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1. Cross validation bandwidth selection

In this section, we will derive the first-order approximation to the cross validation score CVT (h)

in Equation (27). We need some notation as follows:

M(S,D) = tr{log(S−1/2DS−T/2)2},

G
(−i)
n,T (αT (x)) =

∑
j 6=i

gT (Sj , DT (xj , αT (x), k0))2,

Gn,T (αT (x)) =
∑

gT (Sj , DT (xj , αT (x), k0))2,

α̂
(−i)
IT (x, h) = argminαT (x)G

(−i)
n,T (αT (x)),

α̂IT (x, h) = argminαT (x)Gn,T (αT (x)), ∆α̂
(−i)
IT (x, h) = α̂

(−i)
IT (x, h)− α̂IT (x, h),

∂DM(S,D) =
∂tr{log(S−1/2DS−T/2)2}

∂vecs(D)
,

∂GM(S,GGT ) =
∂tr{log(S−1/2GGTS−T/2)2}

∂vecs(G)
,

∂2DM(S,D) =
∂2tr{log(S−1/2DS−T/2)2}

∂vecs(D)∂vecs(D)T
,

E(S,D, x, x0) = DT (x, αT (x0), k0)−1/2SDT (x, αT (x0), k0)−T/2,

M(S, x− x0, αT (x0)) = tr{log(S−1/2D(x, αT (x0), k0)S−T/2)2},

∂αT (x0)M(S, x− x0, αT (x0)) =
∂tr{log(S−1/2D(x, αT (x0), k0)S−T/2)2}

∂αT (x0)
,

∂2αT (x0)
M(S, x− x0, αT (x0)) =

∂2tr{log(S−1/2D(x, αT (x0), k0)S−T/2)2}
∂αT (x0)∂αT (x0)T

,

H(−i)(x, αT (x), h) =
∑
j 6=i

Kh(xj − x)∂2αT (x)M(Sj , xj − x, αT (x)).

Let Ĝ
(−i)
IT (xi, h) and ĜIT (xi, h) be, respectively, the subcomponents of α̂

(−i)
IT (x, h) and

α̂IT (x, h) corresponding to G(x). Then, by using the Taylor’s series expansion, we can ap-
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proximate the cross validation at bandwidth h by

CVT (h) = n−1
n∑
i=1

gT (Si, D̂
(−i)
IT (xi, h))2 = n−1

n∑
i=1

tr{log(S
−1/2
i D̂

(−i)
IT (xi, h)S

−T/2
i )2}

≈ n−1
n∑
i=1

gT (Si, D̂IT (xi, h))2 + 2pn(h),

where pn(h) can be regarded as the degree of freedom for ILPR and is given by

pn(h) = (2n)−1
n∑
i=1

{∂GM(Si, D̂IT (xi, h))Tvecs(Ĝ
(−i)
IT (xi, h)− ĜIT (xi, h))}. (1)

Since α̂
(−i)
IT (xi, h) and α̂IT (xi, h) minimize G

(−i)
n,T (αT (xi)) and Gn,T (αT (xi)), respectively,

we have

0 =
∑
j 6=i

{Kh(xj − xi)∂α(xi)M(Sj , xj − xi, α̂(−i)
IT (xi, h))} (2)

≈
∑
j 6=i

{Kh(xj − xi)∂α(xi)M(Sj , xj − xi, α̂IT (xi, h))}

+
∑
j 6=i

Kh(xj − xi)∂2α(xi)M(Sj , xj − xi, α̂IT (xi, h))∆α̂
(−i)
IT (xi, h)

= −Kh(0)∂α(xi)M(Si, 0, α̂IT (xi, h))

+
∑
j 6=i

Kh(xj − xi)∂2α(xi)M(Sj , xj − xi, α̂IT (xi, h))∆α̂
(−i)
IT (xi, h).

This yields that

∆α̂
(−i)
IT (xi, h) = Kh(0)H(−i)(xi, α̂IT (xi, h), h)−1∂α(xi)M(Si, 0, α̂IT (xi, h)). (3)

Furthermore, at a given xi, we consider αT (xi) = (α(1)(xi)
T , α(2)(xi)

T )T and α
(−i)
IT (xi, h) =

(α
(−i)
(1),IT (xi, h)T , α

(−i)
(2),IT (xi, h)T )T , in which α(1)(xi) and α

(−i)
(1),IT (xi, h), respectively, correspond

to the unknown parameters in G(xi). Suppose that H(−i)(xi, α̂IT (xi, h), h) can be decomposed

according to the decomposition α(xi) = (α(1)(xi)
T , α(2)(xi)

T )T as follows:

H(−i)(xi, α̂IT (xi, h), h) =

 H
(−i)
11,IT (xi, h) H

(−i)
12,IT (xi, h)

H
(−i)
21,IT (xi, h) H

(−i)
22,IT (xi, h)

 .

It can be shown that all elements in ∂α(2)(xi)M(Si, 0, α̂IT (xi, h)) equal zero. Thus, by using the

nullity theorem, we have

∆α̂
(−i)
(1),IT (xi, h) = Kh(0)H

(−i)
11·2,IT (xi, h)−1∂α(1)(xi)M(Si, 0, α̂IT (xi, h)), (4)
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where H
(−i)
11·2,IT (xi, h) = H

(−i)
11,IT (xi, h) − H(−i)

12,IT (xi, h)H
(−i)
22,IT (xi, h)−1H

(−i)
21,IT (xi, h). By substi-

tuting (4) into (1), we have

pn(h) = (2n)−1Kh(0)

n∑
i=1

{∂GM(Si, D̂IT (xi, h))TH
(−i)
11·2,IT (xi, h)−1∂GM(Si, D̂IT (xi, h))}, (5)

which finishes the proof of Equation (27).

In order to calculate CVT (h), we need the first order derivatives of matrix logarithm

and exponential, ∂GM(S,GGT ), and the first-order and second-order derivatives of M(S, x −
x0, αT (x0)) with respect to αT (x0) as follows.

Lemma 1. (i) The first-order derivative of M(S,GGT ) with respect to vecs(G) is given by

∂M(S,GGT )

∂Gj
= 2tr{log(GTS−1G)G−1

∂(GGT )

∂Gj
G−T }, (6)

where Gj is the j−th unknown element in vecs(G).

(ii) Suppose that D(α) ∈ Sym+(m) and M(α) ∈ Sym(m) are differentiable functions of α,

the first order derivatives of log(D(α)) and exp(M(α)) with respect to the j−th component of

αj are, respectively, given by

∂ exp(M(α))

∂αj
=

∫ 1

0

exp((1− s)M(α))
∂M(α)

∂αj
exp(sM(α))ds, (7)

∂ log(D(α))

∂αj
=

∫ 1

0

[{D(α)− Im}s+ Im]−1
∂D(α)

∂αj
[{D(α)− Im}s+ Im]−1ds. (8)

Proof of Lemma 1. Since tr{log(S−1/2GGTS−T/2)2} = tr{log(G−1SG−T )2}, It follows from

Proposition 2.1 in Maher (2005) that

∂M(S,GGT )

∂Gj
= 2tr{log(G−1SG−T )GTS−1G∂Gj (G

−1SG−T )}.

Because log(G−1SG−T )GTS−1G = GTS−1G log(G−1SG−T ) and

∂Gj (G
−1SG−T ) = −G−1(∂GjG)G−1SG−T −G−1SG−T (∂GjG)G−T ,

we have

∂M(S,GGT )

∂Gj
= −2

n∑
i=1

tr{log(G−1SG−T )(G−1
∂G

∂Gj
+
∂GT

∂Gj
G−T )},

which yields (6). The proof of (7) and (8) can be found in Higham (2008).

Lemma 2. Let αj(x0) be the jth element of αT (x0). The jth element of the vector ∂αT (x0)M(S, x−
x0, αT (x0)) is given by

∂αj(x0)M(S, x− x0, αT (x0)) = −2tr[log(E(S,D, x, x0))D(x, αT (x0), k0)−1/2 ×

{∂αj(x0)D(x, αT (x0), k0)}D(x, αT (x0), k0)−T/2].
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The (j, k)−th element of ∂2αT (x0)

M(S, x− x0, αT (x0)) is given by

∂2M(S, x− x0, αT (x0))

∂αj(x0)∂αk(x0)
= −2tr[

∂ log(E(S,D, x, x0))

∂αk(x0)
D(x, αT (x0), k0)−1/2 ×

{∂αj(x0)D(x, αT (x0), k0)}D(x, αT (x0), k0)−T/2]− 2tr(log(E(S,D, x, x0))

∂[D(x, αT (x0), k0)−1/2{∂αj(x0)D(x, αT (x0), k0)}D(x, αT (x0), k0)−T/2]

∂αk(x0)
).

Proof of Lemma 2. By using Lemma 1 and matrix differentiation, we can easily prove Lemma

2.

2. Annealing evolutionary stochastic approximation Monte Carlo

We now develop an annealing evolutionary stochastic approximation Monte Carlo algorithm

for computing α̂IT (x0;h). Quite recently, the stochastic approximation Monte Carlo algorithm

Liang et al. (2007) has been proposed in the literature as a general simulation technique, which

possesses a nice feature in that the moves are self-adjustable and thus not likely to get trapped

by local energy minima. The annealing evolutionary SAMC algorithm (Liang, 2010) represents

a further improvement of stochastic approximation Monte Carlo for optimization problems by

incorporating some features of simulated annealing (Kirkpatrick et al., 1983) and the genetic

algorithm (Goldberg, 1989) into its search process.

Like the genetic algorithm, annealing evolutionary stochastic approximation Monte Carlo

works on a population of samples. Let αl = (αR,[1], . . . , αR,[l]) denote the population, where

l is the population size, and αR,[i] = (αi1, . . . , αiq(k0+1)) is a q(k0 + 1)-dimensional vector

called an individual or chromosome in terms of genetic algorithms. Thus, the minimum of

the objective function Gn(αT (x0)), αT (x0) ∈ B, can be obtained by minimizing the function

U(αl) =
∑l
i=1Gn(αR,[i]). An unnormalized Boltzmann density can be defined for the popula-

tion as follows,

ψ(αl) = exp
{
−U(αl)/τ

}
, αl ∈ Bl, (9)

where τ = 1 is called the temperature, and Bl = B × · · · × B is a product sample space. The

sample space can be partitioned according to the function U(αl) into b subregions: E1 = {αl :

U(αl) ≤ δ1}, E2 = {αl : δ1 < U(αl) ≤ δ2}, · · · , Eb−1 = {αl : δb−2 < U(αl) ≤ δb−1}, and

Eb = {αl : U(αl) > δb−1}, where δ1 < δ2 < . . . < δb−1 are b− 1 known real numbers. We note

that here the sample space is not necessarily partitioned according to the function U(αl), for

example, the function λ(αl) = min{Gn(αR,[1]), . . . , Gn(αR,[l])} also works.
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Let $(δ) denote the index of the subregion that a sample with energy u belongs to. For

example, if αl ∈ Ej , then $(U(αl)) = j. Let B(t) denote the sample space at iteration t. The

algorithm initiates its search in the entire sample space B0 =
⋃b
i=1Ei, and then iteratively

searches in the set

Bt =

$(U
(t)
min+ℵ)⋃
i=1

Ei, t = 1, 2, . . . , (10)

where U
(t)
min is the best function value obtained until iteration t, and ℵ > 0 is a user specified

parameter which determines the broadness of the sample space at each iteration. Note that in

this method, the sample space shrinks iteration by iteration. To ensure the convergence of the

algorithm to the set of global minima, the moves at each iteration are required to admit the

following distribution as the invariant distribution,

fw(t)(αl) ∝
$(U

(t)
min+ℵ)∑
i=1

ψ(αl)

ew
(t)
i

I(αl ∈ Ei), x ∈ Blt, (11)

where w
(t)
i are the working parameters which will be updated from iteration to iteration as

described in the algorithm below.

The annealing evolutionary stochastic approximation Monte Carlo includes five types of

moves, the MH-Gibbs mutation, K-point mutation, K-point crossover, snooker crossover, and

linear crossover operators. See Liang (2010) for the details of the moves. Let ρ1, . . . , ρ5,

0 < ρi < 1 and
∑5
i=1 ρi = 1, denote the respective working probabilities of the five types of

moves. The algorithm can be summarized as follows.

The algorithm:

(a) (Initialization) Partition the sample space Bl into b disjoint subregions E1, . . . ,Eb; choose

the threshold value ℵ and the working probabilities ρ1, . . . , ρ5; initialize a population αl(0)

at random; and set w(0) = (w
(0)
1 , . . . , w

(0)
b ) = (0, 0, . . . , 0), Bl0 =

⋃b
i=1 Ei, U

(0)
min = U(αl(0))

and t = 0. Let Θ be a compact set in Rm.

(b) (Sampling) Update the current population αl(t) using the MH-Gibbs mutation, K-point

mutation, K-point crossover, snooker crossover, and linear crossover operators according

to the respective working probabilities.

(c) (Working weight updating) Update the working weight w(t) by setting

w∗i = w
(t)
i + γt+1Hi(w

(t), αl(t+1)), i = 1, . . . , $(U
(t)
min + ℵ),

where Hi(w
(t), αl(t+1)) = I(αl(t+1) ∈ Ei) for the crossover operators, Hi(w

(t), αl(t+1)) =∑l
j=1 I(αl(t+1,j) ∈ Ei)/l for the mutation operators, and γt+1 is called the gain factor. If
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w∗ ∈ Θ, set w(t+1) = w∗; otherwise, set w(t+1) = w∗ + c∗, where c∗ = (c∗, . . . , c∗) and c∗

is chosen such that w∗ + c∗ ∈ Θ.

(d) (Termination Checking) Check the termination condition, e.g., whether a fixed number

of iterations has been reached. Otherwise, set t→ t+ 1 and go to step (b).

In this article, we follow Liang (2010) to set ρ1 = ρ2 = 0.05, ρ3 = ρ4 = ρ5 = 0.3, and the

gain factor sequence

γt =
t0

max(t0, t)
, t = 0, 1, 2, . . . , (12)

with t0 = 500000. In general, a large value of t0 will allow the sampler to reach all the subregions

very quickly even for a large system. As shown in Liang (2010), it can converge weakly toward

a neighboring set of global minima of U(αl) in the space of energy. More precisely, the sample

αl(t) converges in distribution to a random population with the density function

fw(αl) ∝
$(Umin+ℵ)∑

i=1

ψ(αl)∫
Ei ψ(αl)dαl

I(x ∈ Ei), (13)

where Umin is the global minimum value of U(α),

Regarding the setting of other parameters, we have the following suggestions. In the al-

gorithm, the moves are reduced to the Metropolis-Hastings moves (Metropolis et al., 1953;

Hastings, 1970) within the same subregions. Hence, the sample space should be partitioned

such that the MH moves within the same subregion have a reasonable acceptance rate. In this

article, we set δi+1 − δi ≡ 0.2 for i = 1, . . . , b− 1.

The crossover operator has been modified to serve as a proposal for the moves, and it is no

longer as critical as to the genetic algorithm. Hence, the population size l is usually set to a

moderate number, ranging from 10 to 100. Since ℵ determines the size of the neighboring set

toward which the method converges, ℵ should be chosen carefully for efficiency of the algorithm.

If ℵ is too small, it may take a long time for the algorithm to locate the global minima. In

this case, the sample space may contain a lot of separated regions, and most of the proposed

transitions will be rejected if the proposal distribution is not spread out enough. If ℵ is too

large, it may also take a long time for the algorithm to locate the global energy minimum due

to the broadness of the sample space. In practice, the values of l and ℵ can be determined

through a trial and error process based on the diagnosis for the convergence of the algorithm.

If it fails to converge, the parameters should be tuned to larger values. As suggested by Liang

(2010), the convergence of the method can be diagnosed by examining the difference of the

patterns of the working weights obtained in multiple runs. In this article, we set l = 50 and

ℵ = 50.
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3. Proof of Theorem 2 and 3

First, we present the asymptotic properties of the intrinsic estimators under the Log-Euclidean

metric at boundary points below.

Theorem 4. Suppose that x0 = dh is a left boundary point of fX(.). Let dk0,d = (uk0+1,d, · · · ,

u2k0+1,d)
T .

(i)Under conditions (C1)-(C4) in Appendix 2, we have H{α̂IL(x0;h)−αL(x0)} converges to 0

in probability as n→∞.

(ii) For k0 = 0, under conditions (C1)-(C4) and (C10) in Appendix 2, conditioning on x =

{x1, · · · , xn}, we have

√
nh[H{α̂IL(0+;h)− αL(0+)} − hu−10,du1,dvecs((log(D(0+)))(1))]→L N(0,Σ0,d(0+)), (14)

where Σ0,d(0+) = f−1X (0+)u−20,dv0,dΣED (0+).

(iii) For k0 > 0, under the conditions of Theorem 4 (ii), conditioning on x = {x1, · · · , xn}, we

have

√
nh[H{α̂IL(0+;h)− αL(0+)} − hk0+1

(k0 + 1)!
(U−10,d ⊗ Iq)(dk0,d ⊗ vecs((log(D(0+)))(k0+1)))]

→L N(0,Σd(0+)), (15)

where Σd(0+) = f−1X (0+)(U−10,dV0,dU
−1
0,d )⊗ ΣED (0+).

Since the proofs of Theorems 1 and 4 can be easily followed from the same lines of arguments

as those of Theorems 2 and 3, we omit them for simplicity. Since the proof of Theorem 3 involves

more details, we only prove Theorem 3 and the proof of Theorem 2 follows the same lines of

arguments. In addition, for notational simplicity, we only prove these theorems for the local

linear regression for the k0 > 0 case. We also prove theorems for the local constant regression

because the proof requires some different treatments. The following lemmas are needed for our

technical proofs.

Lemma 3. Let ψGG(S,G, Y ), ψGY (S,G, Y ), ψY G(S,G, Y ) and ψY Y (S,G, Y ) be the second

order derivatives of ψ(S,G, Y ) with respect to αG and αY . Let R(X) = Y (X)−Y (1)(x0)(X−x0)

and assume that conditions (C1)-(C5), (C7) and (C8) hold. For any random m × m lower

triangle matrix sequence ηi0 and any random symmetric matrix sequence ηi1 ∈ Sym(m), for
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i = 1, · · · , n, if max

1≤i≤n
‖ηi0‖ = op(1) and max

1≤i≤n
‖ηi1‖ = op(1), then we have the following results:

n∑
i=1

hKh(xi − x0)ψGG(Si, G(x0) + ηi0, Y (xi) + ηi1)

= nhfX(0+)u0,dΨ1(0+){1 + op(1)}, (16)
n∑
i=1

hKh(xi − x0)ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)(xi − x0)l

= nhl+1fX(0+)ul,dΨ2(0+){1 + op(1)}, (17)
n∑
i=1

hKh(xi − x0)ψY Y (Si, G(x0) + ηi0, Y (xi) + ηi1)(xi − x0)l

= nhl+1fX(0+)ul,dΨ3(0+){1 + op(1)}, (18)
n∑
i=1

hK(xi − x0)ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)T vecs(R(xi))(xi − x0)l

=
1

2
nhl+3fX(0+)ul+2,dΨ2(0+)T vecs(Y (2)(0+)){1 + op(1)}, (19)

n∑
i=1

hK(xi − x0)ψY Y (Si, G(x0) + ηi0, Y (xi) + ηi1)T vecs(R(xi))(xi − x0)l

=
1

2
nhl+3fX(0+)ul+2,dΨ3(0+)T vecs(Y (2)(0+)){1 + op(1)}. (20)

Proof of Lemma 3. We only prove (17), while the remainings can be shown using the same

arguments. It is easy to see that

n∑
i=1

hKh(xi − x0)ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)(xi − x0)l

=

n∑
i=1

hKh(xi − x0)ψGY (Si, G(x0), Y (xi))(xi − x0)l +

n∑
i=1

hKh(xi − x0){ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)− ψGY (Si, G(x0), Y (xi))}(xi − x0)l

= Tn1 + Tn2.

Let Zj,k = hKh(X−x0)(ψGY )j,k(X−x0)l, where (ψGY )j,k is the (j, k)-th element of the matrix

ψGY . For the (j, k)-th element (Tn1)j,k in the matrix Tn1, we have

(Tn1)j,k = nE(Zj,k) +Op

(√
nE(Z2

j,k)
)
. (21)
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We calculate the first two moments of Zj,k below. Note that

E(Zj,k) = E{hKh(X − x0)(ψGY )j,k(X − x0)l}

=

∫ 1

0

hKh(y − x0)(y − x0)l(Ψ2(y))j,kfX(y)dy

= hl+1

∫ 1

−min{d,1}
K(z)zl(Ψ2(zh+ x0))j,kfX(zh+ x0)dz, (22)

which can be approximated by hl+1A with A =
∫ 1

−min{d,1}K(z)zl(Ψ2(0+))j,kfX(x0)dz. Specif-

ically, we consider the difference given by

In,1 ≡ |
∫ 1

−min{d,1}
K(z)zl(Ψ2(zh+ x0))j,kfX(zh+ x0)dz −A|.

Applying the dominated convergence theorem together with the boundedness and continuity

assumptions on fX(.) and Ψ2(.), we get lim
n→∞

In,1 = 0. Thus,

E(Zj,k) = hl+1fX(0+)(Ψ2(0+))j,kul,d{1 + o(1)}. (23)

Since fX(x) and E{(ψGY )2j,k|X = x} are bounded, there exists a d3 > 0 such that |fX(x)E{(ψGY )2j,k|X =

x}| < d3 for all x. So we have

E(Z2
j,k) = E{h2K2

h(X − x0)(ψGY )2j,k(X − x0)2l}

=

∫ 1

0

h2K2
h(y − x0)(y − x0)2lfX(y)E{(ψGY )2j,k|X = y}dy

= h2l+1

∫ 1

−min{d,1}
K2(z)z2lfX(zh+ x0)E{(ψGY )2j,k|X = zh+ x0}dz

≤ d3h
2l+1

∫ 1

−min{d,1}
K2(z)z2ldz.

By the continuity of K(.), we have
∫ 1

−min{d,1}K
2(z)z2ldz < d4 for a given d4 > 0 and

E(Z2
j,k) ≤ d3d4h

2l+1. (24)

Combining with (21), (23) and (24), we have

(Tn1)j,k = nhl+1(fX(x0)Ψ2(x0)ul,d{1 + o(1)}+Op(1/
√
nh))j,k

= nhl+1fX(0+)(Ψ2(0+))j,kul,d{1 + op(1)}.

That is, Tn1 = nhl+1fX(0+)ul,dΨ2(0+){1 + op(1)}.
To prove (17), it suffices to show that Tn2 = op(nh

l+1). Let ∆n0 = {η10, · · · , ηn0} and

∆n1 = {η11, · · · , ηn1}, where ηi0 is lower triangle matrix and ηi1 ∈ Sym(m) for i = 1, · · · , n.
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For any given δ > 0, denote Dδ = {∆n = (∆n0,∆n1) : ‖ηi0‖2 + ‖ηi1‖2 ≤ δ2,∀i ≤ n}. Define

V (∆n) =
1

nhl+1

n∑
i=1

hKh(xi − x0)(xi − x0)l{ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)

−ψGY (Si, G(x0), Y (xi))}.

Then, we have

sup
Dδ

‖V (∆n)‖ ≤ 1

nhl+1

n∑
i=1

hKh(xi − x0)(xi − x0)l

sup
Dδ

‖ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)− ψGY (Si, G(x0), Y (xi))‖.

By using condition (C8), as δ → 0, we have

εδ = E{sup
Dδ

‖ψGY (Si, G(x0) + ηi0, Y (xi) + ηi1)− ψGY (Si, G(x0), Y (xi))‖|xi = x} = o(1).

Therefore, as δ → 0, we have

E

{
sup
Dδ

‖V (∆n)‖
}
≤ εδ

1

nhl+1
E

{
n∑
i=1

hKh(xi − x0)(xi − x0)l

}
→ 0.

Since max
1≤i≤n

‖ηi0‖ = op(1) and max
1≤i≤n

‖ηi1‖ = op(1), we have V (∆̂n) = op(1) for ∆̂n = (∆̂n0, ∆̂n1)

with ∆̂n0 = (η10, · · · , ηn0)T and ∆̂n1 = (η11, · · · , ηn1)T . Thus, Tn2 = nhl+1V (∆̂n) = op(nh
l+1),

which finishes the proof of (17).

Lemma 4. Let ψG(S,G, Y ) and ψY (S,G, Y ) be the first order derivatives of ψ(S,G, Y ) with

respect to αG and αY , respectively. Assume that conditions (C1)-(C8) hold. Then we have

n∑
i=1

hKh(xi − x0)ψG(Si, G(x0), Y (1)(x0)(xi − x0))

=
1

2
nh3fX(0+)u2,dΨ2(0+)T vecs(Y (2)(0+)){1 + op(1)}+

n∑
i=1

hKh(xi − x0)ψG(Si, G(x0), Y (xi)), (25)

n∑
i=1

hKh(xi − x0)ψY (Si, G(x0), Y (1)(x0)(xi − x0))(xi − x0)l

=
1

2
nhl+3fX(0+)ul+2,dΨ3(0+)T vecs(Y (2)(0+)){1 + op(1)}+

n∑
i=1

hKh(xi − x0)ψY (Si, G(x0), Y (xi))(xi − x0)l. (26)
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Proof of Lemma 4. We just prove (25), while the second one can be similarly shown. We

consider

Jn ≡
n∑
i=1

hKh(xi − x0)ψG(Si, G(x0), Y (xi)−R(xi))

=

n∑
i=1

hKh(xi − x0)[ψG(Si, G(x0), Y (xi)) + ψGY (Si, G(x0), Y (xi))
Tvecs(−R(xi))

+{ψG(Si, G(x0), Y (xi)−R(xi))− ψG(Si, G(x0), Y (xi))

−ψGY (Si, G(x0), Y (xi))
Tvecs(−R(xi))}]

= Jn1 + Jn2 + Jn3. (27)

We need to consider Jn1, Jn2, and Jn3 as follows. By using condition (C2) and the Taylor’s

series expansion, we have

max
1≤i≤n

{‖R(xi)‖1(|xi − x0| ≤ h)} ≤ 1

2
sup

|ξ−x0|≤h
‖Y (2)(ξ)‖h2 = Op(h

2).

Let Dδ = {∆n = (η1, · · · , ηn) : ‖ηj‖ ≤ δ, ηj ∈ Sym(m),∀j ≤ n} for any δ > 0. Define

V (∆n) =
1

nh

n∑
i=1

hKh(xi − x0){ψG(Si, G(x0), Y (xi) + ηi)− ψG(Si, G(x0), Y (xi))

−ψGY (Si, G(x0), Y (xi))
Tvecs(ηi)},

By using condition (C8), as δ → 0, we have εδ = E{sup
Dδ

‖ψG(Si, G(x0), Y (xi) + ηi) −

ψG(Si, G(x0), Y (xi)) − ψGY (Si, G(x0), Y (xi))
Tvecs(ηi)‖|xi = x} = o(δ) uniformly in a neigh-

borhood of x0. Therefore, for all |xi − x0| ≤ h, we have, as δ → 0,

E{sup
Dδ

‖V (∆n)‖} ≤ εδ
1

nh
E

{
n∑
i=1

hKh(xi − x0)

}
= o(1).

Since max
1≤i≤n

{‖R(xi)‖1(|xi − x0| ≤ h)} = Op(h
2) = op(1), we have V (∆̂n) = op(h

2), where

∆̂n = (R(x1), · · · , R(xn)). This leads to Jn3 = nhV (∆̂n) = op(nh
3). Applying equation (19) in

Lemma 3 to the second term Jn2 in (27), we get

Jn2 =
1

2
nh3fX(0+)u2,dΨ2(0+)Tvecs(Y (2)(0+)){1 + op(1)},

which yields (25).

Lemma 5. Assume that conditions (C1)-(C9) hold. Let

Tn ≡

 ∑n
i=1 hKh(xi − x0)ψG(Si, G(x0), Y (xi))∑n

i=1 hKh(xi − x0)(xi − x0)ψY (Si, G(x0), Y (xi))/h

 . (28)
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Then Tn/

√
nh is asymptotically normal with mean zero and covariance matrix

ΣT = fX(0+)

 v0,dΨ11(0+) v1,dΨ12(0+)

v1,dΨ12(0+)T v2,dΨ22(0+)

 {1 + o(1)}, (29)

where vk,d for k = 0, 1, 2 and Ψ11(x), Ψ12(x) and Ψ22(x) are defined in Section 4.2.

Proof of Lemma 5. Let T (ij)
G , and T (ij)

Y denote the jth elements of ψG(Si, G(x0), Y (xi)) and

ψY (Si, G(x0), Y (xi)), respectively. Let

Tni =

 hKh(xi − x0)ψG(Si, G(x0), Y (xi))

hKh(xi − x0)(xi − x0)ψY (Si, G(x0), Y (xi))/h

 .

Note that Tni are independent and Tn =
∑n
i=1 Tni.

It follows from Lemma 2 that E(Tni) = E(Tn) = 0 and the covariance matrix of Tn/
√
nh is

n

nh
E

h2K2
h(X − x0)

 ψGψ
T
G, ψGψ

T
Y (X − x0)/h

ψY ψ
T
G(X − x0)/h, ψY ψ

T
Y (X − x0)2/h2

 .

Using the same arguments as in Lemma 3, we can obtain the asymptotic expression for the

covariance matrix of Tn, which equals Σ in (29). Finally, we will show that the sequence

Tni/
√
nh satisfies the Linderberg-Feller condition:

n∑
i=1

E[‖ Tni√
nh
‖21

{
‖ Tni√

nh
‖ > ε

}
]→ 0 for any ε > 0. (30)

Let b > 0 and ‖T ′

ni‖2 = (T (i1)
G )2 + · · ·+ (T (iq)

G )2 + h−2{(T (i1)
Y )2 + · · ·+ (T (iq)

Y )2}(xi − x0)2.

E

[∥∥∥∥ Tni√nh
∥∥∥∥2 1

{∥∥∥∥ Tni√nh
∥∥∥∥ > ε

}]
≤ Ki ≡ E

{(
K(h−1(xi − x0))

)b+2 ‖T ′

ni‖(b+2)

(
√
nh)b+2(ε)b

}

=

∫ 1

−min{d,1}

K(z)b+2E{‖T ′

ni‖(b+2)|xi = zh+ x0}
(
√
nh)b+2h−1εb

fX(zh+ x0)dz

≤
∫ 1

−min{d,1}

E{‖ψα(Si, G(x0), Y (X))‖b+2|X = zh+ x0}
{K(z)}−b−2 (

√
nh)b+2fX(zh+ x0)−1h−1εb

dz.

Combining conditions (C4) and (C9) yields that there is a constant d5 > 0 such that
∑n
i=1Ki ≤

d5nh/(
√
nh)b+2 → 0. Thus, it follows from the Linderberg-Feller theorem that Tn/

√
nh is

asymptotically normal with mean 0 and covariance Σ.

Proof of Theorem 3 (i). Let Ỹ (1)(x0) = hY (1)(x0), γ = (vecs(G(x))T , vecs(Ỹ (1)(x))T )T and

γ0 = (vecs(G(x0))T , vecs(hY (1)(x0))T )T . Thus, Gn(γ) can be written as

n∑
i=1

hKh(xi − x0)ψ(Si, G(x0), Ỹ (1)(x0)(xi − x0)/h).
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Let Uδ(γ0) = {γ : ||γ − γ0|| < δ} for δ > 0. We will show that for any small δ > 0,

lim
n→∞

P{ inf
γ∈Uδ(γ0)

Gn(γ) > Gn(γ0)} = 1. (31)

By a Taylor’s series expansion, we have

Gn(γ)−Gn(γ0) = G(1)
n (γ0)T (γ − γ0) +

1

2
(γ − γ0)TG(2)

n (γ∗)(γ − γ0), (32)

where γ ∈ Uδ(γ0) and γ∗ = (vecs(G(x∗))
T , vecs(Ỹ (1)(x∗))

T )T lies in between γ(x0) and γ.

It follows from Lemmas 4 and 5 that

(nh)−1G(1)
n (γ0)

=
1

nh

n∑
i=1

hKh(xi − x0)

 ψG(S,G(x0), Y (1)(x0)(xi − x0))

ψY (S,G(x0), Y (1)(x0)(xi − x0))(xi − x0)/h


=

1

2
h2fX(0+)vecs(Y (2)(0+))

 u2,dΨ2(0+)

u3,dΨ3(0+)

 {1 + op(1)}

+
1

nh

n∑
i=1

hKh(xi − x0)

 ψG(Si, G(x0), Y (xi))
T

h−1(xi − x0)ψY (Si, G(x0), Y (xi))
T


=

1

2
h2fX(0+)(u2,dΨ2(0+)T , u3,dΨ3(0+)T )Tvecs(Y (2)(0+)){1 + op(1)}+

1

nh
Tn

= op(1).

We define ∆(S,G, Y,X) as ψGG(S,G, Y ) (X − x0)h−1ψY G(S,G, Y )

(X − x0)h−1ψGY (S,G, Y ) (X − x0)2h−2ψY Y (S,G, Y )

 . (33)

With some calculation, we have

1

nh
G(2)
n (γ∗) =

1

nh

n∑
i=1

hKh(xi − x0)[{∆(Si, G(x∗), Ỹ
(1)(x∗)(xi − x0)h−1, xi)

−∆(Si, G(x0), Y (xi), xi)}+ ∆(Si, G(x0), Y (xi), xi)]

≡Mn1 +Mn2.

It follows from (16), (17) and (18) in Lemma 3 that

Mn2 = fX(x0)

 u0,dΨ1(0+) u1,dΨ2(0+)T

u1,dΨ2(0+) u2,dΨ3(0+)

 {1 + op(1)},

which is positive definite in probability. Note that ‖G(x∗)−G(x0)‖ ≤ δ and for all |xi−x0| < h,

we have max
i
‖Ỹ (1)(x∗)(xi − x0)/h− Y (xi)‖ ≤ max

i
‖R(xi)‖+ δ. Then it follows from Lemma 3



14 Yuan, Zhu, et al.
that lim sup

δ→0
lim sup
n→∞

‖Mn1‖ = 0 in probability. Thus, for any γ ∈ Uδ(γ0), we have for sufficiently

small δ > 0

lim
n→∞

P [ inf
γ∈Uδ(γ0)

1

nh
(γ − γ0)TG(2)

n (γ∗)(γ − γ0) > 0.5afX(x0)δ2] = 1,

which yields that Gn(γ) has a local minimum γ̂ = (vecs(Ĝ)T , vecs(hŶ (1))T )T in the interior of

Uδ(γ0). Then, we have lim
n→∞

P{‖γ̂n − γ0‖ ≤ δ} = 1. This implies Theorem 3 (i).

Proof of Theorem 3(iii). Let η̂0 = Ĝ − G(x0) and η̂1i = {Ŷ (1) − Y (1)(x0)}(xi − x0) − R(xi).

The estimator γ̂ satisfies the following local estimating equations:

n∑
i=1

Kh(xi − x0)∂γψ(Si, Ĝ, Ŷ
(1)(xi − x0)) = 0, (34)

where ∂γψ(S,G, Y ) ≡
(
ψG(S,G, Y )T , (X − x0)ψY (S,G, Y )T

)T
. It follows from (34) that

n∑
i=1

hKh(xi − x0)[∂γψ(Si, G(x0), Y (xi)) + ∂2αγψ(S,G(x0), Y (xi))
T (vecs(η̂0)T , vecs(η̂1i)

T )T

+ {∂γψ(S,G(x0) + η̂0, Y (xi) + η̂1i)− ∂γψ(S,G(x0), Y (xi))

− ∂2αγψ(S,G(x0), Y (xi))
T (vecs(η̂0)T , vecss(η̂1i)

T )T }] = 0. (35)

Note that the second term on the left hand side of (35) equals the sum of Ln1 and Ln2, which

can, respectively, be approximated by

Ln1 =

n∑
i=1

hKh(xi − x0)∆(Si, G(x0), Y (xi), xi)

 vecs(η̂0)

h · vecs(Ŷ (1) − Y (1)(x0))


= fX(0+)nh

 u0,dΨ1(0+) u1,dΨ2(0+)

u1,dΨ2(0+)T u2,dΨ3(0+)

 vecs(η̂0)

h · vecs(Ŷ (1) − Y (1)(x0))

×
{1 + op(1)},

Ln2 =

n∑
i=1

hKh(xi − x0)∆(Si, G(x0), Y (xi), xi)

 vecs(Om)

h · vecs(R(xi))


=

1

2
fX(0+)nh3

 u2,dΨ2(0+)

u3,dΨ3(0+)

 vecs(Y (2)(0+)){1 + op(1)}.

By the consistency of γ̂ = (vecs(Ĝ)T , vecs(hŶ (1))T )T , we have ‖η̂0‖ = op(1) = Op(‖Ĝ−G(x0)‖)
and

sup
{i:|xi−x0|≤h}

‖η̂i1‖ ≤ sup
{i:|xi−x0|≤h}

{‖R(xi)‖+ h‖Ŷ (1) − Y (1)(x0)‖}

= Op(h
2 + h‖Ŷ (1) − Y (1)(x0)‖) = op(1).



LocalSPD 15
Thus, it follows from (C8) and Lemma 4 that the third term on the left hand side of (35) is at

the order of op(nh){h2 + ‖Ĝ−G(x0)‖+ h‖Ŷ (1) − Y (1)(x0)‖}. Let

Bn =
h2

2

 u0,dΨ1(0+) u1,dΨ2(0+)T

u1,dΨ2(0+) u2,dΨ3(0+)

−T  u2,dΨ2(0+)T

u3,dΨ3(0+)T

 vecs(Y (2)(0+)){1 + op(1)}.

Then from (35), we obtain that

γ̂ − γ0 = Bn + {nhfX(0+)}−1
 u0,dΨ1(0+) u1,dΨ2(0+)T

u1,dΨ2(0+) u2,dΨ3(0+)

−T Tn{1 + op(1)}.

Finally, Theorem 3 (iii) follows from Lemma 5 and the Slutsky’s theorem.

The above derivation holds for any k0 > 0. When k0 = 0 and K(.) is symmetric, the

following modifications need to be made.

Lemma 6. Let η0(X) = G(X)−G(x0). Assume that conditions (C1)-(C5) and (C7) hold. If

x0 is an interior point of fX(·), then we have

n∑
i=1

hKh(xi − x0)ψGG(Si, G(xi))vecs(η0(xi))

= nh3Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)}u2{1 + op(1)}. (36)

If x0 is a boundary point of fX(·), then we have

n∑
i=1

hKh(xi − x0)ψGG(Si, G(xi))vecs(η0(xi))

= nh2fX(0+)Ψ1(0+)G(1)(0+)u1,d{1 + op(1)}. (37)

Proof of Lemma 6. We only prove equation (36). Let

Tn1 =

n∑
i=1

hKh(xi − x0)ψGG(Si, G(xi))vecs(η0(xi)).

For the (j)-th element (Tn1)j of the vector Tn1, we have

(Tn1)j = nE(Zj) +Op(
√
nE(Z2

j )). (38)

We calculate the first two moments of Zj below. Note that

E(Zj) = E[hKh(X − x0)(ψGG(Si, G(X))vecs(η0(X)))j ]

=

∫ ∞
−∞

hKh(y − x0)(E{ψGG(Si, G(X))|X = y}vecs(η0(y)))jfX(y)dy

= h

∫ 1

−1
K(z)(E{ψGG(Si, G(X))|X = zh+ x0}vecs(η0(zh+ x0)))jfX(zh+ x0)dz,
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By a Taylor’s series expansion, we have η0(zh+ x0) = G(1)(x0)zh+G(2)(x0)(zh)2/2. Applying

the dominated convergence theorem together with the continuity assumptions on f
(1)
X (·) , G(.)(2)

and Ψ1(.) yields

E(Zj) = h3u2(Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)})j{1 + o(1)}. (39)

By the continuity f
(1)
X (x) and G(x)(2) together with condition (C7), we have

E(Z2
j ) = E{h2K2

h(X − x0)(ψGG(Si, G(xi))vecs(η0(xi)))
2
j}

=

∫ ∞
−∞

h2K2
h(y − x0)fX(y)(E{ψGG(S,G(X))|X = y}vecs(η0(y)))2jdy

= h

∫ 1

−1
K2(z)z2lfX(zh+ x0)(E{ψGG(S,G(X))|X = zh+ x0}

vecs(η0(zh+ x0)))2jdz

= h3{1 +O(h)} (40)

Combining with (38),(39) and (40), we have

(Tn1)j = nh3[(Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)})ju2{1 + o(1)}

+Op(1/
√
nh3)]

= nh3(Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)})ju2{1 + op(1)}.

That is, Tn1 = nh3Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)}u2{1 + op(1)}.

Lemma 7. Assume that conditions (C1)-(C7) hold. If x0 is an interior point of fX(·), then

we have

n∑
i=1

hKh(xi − x0)ψG(Si, G(xi))

= nh3Ψ1(x0){G(1)(x0)f
(1)
X (x0) + 0.5G(2)(x0)fX(x0)}u2{1 + op(1)}+

n∑
i=1

hKh(xi − x0)ψG(Si, G(x0)). (41)

If x0 is the left boundary point of fX(·),

n∑
i=1

hKh(xi − x0)ψG(Si, G(xi)) (42)

= nh2fX(0+)Ψ1(0+)G(1)(0+)u1,d{1 + op(1)}+

n∑
i=1

hKh(xi − x0)ψG(Si, G(x0)).
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Lemma 8. Assume that conditions (C1)-(C9) hold. Let

Tn ≡
n∑
i=1

hKh(xi − x0)ψG(Si, G(xi)). (43)

Then Tn/
√
nh is asymptotically normal with mean zero and covariance matrices

Σ = fX(x0)v0Ψ11(x0){1 + o(1)} if x0 is an interior point of fX(x), (44)

Σ = fX(0+)v0Ψ11(0+){1 + o(1)} if x0 = dh is a boundary point of fX(x). (45)

The proof is similar to the proof of Lemma 5.

Proof of Theorem 3(ii). We use Lemmas 6-8 and follow the same lines of Theorem 3 (iii) to

prove Theorem 3 (ii).

4. Comparisons

We study the asymptotic relative efficiency of the intrinsic local constant and linear estimators

in an interior point x0 under the trace and Log-Euclidean metrics by comparing their AM-

SEs/AMISEs. We use AMSEopt and AMISEopt to denote the AMSE and AMISE evaluated at

their optimal bandwidth. We first compare AMSEopt for the intrinsic local constant estimators

under the trace and Log-Euclidean metrics. Specifically, with some calculations, we see that as

n approaches ∞, the ratio of AMSEopt(log{D̂IT (x0;h, 0)}) over AMSEopt(log{D̂IL(x0;h, 0)})
converges to

rMSE(T, L; 0) =

[
tr{GD(x0)⊗2Ψ1(x0)−1Ψ11(x0)Ψ1(x0)−1}

tr{ΣED (x0)}

]4/5
×

{
tr([GD(x0)Tvecs{f (1)X (x0)fX(x0)

−1
G(1)(x0) + 0.5G(2)(x0)}]⊗2)

tr[vecs{f (1)X (x0)fX(x0)−1 log(D(x0))(1) + 0.5 log(D(x0))(2)}⊗2]

}1/5

, (46)

which is the product of two terms. The first term is associated with the ratio of the covariances

of the intrinsic local constant estimators of log(D(x0)) under the two metrics, while the second

term is associated with their biases. Consider the simplest scenario with m = 1 such that

D(x0) = G(x0)2 and G(x0) > 0. By simple calculations, we can show that the first term equals

one and the second term equals[
f
(1)
X (x0)fX(x0)

−1
G(1)(x0) + 0.5G(2)(x0)

f
(1)
X (x0)fX(x0)−1G(1)(x0) + 0.5G(2)(x0)− 0.5{G(1)(x0)}2/G(x0)

]2/5
,

which yields that rMSE(T, L; 0) > 1 if and only if

0.25{G(1)(x0)}2/G(x0) < f
(1)
X (x0)fX(x0)

−1
G(1)(x0) + 0.5G(2)(x0).
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Thus, whether rMSE(T, L; 0) is greater than 1 depends on both the design density and D(x)

itself as a function of x.

Similarly, we define rMISE(T, L; 0) as the ratio of AMISEopt(log{D̂IT (x0;h, 0)}) over AMISEopt

(log{D̂IL(x0;h, 0)}). Following similar arguments to rMSE(T, L; 0), when m = 1, we have that

rMISE(T, L; 0) > 1 if and only if

0.25

∫
{G(1)(x)}2G(x)−1w(x)dx <

∫
{f (1)X (x)fX(x)

−1
G(1)(x) + 0.5G(2)(x)}w(x)dx.

Therefore, in terms of AMSEopt and AMISEopt, the trace metric is not uniformly superior to

or worse than the Log-Euclidean metric for reconstructing all D(x).

We compare AMSEopt for the intrinsic local linear estimators under the trace and Log-

Euclidean metrics. As n approaches∞, the ratio of AMSEopt(log{D̂IT (x0;h, 1)}) over AMSEopt

(log{D̂IL(x0;h, 1)}) converges to

rMSE(T, L; 1) =

[
tr{GD(x0)⊗2Ω0(x0)}

tr{ΣED (x0)}

]4/5
×
{

tr([GD(x0)TΨ1(x0)−1ΨT
2 (x0)vecs{Y (2)(x0)}]⊗2)

tr(vecs[log{D(x0)}(2)]⊗2)

}1/5

. (47)

We also consider the simplest scenario with m = 1 such that D(x) = G(x0)2 exp(Y (x)) and

G(x0) > 0. With some calculations, we can show that rMSE(T, L; 1) equals one when m = 1.

Thus, the two metrics are actually the same for one dimensional case. However, when m > 1,

it is unclear whether rMSE(T, L; 1) equals to 1 or not.

5. Expressions of optimal bandwidths

By Theorem 1 (iii), AMSE(log{D̂IL(x0;h, 0)}) equals

h4u22tr{(vecs[0.5 log{D(x0)}(2) + f
(1)
X (x0)fX(x0)−1 log{D(x0)}(1)])⊗2}

+v0{nhfX(x0)}−1tr{ΣED (x0)}. (48)

Minimizing AMSE(log{D̂IL(x0;h, 0)}) and AMISE(log{D̂IL(x0;h, 0)}) leads to

hopt,L(x0; 0)5 =
v0{nfX(x0)}−1tr{ΣED (x0)}

4u22tr{(vecs[0.5 log{D(x0)}(2) + f
(1)
X (x0)fX(x0)−1 log{D(x0)}(1)])⊗2}

, (49)

hopt,L(0)5 =
v0{nfX(x0)}−1

∫
tr{ΣED (x0)}w(x)dx

4u22
∫

tr{(vecs[0.5 log{D(x0)}(2) + f
(1)
X (x0)fX(x0)−1 log{D(x0)}(1)])⊗2}w(x)dx

.

For the intrinsic local linear estimator, AMSE(log{D̂IL(x0;h, 1)}) is given by

0.25h4u22tr{(vecs[log{D(x0)}(2)])⊗2}+ v0{nhfX(x0)}−1tr{ΣED (x0)}. (50)
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Intrinsic local constant and linear estimators have the same asymptotic covariance and their

differences are concerned only with their biases. The local constant estimator has one more

term h2u2f
(1)
X (x0)fX(x0)−1vecs[log{D(x0)}(1)], which depends on the marginal density fX(.).

Subsequently, we can get the optimal bandwidths, which detailed expression can be found in

supplement.

hopt,L(x0; 1)5 =
{nfX(x0)}−1v0tr{ΣED (x0)}
u22tr{(vecs[log{D(x0)}(2)])⊗2}

, (51)

hopt,L(1)5 =
n−1v0

∫
tr{ΣED (x)}{fX(x)}−1w(x)dx

u22
∫

tr{(vecs[log{D(x0)}(2)])⊗2}w(x)dx
. (52)

It follows from the delta method that AMSE(log{D̂IT (x0;h, 0)}) can be approximated as

h4u22tr([GD(x0)Tvecs{G(1)(x0)f
(1)
X (x0)fX(x0)

−1
+ 0.5G(2)(x0)}]⊗2)

+ (nh)−1tr{GD(x0)⊗2Ω0(x0)}+ o(h4 + (nh)−1), (53)

where GD(x0) = {∂vec(log(G(x0)⊗2))/∂vecs(G(x0))T }T . The asymptotic bias and variance of

D̂IT (x0;h, 0) are similar to those of the Nadaraya-Watson estimator when response is in Eu-

clidean space (Fan, 1992). By minimizing AMSE(log(D̂IT (x0;h, 0))) and AMISE(log(D̂IT (x0;h, 0))),

we have

hopt,T (x0; 0)5 =
n−1tr{GD(x0)⊗2Ω0(x0)}

4u22tr([GD(x0)Tvecs{G(1)(x0)f
(1)
X (x0)fX(x0)

−1
+ 0.5G(2)(x0)}]⊗2)

,

hopt,T (0)5 =
n−1

∫
tr{GD(x0)⊗2Ω0(x0)}w(x)dx

4u22
∫

tr([GD(x0)Tvecs{G(1)(x0)f
(1)
X (x0)fX(x0)

−1
+ 0.5G(2)(x0)}]⊗2)w(x)dx

.

For the intrinsic local linear estimator, AMSE(log(D̂IT (x0;h, 1))) is given by

0.25h4u22tr[{GD(x0)TΨ1(x0)−1ΨT
2 (x0)vecs(Y (2)(x0))}⊗2] + (nh)−1tr{GD(x0)⊗2Ω0(x0)}. (54)

Minimizing AMSE(log(D̂IT (x0;h, 1))) and AMISE(log(D̂IT (x0;h, 1))), respectively, leads to

hopt,T (x0; 1)5 =
n−1tr{GD(x0)⊗2Ω0(x0)}

u22tr[{GD(x0)TΨ1(x0)−1ΨT
2 (x0)vecs(Y (2)(x0))}⊗2]

, (55)

hopt,T (1)5 =
n−1

∫
tr{GD(x0)⊗2Ω0(x)}w(x)dx

u22
∫

tr[{GD(x0)TΨ1(x0)−1ΨT
2 (x0)vecs(Y (2)(x0))}⊗2]w(x)dx

.

6. Figures

This section displays AGD and LAGD for the trace and Log-Euclidean metrics. Figure 1

and Figure 2 are for the trace and Log-Euclidean metrics, respectively at the moderate noise

level Σ1. We observe that the comparison measurements based on these two metrics reveal
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results similar to that under the Euclidean metric. Under all metrics, the local linear estimator

is superior to the local constant estimator. Also, our ILPREs outperform the corresponding

estimators under the Euclidean metric and the tensor spline estimators under the noise models

(a) and (b). For the Rician noise model, our ILPREs under the Log-Euclidean metric slightly

outperform than those under the trace and Euclidean metrics. Moreover, the local constant

and linear estimators outperform the tensor spline estimators under all noise distributions.

The variations of AGDs for ILPREs under the trace metric are larger than those under the

Log-Euclidean metric under all three noise distributions. The U shape of the LAGD curves

indicates that interior points have smaller LAGDs than those near the boundaries and there

are more design points in the center than those on the boundaries.

Figure 3 and Figure 4 are for the trace and Log-Euclidean metrics, respectively at relatively

high noise level Σ = 4Σ1. We observe that the comparison measurements based on these two

metrics reveal results similar to that under the Euclidean metric. When the noise level is high,

the intrinsic local linear estimators under the trace metric slightly outperforms those under the

Log-Euclidean metric under the noise models (a) and (b).
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Fig. 1. Comparisons of the local constant and linear estimators under the three metrics and the tensor

spline estimators under the three noise distributions. Panels (a)-(c) of the first row show the boxplots

of 1000×AGDs obtained from seven different estimators, in which LCL, LCT, and LCE, respectively,

represent the local constant estimators under the Log-Euclidean, trace and Euclidean metrics, LLL,

LLT, and LLE , respectively, represent the corresponding local constant and linear estimators under

the metrics, and SP represents the tensor spline estimator. Panels (d)-(f) of the second row show the

log10(LAGD) curves based on LCL (dash-dotted line), LCT (dashed line), LCE (dotted line), and SP (solid

line). Panels (g)-(i) of the third row show the log10(LAGD) curves based on LLL (dash-dotted line), LLT

(dashed line), LLE (dotted line), and SP (solid line). The columns correspond to the three noise models:

column 1: Riemannian log normal; column 2: log normal; and column 3: Rician.



22 Yuan, Zhu, et al.

LCL LLL LCT LLT SP LCE LLE
0

0.2

0.4

0.6

0.8

1

1.2

A
G

D

(a)
LCL LLL LCT LLT SP LCE LLE

0

0.2

0.4

0.6

0.8

1

1.2

A
G

D

(b)
LCL LLL LCT LLT SP LCE LLE

0

0.05

0.1

0.15

0.2

A
G

D

(c)

−0.5 0 0.5 1
−0.8
−0.6
−0.4
−0.2

0
0.2

x
(d)

lo
g1

0(
LA

G
D

)

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

x
(e)

lo
g1

0(
LA

G
D

)

−0.5 0 0.5 1
−2

−1.6
−1.2
−0.8
−0.4

0
0.4

x
(f)

lo
g1

0(
LA

G
D

)

−0.5 0 0.5 1
−0.8
−0.6
−0.4
−0.2

0
0.2

x
(g)

lo
g1

0(
LA

G
D

)

−0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

x
(h)

lo
g1

0(
LA

G
D

)

−0.5 0 0.5 1
−2

−1.6
−1.2
−0.8
−0.4

0
0.4

x
(i)

lo
g1

0(
LA

G
D

)

Fig. 2. Comparisons of the local constant and linear estimators under the three metrics and the tensor

spline estimators under the three noise distributions. Panels (a)-(c) of the first row show the boxplots

of 1000×AGDs obtained from seven different estimators, in which LCL, LCT, and LCE, respectively,

represent the local constant estimators under the Log-Euclidean, trace and Euclidean metrics, LLL,

LLT, and LLE , respectively, represent the corresponding local constant and linear estimators under

the metrics, and SP represents the tensor spline estimator. Panels (d)-(f) of the second row show the

log10(LAGD) curves based on LCL (dash-dotted line), LCT (dashed line), LCE (dotted line), and SP (solid

line). Panels (g)-(i) of the third row show the log10(LAGD) curves based on LLL (dash-dotted line), LLT

(dashed line), LLE (dotted line), and SP (solid line). The columns correspond to the three noise models:

column 1: Riemannian log normal; column 2: log normal; and column 3: Rician.
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Fig. 3. Comparison of the intrinsic local linear estimators under the Log-Euclidean and trace metrics for

the first two noise models at a relatively higher noise level: Panels (a) and (c): Riemannian log normal;

Panels (b) and (d): log normal; Panels (a) and (b): the boxplots of AGDs for LLL and LLT; Panels (c) and

(d): the log10(LAGD) curves of LLL and LLT.
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Fig. 4. Comparison of the intrinsic local linear estimators under the Log-Euclidean and trace metrics for

the first two noise models at a relatively higher noise level: Panels (a) and (c): Riemannian log normal;

Panels (b) and (d): log normal; Panels (a) and (b): the boxplots of AGDs for LLL and LLT; Panels (c) and

(d): the log10(LAGD) curves of LLL and LLT.


