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Longitudinal imaging studies are essential to understanding the

neural development of neuropsychiatric disorders, substance use dis-

orders, and the normal brain. The main objective of this paper is

to develop a two-stage adjusted exponentially tilted empirical like-

lihood (TETEL) for the spatial analysis of neuroimaging data from

longitudinal studies. The TETEL method as a frequentist approach

allows us to efficiently analyze longitudinal data without modeling

temporal correlation and to classify different time-dependent covari-

ate types. To account for spatial dependence, the TETEL method

developed here specifically combines all the data in the closest neigh-

borhood of each voxel (or pixel) on a 3-dimensional (3D) volume (or

2D surface) with appropriate weights to calculate adaptive parame-

ter estimates and adaptive test statistics. Simulation studies are used

to examine the finite sample performance of the adjusted exponen-

tial tilted likelihood ratio statistic and TETEL. We demonstrate the

application of our statistical methods to the detection of the differ-

ence in the morphological changes of the hippocampus across time

between schizophrenia patients and healthy subjects in a longitudinal

schizophrenia study.
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1. Introduction. Neuroimaging data, including both anatomical and
functional magnetic resonance imaging (MRI), have been/are being widely
collected to understand the neural development of neuropsychiatric disor-
ders, substance use disorders, and the normal brain in various longitudinal
studies [Almli et al. (2007)]. For instance, various morphometrical measures
of the morphology of the cortical and subcortical structures (e.g., hippocam-
pus) are extracted from anatomical MRIs for understanding neuroanatom-
ical differences in brain structure across different populations and across
time. Studies of brain morphology have been conducted widely to char-
acterize differences in brain structure across groups of healthy individuals
and persons with various diseases, and across time [Thompson and Toga
(2002), Thompson, Cannon and Toga (2002), Styner et al. (2005), Zhu et
al. (2008a)]. Moreover, functional MRI (fMRI) is a valuable tool for un-
derstanding functional integration of different brain regions in response to
specific stimuli and behavioral tasks and detecting the association between
brain function and covariates of interest, such as diagnosis, behavioral task,
severity of disease, age, or IQ [Friston (2007), Rogers et al. (2007), Huettel,
Song and McCarthy (2004)].

Much effort has been devoted to developing frequentist and Bayesian
methods for analyzing neuroimaging data using numerical simulations and
theoretical reasoning. Frequentist statistical methods for analyzing neu-
roimaging data are often sequentially executed in two steps. The first step
involves fitting a general linear model or a linear mixed model to neuroimag-
ing data from all subjects at each voxel [Beckmann, Jenkinson and Smith
(2003), Friston et al. (2005), Rowe (2005), Woolrich et al. (2004), Zhu et
al. (2008a)]. The second step is to calculate adjusted p-values that account
for testing the hypotheses across multiple brain regions or across many vox-
els of the imaging volume using various statistical methods (e.g., random
field theory, false discovery rate, or permutation method) [Cao and Wors-
ley (2001), Friston et al. (1996), Hayasaka et al. (2004), Logan and Rowe
(2004), Worsley et al. (2004)]. Most of these frequentist methods have been
implemented in existing neuroimaging software platforms, including statis-
tical parametric mapping (SPM) (www.fil.ion.ucl.ac.uk/spm/) and FMRIB
Software Library (FSL) (www.fmrib.ox.ac.uk/fsl/), among many others. In
the recent literature, a number of papers have been published on the de-
velopment of Bayesian spatial–temporal models for functional imaging data
[Penny, Flandin and Trujillo-Barreto (2007), Bowman et al. (2008), Woolrich
et al. (2004), Luo and Puthusserypady (2005)]. Most Bayesian approaches,
however, are less practical due to the extensively computational burden of
running a Markov chain Monte Carlo method in a large number of vox-
els [Bowman et al. (2008)], and, thus, they are limited to small or moderate
anatomic regions and a small number of regions of interest (ROI). Moreover,
as pointed out in Snook, Plewes and Beaulieu (2007), the major drawbacks

http://www.fil.ion.ucl.ac.uk/spm/
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of ROI analysis include the instability of statistical results obtained from
ROI analysis and the partial volume effect in relative large ROIs.

Existing statistical methods in the neuroimaging literature have two ma-
jor limitations for analyzing longitudinal neuroimaging data, as explained
below. The respective strategies to resolve these two limitations are detailed
in Section 2. The first limitation is that the parametric models, such as
linear mixed models, require the correct specification of the temporal corre-
lation structure and cannot properly distinguish between different types of
time-dependent covariates (types I, II and III) [Diggle et al. (2002), Lai and
Small (2007), Pepe and Anderson (1994)]. A distinctive feature of longitu-
dinal neuroimaging data is that it is able to characterize individual change
in neuroimaging measurements (e.g., volumetric and morphometric) over
time, and the time-dependent covariates of interest may influence change.
Imaging measurements of the same individual usually exhibit positive corre-
lation and the strength of the correlation decreases with the time separation
[Liang and Zeger (1986)]. Moreover, longitudinal data may provide crucial
information for a causal role of a time-dependent covariate (e.g., exposure)
in the disease process [Diggle et al. (2002), Lai and Small (2007), Pepe
and Anderson (1994)]. Improperly handling time-dependent covariates and
ignoring (or incorrectly modeling) temporal correlation structure in imag-
ing measures likely would influence subsequent statistical inference, such as
increasing the false positive and negative errors, and result in misleading
scientific inferences [Diggle et al. (2002), Lai and Small (2007)].

The second limitation is that most smoothing methods apply the same
amount of smoothing throughout the whole image, which can be problem-
atic near the edges of the significant regions. Although it is common to
apply a smoothing step before applying a voxel-wise approach for the anal-
ysis of neuroimaging data [Poline and Mazoyer (1994), Shafie et al. (2003),
Lindquist and Wager (2008)], the voxel-wise method suffers from the same
amount of smoothing throughout the whole image and the arbitrary choice
of smoothing extent [Hecke et al. (2009), Jones et al. (2005)]. Jones et al.
(2005) have shown that the final results of voxel-based analysis can strongly
depend on the amount of smoothing in the smoothed diffusion imaging data.
Recently, Yue, Loh and Lindquist (2010) introduced a spatially smooth-
ing method using nonstationary spatial Gaussian Markov random fields to
spatially and adaptively smooth images. Their approach, however, can be
computationally extensive for 3D imaging data.

In this paper we will develop strategies to resolve these two limitations.
To resolve the first limitation, we develop an adjusted exponentially tilted
empirical likelihood method, called AETEL, for the analysis of longitudinal
neuroimaging data with time-dependent covariates. AETEL is a nonpara-
metric method that is built on a set of estimating equations and the number
of estimating equations can be larger than the number of parameters. Thus,
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it avoids parametric assumptions and this feature is very appealing for the
analysis of real neuroimaging data, such as brain morphological measures,
because the distribution of the univariate (or multivariate) neuroimaging
measurements often deviates from the Gaussian distribution [Ashburner and
Friston (2000), Salmond et al. (2002), Luo and Nichols (2003)]. Using more
estimating equations than the number of parameters allows us to appropri-
ately handle time-dependent covariates of different types and to make an
efficient use of the estimating equations without the need of modeling the
temporal correlation in longitudinal data [Lai and Small (2007), Qu, Lindsay
and Li (2000)]. AETEL also provides a natural test statistic to test whether
a specific covariate is of a certain type (types I, II and III).

To resolve the second limitation, we develop a two-stage AETEL, abbrevi-
ated as TETEL, for the analysis of longitudinal neuroimaging data. TETEL
integrates a smoothing method into our AETEL for carrying out statisti-
cal inference on neuroimaging data. The TETEL method, as an adaptive
procedure, fits AETEL at each voxel in stage 1. Then, TETEL uses the
information learned from stage 1 to discard the data from the neighboring
voxels with dissimilar signal pattern and to incorporate the data from the
neighboring voxels with similar signal pattern to adaptively calculate param-
eter estimates and test statistics. TETEL avoids using the same amount of
smoothing throughout the whole image in most smoothing methods. In ad-
dition, theoretically, we can establish consistency and asymptotic normality
of the estimators and test statistics obtained from TETEL.

Section 2 of this paper introduces the shape data of the hippocampus
structure from a longitudinal schizophrenia study and presents the new sta-
tistical methods just described. In Section 3 we conduct simulation stud-
ies to examine the finite sample performance of the TETEL method. Sec-
tion 4 illustrates an application of the proposed methods to the longitudinal
schizophrenia study of the hippocampus. We present concluding remarks in
Section 5.

2. Data and methods.

2.1. Longitudinal schizophrenia study of hippocampus shape. This is a lon-
gitudinal, randomized, controlled, multisite, double-blind study conducted
at 14 academic medical centers in North America and western Europe, with
partial funding from Lilly Research Laboratories [Lieberman et al. (2005),
Styner et al. (2004)]. In this study 238 first-episode schizophrenia patients
were enrolled meeting the following criteria: age 16 to 40 years; onset of psy-
chiatric symptoms before age 35; diagnosis of schizophrenia, schizophreni-
form, or schizoaffective disorder according to the fourth edition of diagnostic
and statistical manual of mental disorders (DSM-IV) criteria; and various
treatment and substance dependence conditions. After random allocation at
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Fig. 1. Location of hippocampus in the context of the surrounding structures in the coro-
nal (a) and sagittal (b) views. Subregions of the hippocampus in (c) showing the head of
the hippocampus (HH), the digitationes hippocampi (DH), the hippocampal body (HB), the
hippocampal tail (HT), the terminal segment of the HT (TS), the dentate gyrus (DG),
and the fields of the cornu ammonis (CA1–CA4). Adapted with permission from Springer
Verlag, Heidelberg, Germany [Duvernoy (2005)].

baseline, 123 patients were selected to receive a conventional antipsychotic,
haloperidol (2–20 mg/d), and 115 were selected to receive an atypical an-
tipsychotic, olanzapine (5–20 mg/d). Patients were treated and followed up
to 47 months. Also, 56 healthy control subjects matched to the patient’s
demographic characteristics were enrolled. Neurocognitive and MRI assess-
ments were performed at months 0 (baseline), 3, 6, 13, 24, 36, and 47 ap-
proximately, with different subjects having different visiting times, and some
subjects dropped out during the course of the study.

The hippocampus, a gray matter structure in the limbic system, is in-
volved in processes of motivation and emotions and has a central role in the
formation of memory. The hippocampus is a paired structure with mirror-
image halves in the left and right brain hemispheres and located inside the
medial temporal lobe (Figure 1). Many MRI studies have reported the re-
duction of hippocampal volume demonstrated in schizophrenia subjects and
at onset of the first episode of psychotic symptoms before effects associated
with treatment and disease chronicity [Lieberman et al. (2005)].

The aim of this study is to use the boundary and medial shape of the
hippocampus to examine whether hippocampal abnormalities are present in
schizophrenia patients. Statistical shape modeling and analysis have emerged
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as important tools for understanding cortical and subcortical structures from
medical images [Dryden and Mardia (1998)]. We consider two approaches
for shape representation including a spherical harmonic description sampled
into a triangulated surfaces (SPHARM-PDM) and a medial shape descrip-
tion [Pizer et al. (2003), Styner and Gerig (2003)]. The SPHARM-PDM can
only represent objects of spherical topology, whereas the medial representa-
tion provides information on a rich set of features, including local thickness.
These shape features are not accessible by conventional volume-based mor-
phometry and offer us a great opportunity to address the weaknesses of
conventional volumetric methods.

We consider two sets of responses of interest. The first set of responses
was based on the SPHARM-PDM representation of hippocampal surfaces.
We use the SPHARM-PDM [Styner et al. (2004)] shape representation to es-
tablish surface correspondence and align the surface location vectors across
all subjects. The sampled SPHARM-PDM is a smooth, accurate, fine-scale
shape representation (Figure 3). The hippocampal surfaces of different sub-
jects are thus represented by the same number of location vectors (with each
location vector consisting of the spatial x, y, and z coordinates of the corre-
sponding vertex on the SPHARM-PDM surface) and are used as the second
set of responses. Covariates of interest are race (Caucasian, African Ameri-
can, and others), age (in years), gender, group (the schizophrenia group and
the healthy control group) and time (visiting times in months).

The second set of responses was the hippocampus m-rep thickness at the
24 medial atoms of the left and the right brain (Figure 4). The m-rep is
a linked set of medial primitives named medial atoms, which are formed
from two equal length vectors and are composed of a position, a radius,
a frame implying the tangent plane to the medial manifold, and an object
angle [Styner et al. (2004)]. The m-rep thickness is the radius of each medial
atom. Covariates of interest were WBV, race (Caucasian, African American,
and others), age (in years), gender, diagnostic status (patient or control), and
visiting times (in weeks). This WBV measure includes gray and white mat-
ter, ventricular cerebrospinal fluid, cisterns, fissures, and cortical sulci. The
WBV is commonly used as a covariate in statistical analyses to control for
scaling effects [Arndt et al. (1991)]. Particularly, WBV is a time-dependent
covariate and may vary with the hippocampus thickness measurement.

2.2. Estimating equations for longitudinal data. We consider a longitudi-
nal study of imaging data with n subjects, where a q× 1 covariate xi,j (e.g.,
age, gender, height, and brain volume) is obtained for the ith subject at the
jth time point tij for i= 1, . . . , n and j = 1, . . . ,mi. Thus, there are at least
∑n

i=1mi =N images in the study. Based on each image, we observe or com-
pute neuroimaging measures, denoted by Yi = {yij(d) :d ∈D, j = 1, . . . ,mi},
across all mi time points from the ith subject, where d represents a voxel (or
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atom, or point) on D, a specific brain region. The imaging measure yij(d) at
each voxel d can be either univariate or multivariate. For example, the m-rep
thickness is a univariate measure, whereas the location vector of SPHARM-
PDM is a three-dimensional MRI measure at each point [Styner and Gerig
(2003), Chung, Dalton and Davidson (2007)]. For notational simplicity, we
assume that the yij(d) are univariate measures.

We temporarily drop voxel d from our notation. At a specific voxel d in
the brain region, zi = {(yij ,xij) : j = 1, . . . ,mi} is independent and satisfies
a moment condition

E{g(zi, θ)}= 0 for i= 1, . . . , n,(2.1)

where θ is a p× 1 vector, g(·, ·) is an r × 1 vector of known functions with
r ≥ p, and E denotes the expectation with respect to the true distribution of
all the zi’s. Equation (2.1) is often referred to as a set of unbiased estimating
equations or moments model [Qin and Lawless (1994), Hansen (1982)]. The
moments model (2.1) is more general than most parametric models including
linear mixed model used for the analysis of neuroimaging data [Worsley et
al. (2004), Qin and Lawless (1994), Hansen (1982), Schennach (2007), Owen
(2001)].

For longitudinal data, although the measurements from different sub-
jects are independent, those within the same subject may be highly cor-
related. The generalized estimating equations (GEE) assume a working co-
variance matrix for yi = (yi1, . . . ,yimi

)T given by Vi. Let E(yi) = µi(β) =
(µi1(β), . . . , µimi

(β))T and Di(β) = ∂µi(β)/∂β. Under the assumption that
E{Di(β)

TV −1
i [yi − µi(β)]}= 0, Liang and Zeger (1986) proposed to use an

estimator, denoted by β̂gee, which solves a set of GEEs as follows:

G(β) =

n
∑

i=1

Di(β)
TV −1

i [yi − µi(β)] = 0.(2.2)

For longitudinal data with time-dependent covariates, whether E[g(zi,
θ)] = E{Di(β)

TV −1
i [yi − µi(β)]} equals zero or not depends on the type of

time-dependent covariates and the structure of Vi [Lai and Small (2007)].
The time-dependent covariate xij is of type I if

E{∂βµis(β)[yij − µij(β)]}= 0 for all s, j = 1, . . . ,mi,(2.3)

where ∂β = ∂/∂β. A sufficient condition for type I covariates is E[yij|xij ] =

E[yij |xi1, . . . ,ximi
]. For type I covariates, we can set g(zi, θ)=Di(β)

TV −1
i [yi−

µi(β)] and show that E[g(zi, θ)] = 0. If Vi is the covariance matrix of yi,

then the estimator β̂gee is an efficient estimator. However, β̂gee is ineffi-
cient under a misspecified Vi. To increase the efficiency, we may choose

several candidate working covariance matrices M
(1)
i , . . . ,M

(s0)
i and assume
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V −1
i =

∑s0
k=1αkM

(k)
i for some unknown constants αk [Qu, Lindsay and Li

(2000)]. Then, following Qu, Lindsay and Li (2000), we consider a set of
estimating equations given by

g(zi, θ) =







Di(β)
TM

(1)
i [yi − µi(β)]
...

Di(β)
TM

(s0)
i [yi − µi(β)]






for i= 1, . . . , n.(2.4)

In this case, the number of functions in g(zi, θ) is s0q > q, when s0 > 1.
The time-dependent covariate xij is of type II if

E{∂βµis(β)[yij − µij(β)]}= 0 for all s≥ j, j = 1, . . . ,mi.(2.5)

A sufficient condition for type II covariates is

p(xi,t+1, . . . ,ximi
|yit,xit) = p(xi,t+1, . . . ,ximi

|xit).(2.6)

For type II covariates, we can set g(zi, θ) =Di(β)
T [yi − µi(β)], in which an

independent working covariance matrix is used. However, the estimator β̂gee
based on the independent working correlation matrix is inefficient, since we
do not use the information contained in E{∂βµis(β)[yij − µij(β)]} = 0 for
all s > j. To increase the efficiency of the estimate, we choose a set of lower

triangular mi×mi matrices L
(1)
i , . . . ,L

(s0)
i , and then we consider estimating

equations given by

g(zi, θ) =







Di(β)
TL

(1)
i [yi − µi(β)]
...

Di(β)
TL

(s0)
i [yi − µi(β)]






for i= 1, . . . , n.(2.7)

In this case, the number of functions in g(zi, θ) is s0q > q, when s0 > 1.

Supposing that m1 = · · · =mn, we can set s0 = m1(m1 + 1)/2 and L
(b)
i =

ese
T
j for s ≥ j and b = 1, . . . , s0, where es is a q × 1 vector with the sth

component 1 and 0 otherwise. Thus, similar to Lai and Small (2007), we are
able to pick ∂βµis(β)[yij − µij(β)] for all s≥ j.

The time-dependent covariate xij is of type III if

E{∂βµis(β)[yij − µij(β)]} 6= 0 for some s > j.(2.8)

For type III covariates, we need to choose Vi as a diagonal matrix. For in-
stance, if Vi = Ii, where Ii is an mi ×mi identity matrix, then g(zi, θ) =
Di(β)

T [yi−µi(β)]. Furthermore, if we assume the specific form for the vari-
ances of all yij , then we may set Vi = diag(Cov(yi)).

An overall strategy to analyze models with time-dependent covariates is
first to assume that the time-dependent covariates are of type III. Then we
test whether the time-dependent covariates are of type II, and if the test
is not rejected, we can go on to test if they are of type I. Once the type
of all the time-dependent covariates is decided, we use the corresponding
estimating equations. See Section 4 for more details.
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2.3. Adjusted exponentially tilted empirical likelihood. We consider a non-
parametric method, called an exponentially tilted empirical likelihood, to
carry out statistical inference about θ based on a set of estimating equations
{g(zi, θ) : i= 1, . . . , n} [Schennach (2007)]. The exponentially tilted empiri-
cal likelihood (ETEL) method is a combination of the exponentially tilted
(ET) method and the empirical likelihood (EL) method. Both EL [Owen
(2001), Qin and Lawless (1994)] and ET [Imbens, Spady and Johnson (1998)]
methods combine the reliability of nonparametric methods with the effec-
tiveness of the likelihood approach. The EL estimator exhibits desirable
higher-order asymptotic properties, whereas the EL estimator may fail to
be

√
n-convergent in the presence of model misspcification. In contrast, the

ETEL estimator maintains
√
n-convergence under model misspecification

[Schennach (2007)].
However, most empirical likelihood type methods including ETEL suffer

from two pitfalls: relatively low precision of the chi-square approximation
and nonexistence of solutions to the estimating equations [Chen, Variyath
and Abraham (2008), Liu and Chen (2010)]. Chen, Variyath and Abraham
(2008) introduce a novel adjustment to these empirical likelihood meth-
ods and develop an iterative algorithm that converges very fast. Simulation
studies have shown that the adjusted empirical likelihood methods perform
as well as the linear regression model with Gaussian noise when data are
symmetrically distributed, while the adjusted empirical likelihood methods
are superior when data have skewed distribution [Zhu et al. (2009), Chen,
Variyath and Abraham (2008), Liu and Chen (2010)].

Following Chen, Variyath and Abraham (2008), we consider an adjust-
ment of ETEL, abbreviated as AETEL, by introducing an adjustment

gn+1(θ) =−an
n

n
∑

i=1

g(zi, θ),(2.9)

where an =max(1, log(n)/2). Then, AETEL is defined as

ℓAetel(θ) =−(n+ 1)−1
n+1
∑

i=1

log((n+ 1)p̂i(θ)),(2.10)

where p̂i(θ) is the solution to

min
p1,...,pn+1

(n+ 1)−1
n+1
∑

i=1

[(n+ 1)pi] log[(n+1)pi]

subject to

n+1
∑

i=1

pi = 1, pi ≥ 0 and
n
∑

i=1

pig(zi, θ) + pn+1gn+1(θ) = 0.
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The maximum AETEL estimator, denoted by θ̂Aetel, minimizes a criterion
given by

θ̂Aetel = argmin
θ

ℓAetel(θ).(2.11)

According to a duality theorem in convex analysis [Newey and Smith (2004)],

p̂n+1(θ) =
exp(t̂(θ)T gn+1(θ))

Tg(θ)
and p̂i(θ) =

exp(t̂(θ)T g(zi, θ))

Tg(θ)

for i= 1, . . . , n, in which

Tg(θ) =
n
∑

j=1

exp(t̂(θ)T g(zj , θ)) + exp(t̂(θ)T gn+1(θ)),

t̂(θ) = argmax
t

{

−
n
∑

i=1

exp(−tT g(zi, θ))− exp(−tT gn+1(θ))

}

.

We use the numerical algorithm proposed by Chen, Variyath and Abraham
(2008) to compute θ̂Aetel, which combines the modified Newton–Raphson al-
gorithm and the simplex method. Compared with that of computing ETEL,
this numerical algorithm of Chen, Variyath and Abraham (2008) converges
very fast and the solution to AETEL is guaranteed.

We consider testing the linear hypotheses:

H0 :Rθ = b0 vs. H1 :Rθ 6= b0,(2.12)

where R is a c0×p matrix of full row rank and b0 is a c0×1 specified vector.
Most scientific questions in neuroimaging studies can be formulated into
linear hypotheses, such as a comparison of brain regions across diagnostic
groups and a detection of changes in brain regions across time. The AETEL
ratio statistic for testing Rθ = b0 can be constructed as follows:

LRAetel =−2(n+ 1)
{

sup
θ :Rθ=b0

ℓAetel(θ)− sup
θ

ℓAetel(θ)
}

.(2.13)

Thus, to compute LRAetel, we also need to compute the maximum AETEL
estimator, denoted by θ̂Aetel,0, subject to an additional constraint Rθ = b0.

Under some conditions on g(zi, θ), we have the following theorem, whose
detailed proof can be found in a supplementary document [Shi et al. (2011)].

Theorem 2.1. If assumptions (A1)–(A4) in the supplementary docu-

ment are true, then we have the following:

(a)
√
n(θ̂Aetel − θ0) converges to ν0 = N(0,Σ) in distribution, where θ0

denotes the true value of θ and Σ= (DV −1DT )−1, in which

D = lim
n→∞

n−1
n
∑

i=1

∂θg(zi, θ) and V = lim
n→∞

n−1
n
∑

i=1

g(zi, θ)
⊗2;
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(b) under the null hypothesis H0, LRAetel converges to a χ2(c0) distribu-
tion;

(c) if E[g(zi, θ)]=0 for all i and r>p, then LRGF=−2(n+1) supθ ℓAetel(θ)
is asymptotically χ2(r−p).

We have established consistency and asymptotic normality of θ̂Aetel and
the asymptotic χ2 distribution of LRAetel. Theorem 2.1 also shows that AE-
TEL has the same first-order asymptotic properties as ETEL [Schennach
(2007)]. High-order precision of AETEL can be explored by following the
arguments in Liu and Chen (2010). It will be shown that the chi-square ap-
proximation of the AETEL likelihood ratio statistics is found precise, com-
pared with the existing ETEL [Owen (2001), Liu and Chen (2010), Chen,
Variyath and Abraham (2008)]. Providing a reliable p-value at each voxel
is crucial for controlling the family-wise error rate and false discovery rate
(FDR) across the entire brain region [Benjamini and Hochberg (1995), Wors-
ley et al. (2004)].

2.4. Two-stage adaptive estimation procedure. We propose a two-stage
adaptive estimation procedure for computing parameter estimates and like-
lihood ratio statistics for the spatial and adaptive analysis of neuroimaging
data in 3D volumes (or 2D surfaces). To distinguish data and parameter
in different voxels, we introduce voxel d into our notation. For instance,
zi(d) and θ(d), respectively, denote the ith observation and the parameter
at voxel d.

Stage 1 is to calculate the AETEL estimator of the parameter θ(d), de-

noted by θ̂Aetel(d), based on a set of estimating equations {g(zi(d), θ(d)) : i=
1, . . . , n} at each voxel d ∈D.

One chooses a set of estimating equations {g(zi(d), θ(d)) : i = 1, . . . , n}
according to a specific type of time-dependent covariate and then substitutes
them into (2.10) to build ℓAetel(θ(d);d). Subsequently, we solve θ̂Aetel(d)
according to (2.11) by minimizing ℓAetel(θ(d);d), and then we obtain a set

of parameter estimates {θ̂Aetel(d) :d ∈D}.
Stage 2 is to calculate the TETEL estimator of θ(d), denoted by θ̂Tetel(d),

by utilizing the information contained in {θ̂Aetel(d) :d ∈ D}. Then, we cal-
culate a TETEL ratio statistic, denoted by LRTetel(d), for testing H0(d) :
Rθ(d) = b0.

Specifically, one combines all data in the voxel d and the set of the closest
neighboring voxels of d, denoted by N(d), to form a new set of estimating
equations {g̃(zi(d), θ(d);d) : i= 1, . . . , n} as follows:

g̃(zi(d), θ(d);d) =
∑

d′∈N(d)∪{d}

ω(d′;d)g(zi(d
′), θ(d)),(2.14)
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where ω(d′;d) is a weight describing the similarity between voxel d and
any d′ ∈ N(d). The weights ω(d′;d) at each d depend on the parameters

{θ̂Aetel(d
′) :d′ ∈N(d)∪{d}} calculated in Stage 1. From now on, we assume

that ω(d′;d) takes the form

ω(d′;d) = exp(−LRAetel(d
′;d)/Cn),(2.15)

where Cn = χ2
1−α(p) log(n)/5 and χ2

1−α(p) is the upper α-percentile of the
χ2(p) distribution. In addition,

LRAetel(d
′;d) =−2(n+ 1)

{

ℓAetel(θ̂Aetel(d
′);d)− sup

θ

ℓAetel(θ;d)
}

,(2.16)

in which ℓAetel(θ;d) is defined in (2.10) based on the estimating equations
{g(zi(d), θ(d)) : i= 1, . . . , n}. Statistically, LRAetel(d

′;d) denotes the AETEL

ratio statistic for testing the hypothesis H0 : θ(d) = θ̂Aetel(d
′). Note that

LRAetel(d
′;d)≥ 0 and LRAetel(d;d) = 0, which yields ω(d;d) = 1. If θ̂Aetel(d

′)

is close to θ̂Aetel(d), then LRAetel(d
′;d) is close to zero and ω(d′;d) will be

close to 1. However, if the difference between θ̂Aetel(d
′) and θ̂Aetel(d) is large,

then LRAetel(d
′;d) is large and ω(d′;d) will be small. Thus, ω(d′;d) defined

in (2.15) truly characterizes the similarity between voxels d and d′.
One substitutes g̃(zi(d), θ(d);d) in (2.14) into (2.10) to build a new func-

tion, denoted by ℓTetel(θ(d);d), and then solves θ̂Tetel(d) according to (2.11)
by minimizing ℓTetel(θ(d);d). Finally, to test H0(d) :Rθ(d) = b0, one uses
g̃(zi(d), θ(d);d) in (2.14) to calculate the TETEL ratio statistic LRTetel(d)
according to (2.13). Note that the key difference between LRTetel(d) and
LRAetel(d) lies in their different sets of estimating equations.

Although the two-stage procedure only combines the data in the voxels of
N(d) with the data in voxel d, they may preserve the long-range correlation
structure in the imaging data, because the neighborhoods of all voxels are
consecutively connected. Thus, the two-stage procedure captures a substan-
tial amount of spatial information in the imaging data. For the sake of space,
we only present the asymptotic properties of θ̂Tetel(d) and LRTetel(d) below.

Theorem 2.2. If assumptions (A1)–(A3) and (A5)–(A7) in the supple-

mentary document are true, then we have the following:

(a)
√
n(θ̂Tetel(d)− θ0(d)) converges to ν(d) =N(0,Σ(d)) in distribution,

where θ0(d) is the true value of θ(d) in the voxel d and Σ(d) = [D(d)V (d)−1×
D(d)T ]−1, in which

D(d) = lim
n→∞

n−1
n
∑

i=1

∂θg̃(zi(d), θ0(d);d)
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and

V (d) = lim
n→∞

n−1
n
∑

i=1

g̃(zi(d), θ0(d);d)
⊗2;

(b) under the null hypothesis H0(d), LRTetel(d) converges in distribution

to a χ2(c0) distribution.

Theorem 2.2 establishes the asymptotic consistency and normality of
θ̂Tetel(d) and the asymptotic χ2 distribution of LRTetel(d). Theorem 2.2 also

shows that the asymptotic variance of θ̂Tetel(d) depends on all the data in
N(d)∪{d} for all subjects. Since the weights ω(d′;d) automatically put large
weights on the neighboring voxels with similar pattern and small weights on
the neighboring voxels with dissimilar pattern, it follows that the TETEL
procedure produces more accurate parameter estimates and more powerful
test statistics.

TETEL has three features. TETEL not only downweights the data from
the neighboring voxels with dissimilar signal pattern, but also incorporates
the data from the neighboring voxels with similar signal pattern to adap-
tively calculate parameter estimates and test statistics. TETEL avoids us-
ing the same amount of smoothness throughout the whole image in most
smoothing methods. Our theoretical results ensure the asymptotic consis-
tency and normality of θ̂Tetel(d) and the asymptotic χ2 distribution of
LRTetel(d). Then, we can approximate the p-value of LRTetel(d) at each
voxel d. Finally, we correct for multiple comparisons by using either the
family-wise error rate or false discovery rate (FDR) across the entire brain
region [Benjamini and Hochberg (1995), Worsley et al. (2004)]. Since the
smoothing stage in TETEL usually introduces the positive dependency
among all LRTetel(d), it allows us to apply FDR in Benjamini and Yeku-
tieli (2001) to control the false discovery rate.

3. Simulation studies. Three sets of simulation studies were conducted to
examine the finite sample performance of our AETEL and TETEL methods.

3.1. Study I: Longitudinal data. We considered the following model:

yij = β0 + β1tij + β2xi + β3tijxi + bi + εij(3.1)

for i= 1, . . . , n, where tij denotes time taking values in (1,2,3,4,5), xi was
independently generated from a N(0,1), and bi was independently generated
from a N(0,1). Errors εij were independently generated from N(0,1) and
χ2(3)−3, respectively, where χ2(3) represents a chi-squared random variable
with three degrees of freedom. The χ2(3)−3 distribution is very skewed and
differs substantially from any symmetric distribution, such as a Gaussian
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distribution. The true value of (β0, β1, β2)
T was set at (1,1,1)T and β3 was

varied as 0, 0.05, 0.10, 0.15, and 0.20. We tested the hypothesisH0 :β3 = 0 vs.
H1 :β3 6= 0 using LRAetel. To assess both Type I and II error rates of LRAetel,
we used generalized estimating equations assuming an exchangeable working
correlation matrix to construct LRAetel and then compared it with the ETEL
likelihood ratio statistic, denoted by LREtel, and the Wald statistic, denoted
by Wn, obtained from the “true” linear mixed model (3.1) representing an
ideal scenario. We considered n = 40, 60, and 80. The 1,000 replications
were used to calculate the estimates of rejection rates with significance level
α= 5%.

The type I error rates of LRAetel and Wn are reasonably accurate for all
sample sizes (n= 40,60, or 80) considered and for all different distributions
of error terms at the 5% significant level (Table 1). In contrast, the type I
error rates of LREtel are slightly inflated for n= 40. The type II error rates
for LRAetel and Wn are similar under both error distributions and for all
sample sizes (Table 1). However, the power of the three test statistics to
reject the null hypothesis increases modestly when the distribution of the
error terms follows the skewed distribution χ2(3)− 3 (Table 1). This decline
in the type II error rate was caused by the fact that the variance of χ2(3)−3
is larger than that of N(0,1). Compared with LRAetel and Wn, LREtel has
slightly larger power, which may be due to its inflated type I error rates.
Consistent with our expectation, the statistical power for rejecting the null
hypothesis increases with the sample size n.

3.2. Study II: Testing the type of time-dependent covariates. We used
the simulation study for a type II time-dependent covariate in Section 4.1
of Lai and Small (2007) to examine the finite sample performance of our
AETEL method. The data were simulated under the mechanism

yit = β0 + β1xit + β2xi,t−1 + bi + eit and xit = β3xi,t−1 + εit,

where bi, eit, and εit are mutually independent and normally distributed
with mean 0 and variances 4, 1, and 1, respectively; the xit-process is sta-
tionary, that is, xi0 ∼ N(0, σ2

ε/(1 − β2
3)). We refer the reader to Lai and

Small (2007) for more details. Note that xit is a type II covariate. We used
our AETEL method with the following estimating equations: (a) the type
II estimating equations according to (2.5), labeled type II; (b) the type III
estimating equations according to (2.8), labeled type III; (c) GEE using the
independent working correlation, labeled GEE independence; (d) GEE using
the exchangeable working correlation, labeled GEE exchangeable; (e) GEE
using the autoregressive AR-1 working correlation, labeled GEE AR-1. We
compared the bias, root-mean-square error, and the efficiency of each case for
the parameter β1 to the GEE independence case (the efficiency is the ratio
of the mean-square error of the GEE independence case to that of the case).
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Table 1

Simulation study for comparing LRAetel, LREtel, and Wn for testing H0 :β3 = 0 against
H1 :β3 6= 0

χ2(3)− 3 N(0,1)

n = 40 n = 60 n = 80 n = 40 n = 60 n = 80

β3 = 0.0 LREtel 0.078 0.066 0.059 0.082 0.070 0.058
LRAetel 0.066 0.054 0.055 0.068 0.064 0.058
Wn 0.062 0.064 0.068 0.078 0.064 0.054

β3 = 0.05 LREtel 0.112 0.118 0.118 0.186 0.280 0.300
LRAetel 0.088 0.104 0.102 0.156 0.254 0.278
Wn 0.094 0.102 0.100 0.164 0.244 0.264

β3 = 0.10 LREtel 0.198 0.182 0.286 0.548 0.866 0.804
LRAetel 0.176 0.160 0.268 0.506 0.848 0.792
Wn 0.168 0.164 0.270 0.474 0.786 0.728

β3 = 0.15 LREtel 0.280 0.340 0.394 0.986 0.930 0.978
LRAetel 0.250 0.316 0.374 0.986 0.920 0.974
Wn 0.268 0.324 0.356 0.978 0.892 0.970

β3 = 0.20 LREtel 0.560 0.520 0.720 0.996 1 1
LRAetel 0.532 0.488 0.702 0.990 1 1
Wn 0.512 0.482 0.682 0.982 0.998 1

Estimates of rejection rates were reported for N(0,1) and χ2(3)− 3 distributed data at
3 different sample sizes (n= 40,60,80) at significance level α= 5%. For each case, 1,000
simulated data sets were used.

As we can see from Table 2, GEE independence and GEE AR-1 are biased,
because they use some invalid estimating equations. The other three are all
unbiased, with type II being more efficient than the other two. Combining all
available valid estimating equations does improve efficiency. With the same
type II estimating equations, our method has slightly less RMSE (0.0401 vs.
0.0407) than Lai and Small (2007)’s method.

Table 2

Results of AETEL with various estimating equations for a type II time-dependent
covariate

Estimating equations Bias RMSE Efficiency

Type II 0.00 0.040 1.82
Type III 0.00 0.053 1.04
GEE independence 0.00 0.054 1.00
GEE exchangeable −0.12 0.104 –
GEE AR-1 −0.79 0.661 –
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Fig. 2. Two red regions of interest (ROIs) on a 30× 30 image. The ROIs are indicated
by the red area.

3.3. Study III: Spatial data. We simulated data at all m= 900 pixels on
a 30× 30 phantom image (Figure 2). At a given voxel d,

yij(d) = β0(d) + β1(d)tij + β2(d)xi + β3(d)tijxi + bi(d) + εij(d)(3.2)

for i = 1, . . . , n and j = 1, . . . ,mi, where tij is the time taking values in
(1,2,3,4,5), xi was independently generated from a N(0,1), and bi(d) was
independently generated from a N(0,1). Errors εij(d) were independently
generated from N(0,1) and χ2(3)−3, respectively. We tested the hypotheses
H0 :β3(d) = 0 and H1 :β3(d) 6= 0 across all pixels. To assess the Type I and
II error rates at the pixel level, we set β0(d) = β1(d) = β2(d) = 0 across all
pixels d and varied β3(d) as 0.0, 0.05, 0.10, 0.15, and 0.20. Specifically, we
created two regions of interest (ROI) by setting β3(d) as 0.05, 0.10, 0.15, and
0.20, and setting β3(d) = 0 outside of the two ROIs in order to assess the
finite sample performance of our method at different signal-to-noise ratios
(SNRs). We considered n= 40 and 80.

We used generalized estimation equations with an exchangeable working
correlation matrix to calculate θ̂(d) and LRAetel(d) in Stage 1. In Stage 2
we used the four first-order neighbors of pixel d to form N(d) and then
calculated LRTetel(d). As a comparison with the conventional analysis on
image data, we first smoothed image data by using the heat kernel smoothing
method with 16 iterations, which gave an effective smoothness of about
4 pixels [Chung, Dalton and Davidson (2007)], and then calculated the Wald
statistic based on GEE with an exchangeable working correlation matrix at
each pixel. The 100 replications were used to approximate rejection rate
with significance level α= 5%.

As shown in Table 3, the Type I rejection rates outside of ROIs for both
LRAetel and LRTetel are relatively accurate for all cases, while the statistical
power for rejecting the null hypothesis in ROIs significantly increases with
the absolute value of β3(d). Compared with LRAetel, LRTetel has higher
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Table 3

Comparison of the two stages of TETEL for unsmoothed spatial data and the Wald test
statistic for smoothed spatial data: true average rejection rates for voxels inside the ROI
and false average rejection rates for voxels outside of the ROI were reported for N(0,1)
and χ2(3)− 3 distributed data, and 2 different sample sizes (n= 40 and 80) at α= 5%.

For each case, 100 simulated data sets were used

LRTetal Wald

n= 40 n = 80 n= 40 n= 80

β3 Stage True False True False True False True False

N(0,1)
0.05 Stage 1 0.223 0.088 0.329 0.068 0.711 0.101 0.891 0.105

Stage 2 0.302 0.089 0.426 0.069
0.10 Stage 1 0.571 0.087 0.820 0.069 0.964 0.15 0.991 0.158

Stage 2 0.690 0.088 0.910 0.070
0.15 Stage 1 0.863 0.089 0.984 0.069 0.996 0.184 0.998 0.177

Stage 2 0.954 0.090 0.998 0.069
0.20 Stage 1 0.987 0.089 0.999 0.069 0.999 0.193 0.999 0.192

Stage 2 0.992 0.090 1.000 0.069

χ2(3)− 3
0.05 Stage 1 0.117 0.085 0.122 0.070 0.313 0.089 0.331 0.073

Stage 2 0.212 0.090 0.232 0.070
0.10 Stage 1 0.193 0.087 0.259 0.069 0.567 0.099 0.858 0.099

Stage 2 0.278 0.089 0.411 0.070
0.15 Stage 1 0.313 0.090 0.447 0.068 0.847 0.113 0.948 0.123

Stage 2 0.486 0.091 0.649 0.070
0.20 Stage 1 0.463 0.090 0.660 0.069 0.947 0.130 0.979 0.145

Stage 2 0.653 0.090 0.859 0.069

statistical power for rejecting the null hypothesis in ROIs with β3(d) 6= 0.
In contrast, compared with LRAetel and LRTetel based on the unsmoothed
imaging data, although the Wald statistic for the smoothed imaging data
has higher statistical power for rejecting the null hypothesis in ROIs, its
Type I error rate is inflated and increases with the absolute value of β3(d).
The decline in the type I and II error rates is caused by the fact that the
variance of χ2(3)− 3 is larger than that of N(0,1). We also tried different
degrees of smoothness and ROIs with different sizes and found that the
degree of smoothness and ROI size can have profound effect on the Type I
and II error rates of the Wald statistic (not presented here).

4. Hippocampus shape.

4.1. Hippocampus SPHARM-PDM representation. Let yij(d) be the 3×
1 coordinate vector at voxel d on the left and right hippocampus SPHARM-
PDMs and xij = (1,genderi,agei,SC1i,SC2i, race1i, race2i, timeij)

T , where
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SC1 and SC2 were, respectively, dummy variables for haloperidol-treated SC
patient and olanzapine-treated SC patient versus healthy controls, and race1
and race2 were, respectively, dummy variables for Caucasian and African
American versus other race. Let yi(d) = (yi1(d)

T , . . . ,yimi
(d)T )T and A⊗B

denote the Kronecker product of matrices A and B. We assume that the
mean and covariance matrix of yi(d) are, respectively, given by

E(yi(d)) =





xT
i1 ⊗ I3
· · ·

xT
imi

⊗ I3



β(d) and Cov(yij(d)) = Vi(d) =Ri(α(d))⊗Σ(d),

where β(d) is a 24 × 1 vector, Ri(α(d)) = (α(d)|j−k|) is the standard au-
toregressive AR-1 correlation matrix and Σ(d) is a 3× 3 covariance matrix
of yij(d). We estimated α(d) and Σ(d) by using Pearson residuals, which
were calculated by solving GEEs with an independent working correlation
matrix. For now on, Vi(d) [or α(d) and Σ(d)] are assumed to be known. For
the data analysis, we used the moment model based on GEE in (2.2) since
there is no time-dependent covariate except time itself. The g(zi(d), θ(d);d)
which is used in TETEL is given by

g(zi(d), θ(d);d) =

n
∑

i=1





xT
i1 ⊗ I3
· · ·

xT
imi

⊗ I3





T

Vi(d)
−1



yi(d)−





xT
i1 ⊗ I3
· · ·

xT
imi

⊗ I3



β(d)



 .

Existing statistical methods of image data in SPM require that the error
distribution is Gaussian and the variance is constant. The Shapiro–Wilk test
rejects the normality assumption at many voxels of both the left and right
hippocampus structures, and, thus, our nonparametric TETEL method is
preferred for the analysis of this data set.

Since our goal is to detect the difference in the SPHARM-PDM surface
shape between the schizophrenia and control groups, we used LRAetel and
LRTetel to carry out the test. Moreover, in Stage 2, we used the closest neigh-
bors of each voxel d to form N(d). The color-coded p-values of the LRAetel

and LRTetel and their corrected p-values using FDR across the voxels of both
the left and right reference hippocampi are shown in Figure 3 [Benjamini
and Yekutieli (2001)], in which the top row is for the first stage (LRAetel)
and the bottom row is for the second stage (LRTetel).

The analyses show strong shape differences in the superior, anterior parts
of the left hippocampus, at the intersection of cornu ammonis 1 and cornu
ammonis 2, previously not shown. Posterior shape changes at the hippocam-
pal tail shown in chronic schizophrenics [Styner et al. (2004)] are detected
here already in first episode patients. Furthermore, the results also confirm
those reported in Narr et al. (2004) by indicating a strong medial shape
difference in the central, left hippocampal body in first episode patients.
Comparing the first and second rows, it is clear that TETEL shows advan-
tages in detecting more significant and smoother activation areas.
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Fig. 3. Results from the longitudinal schizophrenia study. The first and third rows are
for the first stage (LRAetel): the color-coded raw p-value maps of group effect for the left
hippocampus (a, b) and the right hippocampus (c, d), and the corresponding color-coded
corrected p-value maps of group effect for the left hippocampus (i, j) and the right hippocam-
pus (k, l). The second and fourth rows are for the second stage (LRTetel): the color-coded
p-value maps of group effect for the left hippocampus (e, f) and the right hippocampus (g,
h), and the corresponding color-coded corrected p-value maps of group effect for the left
hippocampus (m, n) and the right hippocampus (o, p).

4.2. Hippocampus m-rep thickness. First, we considered the baseline anal-
ysis. We used the moment model based on the estimating equations xi1(yi1−
xT
i1β), where yi1 is the m-rep thickness measured at baseline for the ith sub-
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Fig. 4. An m-rep model of a hippocampus: (a) an m-rep model of the hippocampus;
(b) the boundary surface of the m-rep model of hippocampus; (d) m-rep radius (or thick-
ness) measures at the five atoms from two m-rep objects; (c) shows the − log10(p)-values
for the Shapiro–Wilk test for the residuals at each atom on the left hippocampus; (e) shows
the − log10(p)-values for the Shapiro–Wilk test for the residuals at each atom on the right
hippocampus. The red horizontal line is the 0.05 cutoff line.

ject at each medial atom of the left and right hippocampi; xi1 is an 8×1 vec-
tor given by xi1 = (1,genderi,agei,SC1i,SC2i, race1i, race2i,WBVi1)

T and
β = (β0, β1, . . . , β7)

T . Existing statistical methods of image data in SPM re-
quire that the error distribution is Gaussian and the variance is constant.
The Shapiro–Wilk normality test was applied to check this parametric as-
sumption of the general linear model at each atom for the left hippocampus
and right hippocampus using the residuals. Figure 4(c) and (e) show that
the Shapiro–Wilk test rejects the normality assumption at many atoms of
both the left and right hippocampus structures, therefore, our nonparamet-
ric AETEL method is preferred for the analysis of this data set.

Here our goal is to detect differences in thickness of the hippocampus
across the three groups. Hence, we set the null hypotheses H0 :β3 = β4 = 0
at all 24 atoms for both the left and right hippocampi. Accordingly, we have

R=

(

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

)
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Fig. 5. An m-rep model of a hippocampus: Maps of − log10(p)-values for testing WBV
as a type I time-dependent covariate (black) and a type II time-dependent covariate (red):
(a) uncorrected − log10(p)-values for left hippocampus; (b) uncorrected − log10(p)-values
for right hippocampus; (c) corrected − log10(p)-values for left hippocampus; (d) cor-
rected − log10(p)-values for right hippocampus; (e) the goodness-of-fit test for the equation
E{∂βµi2(β)[yi3 − µi3(β)]} = 0 for the 3rd atom on the left hippocampus; (f) the good-
ness-of-fit test for the equation E{∂βµi2(β)[yi3 − µi3(β)]} = 0 for the 14th atom on the
right hippocampus.

and b0 = (0,0)T . We used LRAetel to carry out the test. The color-coded

p-values of the LRAetel across the atoms of both the left and right refer-
ence hippocampi are shown in Figure 5(a) and (b). The false discovery rate
approach was used to correct for multiple comparisons, and the resulting

adjusted p-values were shown in Figure 5(c) and (d). Before correcting for
multiple comparisons, there was a significant group difference in m-rep thick-
ness at the upper central atoms in the left hippocampus and some area in

the right hippocampus. However, there is no significant group effect at any
atom after correcting for multiple comparisons.

Second, we did a longitudinal data analysis. The advantage of a longi-

tudinal study over a baseline study is that it allows us to determine (i)
whether the change patterns of the response are similar or not across the

three groups; (ii) whether, on average over time, there is a difference in
the response across the three groups. We considered the moment model
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with xij = (1,genderi,agei,SC1i,SC2i, race1i, race2i,WBV ij, timeij , SC1i ∗
timeij ,SC2i ∗ timeij)

T .
Since the WBV is a time-dependent covariate, we need to verify its appro-

priate type. Moreover, from a neuroscience point of view, the m-rep thickness
at each atom serves as a local volumetric measure and covaries with WBV.
We started with type III and used GEE in (2.2) with Vi = Ii. Then we used
the type II equations specified in (2.5) and tested whether WBV is type
II against type III. The LRGF did not reject for almost all 24 atoms, sug-
gesting WBV is a type II covariate for most atoms. Furthermore, we used
the type I equations specified in (2.3) and tested whether WBV is type I
against type II. The LRGF rejected that WBV was of type I for most atoms
(Figure 5). This indicates the invalidity of some type I equations. We used
goodness-of-fit statistics in Zhu et al. (2008b) to test whether some of the
extra equations added for type I, such as

E{∂βl
µis(β)[yij − µij(β)]}= 0 for all s < j, j = 1, . . . ,mi,

were not valid. For instance, for the 3rd atom on the left hippocampus, the p-
value of the goodness-of-fit test for the newly added equation
E{∂βl

µi2(β)[yi3 − µi3(β)]} = 0 is smaller than 0.001 [Figure 5(e)]; for the
14th atom on the right hippocampus, the p-value of the goodness-of-fit test
for the newly added equation E{∂βl

µi2(β)[yi3 −µi3(β)]}= 0 is smaller than
0.001 [Figure 5(f)]. Therefore, we treated WBV as a type II time-dependent
covariate and used the corresponding estimating equations for the longitu-
dinal data analysis.

To determine whether the changing patterns of the thickness of the hip-
pocampus over time are similar or not across the three groups, we tested
the null hypotheses H0 :β9 = β10 = 0 (β9 and β10 are the coefficients of the
interaction terms of group and time) at all 24 atoms for each of the left hip-
pocampus and the right hippocampus, and it turned out that the interaction
terms were not significant for most atoms. Next we deleted the interaction
terms and tried to look at whether there are differences in the responses
across the three groups on average over time with respect to the null hy-
potheses H0 :β3 = β4 = 0 at all 24 atoms for each of the left hippocampus
and the right hippocampus. Again we only found that there was a signifi-
cant difference through time in m-rep thickness at the upper central atoms
in the left hippocampus across schizophrenia patients and healthy controls
groups after correcting for multiple comparisons, but the differences were
not significant at other atoms, nor at any atoms on the right hippocam-
pus. The color-coded p-values of the LRAetel across the atoms of both the
left and right reference hippocampi are shown in Figure 5(e) and (f), and
the corrected p-values are shown in Figure 6(g) and (h). Before correcting
for multiple comparisons, there was a significant group difference in m-rep
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Fig. 6. Results from the longitudinal schizophrenia study. The top row is for the baseline
analysis: the color-coded uncorrected p-value maps of group effect for (a) the left hippocam-
pus and (b) the right hippocampus; the color-coded corrected p-value maps of group effect
for (c) the left hippocampus and (d) the right hippocampus after correcting for multiple
comparisons. The bottom row is for the longitudinal analysis: the color-coded uncorrected
p-value maps of group effect for (e) the left hippocampus and (f) the right hippocampus;
the color-coded corrected p-value maps of group effect for (g) the left hippocampus and (h)
the right hippocampus after correcting for multiple comparisons.

thickness at the upper central atoms in the left hippocampus, and the sig-
nificance level is larger than that of the baseline analysis. Since the positive
correlation is commonly observed in imaging data, we applied the false dis-
covery rate (FDR) procedure in Benjamini and Yekutieli (2001) to correct
for multiple comparisons. There is still a significant group effect at the upper
central atoms in the left hippocampus.

We compared the results by making the assumption that WBV was a type
II time-dependent and also a type III time-dependent covariate. Treating
WBV as a type II time-dependent covariate lowered the p-values, making
some nonsignificant p-values for the group effect significant. On the other
hand, we found that all the standard deviations associated with the param-
eter estimates treating WBV as a type II time-dependent covariate were
uniformly less than those treating WBV as a type III, which confirms that
treating WBV as a type II gains efficiency by making use of more cor-
rect estimating equations. Table 4 compares the standard deviations of the
parameter estimates between treating WBV as a type II time-dependent
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Table 4

Standard deviation comparison of the parameter estimates between treating WBV as
a type II time-dependent covariate and a type III time-dependent covariate at atom 11 of

the left hippocampus

Intercept Gender Age SC1 SC2 Race1 Race2 WBV Time

Type III 0.367 0.078 0.007 0.062 0.058 0.097 0.102 0.237 0.022
Type II 0.344 0.075 0.005 0.058 0.054 0.094 0.100 0.221 0.018

covariate and a type III time-dependent covariate at atom 11 of the left
hippocampus.

The longitudinal analysis increased the significance level at those signifi-
cant atoms for the group effect, compared to the baseline analysis. We were
also able to observe the change difference across groups through time, al-
though it is not much. Both the baseline analysis and longitudinal analysis
suggest that there is an asymmetric aspect in that the left hippocampus
shows larger regions of significance than the right one, and the significant
positions of the group differences are around the lateral dentate gyrus and
medial CA4 body regions for the left hippocampus.

5. Discussion. We have developed TETEL for spatial analysis of neu-
roimaging data from longitudinal studies. We have shown that AETEL al-
lows us to efficiently analyze longitudinal data with different time-dependent
covariate types. We have specifically combined all the data in the closest
neighborhood of each voxel (or pixel) on a 3D volume (or 2D surface) with
appropriate weights to calculate adaptive parameter estimates and adaptive
test statistics. We have used simulation studies to examine the finite sam-
ple performance of AETEL and TETEL. In our longitudinal schizophrenia
study, we have used the boundary and medial shape of the hippocampus
to detect differences in morphological changes of the hippocampus across
time between schizophrenic patients and healthy subjects. For the m-rep
thickness, we have found that WBV is an important time-dependent co-
variate. Potential applications of our methodology include understanding
normal and abnormal brain development, and identifying the neural bases
of the pathophysiology and etiology of neurodegenerative and neuropsychi-
atric disorders.

Many issues still merit further research. One major issue is to develop
a test procedure based perhaps on random field theory or resampling meth-
ods to correct for multiple comparisons in order to control the family-wise
error rate under the moment model (2.1). Another major issue is to extend
the test procedure to conduct cluster size inference and examine its perfor-
mance in controlling the Type I error rate. The test procedure may lead to
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a simple cluster size test (cluster size test assesses significance for all sizes
of the connected regions greater than a given primary threshold). Models
with nonparametric components using TETEL also may prove to be useful
directions to consider.

SUPPLEMENTARY MATERIAL

Proofs of Theorems 2.1 and 2.2 (DOI: 10.1214/11-AOAS480SUPP; .pdf).
We present assumptions and proofs of Theorems 2.1 and 2.2.
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