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ABSTRACT
Motivation: A number of penalization and shrinkage approaches
have been proposed for the analysis of microarray gene expression
data. Similar techniques are now routinely applied to RNA-sequence
transcriptional count data, although the value of such shrinkage has
not been conclusively established. If penalization is desired, the
explicit modeling of mean-variance relationships provides a flexible
testing regimen that “borrows” information across genes, while easily
incorporating design effects and additional covariates.
Results: We describe BBSeq, which incorporates two approaches:
(i) a simple beta-binomial generalized linear model, which has not
been extensively tested for RNA-Seq data, and (ii) an extension
of an expression mean-variance modeling approach to RNA-Seq
data, involving modeling of the overdispersion as a function of the
mean. Our approaches are flexible, allowing for general handling of
discrete experimental factors and continuous covariates. We report
comparisons with other alternate methods to handle RNA-Seq data.
Although penalized methods have advantages for very small sample
sizes, the beta-binomial generalized linear model, combined with
simple outlier detection and testing approaches, appears to have
favorable characteristics in power and flexibility.
Availability: An R package containing examples and sample
datasets is available at http://www.bios.unc.edu/research/
genomic_software/BBSeq

Contact: yzhou@bios.unc.edu; fwright@bios.unc.edu

1 INTRODUCTION
Sequencing of RNA-based libraries(“RNA-Seq”) can provide
digital gene expression measurement, and is an attractive approach,
potentially replacing microarrays for analyzing the transcriptome in
an unbiased and comprehensive manner. For genes with very low
or very high levels, microarrays often lack sensitivity, or can result
in saturated signal. In contrast, RNA-Seq has been shown to have
high accuracy across many orders of expression magnitude (Marioni
et al., 2008), with clear advantages over microarray hybridization.
At a basic level, simple counts of RNA sequences can be used for
digital gene expression measurement, and are the subject of this
paper. Additional information derived from the sequences, such as
de novoexon discovery, are beyond our scope, although many of the
considerations here may be applied to the deeper study of sequence
content.

∗to whom correspondence should be addressed

RNA-Seq technology is currently more expensive than comparable
array technologies, and thus the sample sizes are typically small.
In addition, even as the cost of RNA-Seq profiling drops, the
precision of the technology will enable sensitive investigation
of small samples (for example, pairwise comparisons among
many experimental conditions examined). Eventually, however, we
expect that sequence-based transcriptional profiling will become
the standard, with large datasets becoming affordable. Thus there
is a pressing need for sensitive statistical approaches that can
accommodate large variation in available sample sizes.

RNA-Seq count data consists of the number of instances that each
transcript has been sequenced, arising from random sampling events
for a large number of sequences (the library size). The simplest
data model may be multinomial, with probability proportional to
the true expression level. These probabilities are small and counts
are accumulated over many reads, so Poisson approximations are
commonly used. However, it has been repeatedly shown that RNA-
Seq data are overdispersed (Robinsonet al., 2010) - i.e. the variance
of sequence counts tends to be greater than would be expected for
multinomial or Poisson data. Thus any careful analysis of the data,
and in particular any differential expression analysis, must account
for this overdispersion. Additional factors, such as the length
of the transcript and potential sequencing bias, are important in
performing inference on absolute expression levels, but here we are
concerned primarily with comparison of expression values across
different samples. Before proceeding to our testing framework,
we briefly review the available methods for performing differential
expression analysis for RNA-Seq data.

The package edgeR (Robinsonet al., 2010) was initially designed
as a penalized approach to identify differences between two
sample groups. The current version has a variety of penalized
overdispersion approaches, including ”common” penalized dispersion,
a ”tagwise” approach that shrinks individual genes/tags, and the
tagwise procedure with a trend as a function of expression level.
A negative binomial model is used, which essentially corresponds
to an overdispersed Poisson model. The approach uses empirical
Bayes methods to moderate the degree of overdispersion, with the
aim of reducing error in a similar manner as penalized methods
in microarray analysis (Smyth, 2004). The baySeq approach
(Hardcastle and Kelly, 2010) is more explicitly Bayesian, also
assuming negative binomially distributed count data, and can use
the data to elicit a prior for the overdispersion parameters. BaySeq
provides log posterior probability ratio for differential expression,
rather thanp-values, limiting its utility somewhat for standard
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multiple-testing approaches. The specification of multiple group
comparisonsis somewhat complicated, as all types of alternatives
(in which some group subsets may be equivalently expressed)
must be considered. The package DESeq (Anders and Huber,
2010) employs mean-variance estimation to produce moderated test
statistics, which is similar to a model that we describe below.
DEGseq does not accommodate overdispersion, Wanget al., 2010),
and is not used here for our comparisons.

1.1 Are new methods necessary?
For RNA-Seq data, it is important to consider whether purpose-
built procedures are necessary. Count data with overdispersion
can be modeled usingstandard generalized linear models (GLMs)
implementedin packages such asdispmodin R. The competing
methodsdescribed here produce shrunken estimates of differential
expression, which have been shown to be useful for microarray
analysis. However, for RNA-Seq, we are not aware that the need
for shrinkage or penalization has been carefully examined. An
additional danger is posed by sample outliers, which are more likely
to be encountered in large datasets, and for which the behavior
of the existing approaches is unknown. Similarly, the presence of
zero counts (e.g. all zeros in one of the compared experimental
conditions) can produce missing values or spurious tests. The vast
majority of publications have used purely simulated data, or small
example datasets for which comparative conclusions are difficult.
An exception is the Myrna package of Langmeadet al. (2010),
who apply it to real HapMap YRI data and can analyze multiple
groups, but for which the count-based analysis is standard Poisson.
Analysis of future, more complex datasets will require more flexible
approaches.

In this paper, we describe BBSeq, a comprehensive approach to
the analysis of RNA-Seq transcriptional count data. BBSeq assumes
a beta-binomial model for the count data, corresponding to the
view that the observation of a sequence for a particular transcript
is a Bernoulli random variable with an intrinsic probability for
each sample. These probabilities are allowed to vary according to
a beta distribution, thus allowing for overdispersion, with a mean
that depends on the design variables/covariates. As the library size
is large, the beta-binomial behaves similarly to an overdispersed
Poisson. We thus expect that the beta binomial provides similar
fits as a negative binomial, which in the limit corresponds to
a gamma-Poisson mixture (Lawless, 1987). The beta-binomial
model directly describes unexplained variation in the sequence
read probabilities, simplifying choices of starting values in model-
fitting, and in this sense may provide a more direct interpretation
of overdispersion in the data. However, intuitive descriptions of
overdispersion for negative binomial data may be expressed in terms
of coefficients of variation. We use a logistic regression framework
to describe the dependence of expression on the experimental factors
and covariates, using generic design matrices for flexibility. In
this manner, any experimental factors or other covariates, such
as age or sex, can be considered. Overdispersion is handled as
either (i) a free parameter to be fit separately for each transcript,
or (ii) a term that arises from a mean-overdispersion model
fit to the data, with natural shrinkage properties and allowing
information to be shared across genes. BBSeq is intended as easy-
to-use software for handling RNA-Seq data, and our power/FDR
results indicate that straightforward beta-binomial modeling has
favorable characteristics. In contrast to the competing penalization
approaches, we find only modest advantages for penalization, which
is mainly useful for very small sample sizes.

2 METHODS

2.1 Mean-overdispersion modeling
The 60 HapMap CEU RNA-Seq samples from Montgomeryet al. (2010)(∼
20,000 genes, described in detail below) are used to illustrate the
overdispersion typical of such datasets. Figure 1 shows the sample variance
vs. the sample mean on the log-log scale for the read counts across the
samples. The relationship between the mean and variance is very strong,
and the overdispersion increases with mean expression, as evidenced by the
increasing gap between the data points and the unit line which corresponds
to a Poisson assumption. The pattern remains essentially unchanged if the
counts are standardized by the library size per sample (not shown). A
similar plot using a random subset of 5 samples shows the same pattern
(Supplementary Figure 1). The data illustrate that overdispersion is an
important feature of the data, and can either be fit as a separate parameter
or in a model for the dependence of the overdispersion on the average
expression.

Discussions of RNA-Seq data often focus on the “length bias,” the
phenomenon that longer transcripts are more likely to contain mapped reads.
For example, Oshlack and Wakefield (2009) point out differing mean-
variance relationships for shorter vs. longer genes. Supplementary Figure
2 illustrates that, at least for datasets analyzed here, the mean is a stronger
determinant of the variance (and overdispersion) than the length (also see
Supplementary Methods and Results). In addition, we are mainly interested
in comparing expression levels within genes, across experimental conditions,
and so the length bias is essentially a constant feature for these comparisons.

2.2 Data format and definitions
The data consist of anm × n matrix Y , with m genes andn samples.
Each entryyij represents the transcriptional count for theith gene in thejth
sample. We will useθij to denote the probability that a single read in sample
j maps to genei, andθi. as then-vector of these probabilities. The beta-
binomial modelsθ as a random variable, which produces the overdispersion.
Reads within the same sample are assumed independent.X will denote
ann × p design matrix, consisting of indicator variables for experimental
conditions and any desired covariates. The effect ofX on genei is modeled
as

logit(E(θi.)) = log

(

E(θi.)

1− E(θi.)

)

= XBi (1)

for the p × 1 matrix of regression coefficientsBi = [β0,i, .., βp−1,i]
T .

θij follows a Beta distribution, parameterized so that its variance is
φiE(θij)(1 − E(θij)). Values φ > 0 correspond to overdispersion
compared to the binomial, after considering design effects. We will use
sj =

∑

i yij to represent the library size for thejth sample. Marginally,
the likelihood is

f(yij |α1ij , α2ij) =

(

sj
yij

)

B(yij + α1ij , sj − yij + α2ij)

B(α1ij , α2ij)
(2)

whereB() is the Beta function,α1ij = E(θij)(1 − φi)/φi, andα2ij =
(1− φi)(1− E(θij))/φi.

Parameter estimation is performed by maximum likelihood, using either
of two approaches:

(i) the free model, in whichφi is estimated as a “free” parameter
separately for each gene, and

(ii) the constrainedmodel, in whichφi is estimated using an assumed
mean-overdispersion relationship. For the constrained model, it might be
reasonable for the overdispersion to also depend on the samplej, but for
simplicity and comparability with the free model it is simpler to assume
a singleφ for each genei. Eachφi ∈ [0, 1], and so it is convenient to
work with a logistic transformed parameter, and we adopt the polynomial
relationship

ψ = logit(φ) =
K
∑

k=0

γk{mean(XBi)}k. (3)
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Fig. 1. The mean-variance relationship in the CEU data suggests a mean-
overdispersion relationship. A third-degree polynomial fit is also shown.

where themean is over then-vectorXBi. Note that the logit specification
does not allow for underdispersion, which would be biologically
implausible. In practice, a low degree polynomial, withK ≤ 3, appears to
provide an adequate fit, and we use simple plug-in estimatesB̂i andφ̂i from
the free model to obtain least-squares estimates of theγ values. Theγ values
are assumed to be the same across the genes. This approach is similar to and
generalizes a mean-variance modeling approach for expression microarrays
(Hu and Wright, 2007), which had previously been performed only for two-
sample experiments. The intent of the modeling is to increase power to detect
differential expression for small sample sizes. Note that the estimation of the
mean-overdispersion relationship does not reduce the degrees of freedom for
individual genes, as all genes are used to estimate the fewγ parameters.

Supplementary Figure 3(a) shows thêψ values obtained from the free
model for 6 vs. 6 samples from the CEU dataset, with equal numbers
of males and females in each group, plotted againstmean(XB̂). The
relationship is reasonably polynomial, inspiring the constrained model, with
much of the variation inψ̂ explained (multipleR2 = 0.60 for a cubic
fit). Moreover, the variation in thêψ residuals can mostly be attributed to
sampling variation consistent with thêψ standard errors (Supplementary
Figure 3(b)).

Optimization for both models is performed using the R optim function,
with starting values forBi obtained from linear regression and forψ̂ from
marginal evidence of overdispersion (without considering design effects).

Finally, we note that real data can produce outlying estimates for a
small percentage of genes, especially for the constrained model and large
sample sizes. Thus we have devised very simple outlier detection/correction
approaches to avoid spurious results (see Supplementary Methods and
Results).

2.3 Testing and design matrices
The free and constrained models both provide considerably flexibility, as the
design matrixX is arbitrary and can be specified by the user. The statistical
significance of any covariate can then be determined from the corresponding
Wald statistic (the estimate of differential expression divided by its standard
error). The vast majority of published RNA-Seq studies involve simple
two-sample comparisons, so the primary testing is onβ1i in eachBi,
corresponding to the indicator column inX representing group assignment.

Empirical investigation in small samples indicates that the Wald statistic
β̂1/SE(β̂1) is distributed approximatelytn−p for the free model under the
null hypothesis (and standard normal for constrained), with adjustments for
zero counts in the data (see Supplementary Methods and Results), and we
employ this approximation for two-sample testing.

Many future studies are likely to focus on a few (perhaps multi-level)
factors, as is performed in ANOVA analysis. Thus BBSeq has been designed
with a simple function to generate design matrices corresponding to multi-
level factors. Moreover, BBSeq performs likelihood ratio comparisons for
the overall statistical significance of each included factor. A more detailed
description is provided in Supplementary Methods and Results for the CEU
HapMap samples, along with a real example for which etoposideIC50

cytotoxicity response scores (Huanget al., 2007) are used as a continuous
predictor, along with sex and the sex× IC50 interaction.

In summary, BBSeq is designed to make it easy to perform testing for a
variety of experimental designs, with modifications for small sample sizes to
take advantage of the mean-overdispersion relationship.

2.4 HapMap RNA-Seq data sources
The CEU HapMap lymphoblastoid RNA-seq dataset of Montgomeryet
al. (2010) was obtained from their website (60 samples,http://
jungle.unige.ch/rnaseq_CEU60/) as mapped tags (these and all
other data downloaded in March 2010). RefSeq annotation for 21,498
genes (corresponding to 32,644 transcriptional isoforms) from the hg18
genome build was downloaded from the UCSC Genome Browser (http:
//genome.ucsc.edu/), with gene/exon boundaries used for a transcript
database. Mismatches of up to 2 bases were allowed. Counts were
obtained by summing RNA-Seq reads mapping to the exons of each
RefSeq entry, and RefSeq IDs further annotated to the official gene
symbol. An average of 9.8 million reads per sample were mapped.
Mapping of reads to multiple transcript isoforms were kept in the dataset
for completeness. Differential expression analyses using only the most-
common isoforms for each gene vs. retaining all isoforms as if they were
separate genes resulted in nearly identical inference. Mapped reads from
the Argonne HapMap YRI dataset (69 unique samples), Pickrellet al.,
2010 were downloaded fromhttp://eqtl.uchicago.edu/RNA_
Seq_data/mapped_reads/, extracted, and applied to hg18 using the
same procedures as performed for the CEU data (an average of 4.3 million
mapped per sample). The total number of genes containing mapped reads in
the CEU dataset was 20,904 (32,027 with redundant isoforms included), and
in the YRI dataset was 20,488 (31,508).

2.5 Simulated data and subsampling from real datasets
For simulated datasets, as well as analysis of the HapMap data,the
two BBSeq models were compared to other approaches, including the
three edgeR models, DESeq, baySeq, and a quasi-likelihood overdispersed
binomial GLM (detailed descriptions in Supplementary Methods).

Dataset 1:The first dataset consists of 100 independent simulations of
10,000 genes with 5 vs. 5 samples for two-sample comparisons, reported
in Hardcastle and Kelly (2010) (under “Random dispersion simulations”).
A known 10% of the genes were differentially expressed with a ratio of
average count levels of (

√
8) between two experimental groups. The data

were obtained from the authors, who used edgeR parameter estimates from
a SAGE dataset (Zhanget al., 1997). However, it is not clear whether the
simulation setup mimics current RNA-Seq data.

Dataset 2:The second dataset consisted of our own simulations of two-
sample comparisons of groups 1 and 2 (n1 = 5 vs.n2 = 5 or n1 = 2 vs.
n2 = 2 ), with average expression levels matched to that of a real RNA-
Seq dataset. For a two-sample experiment, the coefficient matrix isB =

[β0, β1]T (suppressing the subscripti). We used the parameterization

r =
eβ1 (1 + eβ0 )

1 + eβ0+β1

(4)

to control the degree of differential expression, which is interpretable as
the odds ratio for the expected read probabilities in group 2 vs. group 1.
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Valuesr > 1, r < 1, andr = 1 correspond to group 2 having greater,
lower, and equal average expression, respectively, as group 1. To obtain
empirically-driven parameter values, we first drew random subsamples of
the CEU data (Montgomery, 2010), and for each subsample ran the free and
constrained models to obtainβ0, andγ estimates for each gene. Then for
each valuer, 20 simulations were performed following equation (3), treating
the estimated values as true parameters, with 10% of the genes chosen to be
differentially expressed (i.e. withr at the alternate value), which together
with β0 determined the correspondingβ1. Then the data were simulated
according to the corresponding beta-binomial distribution, with library sizes
(total number of reads) obtained from the actual samples. Any simulated
genes consisting entirely of zero counts across the samples were removed.
For the ROC curve comparisons, we attempted to make the results as realistic
as possible by using, for null genes and each simulation, the actual read
counts drawn from a random set ofn1 vs.n2 samples drawn from the full
CEU dataset. Although both Datasets 1 and 2 consist of simulations, with
Dataset 2 we attempted to closely follow features of a modern RNA-Seq
dataset, to be as realistic as possible.

Dataset 3:It is difficult for simulations to capture the complexities of real
data, but it is also difficult to obtain RNA-Seq datasets for which the “truth”
of differential expression is known. Moreover, results from any single small
dataset can be highly variable, and possibly not reflect the overall behavior of
a procedure. We reasoned that comparisons of differentially expressed genes
between males and females in the HapMap RNA-Seq datasets would be an
ideal testing ground for the ability to detect differential expression, and we
used subsamples of the CEU and YRI HapMap data to form our third dataset.
Genes on the sex chromosomes would be expected to predominate among
those most differentially expressed. Despite chromosomal inactivation, a
sizeable number of X-chromosome genes are differentially expressed, with
modern estimates of this proportion ranging from about 15% (Carrel and
Willard, 2005) to 5% (Johnstonet al., 2008). Y chromosome genes should
be expressed only in males, but the expression in transformed lymphocytes
for many genes may be low. Nonetheless, using the genes on the autosomes
as a control, the ability to efficiently detect differential expression on the
sex chromosomes can be used to compare procedures, with the degree of
differential expression varying widely across this set.

3 SIMULATIONS AND EXAMPLES

3.1 Comparisons with other approaches
3.1.1 Comparisons using Dataset 1The original authors
(Hardcastle and Kelly, 2010) used Receiver Operator Characteristic
(ROC) curves to compare baySeq to a number of other methods,
including edgeR. Focusing on the most significant genes and
expressed as a false discovery rate produces the result in
SupplementaryFigure 5, which is directly comparable to the lower
right panel of Figure 2 in Hardcastle and Kelly (2010). BaySeq has
the best performance, while our two approaches perform similarly to
edgeR and DESeq for the most significant genes, but perform more
poorly for larger numbers of rejected genes. A careful comparison
shows that the free model is similar to the unpenalized “log-
linear” model in the original baySeq figure, as expected, as is the
overdispersed GLM.

The results are perhaps to be expected, as the data follow the
idealized simulation conditions for baySeq. Supplementary Figure
5 shows the relationship between log(variance) and log(mean) for
the first group in the first simulation. Although there is an apparent
mean-overdispersion relationship, note that the dispersion in sample
variance is more extreme, especially for genes with low expression,
than encountered in the CEU data (Figure 1 and Supplementary
Figure 1). Moreover, the average expression level in the real RNA-
Seq datasets tends to be higher than for Dataset 1. This difference

Fig. 2. Power comparisons for one scenario, Dataset 2.

is strikingly illustrated in the number of zero counts. For either the
CEU or YRI datasets, about 60% of the genes in a subsample of size
10 will show no zero counts across the samples, while for Dataset
1 the value is 17%. It is unclear how these differences affect the
performance of these methods with current RNA-Seq data.

3.1.2 Comparisons using Dataset 2As described earlier, Dataset
2 consists of simulations withn1 = n2 = 2 andn1 = n2 =
5, under the model using interceptβ0 and mean-overdispersion
relationships obtained from the CEU data, with parameterr

controlling the degree of true differential expression. In each
simulation, a random 10% of the genes were used as “alternative.”
We were interested in power to declare differential expression at
α = 0.05 and the more stringentα = 0.001. Such a comparison
requires interpretablep-values, and so we do not show results for
baySeq, which provides only posterior probabilities for differential
expression. The remaining approaches exhibited reasonable control
of type I error, but to make precise power comparisons we also
determined the empirical threshold for each approach such that
Pr=1(p < pthreshold) = α. An illustrative power curve for
n1 = n2 = 2 andα = 0.05 is shown in Figure 2. The additional
scenarios are shown in Supplementary Figure 6.

For these simulations, the constrained model performs best, as
might be expected, as the approach is able to accurately estimate
overdispersion using the model. The relative improvement in power
for the constrained model over the other models is greatest forn1 =
n2 = 2 andα = 0.001, and for modest effect sizesr. Forn1 =
n2 = 5, the relative improvement of the constrained model over
other penalized approaches is reduced.

For these simulations, the empirical type I error for the nominal
p-values is shown in Supplementary Table 1. The BBSeq models
show near-nominal type I error, while the other methods do not
generally perform as well. Focusing onn1 = n2 = 5 and a
moderate effect sizer = 2.0 and using the re-sampled data counts
to create ”null” genes as described above, we show ROC curves for
the various methods in Figure 3. Examination of ROC curves reveal
differing behavior for genes with low expression vs. high expression
(using the medianβ0 estimate as a splitting criterion). Here the free
model outperforms the other models, except for high-expression
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genes, where it is similar to baySeq and to the overdispersed GLM.
However, using all genes, the free model appears to be best. Note
that these results differ somewhat from the “pure” simulations for
the power curves, because the sampling of null genes by random
draws from the CEU induces correlations and dispersion behavior
that may not be reflect in pure null simulation.

Based on these simulations and potential sensitivity to the
vagaries of real data, we propose that the constrained model has
value mainly for very small sample sizes (such asn1 = n2 = 2),
with the theoretical advantages for larger sample sizes outweighed
by potential model deviations. Thus we recommend the constrained
model only for very small sample sizes.

After consideration of the simulations, we were motivated to
compare the free model to competing models for moderate sample
sizes and for real data. These comparisons are performed in Dataset
3 below.

3.1.3 Comparisons using Dataset 3Using the sex information
for the CEU HapMap and YRI samples, we applied the free model
and the competing approaches to 10 random subsamples ofn1 = 6
males vs.n2 = 6 females for CEU and YRI separately. For the
edgeR approach, we used only the trend penalization procedure, as
this had performed generally the best in the power comparisons. For
each subsample, we counted the number of sex chromosome genes
among the top detected/rejected genes. The average across the 10
subsamples is shown in Figure 4. Here the free model is best for the
CEU data, and is similar to edgeR, DESeq, and the GLM for the
YRI data. For both CEU and YRI, the baySeq approach is the least
sensitive in detection.

These comparisons are among the most extensive such
examinations performed with real data and for which we are able
to explore the “truth” of differential expression in the dataset.
We emphasize that true differential expression between males and
females may occur for some genes on the autosomes. The rationale
of our analysis, following current understanding of sex chromosome
expression, is merely that genes on the sex chromosomes should be
over-representedif a detection procedure is sensitive.

As described in Methods, for completeness of mapped reads,
our analyses were performed using multiple common transcript
isoforms (e.g. splicing variants) as if they were separate genes.
Many reads map to several isoforms of a gene, technically violating
independence assumptions for read counts. RNA-Seq analysis
packages typically provide little guidance on this issue. However,
the library sizes are typically so large that the inference for any
one isoform is essentially the same whether or not the analysis
is restricted to unique genes, as illustrated for a 12-sample CEU
analysis, shown in Supplementary Figure 7.

3.1.4 Sex-specific expression and outlier sensitivityWe also
used the five methods to perform differential expression analysis
for males vs. females for the entire set of 60 CEU samples.
Knowledge of X-inactivation and dosage compensation remains
surprisingly incomplete, and microarray analysis of HapMap cell
lines (including CEU and YRI) by Johnstonet al.(2008) has
provided much of our recent understanding of genes that are
inactivated (or effectively so) in females. Interestingly, among
the top 10 genes identified by the free model (Table 1), 9 are
on the X chromosome and all were described by Johnstonet
al.(2008) or Carrel and Willard (2005) as escaping inactivation. It is

Fig. 3. Portions of ROC curves for Dataset 2. (a) the curve for low-
expression genes with thex axis ranging 0-0.01 (see text);(b) a similar set
of curves for high-expression genes;(c) all genes, but with a more stringent
1-specificity
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reassuring that the known X-inactivatorXIST(Herzinget al., 1997)
is the most differentially expressed gene (although technically with
the cDNA-based technology, it cannot be distinguished from its
antisense counterpartTSIX(Leeet al., 1999)). Analysis of the entire
gene list (not shown) shows many Y chromosome genes ranking
highly, but typically with lower read counts and correspondingly
lower significance.The GLM approach similarly identifies 9 genes
on X among the top 10, althoughXIST is ranked much lower
(162nd). Unlike the free model, both edgeR with Trend and DESeq
identify only XIST among the top 10 genes. For these methods,
the XIST result is strikingly significant, which we attribute to
differing variances within each of males and females (data not
shown), to which these methods may be more sensitive. Bayseq
identifies 3 genes from the X chromosome among the top 10.
We were interested in the reasons for such strikingly different
genelists. For each approach we examined the most significant
autosomal genes, and some potentially spurious results emerged.
Separate male/female histograms of normalized read counts are
plotted in Supplementary Figure 8. The top autosomal gene
from the free and GLM models,FAHD2A (free modelp=5.86E-
11, GLM p=1.78E-07, has not been widely described, and a
literaturesearch did not reveal compelling evidence for sex-specific
expression. Nonetheless, the histogram shows a clear trend of higher
expression in males.SULF1does not appear differentially expressed
(Supplementary Figure 8), but hasp=7.82E-42 according to edgeR
Trend, andp=8.14E-47 according to DESeq This result is largely
driven by a single outlying high value in females. BaySeq identifies
ACTG1as the most differentially expressed of all genes, although
the count distributions overlap almost entirely, with the two highest
values occurring in females. We speculate that the high expression
of the gene (4th highest among all genes) may make it vulnerable
to spurious baySeq findings, but further investigation is warranted.
Beyond the potential sensitivity to outliers, most of the methods are
in broad agreement - e.g., the top-ranked genes by the free model
are also significant by the other methods, but appear further down
on their respective lists. The entire list of genes and p-values for all
methods are provided on the software web site.

4 CONCLUSION AND DISCUSSION
We have described a procedure to implement beta-binomial
modeling of RNA-Seq tag counts. For the free-φ model, our
procedure is somewhat similar to other overdispersed generalized
linear models. However, in our simulations and in the HapMap
data, the direct parametric modeling of the overdispersion parameter
apeared to be advantageous. Moreover, our BBSeq software
simplifies the analysis for researchers less familiar with modeling
and construction of design matrices, and issues such as outlier
detection are handled automatically. The constrained-φ approach,
while still very simple, has potential advantages in the analysis of
very small datasets, which remain very common. We emphasize
that both procedures offer much more flexible handling of
design variables and other covariates than competing purpose-built
procedures.

A surprising result from our investigation is that it is unclear for
modest size samples (say 5 or more per sample group) that the
careful attention to penalization procedures, which are implicit in
both the competing procedures and in our constrained approach,

Fig. 4. Numberof detected genes on the sex chromosomes vs. number of
genes detected, using subsamples from Dataset 3 withn1 = 6 males vs
n2 = 6 females. (a) the CEU dataset; (b) the YRI data.

are truly necessary for effective inference. A better understanding
of the true nature of differential expression may be necessary in
order to fully understand these issues. Much of the motivation
behind penalized approaches lies in a notion that genes with low
expression have an unfavorable ratio of signal to noise. As the
accuracy of expression profiling further improves, this notion may
be replaced by a deeper understanding of the degree of differential
expression need to produce biologically important changes, which
may depend on baseline expression level as well as other contextual
information. Our analysis of male/female differential expression in
the entire CEU dataset was intended only as a simple illustration, but
highlights a possible sensitivity to outliers of shrinkage/penalization
methods, and deserves further investigation.

Several investigators have pointed out that a relatively small
number of genes can be responsible for large variations in total
read counts (Robinson and Oshlack, 2010; Bullard et al., 2008), and
thus it is conceivable that a gene at constant mRNA concentration
might appear to vary. This phenomenon would be expected to be
strongest in differential expression experiments involving widely
divergent samples (e.g. liver and kidney samples, as in Robinson
and Oshlack, 2010). For datasets of the same tissue type, as
described here, we expect that total read counts will remain a sound
basis for normalization. However, these considerations suggest that
further extensions of BBSeq modeling might consider alternate
terms which reflect the sources of such read count variation.

The procedures described here reflect only global gene expression
changes, ignoring the rich mRNA sequence information. Extensions
to BBSeq could potentially be used to summarize evidence of allele-
specific expression and differential expression, and to investigate
differential expression of various isoforms(Blekhman et al., 2010).
Sequencereads that are otherwise uninformative about allele
specificity or varying isoforms still provide evidence of overall
expression level, which in turn may indirectly inform a deeper
understanding of expression changes.
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Table 1. Top differentially-expressed genes for 27 males vs. 33 females, CEU dataset. BaySeq results are shown as log posterior odds for differential expression.

Free edgeRtrend baySeq DESeq GLM
chrX XIST 1.73E-11 chrX XIST 1.03E-213 chr17 ACTG1 94.4 chrX XIST 8.82E-227 chrX EIF1AX 1.34E-14
chrX PNPLA4 5.86E-11 chr7 ABP1 2.80E-42 chrX XIST 44.58 chr7 ABP1 3.86E-53 chrX PNPLA4 5.27E-14
chrX EIF1AX 2.36E-10 chr8 SULF1 7.82E-42 chr11 RPS3 37.49 chr2 RAPH1 3.90E-52 chrX HDHD1A 1.30E-11
chrX NLGN4X 2.09E-08 chr2 RAPH1 1.16E-40 chr22 RPL3 28.82 chr22 MIR650 9.95E-49 chrX RPS4X 4.27E-11
chrX RPS4X 4.22E-08 chr22 MIR650 1.72E-37 chr12 RPLP0 26 chr8 SULF1 8.14E-47 chrX KDM6A 6.57E-09
chrX HDHD1A 5.06E-08 chr20 EEF1A2 9.58E-27 chr15 PKM2 24.7 chr11 NEAT1 6.77E-31 chrX KDM5C 3.03E-08
chrX PRKX 5.62E-07 chr12 HMGA2 3.48E-22 chrX NLGN4X 21.27 chr20 EEF1A2 2.30E-19 chrX NLGN4X 6.60E-08
chrX KDM6A 6.38E-07 chr2 SCN3A 1.54E-19 chr22 MYH9 20.13 chr12 HMGA2 2.87E-19 chrX PRKX 6.69E-08
chr2 FAHD2A 1.19E-06 chr1 S100A8 6.42E-18 chr13 LCP1 19.71 chr14 IFI27 2.26E-18 chr2 FAHD2A 1.78E-07
chrX CXorf15 1.43E-06 chr18 DSG1 7.40E-18 chrX EIF1AX 18.35 chr15 GOLGA8B 1.82E-17 chrX CXorf15 2.62E-07
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