
Yihui Zhou, Kai Xia and Fred A. Wright 
 

1 
 

Supplementary Methods and Results 

Sequencing bias due to transcript length 

Several investigators (notably Oshlack and Wakefield, 2009) have pointed out that a long 

transcript will tend to have higher aggregate read counts than a short transcript, even if the two 

have equal expression, as the long transcript has more opportunities for sequences from 

fragmented reads to appear.  Oshlack and Wakefield (2009) demonstrated empirically that the 

proportion of differentially expressed transcripts in a number of experiments was positively 

associated with transcript length.  Clearly when using read counts to compare expression across 

transcripts, some normalization by transcript length is desirable.  However, within a 

transcript/gene, such normalization may not be highly consequential. 

As a simple example, consider a genes with read count Yi, transcript length i, and assume all 

samples have equal library sizes.  For simplicity, also suppose that the counts do not exhibit 

overdispersion, i.e. are distributed as Poisson.  If the mean count value is , the transcript follows 

a standard mean-variance relationship log(var(Yi)) = log(mean(Yi)) = log().  Now consider the 

mean-variance relationship for the length-normalized read count Yi'=Yi/li, where li is the library 

size. We have log(E(Yi'))= -log(li)+log(), whereas  

log(var(Yi'))=-2log(li)+log()=-log(li)+log(E(Yi')).  Thus the normalization has taken a perfect 

unit mean-variance relationship and introduced an extraneous offset by log(li).  This 

phenomenon appears to lie behind the observation in Oshlack and Wakefield (2009) that the 

mean variance relationship is much more strongly affected by transcript length after 

normalization (see the authors' Figure 2b vs. 2a).  However, in doing so, the researcher has not 

really learned more about the transcript variability than was already apparent from the transcript 

mean.  In other words, it is not clear that the normalization provides extra information that is 

useful for differential expression analysis.  Using the CEU data, Supplementary Figure 2 also 

illustrates that transcript length is only a modest determinant of the mean-variance (and therefore 

the mean-overdispersion) relationship. 

We recognize that this discussion is elementary, but perhaps necessary, as a number of 

researchers may, for example, immediately compute RPKM values (reads per kilobases mapped 

per million reads, Mortazavi et al., 2008) before performing any downstream analysis.  For 

differential expression analysis, especially when attempting to use the mean-variance 

relationship in a manner similar to our constrained approach, pre-such normalization may be 

counterproductive.   

Note that the BBSeq model, as well as the negative binomial approaches described by others, 

appropriately considers the library size, which typically varies considerably across samples.   

However, it is often useful to have a simple quantity to represent expression level across samples, 

and for this purpose we recommend using the read proportions yij/sj (example in Supplementary 

Figure 8). 

Handling outliers 

When fitting the free model, a small percentage of transcripts (typically 5% or fewer) exhibit 

outlying  estimates, in terms of their residuals from the mean-overdispersion model.  This 
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outcome is relatively insensitive to starting values, and tends to occur in genes with a majority of 

zero counts.  For such low expression genes, the power to detect differential expression is low, 

and the outlying values are of little consequence, except for the danger of declaring false 

positives by underestimating the overdispersion.  We detect outlying  values by applying the 

mean absolute deviation method of Davies and Gather (1993), with a cutoff of 5.2 median 

absolute deviation units. An extremely simple approach is to simply impute the outlying values 

at the mean of  among the non-outliers, which appears to be conservative, and was used for the 

results in the paper.   

 

Another type of outlier occurs for individual samples. Outlying high read counts compared to 

other samples can produce spurious results, as well as an excessive proportion of zero counts (so 

that otherwise unimpressive non-zero values gain undue weight).  These count values may be 

correct, but can produce apparently highly significant results for the BBSeq constrained model 

when fitting the model to data with large sample sizes, even if a single large value occurs in only 

one experimental condition.  The free model does not appear very susceptible to this 

phenomenon, as the outlying value results in a larger estimate of the overdispersion parameter  

(or equivalently ), reducing the apparent significance.  An extremely simple approach is to 

compare the ratio of highest read counts (or read proportions) compared to the second-highest 

values, and “flag” the constrained gene significance as potentially suspect if the ratio exceeds a 

specified threshold.  By default we use a threshold of 5.0.  If more than 95% of the read count 

values are zero, we also flag the gene.  In our full example CEU dataset, for example, 

approximately 4% of the genes were flagged in this manner, and can be subject to further 

scrutiny if declared significant by the constrained model. 

Finally, for the free model we found that spurious Wald statistics can arise if all zero counts 

appear in one of the experimental conditions.  For simple two-group testing, for this small 

number of genes we perform simple pooled-variance t-testing to obtain approximate p-values.   

Software settings and maximization 

For edgeR (v.2.2.5), we followed recommendations from the user manual for choosing 

prior.n so that the total degrees of freedom (prior.n*df) associated with the prior is about 

50, subject to prior.n not going below 1.  For baySeq (v.1.4.0), we analyzed the data 

assuming a Negative Binomial distribution (not Poisson).  As in the user manual, we obtained 

priors using getPriors.NB, and then acquired posterior likelihoods using 

getLikelihoods.NB.  For DESeq (v1.5.1), we used the standard mean-variance estimation 

and nBinomtest.  BBSeq performs R optim() optimization and  Hessian matrix estimation.  

We found that for total sample sizes larger than 4, outliers were reduced (although at the expense 

of more computation) by using the conjugate gradient “CG” option. 

Fitting of the overdispersed GLM proceeded using the functions glm and 

glm.binomial.disp from the dispmod package, as described in http://cran.r-

project.org/web/packages/dispmod/dispmod.pdf.  The approach fits an 

overdispersed binomial logistic  model as described by Willams (1982).  For a subset of 1000 

genes in each of several simulations from Dataset 2, we also fit an alternative overdispersed 

Poisson quasi-likelihood using glm and glm.poisson.disp, with log(li) as a covariate.  For 

these datasets, we confirmed that the two GLM approaches provided very similar results. 

http://cran.r-project.org/web/packages/dispmod/dispmod.pdf
http://cran.r-project.org/web/packages/dispmod/dispmod.pdf
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Null distributional approximations 

Empirical investigation of BBSeq using small/moderate subsamples of the CEU dataset (in the 

range of 2 to 5 samples per experimental group) revealed that random groupings of the data 

resulted in Wald statistics with variance exceeding 1.0.  By analogy with linear regression, we 

reasoned that estimation of per gene may result in variance estimates relatively uncorrelated 

with the coefficients B, and thus result in a t distribution with approximate degrees of freedom n-

p.    The constrained model uses all genes to estimate , and so we use a standard normal 

approximation for the Wald statistic.  For genes with low expression and many zero counts, we 

noted remaining extra variability in the Wald statistics.  We reasoned that the effective degrees 

of freedom for the free model was limited to the samples that showed non-zero counts, as only 

these values are very informative about the parameters, except in extreme differential expression 

scenarios.  Thus we further reduced the degrees of freedom by the total number of observed zero 

counts per gene, with a minimum assumed degree of freedom of 1. We note that this effort 

pertains to the p-values only and that for all but the low-expressing genes the ordering of genes 

based on the absolute values of Wald statistics is unaffected by the degrees of freedom used.  

Moreover, the ROC curves or similar constructions (such as the sex-chromosome detection 

shown in Figure 6) are also invariant to these assumptions.  Results from the null simulations 

described in section 3.1.2 are given in Supplementary Table 1 below. 

  
Constrained Free trend tag common DESeq          GLM 

n1=n2=5 =0.05 0.046 0.047 0.015 0.054 0.055 0.016          0.074 

 
 =0.001 0.001 0.001 0.000 0.007 0.008 0.000          0.009 

        
n1=n2=2  =0.05 0.048 0.034 0.003 0.023 0.024 0.005          0.086 

 
 =0.001 0.001 0.001 0.000 0.001 0.001 0.000          0.013 

Supplementary Table 1.  Empirical type I errors for the simulations in Dataset 2, based on 20 simulated datasets, 

each with 32,027 genes. 

 

Specifying multiple experimental factors 

Here we describe how multiple experimental factors are specified, following standard linear 

modeling.  As a simple example, consider a hypothetical RNA-Seq experiment with 4 cell lines, 

and age as a continuous covariate.  The X-builder routine in BBSeq will automatically 

produce “dummy” indicator columns for each cell line, and four design matrices:               , 

                                  (treating the first level as a reference);        

                                           . Standard log-likelihood ratio comparisons are then 

used to test for the significance of each of the factors cell line and age, either in isolation or in 

the presence of the other factor, using chi-square approximations and the appropriate degrees of 

freedom.   

An example with two factors: exposure to etoposide 

Few purpose-built packages for RNA-Seq analysis enable the simultaneous analysis of multiple 

experimental factors, and we illustrate here the use of BBSeq for such an example.  In the CEU 
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dataset, 42 of the samples had accompanying inhibitory concentration (IC50) scores on a cell-

death assay (Huang et al., 2007) resulting from experimental exposure to the cytotoxic cancer 

drug etoposide (downloaded from the Pharmacogenomics Knowledge Base 

www.pharmgkb.org).  Using these values as a quantitative covariate, in addition to the 

qualitative covariate sex and the sexXIC50 interaction, we are able to fit richer models using both 

the free and constrained models.  Supplementary Table 1 shows the p-values from the free model 

for the most significant genes using each of these predictors in the combined model.  In order to 

illustrate the two-factor analyses resulting from the “full” vs. “reduced” models, we also ran the 

X-builder function and computed the likelihood ratio tests.  For example (Supplementary Table 

1), the likelihood-ratio based p-value for the sex covariate is computed by fitting the larger main 

effects model with sex and IC50 compared to the smaller model with IC50 alone.  In this example 

the likelihood ratio approach is not easier or more parsimonious than examining the Wald 

statistics.  However, for factors with multiple levels (such as an ANOVA analysis), it is often of 

interest to obtain a p-value for the entire factor. 

The vignette for the R BBSeq package similarly contains an example quantitative score for a 

smaller subset of CEU samples.  Supplementary Table 1 is used entirely for illustration here, and 

we do not comment on the biological plausibility of the genes described.  However, we do note 

that, as expected, many of the “sex” genes are genes on the X chromosome identified in Table 1.  

The gene GSTM5 (the top gene for the sexXIC50 interaction) is extremely interesting, as the 

glutathione S-transferases  are known metabolizing enzymes for a variety of xenobiotics (see 

OMIM entry www.ncbi.nlm.nih.gov/omim/138385).   Analyses such as these illustrate the 

untapped potential, even in existing RNA-Seq databases.   

LRTsex Waldsex LRTIC50 WaldIC50 WaldsexXIC50 

Gene Pvalue Gene Pvalue Gene Pvalue Gene Pvalue Gene Pvalue 

XIST 7.00E-13 PNPLA4 7.62E-10 KRT17 1.65E-07 PDGFA 9.42E-17 GSTM5 3.07E-09 

NLGN4X 1.80E-10 XIST 4.06E-09 PEX26 2.97E-07 JUP 1.99E-15 ERBB4 9.00E-08 

PNPLA4 6.07E-10 NLGN4X 2.94E-07 RASAL2 3.47E-07 KRT17 3.38E-15 JUP 1.40E-07 

EIF1AX 2.81E-07 KDM5C 1.39E-06 BCL11B 1.33E-06 BCL11B 2.62E-14 IL1R2 2.72E-07 

COLQ 2.11E-06 LOXHD1 1.58E-06 ARHGEF6 1.41E-06 RASAL2 3.04E-14 NLRP11 2.82E-07 

DDX43 2.25E-06 EIF1AX 5.19E-06 PDGFA 2.15E-06 SERPINA1 3.46E-14 AKR1C1 3.59E-07 

KDM5C 2.29E-06 PTTG2 6.46E-06 CYP4F3 2.32E-06 CYP4F3 1.54E-13 SYPL2 4.66E-07 

KDM6A 3.02E-06 NCRNA00183 1.84E-05 SERPINA1 2.71E-06 HOMER3 3.94E-13 AKR1C2 1.02E-06 

NCRNA00183 3.52E-06 PRKX 3.15E-05 PGF 4.34E-06 RICH2 2.97E-12 IL18R1 1.16E-06 

RPS4X 8.72E-06 KDM6A 4.73E-05 ASTN2 5.64E-06 PRF1 3.90E-12 FYB 1.27E-06 

Supplementary Table 2.  P-values based on the likelihood ratio test (LRT) statistics and Wald statistics for sex, 

etoposide IC50, and the sexXIC50 interaction, using the 42 CEU samples with etoposide IC50 scores.  Wald statistics 

are based on a combined model using sex, etopside IC50, and the sexXIC50 interaction as predictors.  The LRT 

performs similar analyses (although without the interaction) using the likelihood ratio approach. 
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