mean } i/(n+1) \text{ and variance } i(n-i+1)/[(n+1)^2(n+2)];
\]
4. the vector \((R_1, \ldots, R_n)\) is uniformly distributed on the set of all \(n!\) permutations of 1, 2, \ldots, \(n\);

5. for any statistic \(T\) and permutation \(r = (r_1, \ldots, r_n)\) of 1, 2, \ldots, \(n\),

\[
E[T(X_1, \ldots, X_n)|(R_1, \ldots, R_n) = r] = E[T(X_{(r_1)}, \ldots, X_{(r_n)})];
\]

6. for any simple linear rank statistic \(T = \sum_{i=1}^{n} c_i a_{R_i}\),

\[
E[T] = n\bar{c}_n\bar{a}_n, \quad Var(T) = \frac{1}{n-1} \sum_{i=1}^{n} (c_i - \bar{c}_n)^2 \sum_{i=1}^{n} (a_i - \bar{a}_n)^2.
\]
• CLT of rank statistics

Theorem 3.17 Let \(T_n = \sum_{i=1}^{n} c_i a_{R_i} \) such that

\[
\max_{i \leq n} \frac{|a_i - \bar{a}_n|}{\sqrt{\sum_{i=1}^{n} (a_i - \bar{a}_n)^2}} \rightarrow 0, \quad \max_{i \leq n} \frac{|c_i - \bar{c}_n|}{\sqrt{\sum_{i=1}^{n} (c_i - \bar{c}_n)^2}} \rightarrow 0.
\]

Then \((T_n - E[T_n]) / \sqrt{Var(T_n)} \rightarrow_d N(0, 1) \) if and only if for every \(\epsilon > 0 \),

\[
\sum_{(i,j)} I \left\{ \sqrt{n} \frac{|a_i - \bar{a}_n| |c_i - \bar{c}_n|}{\sqrt{\sum_{i=1}^{n} (a_i - \bar{a}_n)^2} \sum_{i=1}^{n} (c_i - \bar{c}_n)^2} > \epsilon \right\} \times \frac{|a_i - \bar{a}_n|^2 |c_i - \bar{c}_n|^2}{\sum_{i=1}^{n} (a_i - \bar{a}_n)^2 \sum_{i=1}^{n} (c_i - \bar{c}_n)^2} \rightarrow 0.
\]
• More on rank statistics

 – a simple linear *signed rank statistic*

 \[\sum_{i=1}^{n} a_{R_i} \text{sign}(X_i), \]

 where \(R_1^+, \ldots, R_n^+ \), *absolute rank*, are the ranks of \(|X_1|, \ldots, |X_n| \).

 – In a bivariate sample \((X_1, Y_1), \ldots, (X_n, Y_n)\),

 \[\sum_{i=1}^{n} a_{R_i} b_{S_i} \text{ where } (R_1, \ldots, R_n) \text{ and } (S_1, \ldots, S_n) \text{ are respective ranks of } (X_1, \ldots, X_n) \text{ and } (Y_1, \ldots, Y_n). \]
Martingales
Definition 3.7 Let \(\{Y_n\} \) be a sequence of random variables and \(\mathcal{F}_n \) be sequence of \(\sigma \)-fields such that \(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \). Suppose \(E[|Y_n|] < \infty \). Then the pairs \(\{(Y_n, \mathcal{F}_n)\} \) is called a ***martingale*** if

\[
E[Y_n|\mathcal{F}_{n-1}] = Y_{n-1}, \quad \text{a.s.}
\]

\(\{(Y_n, \mathcal{F}_n)\} \) is a ***submartingale*** if

\[
E[Y_n|\mathcal{F}_{n-1}] \geq Y_{n-1}, \quad \text{a.s.}
\]

\(\{(Y_n, \mathcal{F}_n)\} \) is a ***supmartingale*** if

\[
E[Y_n|\mathcal{F}_{n-1}] \leq Y_{n-1}, \quad \text{a.s.}
\]
• Some notes on definition

- \(Y_1, ..., Y_n \) are measurable in \(\mathcal{F}_n \). Sometimes, we say \(Y_n \) is adapted to \(\mathcal{F}_n \).

- One simple example: \(Y_n = X_1 + ... + X_n \), where \(X_1, X_2, ... \) are i.i.d with mean zero, and \(\mathcal{F}_n \) is the \(\sigma \)-filed generated by \(X_1, ..., X_n \).
Convex function of martingales

Proposition 3.9 Let \(\{(Y_n, \mathcal{F}_n)\} \) be a martingale. For any measurable and convex function \(\phi \), \(\{\phi(Y_n), \mathcal{F}_n\} \) is a submartingale.
Proof Clearly, $\phi(Y_n)$ is adapted to \mathcal{F}_n. It is sufficient to show

$$E[\phi(Y_n)|\mathcal{F}_{n-1}] \geq \phi(Y_{n-1}).$$

This follows from the well-known Jensen's inequality: for any convex function ϕ,

$$E[\phi(Y_n)|\mathcal{F}_{n-1}] \geq \phi(E[Y_n|\mathcal{F}_{n-1}]) = \phi(Y_{n-1}).$$
Jensen’s inequality

Proposition 3.10 For any random variable X and any convex measurable function ϕ,

$$E[\phi(X)] \geq \phi(E[X]).$$
Proof

Claim that for any x_0, there exists a constant k_0 such that for any x, $\phi(x) \geq \phi(x_0) + k_0(x - x_0)$.

By the convexity, for any $x' < y' < x_0 < y < x$,

$$\frac{\phi(x_0) - \phi(x')}{x_0 - x'} \leq \frac{\phi(y) - \phi(x_0)}{y - x_0} \leq \frac{\phi(x) - \phi(x_0)}{x - x_0}.$$

Thus, $\frac{\phi(x) - \phi(x_0)}{x - x_0}$ is bounded and decreasing as x decreases to x_0. Let the limit be $k_0^+ \Rightarrow \frac{\phi(x) - \phi(x_0)}{x - x_0} \geq k_0^+ \Rightarrow \phi(x) \geq k_0^+(x - x_0) + \phi(x_0)$.
Similarly,

\[
\frac{\phi(x') - \phi(x_0)}{x' - x_0} \leq \frac{\phi(y') - \phi(x_0)}{y' - x_0} \leq \frac{\phi(x) - \phi(x_0)}{x - x_0}.
\]

Then \(\frac{\phi(x') - \phi(x_0)}{x' - x_0}\) is increasing and bounded as \(x'\) increases to \(x_0\). Let the limit be \(k_0^- \Rightarrow \phi(x') \geq k_0^- (x' - x_0) + \phi(x_0)\).

Clearly, \(k_0^+ \geq k_0^-\). Combining those two inequalities,

\[
\phi(x) \geq \phi(x_0) + k_0 (x - x_0)
\]

for \(k_0 = (k_0^+ + k_0^-)/2\).

Choose \(x_0 = E[X]\) then \(\phi(X) \geq \phi(E[X]) + k_0 (X - E[X])\).
• Decomposition of submartingale

\[Y_n = (Y_n - E[Y_n|\mathcal{F}_{n-1}]) + E[Y_n|\mathcal{F}_{n-1}] \]

– any submartingale can be written as the summation of a martingale and a random variable predictable in \(\mathcal{F}_{n-1} \).
• Convergence of martingales

Theorem 3.18 (Martingale Convergence Theorem)

Let \(\{(X_n, \mathcal{F}_n)\} \) be submartingale. If \(K = \sup_n E[|X_n|] < \infty \), then \(X_n \to_{a.s.} X \) where \(X \) is a random variable satisfying \(E[|X|] \leq K \).
Corollary 3.1 If \mathcal{F}_n is increasing σ-field and denote \mathcal{F}_∞ as the σ-field generated by $\bigcup_{n=1}^\infty \mathcal{F}_n$, then for any random variable Z with $E[|Z|] < \infty$, it holds

$$E[Z|\mathcal{F}_n] \to_{a.s.} E[Z|\mathcal{F}_\infty].$$
• CLT for martingale

Theorem 3.19 (Martingale Central Limit Theorem) Let \((Y_{n1}, \mathcal{F}_{n1}), (Y_{n2}, \mathcal{F}_{n2}), \ldots\) be a martingale. Define \(X_{nk} = Y_{nk} - Y_{n,k-1}\) with \(Y_{n0} = 0\) thus \(Y_{nk} = X_{n1} + \ldots + X_{nk}\). Suppose that

\[
\sum_k E[X^2_{nk}|\mathcal{F}_{n,k-1}] \rightarrow_p \sigma^2
\]

where \(\sigma\) is a positive constant and that

\[
\sum_k E[X^2_{nk} I(|X_{nk}| \geq \epsilon)|\mathcal{F}_{n,k-1}] \rightarrow_p 0
\]

for each \(\epsilon > 0\). Then

\[
\sum_k X_{nk} \rightarrow_d N(0, \sigma^2).
\]
Some Notation
\begin{itemize}
 \item \(o_p(1) \) and \(O_p(1) \)
 \begin{itemize}
 \item \(X_n = o_p(1) \) denotes that \(X_n \) converges in probability to zero,
 \item \(X_n = O_p(1) \) denotes that \(X_n \) is bounded in probability; i.e.,
 \[
 \lim_{M \to \infty} \limsup_{n} P(|X_n| \geq M) = 0.
 \]
 \item for a sequence of random variable \(\{r_n\} \), \(X_n = o_p(r_n) \)
 means that \(|X_n|/r_n \to_p 0 \) and \(X_n = O_p(r_n) \) means that \(|X_n|/r_n \) is bounded in probability.
 \end{itemize}
\end{itemize}
• Algebra in $o_p(1)$ and $O_p(1)$

\[o_p(1) + o_p(1) = o_p(1) \]
\[O_p(1) + O_p(1) = O_p(1), \]
\[O_p(1) o_p(1) = o_p(1) \ (1 + o_p(1))^{-1} = 1 + o_p(1) \]
\[o_p(R_n) = R_n o_p(1) \quad O_p(R_n) = R_n O_p(1) \]
\[o_p(O_p(1)) = o_p(1). \]

If a real function $R(\cdot)$ satisfies that $R(h) = o(|h|^p)$ as $h \to 0$, \(\Rightarrow\) $R(X_n) = o_p(|X_n|^p)$.

If $R(h) = O(|h|^p)$ as $h \to 0$, \(\Rightarrow\) $R(X_n) = O_p(|X_n|^p)$.
READING MATERIALS: Lehmann and Casella, Section 1.8, Ferguson, Part 1, Part 2, Part 3 12-15