
BBSeq: A method to handle RNA-seq count data

Yihui Zhou, Fred A. Wright

September 15, 2011

1 Introduction

This vignette describes how to use BBSeq to evaluate differential expression using count data and to measure
the effect of design variables or covariates. BBSeq has been tuned to correspond to the tpical data structure
of RNA-Seq count data, which typically is based on millions of reads and thousands of genes/transcripts.
BBSeq is currently in beta evaluation form, and subject to continual improvement in the interface.

2 Preparation

At a minimum, BBSeq requires a count data matrix and a predictor matrix. Other data can be prepared
and added to accomplish specific tasks, as described below.

• Data data.Y: the count data should be a matrix of counts, where rows represent genes and columns
represent samples. Here the term “gene” can refer to a transcript or transcriptional isoform. If the
count data are in a dataframe, BBSeq will convert to a matrix. However, the user should be alert to
any potential errors that might arise in type conversion.

• Annotation data.anno: A data frame providing annotation data for each gene. The rows should match
the rows of the count data matrix exactly. A typical annotation data frame will consist of columns
including a trasncript/gene ID, chromosome, and gene symbol.

• Library size lib.size: the total number of reads mapped for each sample. If this information is not
provided, BBSeq will calculate a library size by summing each column of the count matrix.

• Predictor type categorical: a vector which describes if the predictors are to be treated as categorical
(and therefore treated as having multiple unordered levels). This vector is only used for the optional
X.builder function.

• Predictor matrix X: a standard regression design matrix, which typically contains an initial column of
1s and other indicator columns for the design variables or covariates. For multi-level factors (as for
ANOVA analysis), the X.builder function simplifies the generation of X. Continuous covariates (or
any for which the relationship between the count data and the covariate is assumed log-linear) should
be entered directly as a column of X.

3 Miscellaneous Issues

• Remove the datalines with all the 0 counts before running BBSeq

4 Definition and Notation

The data consist of an m × n matrix Y . Each entry yij represents the transcriptional count for the ith gene
in the jth sample. We will use θij to denote the probability that a single read in sample j maps to gene
i, and θi. as the n-vector of these probabilities. The beta-binomial models θ as a random variable, which

1

Figure 1: The mean-variance relationship in the CEU data suggests a mean-overdispersion relationship

produces the overdispersion. Reads within the same sample are assumed independent. X will denote an
n× p design matrix, consisting of indicator variables for experimental conditions and any desired covariates.
The effect of X on gene i is modeled as

logit(E(θi.)) = log

(
E(θi.)

1 − E(θi.)

)
= XBi (1)

for the p × 1 matrix of regression coefficients Bi = [β0,i, .., βp−1,i]
T . θ follows a Beta distribution, parame-

terized so that its variance is φE(θ)(1 − E(θ)). Values φ > 0 correspond to overdispersion compared to the
binomial, after considering design effects.

5 BBSeq: Examples from real data

We randomly selected 5000 genes from Montgomery et al. 2010 ([Montgomery, 2010]) for subset of 12 samples
(out of 60 samples). For illustrative purposes, we ensured that all of the genes on the X chromosome were
retained among the 5000 genes. As a discrete covariate, we will use the gender/sex information (6 males
vs. 6 females). We also simulate a continuous covariate, which we’ll refer to as the score. Together these
two covariates are used to illustrate the BBSeq approach, in which the effect of covariates can be examined
individually or together.

5.1 Overdispersion in RNA-Seq count data

To illustrate the overdispersion patterns typical of RNA-Seq counts, we show in Figure 1 the log(variance)
vs. log (mean) for these data. Note the increasing overdispersion (the excess variance above the unit line) as
the mean increases. This relationship is directly modeled using the “constrained” approach described below.

2

5.2 Two group comparisons

5.2.1 Read the data into R

First, we’ll read an example dataset and annotation files into R.

library(BBSeq)

data(data.Y)

data(data.anno)

Note: If data.Y is a dataframe, it will be automatically converted to a matrix of type numeric. BBSeq
expects integers, and so the user should take care that the matrix conversion does not produce unintended
consequences that might arise from (e.g.) character values in the data frame.

If we want to explicitly convert to a matrix, that’s easy.

> data.Y = as.matrix(data.Y)

The annotation data object contains a reference ID, the chromosome, and the gene symbol:

> data.anno[1:5,]

ref.id chr gene

1 NM_000032 chrX ALAS2

2 NM_000033 chrX ABCD1

3 NM_000044 chrX AR

4 NM_000047 chrX ARSE

5 NM_000052 chrX ATP7A

5.2.2 Construct the design matrix

In data.Y, samples 1-3 and 6-9 are from females, while the remaining samples are male. We will use males
as a “reference” - i.e. the corresponding column of X will be 1 for female, 0 for male.

> X = cbind(1,rep(rep(c(1,0),each=3),2))

5.2.3 A simple beta-binomial generalized linear model (the free model)

Here we fit the free model. The 5000 genes take about 35 minutes on a modern PC.

> output = free.estimate(data.Y,X)

> beta.free = output$betahat.free

> beta.free[1:5,]

[,1] [,2]

[1,] -20.25020046 4.641884825

[2,] -9.37800267 -0.297522032

[3,] -13.19392779 -0.059594806

[4,] -15.11446472 -0.95397864

[5,] -10.03989835 -0.050189874

> p.free = output$p.free

> psi.free = output$psi.free

Note: the β estimation from free.estimate is an m×n matrix; while the input matrix of intial values for β
in constrained.estimate is n × m. Please translate the output from free.estimate first before plugging
into next function.

3

Figure 2: Fitted values for the mean-overdispersion relationship

5.2.4 Mean-overdisersion modeling (constrained model)

We empirically find there is a strong relationship between X ×Beta.free and psi.free (see figure 2). We fit
the relationship between these values, using Beta.free and psi.free to perform regression modeling of the
relationship, and (for Beta.free) as starting values for the constrained likelihood optimization.

> Beta.free = t(beta.free)

> x = apply(X%*%as.matrix(Beta.free),2,mean)

> y = psi.free

> plot(x,y)

> out.model = constrained.estimate(data.Y,X,gn=3,output$betahat.free,psi.free=output$psi.free)

> names(out.model)

[1] "betahat.model" "bvar.model" "p.model"

> beta.constrained = out.model$betahat.model

> p.constrained = out.model$p.model

We “flag” the gene as suspicious if its maximum library-scaled value per gene is more than c times as
great as its second-largest value, provided that the second-largest value is greater than zero. The default
value of c is 5.0.

> flag = outlier.flag(data.Y)

> mean(flag)

[1] 0.0208

so about 2.08% of the genes are flagged. If genes are considered highly significant by the constrained model
but are flagged, they should be subject to further scrutiny.

4

5.2.5 Generating a p-value data frame

Now we obtain the p-value data frame which combines the annotation information, p-values, and the flag.
The top 5 genes are shown.

> p.df = data.frame(data.anno,p.free=output$p.free , p.constrained=out.model$p.model,

+ flag=outlier.flag(data.Y))

> dim(p.df)

[1] 5000 6

the top 5 genes:

> p.df[order(p.free)[1:5],]

ref.id chr gene p.free p.constrained flag

435 NM_004979 chrX KCND1 0.0003226803 4.562947e-03 0

3985 NM_001080124 chr2 CASP8 0.0003591038 2.522168e-02 0

722 NR_001564 chrX XIST 0.0007598883 1.978532e-05 0

349 NM_001412 chrX EIF1AX 0.0011548680 1.088131e-03 0

70 NM_001007 chrX RPS4X 0.0011646955 2.815752e-04 0

5.3 The case with two covariates/factors

5.3.1 Building the design matrix

This X.builder function returns four design matrices, for two factors. X.builder$D1 is the design matrix if
we only consider gender effect; X.builder$Q1 is the one for considering the (simulated) “score” effect only;
X.builder$Big gives the full design matrix including both gender and score. The last one X.builder$Int

corresponds to the intercept only. We simulate a score vector with length 12, to use it as a continuous
covariate.

> set.seed(5)

> score = rnorm(12,mean=0,sd=1)

> categorical = c(1,0)

> a1 = rep(rep(c(1,0),each=3),2)

> a2 = score

> predictor = cbind(a1,a2)

> X.builder(predictor,categorical)

$D1

X

[1,] 1 1

[2,] 1 1

[3,] 1 1

[4,] 1 0

[5,] 1 0

[6,] 1 0

[7,] 1 1

[8,] 1 1

[9,] 1 1

[10,] 1 0

[11,] 1 0

[12,] 1 0

$Q1

X

[1,] 1 -0.84085548

[2,] 1 1.38435934

[3,] 1 -1.25549186

5

[4,] 1 0.07014277

[5,] 1 1.71144087

[6,] 1 -0.60290798

[7,] 1 -0.47216639

[8,] 1 -0.63537131

[9,] 1 -0.28577363

[10,] 1 0.13810822

[11,] 1 1.22763034

[12,] 1 -0.80177945

$Big

X

[1,] 1 1 -0.84085548

[2,] 1 1 1.38435934

[3,] 1 1 -1.25549186

[4,] 1 0 0.07014277

[5,] 1 0 1.71144087

[6,] 1 0 -0.60290798

[7,] 1 1 -0.47216639

[8,] 1 1 -0.63537131

[9,] 1 1 -0.28577363

[10,] 1 0 0.13810822

[11,] 1 0 1.22763034

[12,] 1 0 -0.80177945

$Int

[,1]

[1,] 1

[2,] 1

[3,] 1

[4,] 1

[5,] 1

[6,] 1

[7,] 1

[8,] 1

[9,] 1

[10,] 1

[11,] 1

[12,] 1

5.3.2 Get the likelihood-based p-value matrix

We use the function like.matrix to obtain the maximum loglikelihood matrix for each corresponding design
matrix.

> Y.size = lib.size(data.Y)

> like = like.matrix(data.Y,Y.size,categorical,predictor)

> like[1:5,]

[,1] [,2] [,3] [,4]

[1,] -4.47587 -1.308759 -1.376661 -5.219298

[2,] -69.32111 -70.044081 -69.300171 -70.047540

[3,] -31.37401 -31.141502 -31.129230 -31.379074

[4,] -10.81478 -9.206885 -9.164114 -11.182220

[5,] -61.80823 -61.375619 -60.958209 -61.830574

6

> stat=matrix(0,dim(data.Y)[1],3)

> stat[,1]=-2*(like[,4]-like[,1])

> stat[,2]=-2*(like[,4]-like[,2])

> stat[,3]=-2*(like[,4]-like[,3])

> p.matrix=matrix(0,dim(data.Y)[1],3)

> p.matrix[,1]=1-pchisq(stat[,1], df=length(unique(a1))-1)

> p.matrix[,2]=1-pchisq(stat[,2], df=1)

> p.matrix[,3]=1-pchisq(stat[,3], df=length(unique(a1)))

> p.matrix[1:5,]

[,1] [,2] [,3]

[1,] 0.2227048 0.005164037 0.02143699

[2,] 0.2280698 0.933708097 0.47361119

[3,] 0.9198015 0.490630244 0.77892282

[4,] 0.3913040 0.046852743 0.13290701

[5,] 0.8325812 0.340138321 0.41796213

The first column of p.matrix is for factor sex; the second column is for score; the third column is the
joint effect from both factors.

p.complete=data.frame(p.sex=p.matrix[,1],p.score=p.matrix[,2],

p.joint=p.matrix[,3],data.anno)

sort by the "score" main effect p-value and show the top 5 genes,

with annotation.

> p.complete[order(p.complete$p.score)[1:5],]

p.sex p.score p.joint chr ref.id gene

4383 0.1512731 8.474767e-06 3.294133e-05 chr19 NM_001085384 ZNF154

960 0.2152014 5.420721e-04 3.067627e-03 chr15 NM_000814 GABRB3

4807 0.8653363 8.797603e-04 3.411514e-03 chr7 NM_001105533 C7orf58

32 0.9990547 1.420259e-03 3.793506e-03 chrX NM_000354 SERPINA7

101 0.9990547 1.420259e-03 3.793506e-03 chrX NM_001013628 DCAF12L2

References

[Zhou and Wright, 2011] Yihui Zhou and Fred A. Wright (2011) A very powerful and flexible method for
RNA-Seq data analysis Bioinformatics, submitted in Mar, 2011

[Montgomery, 2010] Montgomery, S.B. et al. (2010)Transcriptome genetics using second generation sequenc-
ing in a Caucasian population. Nature, 464(7289), 773-777.

7

