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ABSTRACT

Motivation: A number of penalization and shrinkage approaches
have been proposed for the analysis of microarray gene expression
data. Similar techniques are now routinely applied to RNA-sequence
transcriptional count data, although the value of such shrinkage has
not been conclusively established. If penalization is desired, the
explicit modeling of mean-variance relationships provides a flexible
testing regimen that “borrows” information across genes, while easily
incorporating design effects and additional covariates.

Results: We describe BBSeq, which incorporates two approaches:
(i) a simple beta-binomial generalized linear model, which has not
been extensively tested for RNA-Seq data, and (ii) an extension
of an expression mean-variance modeling approach to RNA-Seq
data, involving modeling of the overdispersion as a function of the
mean. Our approaches are flexible, allowing for general handling of
discrete experimental factors and continuous covariates. We report
comparisons with other alternate methods to handle RNA-Seq data.
Although penalized methods have advantages for very small sample
sizes, the beta-binomial generalized linear model, combined with
simple outlier detection and testing approaches, appears to have
favorable characteristics in power and flexibility.

Availability: An R package containing examples and sample
datasets is available at ht t p: / / www. bi 0s. unc. edu/ r esear ch/
genoni c_sof t war e/ BBSeq

Contact: yzhou@bios.unc.edu; fwright@bios.unc.edu

1 INTRODUCTION
Sequencing of RNA-based librarigSRNA-Seq”) can provide

RNA-Seq technology is currently more expensive than comparable
array technologies, and thus the sample sizes are typically small.
In addition, even as the cost of RNA-Seq profiling drops, the
precision of the technology will enable sensitive investigation
of small samples (for example, pairwise comparisons among
many experimental conditions examined). Eventually, however, we
expect that sequence-based transcriptional profiling will become
the standard, with large datasets becoming affordable. Thus there
is a pressing need for sensitive statistical approaches that can
accommodate large variation in available sample sizes.

RNA-Seq count data consists of the number of instances that each
transcript has been sequenced, arising from random sampling events
for a large number of sequences (the library size). The simplest
data model may be multinomial, with probability proportional to
the true expression level. These probabilities are small and counts
are accumulated over many reads, so Poisson approximations are
commonly used. However, it has been repeatedly shown that RNA-
Seq data are overdispersed (Robinsbal., 2010) - i.e. the variance
of sequence counts tends to be greater than would be expected for
multinomial or Poisson data. Thus any careful analysis of the data,
and in particular any differential expression analysis, must account
for this overdispersion. Additional factors, such as the length
of the transcript and potential sequencing bias, are important in
performing inference on absolute expression levels, but here we are
concerned primarily with comparison of expression values across
different samples. Before proceeding to our testing framework,
we briefly review the available methods for performing differential
expression analysis for RNA-Seq data.

The package edgeR (Robinsetral,, 2010) was initially designed
as a penalized approach to identify differences between two

digital gene expression measurement, and is an attractive approacghmme groups. The current version has a variety of penalized
potentially replacing microarrays for analyzing the transcriptome inoverdispersion approaches, including "common” penalized dispersion,
an unbiased and comprehensive manner. For genes with very loy »tagwise” approach that shrinks individual genes/tags, and the
or very high levels, microarrays often lack sensitivity, or can resu“tagwise procedure with a trend as a function of expression level.
in saturated signal. In contrast, RNA-Seq has been shown to havg negative binomial model is used, which essentially corresponds
high accuracy across many orders of expression magnitude (Mariog, an overdispersed Poisson model. The approach uses empirical
et al., 2008), with clear advantages over microarray hybridizationgayes methods to moderate the degree of overdispersion, with the
At a basic level, simple counts of RNA sequences can be used fofim of reducing error in a similar manner as penalized methods
digital gene expression measurement, and are the subject of thjg microarray analysis (Smyth, 2004). The baySeq approach
paper. Additional information derived from the sequences, such afHardcastle and Kelly, 2010) is more explicitly Bayesian, also
de noveexon discovery, are beyond our scope, although many of th@ssuming negative binomially distributed count data, and can use
considerations here may be applied to the deeper study of sequengg data to elicit a prior for the overdispersion parameters. BaySeq

content.

*to whom correspondence should be addressed

provides log posterior probability ratio for differential expression,
rather thanp-values, limiting its utility somewhat for standard
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multiple-testing approaches. The specification of multiple group2 METHODS
comparisonss somewhat complicated, as all types of alternatives
(in which some group subsets may be equivalently expresse
must be considered. The package DESeq (Anders and Hubelhe 60 HapMap CEU RNA-Seq samples from Montgomergl. (2010)¢
2010) employs mean-variance estimation to produce moderated t Q,OOO genes, described in detail below) are used to illustrate the
statistics, which is similar to a model that we describe below.
DEGseq does not accommodate overdispersion, \&aag, 2010),
and is not used here for our comparisons.

.1 Mean-overdispersion modeling

samples. The relationship between the mean and variance is very strong,

increasing gap between the data points and the unit line which corresponds
?

1.1 Are new methods necessary counts are standardized by the library size per sample (not shown). A

For RNA-Seq data, it is important to consider whether purposesimilar plot using a random subset of 5 samples shows the same pattern
built procedures are necessary. Count data with overdispersiofSupplementary Figure 1). The data illustrate that overdispersion is an

overdispersion typical of such datasets. Figure 1 shows the sample variance
vs. the sample mean on the log-log scale for the read counts across the

to a Poisson assumption. The pattern remains essentially unchanged if the

and the overdispersion increases with mean expression, as evidenced by the

can be modeled usingtandard generalized linear models (GLMs) important feature of the data, and can either be fit as a separate parameter

implementedin packages such adispmodin R. The competing ©r in a model for the dependence of the overdispersion on the average
methodsdescribed here produce shrunken estimates of differentigfXPression. ) .
expression, which have been shown to be useful for microarray Discussions of RNA-Seq data often focus on the "length bias," the
analysis F;owever for RNA-Seq, we are not aware that the neeﬁhenomenon that longer transcripts are more likely to contain mapped reads.

f hrink lizati h b full ined. A or example, Oshlack and Wakefield (2009) point out differing mean-
or shrinkage or penalization has been careiully examined. AR ,gance relationships for shorter vs. longer genes. Supplementary Figure

additional danger is posed by sample outliers, which are more “ke.hé illustrates that, at least for datasets analyzed here, the mean is a stronger

to be enfzo.untered in Iarge. datasets, anc_i ff)" which the behavifeterminant of the variance (and overdispersion) than the length (also see
of the existing approaches is unknown. Similarly, the presence o§upplementary Methods and Results). In addition, we are mainly interested
zero counts (e.g. all zeros in one of the compared experimentah comparing expression levels within genes, across experimental conditions,

conditions) can produce missing values or spurious tests. The vashd so the length bias is essentially a constant feature for these comparisons.

majority of publications hfs\ve used pur_ely S|mulat§d data, or s'malb_2 Data format and definitions

example datasets for which comparative conclusions are difficult. _ ' _

An exception is the Myrna package of Langmestdal. (2010), The data consist of am x n matrlx_ Y with m genes anch ;amples.
who apply it to real HapMap YRI data and can analyze muItipIeEaCh entryy; ; _represents the transcrlptlonal_ _countformegenelnt_hg’th
groups, but for which the count-based analysis is standard Poissoﬁémple' We will usé; ; to denote the probability that a single read in sample

Analvsis of fut lex datasets will . flexible? maps to gene, andé;. as then-vector of these probabilities. The beta-
na ySIShO uture, more complex datasets will require more Hexibl€y;, , mia| model® as a random variable, which produces the overdispersion.
approaches.

. . . Reads within the same sample are assumed independemtill denote
In this paper, we describe BBSeq, a comprehensive approach %n x p design matrix, consisting of indicator variables for experimental

the analysis Of RNA-Seq transcriptional count data. BBSe_q assume nditions and any desired covariates. The effectain genei is modeled
a beta-binomial model for the count data, corresponding to theg

view that the observation of a sequence for a particular transcript ) E(0;)

is a Bernoulli random variable with an intrinsic probability for logit(E(0:.)) = 10g<1 _ E(gi)) = XB; @
each sample. These probabilities are allowed to vary according t . . - B T

a beta distribution, thus allowing for overdispersion, with a mea E)r t?ep x 1 matrix of regression coefficients; = [So,i, .., fp—1.:] .

. - - ; . 0, follows a Beta distribution, parameterized so that its variance is
that depends on the design variables/covariates. As the library siz B(0:)(1 — E(6:;)). Values > 0 correspond to overdispersion
IS I_arge, the beta-binomial behaves Slm”arly to an Ov.erdlSp.erSecomparJed to the biilomial, after considering design effects. We will use
Poisson. We thus expect that the beta binomial provides similar™ ™ S~y to represent the library size for thh sample. Marginally
fits as a negative binomial, which in the limit corresponds to ﬁe Iikeliﬁoyc;é is ' '
a gamma-Poisson mixture (Lawless, 1987). The beta—binomia‘i
model directly describes unexplained variation in the sequence s; B(yij + @1ij, 85 — Yij + @aij)
read probabilities, simplifying choices of starting values in model- fijlani, azij) = < i ) B(aij, azij)
fitting, and in this sense may provide a more direct interpretation Y 1y B2 )
of overdispersion in the data. However, intuitive descriptions OfwhereB() is the Beta functiong1;; = E(6;;)(1 — ¢)/ds, andass; =
overdispersion for negative binomial data may be expressed in ternﬁ — )1 — E(6:)))/i. J ’ ’
of Coeﬁ'_c'ems of variation. We use a Io_glstlc regression framework Parameter estimation is performed by maximum likelihood, using either
to describe the dependence of expression on the experimental factqgg,, o approaches:
and covariates, using generic design matrices for flexibility. In (i) the free model, in whichg; is estimated as a “free” parameter
this manner, any experimental factors or other covariates, Sucgbparately for each gene, and
as age or sex, can be Cons'dere_d' Overdispersion is ha”d'e‘_j aS(ji) the constrainedmodel, in whichg; is estimated using an assumed
elthe”r (i) a free paramgter to be fit separately for each transc“p%ean-overdispersion relationship. For the constrained model, it might be
or (i) a term tha_‘t arises from_ a mean'overq'Spers'on quelreasonable for the overdispersion to also depend on the sgmplé for
f't to thg data, with natural shrinkage properFle; and aIIOWIngsimplicity and comparability with the free model it is simpler to assume
information to be shared across genes. BBSeq is intended as €aSYzingles for each gena. Eache; € [0, 1], and so it is convenient to
to-use spftyvare for handlllng RNA-Seq dataj a”(,’ our pOW,er/FDRNork with a logistic transformed parameter, and we adopt the polynomial
results indicate that straightforward beta-binomial modeling ha%elationship
favorable characteristics. In contrast to the competing penalization
approaches, we find only modest advantages for penalization, which
is mainly useful for very small sample sizes.

K

¥ = logit(¢) = Y ye{mean(X B;)}*. (3)

k=0

apeojumod
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Empirical investigation in small samples indicates that the Wald statistic
B81/SE(B1) is distributed approximatelg, —,, for the free model under the
null hypothesis (and standard normal for constrained), with adjustments for

& zero counts in the data (see Supplementary Methods and Results), and we

fitted overdispersion employ this approximation for two-sample testing.

= = no overdispersion Many future studies are likely to focus on a few (perhaps multi-level)
i factors, as is performed in ANOVA analysis. Thus BBSeq has been designed
with a simple function to generate design matrices corresponding to multi-
level factors. Moreover, BBSeq performs likelihood ratio comparisons for
the overall statistical significance of each included factor. A more detailed
description is provided in Supplementary Methods and Results for the CEU
HapMap samples, along with a real example for which etopobide)
cytotoxicity response scores (Huaagal., 2007) are used as a continuous
predictor, along with sex and the sexICs( interaction.

In summary, BBSeq is designed to make it easy to perform testing for a
variety of experimental designs, with modifications for small sample sizes to
take advantage of the mean-overdispersion relationship.

20
|

15

logvar)
10

\ . . . 2.4 HapMap RNA-Seq data sources

The CEU HapMap lymphoblastoid RNA-seq dataset of Montgonery
log(mean) al. (2010) was obtained from their website (60 samplés,tp://
jungl e. uni ge. ch/ rnaseq_CEU60/ ) as mapped tags (these and all
other data downloaded in March 2010). RefSeq annotation for 21,498

Fig. 1. The mean-variance relationship in the CEU data suggests a meardenes (corr_esponding to 32,644 transcriptional isoforms) from the hgl8
overdispersion relationship. A third-degree polynomial fit is also shown. genome build was downloaQed from the UCSC ngome Browserp: .
/ /I genone. ucsc. edu/ ), with gene/exon boundaries used for a transcript

database. Mismatches of up to 2 bases were allowed. Counts were
obtained by summing RNA-Seq reads mapping to the exons of each
RefSeq entry, and RefSeq IDs further annotated to the official gene
symbol. An average of 9.8 million reads per sample were mapped.
Mapping of reads to multiple transcript isoforms were kept in the dataset

the f del to obtain least fimat Th | for completeness. Differential expression analyses using only the most-
e free model to obtain least-squares estimates of es. They values common isoforms for each gene vs. retaining all isoforms as if they were

are asst_Jmed to be the Same across Fhe genes. This approach 'S sn_nllar © @ arate genes resulted in nearly identical inference. Mapped reads from
generalizes a mean-variance modeling approach for expression microarrays, Argonne HapMap YRI dataset (69 unique samples), Picktetl

(Hu and Wright, 2007), which had previously been performed only for two- 2010 were downloaded fromt t p: // eqt | . uchi cago ;edu/ RNA.’
sample experiments. The intent of the modeling is to increase power to dete%teq dat a/ napped_r eads/ extr'acted an.d applied to. hg18 usinE the

differential expression for small sample sizes. Note that the estimation of th ame procedures as performed for the CEU data (an average of 4.3 million
mean-overdispersion relationship does not reduce the degrees of freedom r%rapped per sample). The total number of genes containing mapped reads in

|ndS|V|du|aI gen(tes, als:_all ger;es arE useci o esltlmatebtthq t?vfamet?;s. f the CEU dataset was 20,904 (32,027 with redundant isoforms included), and
upplementary Figure 3(a) shows tfievalues obtained from the free in the YRI dataset was 20,488 (31,508).

model for 6 vs. 6 samples from the CEU dataset, with quuaI numbers
of males and females in each group, plotted againstn(X5). The 2.5 Simulated data and subsampling from real datasets
relationship is reasonably polynomial, inspiring the constrained model, wit
much of the variation iy explained (multipleR?> = 0.60 for a cubic

where themean is over then-vector X B;. Note that the logit specification
does not allow for underdispersion, which would be biologically
implausible. In practice, a low degree polynomial, with< 3, appears to
provide an adequate fit, and we use simple plug-in estinfagemdg; from

r\:or simulated datasets, as well as analysis of the HapMap data,

fit). Moreover, the variation in thé; residuals can mostly be attributed to two BBSeq models were compared to other apprpac.hes, |nclud!ng the
. Do ) ) - three edgeR models, DESeq, baySeq, and a quasi-likelihood overdispersed
sampling variation consistent with theé standard errors (Supplementary | . - ) L .
Figure 3(b)) binomial GLM (detailed descriptions in Supplementary Methods).
) Dataset 1:The first dataset consists of 100 independent simulations of
10,000 genes with 5 vs. 5 samples for two-sample comparisons, reported

ith starti | foB; obtained f li i d forf : ) . ; ;
vn\glar sin?;rl Ig\% d\glézsofoov;r(c)iiszlanrziorwr(zvn\/qitrl:;iatl::;er]gszzzilr?n c?gsigﬁ erf?gz:ts) in Hardcastle and Kelly (2010) (under “Random dispersion simulations”).
g 9 " A known 10% of the genes were differentially expressed with a ratio of

Finally, we note that real data can produce outlying estimates for a )
. . average count levels of/8) between two experimental groups. The data
small percentage of genes, especially for the constrained model and Iar%

sample sizes. Thus we have devised very simple outlier detection/correctionc obtained from the authors, who used edgeR parameter estimates from

approaches to avoid spurious results (see Supplementary Methods ar%idS AGI.E dataset (Zhgmgt al., 1997). However, it is not clear whether the
Results). simulation setup mimics current RNA-Seq data.

Dataset 2:The second dataset consisted of our own simulations of two-

2.3 Testing and design matrices sample comparisons of groups 1 andi2 (= 5vs.ny = 50rn; = 2Vvs.

. ) ) . ng = 2 ), with average expression levels matched to that of a real RNA-
The_free anq cor]stralped models both provu_i(_e considerably flexibility, as thc=Seq dataset. For a two-sample experiment, the coefficient matf is
d_eS|g_n matrixX is arbltrary and can be specmed'by the user. The statlstlcgl[go’ 5117 (suppressing the subscrit We used the parameterization
significance of any covariate can then be determined from the correspondin

Optimization for both models is performed using the R optim function,

Wald statistic (the estimate of differential expression divided by its standard - eP1(1 + ePo) )
error). The vast majority of published RNA-Seq studies involve simple 1+ ePoth
two-sample comparisons, so the primary testing isfp in each B;, to control the degree of differential expression, which is interpretable as

corresponding to the indicator column i representing group assignment. the odds ratio for the expected read probabilities in group 2 vs. group 1.
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Valuesr > 1, r < 1, andr = 1 correspond to group 2 having greater,
lower, and equal average expression, respectively, as group 1. To obtain
empirically-driven parameter values, we first drew random subsamples of
the CEU data (Montgomery, 2010), and for each subsample ran the free and Fre ained
constrained models to obtajfy, and~ estimates for each gene. Then for @ | ggggg—:’;g”d
each value, 20 simulations were performed following equation (3), treating endEgsTimmm”
the estimated values as true parameters, with 10% of the genes chosen to be GLM
differentially expressed (i.e. with at the alternate value), which together
with B determined the correspondirity. Then the data were simulated
according to the corresponding beta-binomial distribution, with library sizes
(total number of reads) obtained from the actual samples. Any simulated
genes consisting entirely of zero counts across the samples were removed.
For the ROC curve comparisons, we attempted to make the results as realistic
as possible by using, for null genes and each simulation, the actual read \ \ T \ \ \
counts drawn from a random setof vs.ny samples drawn from the full 05 10 15 20 25 30
CEU dataset. Although both Datasets 1 and 2 consist of simulations, with effect size ¥
Dataset 2 we attempted to closely follow features of a modern RNA-Seq
dataset, to be as realistic as possible.

Dataset 3:t is difficult for simulations to capture the complexities of real Fig. 2. Paver comparisons for one scenario, Dataset 2.
data, but it is also difficult to obtain RNA-Seq datasets for which the “truth”
of differential expression is known. Moreover, results from any single small
dataset can be highly variable, and possibly not reflect the overall behavior of . . . .
a procedure. We reasoned that comparisons of differentially expressed gentSsStrikingly illustrated in the number of zero counts. For either the
between males and females in the HapMap RNA-Seq datasets would be 4EU or YRI datasets, about 60% of the genes in a subsample of size
ideal testing ground for the ability to detect differential expression, and welO will show no zero counts across the samples, while for Dataset
used subsamples of the CEU and YRI HapMap data to form our third datasel. the value is 17%. It is unclear how these differences affect the
Genes on the sex chromosomes would be expected to predominate amopgrformance of these methods with current RNA-Seq data.
those most differentially expressed. Despite chromosomal inactivation, a
sizeable number of X-chromosome genes are differentially expressed, wit . . . .
modern estimates of this proportion ranging from about 15% (Carrel an 1.2 .Compar.lsons 93'”9 I?ataset As described earlier, Dataset
Willard, 2005) to 5% (Johnstoet al., 2008). Y chromosome genes should 2 CONSists of simulations with, = n, = 2 andn; = ny =
be expressed only in males, but the expression in transformed lymphocytés Under the model using intercept and mean-overdispersion
for many genes may be low. Nonetheless, using the genes on the autosonf@dationships obtained from the CEU data, with parameter
as a control, the ability to efficiently detect differential expression on thecontrolling the degree of true differential expression. In each
sex chromosomes can be used to compare procedures, with the degreegimulation, a random 10% of the genes were used as “alternative.”

n1=n2=2, 0=005

1.0

06
Il
e

|

power

0.2 04
1

0.0

differential expression varying widely across this set. We were interested in power to declare differential expression at
a = 0.05 and the more stringent = 0.001. Such a comparison
3 SIMULATIONS AND EXAMPLES requires interpretablg-values, and so we do not show results for

baySeq, which provides only posterior probabilities for differential
expression. The remaining approaches exhibited reasonable control
3.1.1 Comparisons using Dataset The original authors of type | error, but to make precise power comparisons we also
(Hardcastle and Kelly, 2010) used Receiver Operator Characteristidetermined the empirical threshold for each approach such that
(ROC) curves to compare baySeq to a number of other methods?,—1(p < pthreshota) = «. An illustrative power curve for
including edgeR. Focusing on the most significant genes ane; = n» = 2 anda = 0.05 is shown in Figure 2. The additional
expressed as a false discovery rate produces the result iscenarios are shown in Supplementary Figure 6.
Supplementaryigure 5, which is directly comparable to the lower  For these simulations, the constrained model performs best, as
right panel of Figure 2 in Hardcastle and Kelly (2010). BaySeq hasnight be expected, as the approach is able to accurately estimate
the best performance, while our two approaches perform similarly tmverdispersion using the model. The relative improvement in power
edgeR and DESeq for the most significant genes, but perform mor®r the constrained model over the other models is greatest fer
poorly for larger numbers of rejected genes. A careful comparisoms = 2 anda = 0.001, and for modest effect sizes Forn, =
shows that the free model is similar to the unpenalized “log-n. = 5, the relative improvement of the constrained model over
linear” model in the original baySeq figure, as expected, as is thether penalized approaches is reduced.
overdispersed GLM. For these simulations, the empirical type | error for the nominal
The results are perhaps to be expected, as the data follow thevalues is shown in Supplementary Table 1. The BBSeq models
idealized simulation conditions for baySeq. Supplementary Figureshow near-nominal type | error, while the other methods do not
5 shows the relationship between log(variance) and log(mean) fogenerally perform as well. Focusing onn = no = 5 and a
the first group in the first simulation. Although there is an apparenimoderate effect size = 2.0 and using the re-sampled data counts
mean-overdispersion relationship, note that the dispersion in sampte create "null” genes as described above, we show ROC curves for
variance is more extreme, especially for genes with low expressiorthe various methods in Figure 3. Examination of ROC curves reveal
than encountered in the CEU data (Figure 1 and Supplementargiffering behavior for genes with low expression vs. high expression
Figure 1). Moreover, the average expression level in the real RNA{using the mediars, estimate as a splitting criterion). Here the free
Seq datasets tends to be higher than for Dataset 1. This differeneceodel outperforms the other models, except for high-expression

3.1 Comparisons with other approaches
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genes, where it is similar to baySeq and to the overdispersed GLM.

However, using all genes, the free model appears to be best. Note

that these results differ somewhat from the “pure” simulations for

the power curves, because the sampling of null genes by random e ined
draws from the CEU induces correlations and dispersion behavior - edgeR_trend

edgeR_common

06

05

that may not be reflect in pure null simulation. edgeR tag
Based on these simulations and potential sensitivity to the =] | E;S;‘;
vagaries of real data, we propose that the constrained model has GLM

value mainly for very small sample sizes (suchnas= n, = 2),

with the theoretical advantages for larger sample sizes outweighed
by potential model deviations. Thus we recommend the constrained
model only for very small sample sizes.

After consideration of the simulations, we were motivated to i
compare the free model to competing models for moderate sample /
sizes and for real data. These comparisons are performed in Dataset
3 below. ‘ . ‘ ‘ ‘ ‘

0.000 0.002 0.004 0.006 0.008 0010
3.1.3 Comparisons using Dataset &Jsing the sex information I-specificity
for the CEU HapMap and YRI samples, we applied the free model
and the competing approaches to 10 random subsampies-6f6
males vs.ny = 6 females for CEU and YRI separately. For the

Sensifivity
02 03

0.1

00

edgeR approach, we used only the trend penalization procedure, as — Free
this had performed generally the best in the power comparisons. For — Constrained

w | — edgeR_trend
I

each subsample, we counted the number of sex chromosome genes edgeR_common
among the top detected/rejected genes. The average across the 10 B N /
subsamples is shown in Figure 4. Here the free model is best for the ) — baySeq /

GLM

04

CEU data, and is similar to edgeR, DESeq, and the GLM for the
YRI data. For both CEU and YRI, the baySeq approach is the least
sensitive in detection.

These comparisons are among the most extensive such
examinations performed with real data and for which we are able
to explore the “truth” of differential expression in the dataset.
We emphasize that true differential expression between males and
females may occur for some genes on the autosomes. The rationale
of our analysis, following current understanding of sex chromosome
expression, is merely that genes on the sex chromosomes should be
over-represented a detection procedure is sensitive.

As described in Methods, for completeness of mapped reads,
our analyses were performed using multiple common transcript

Senstivity
03
1

0.1

00
1

T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010

I-Specificity

isoforms (e.g. splicing variants) as if they were separate genes. =N

Many reads map to several isoforms of a gene, technically violating Ef:st,ained

independence assumptions for read counts. RNA-Seq analysis &N :ggzg—gzpndmon

packages typically provide little guidance on this issue. However, edgeR_tag

the library sizes are typically so large that the inference for any = bason

one isoform is essentially the same whether or not the analysis N GLM

is restricted to unique genes, as illustrated for a 12-sample CEU L

analysis, shown in Supplementary Figure 7. &

3.1.4 Sex-specific expression and outlier sensitivitye also )

used the five methods to perform differential expression analysis =

for males vs. females for the entire set of 60 CEU samples.

Knowledge of X-inactivation and dosage compensation remains o |

surprisingly incomplete, and microarray analysis of HapMap cell L . ‘ ‘ ‘ ‘
lines (including CEU and YRI) by Johnstoat al.(2008) has o0 0002 o004 0.008 o008 oo
provided much of our recent understanding of genes that are L-Specificiyy

inactivated (or effectively so) in females. Interestingly, among

the tr:)p )]('O ﬁenes Identlflec:j by” the frez moqbeld('Lable :rL])’ 9 arq:ig. 3. Portions of ROC curves for Dataset 2. (a) the curve for low-

on the chromosome _an all were descri .e . y ‘_]O _nellon. expression genes with theaxis ranging 0-0.01 (see text);(b) a similar set

al.(2008) or Carrel and Willard (2005) as escaping inactivation. It iSyf cyrves for high-expression genes;(c) all genes, but with a more stringent
1-specificity
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reassuring that the known X-inactivatétST (Herzinget al., 1997)
is the most differentially expressed gene (although technically with

the cDNA-based technology, it cannot be distinguished from its | -~ /“ —
antisense counterparSiX(Leeet al., 1999)). Analysis of the entire DESeq DESeq
gene list (not shown) shows many Y chromosome genes ranking edgew?‘{ éii%%
highly, but typically with lower read counts and correspondingly 2 5
lower significanceThe GLM approach similarly identifies 9 genes
on X amongthe top 10, althoughXIST is ranked much lower
(162nd). Unlike the free model, both edgeR with Trend and DESeq
identify only XIST among the top 10 genes. For these methods,
the XIST result is strikingly significant, which we attribute to
differing variances within each of males and females (data not
shown), to which these methods may be more sensitive. Bayseq
identifies 3 genes from the X chromosome among the top 10.
We were interested in the reasons for such strikingly different
genelists. For each approach we examined the most significant T —
autosomal genes, and some potentially spurious results emerged. 0 80 100 150 200 250 0 50 100 150 200 250

Separate male/female histograms of normalized read counts are Number of genes rejected Nurmber of genes rejecterd

plotted in Supplementary Figure 8. The top autosomal gene

from the free and GLM modelsFAHD2A (free modelp=5.86E- Fio. 4. Numberof detected h h ber of
11, GLM p=1.78E-07, has not been widely described, and a 9 % genes on the sex chromosomes vs. number o

. . . . ... genes detected, using subsamples from Dataset 3nwitk= 6 males vs
literaturesearch did not reveal compelling evidence for sex-spemflcg g P m

: ! " “ny = 6 females. (a) the CEU dataset; (b) the YRI data.
expression. Nonetheless, the histogram shows a clear trend of higher
expression in maleSULF1does not appear differentially expressed
(Supplementary Figure 8), but has7.82E-42 according to edgeR
Trend, andp=8.14E-47 according to DESeq This result is largely are truly necessary for effective inference. A better understanding
driven by a single outlying high value in females. BaySeq identifiesof the true nature of differential expression may be necessary in
ACTG1as the most differentially expressed of all genes, althoughorder to fully understand these issues. Much of the motivation
the count distributions overlap almost entirely, with the two highestbehind penalized approaches lies in a notion that genes with low
values occurring in females. We speculate that the high expressiogxpression have an unfavorable ratio of signal to noise. As the
of the gene (4th highest among all genes) may make it vulnerablaccuracy of expression profiling further improves, this notion may
to spurious baySeq findings, but further investigation is warrantedbe replaced by a deeper understanding of the degree of differential
Beyond the potential sensitivity to outliers, most of the methods arexpression need to produce biologically important changes, which
in broad agreement - e.g., the top-ranked genes by the free modelay depend on baseline expression level as well as other contextual
are also significant by the other methods, but appear further dowmformation. Our analysis of male/female differential expression in
on their respective lists. The entire list of genes and p-values for allhe entire CEU dataset was intended only as a simple illustration, but
methods are provided on the software web site. highlights a possible sensitivity to outliers of shrinkage/penalization

methods, and deserves further investigation.

Several investigators have pointed out that a relatively small

number of genes can be responsible for large variations in total
4 CONCLUSION AND DISCUSSION read counts (Robinson and Oshlack, 2010; Bullard et al., 2008), and
We have described a procedure to implement beta-binomiathus it is conceivable that a gene at constant mRNA concentration
modeling of RNA-Seq tag counts. For the fréemodel, our  might appear to vary. This phenomenon would be expected to be
procedure is somewhat similar to other overdispersed generalizestrongest in differential expression experiments involving widely
linear models. However, in our simulations and in the HapMapdivergent samples (e.g. liver and kidney samples, as in Robinson
data, the direct parametric modeling of the overdispersion parametand Oshlack, 2010). For datasets of the same tissue type, as
apeared to be advantageous. Moreover, our BBSeq softwar@escribed here, we expect that total read counts will remain a sound
simplifies the analysis for researchers less familiar with modelingoasis for normalization. However, these considerations suggest that
and construction of design matrices, and issues such as outliéarther extensions of BBSeq modeling might consider alternate
detection are handled automatically. The constrainegpproach, terms which reflect the sources of such read count variation.
while still very simple, has potential advantages in the analysis of The procedures described here reflect only global gene expression
very small datasets, which remain very common. We emphasizehanges, ignoring the rich mRNA sequence information. Extensions
that both procedures offer much more flexible handling ofto BBSeq could potentially be used to summarize evidence of allele-
design variables and other covariates than competing purpose-bugdpecific expression and differential expression, and to investigate
procedures. differential expression of various isoforrtBlekhman et al., 2010)

A surprising result from our investigation is that it is unclear for Sequencereads that are otherwise uninformative about allele
modest size samples (say 5 or more per sample group) that trspecificity or varying isoforms still provide evidence of overall
careful attention to penalization procedures, which are implicit inexpression level, which in turn may indirectly inform a deeper
both the competing procedures and in our constrained approachnderstanding of expression changes.
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Table 1. Top differentially-expressed genes for 27 males vs. 33 females, CEU dataset. BaySeq results are shown as log posterior odds for differential expression.

Free edgeRtrend baySeq DESeq GLM
chrX | XIST 1.73E-11{| chrX | XIST 1.03E-213|| chrl7 | ACTG1 | 94.4 || chrX | XIST 8.82E-227 | chrx | EIF1AX 1.34E—14|
chrX | PNPLA4 | 5.86E-11|| chr7 | ABP1 2.80E-42 || chrX | XIST 4458 (| chr7 | ABP1 3.86E-53 || chrX | PNPLA4 | 5.27E-14

chrX | EIF1IAX | 2.36E-10|| chr8 | SULF1 | 7.82E-42 || chrll | RPS3 37.49|| chr2 | RAPH1 3.90E-52 || chrX | HDHD1A 1.30E-11|
chrX | NLGN4X | 2.09E-08|| chr2 | RAPH1 | 1.16E-40 || chr22| RPL3 28.82 || chr22 | MIR650 9.95E-49 || chrX | RPS4X 4.27E-11
chrX | RPS4X 4.22E-08|| chr22 | MIR650 | 1.72E-37 || chrl2 | RPLPO | 26 chr8 | SULF1 8.14E-47 || chrX | KDM6A 6.57E—09|
chrX | HDHD1A | 5.06E-08|| chr20 | EEF1A2| 9.58E-27 || chrl5 | PKM2 24.7 chrll | NEAT1 6.77E-31 || chrX | KDM5C | 3.03E-08
chrX | PRKX 5.62E-07|| chrl2 | HMGA2 | 3.48E-22 || chrX | NLGN4X | 21.27 || chr20 | EEF1A2 2.30E-19 || chrX | NLGN4X | 6.60E-08
chrX | KDM6A | 6.38E-07|| chr2 | SCN3A | 1.54E-19 || chr22 | MYH9 20.13|| chrl2 | HMGA2 2.87E-19 || chrX | PRKX 6.69E-08
chr2 | FAHD2A | 1.19E-06|| chrl | S100A8 | 6.42E-18 || chr13| LCP1 19.71|| chrl4 | IFI27 2.26E-18 || chr2 | FAHD2A 1.78E-07|
chrX | CXorfl5 | 1.43E-06|| chrl8| DSG1 7.40E-18 || chrX | EIF1AX | 18.35(| chrl5 | GOLGA8B| 1.82E-17 || chrX | CXorfl5 2.62E—07|
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