
 2004 Royal Statistical Society 1369–7412/04/66003

J. R. Statist. Soc. B (2004)
66, Part 1, pp. 3–16

Hypothesis testing in mixture regression models

Hong-Tu Zhu and Heping Zhang

Yale University, New Haven, USA

[Received July 2002. Final revision June 2003]

Summary. We establish asymptotic theory for both the maximum likelihood and the maximum
modified likelihood estimators in mixture regression models. Moreover, under specific and rea-
sonable conditions, we show that the optimal convergence rate of n�1=4 for estimating the
mixing distribution is achievable for both the maximum likelihood and the maximum modified
likelihood estimators. We also derive the asymptotic distributions of two log-likelihood ratio test
statistics for testing homogeneity and we propose a resampling procedure for approximating
the p-value. Simulation studies are conducted to investigate the empirical performance of the
two test statistics. Finally, two real data sets are analysed to illustrate the application of our
theoretical results.
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1. Introduction

Finitemixturemodels arise inmany applications, particularly in biology, psychology and genet-
ics. Statistical inference and computation based on these models pose a serious challenge; see
Titterington et al. (1985), Lindsay (1995) andMcLachlan and Peel (2000) for systematic reviews.
The purpose of this work is to establish asymptotic theory for mixture regression models origi-
nating from those applications.
Suppose that we observe data from n units and within each unit, say unit i, we have ni mea-

surements, i = 1, . . . ,n:This is a typical data structure in longitudinal and family studies. Before
introducing the additional notation, let us examine a few examples.

1.1. Example 1: a finite mixture logistic regression model
To study the genetic inheritance pattern of a binary trait such as alcoholism, Zhang and Mer-
ikangas (2000) proposed a frailty model in which the data consist of a binary vector response
yi = .Yi1, . . . ,Yi, ni/

T and covariatesXi from the ith family, i = 1, . . . ,n. To model the potential
familial correlation, they introduced aBernoulli latent variableUi for each family. Conditionally
on all latent variables {Ui}, the Yijs are assumed to be independent and to follow the logistic
regression model

logit{P.Yij = 1|Ui/} = xijβ + zij{Uiµ1 + .1 − Ui/µ2}, .1/

where xij is a covariate vector inXi from the jth member in the ith family, zij is a part of xij that
interacts with the latent variable and the β and the µs are parameters. The interaction terms
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in model (1) are very important in genetic studies for assessing potential gene–environment
interactions.
Beyond this example, finitemixtures of Bernoulli distributions such asmodel (1) have received

much attention in the last five decades. See Teicher (1963) for an early example. More recently,
Wang and Puterman (1998) among others generalized binomial finite mixtures to mixture
logistic regression models, and Zhang et al. (2003) applied mixture cumulative logistic models
to analyse correlated ordinal responses.

1.2. Example 2: mixture of non-linear hierarchical models
Longitudinal and genetic studies commonly involve a continuous response {Yij}, also referred
to as a quantitative trait. See, for example, Diggle et al. (2002), Haseman and Elston (1972) and
Risch and Zhang (1995). Pauler and Laird (2000) used general finite mixture non-linear hier-
archical models to analyse longitudinal data from heterogeneous subpopulations. Specifically,
when there are only two subgroups, the model is of the form

Yij = g{xij,β,Uizijµ1 + .1 − Ui/zijµ2} + "i,j,

where the "i,js are independent and identically distributed according to N.0,σ2/ and g.·/ is
a prespecified function. Here, the known covariates xij may contain observed time points to
reflect a time course in longitudinal data.

1.3. Example 3: a finite mixture of Poisson regression models
Poisson distribution and Poisson regression have been widely used to analyse count data
(McCullagh and Nelder, 1989), but observed count data often exhibit overdispersion relative
to this. Finite mixture Poisson regression models (Wang et al., 1996) provide a plausible ex-
planation for overdispersion. Specifically, conditionally on all Uis, the Yijs are independent
and follow the Poisson regression model

p.Yij = yij|xij,Ui/ = 1
yij!

λ
yij
ij exp.−λij/, .2/

where λij = exp{xijβ + Uizijµ1 + .1 − Ui/zijµ2}.
To summarize the models presented above, we consider a random sample of n independent

observations {yi,Xi}n1 with the density function

pi.yi,xi;ω/ = {.1 − α/ fi.yi,xi;β,µ1/ + α fi.yi,xi;β,µ2/} gi.xi/, .3/

where gi.xi/ is the distribution function of Xi. Further, ω = .α,β,µ1,µ2/ is the unknown par-
ameter vector, in which β (q1 × 1) measures the strength of association that is contributed by
the covariate terms and the two q2 × 1 vectors, µ1 and µ2, represent the different contributions
from two different groups.
Equivalently, if we consider P.Ui = 0/ = 1 − P.Ui = 1/ = α, and assume that the condi-

tional density of yi given Ui is pi.yi|Ui/ = fi{yi,xi;β,µ2.1−Ui/+ µ1Ui}, then model (3) is the
marginal density of yi. In fact, McCullagh and Nelder (1989) considered a special case in which
fi is from an exponential family distribution, i.e.

fi{yi,xi;β,µ2.1 − Ui/ + µ1Ui} =
ni∏
j=1

exp[φ{yijθij − a.θij/} + c.yij,φ/], .4/

where θij = h{xij,β,Uiµ1 + .1−Ui/µ2},h.·/ is a link function and φ is a dispersion parameter.
This family of mixture regression models is very useful in practice.
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Asymptotic theory is critical to the understanding of the behaviour of any model. Existing
asymptotic results require, however, that fi in equation (3) is identical among the observation
units. This requirement is too restrictive in longitudinal and family studies. Thus, our aim is to
eliminate this restriction by allowing fi to vary between study subjects or families as a result of
study designs or missing data.
Let PÅ denote the true model from which the data are generated. The well-known identifi-

ability problem in mixture models implies that there may be a set of parameters that yield PÅ:

We use ΩÅ = {ωÅ ∈ Ω :PωÅ =PÅ} to represent this set of true model parameters. Here, Ω is the
entire parameter space. The use of an asterisk in the subscript reminds us that the parameter
belongs to the true parameter set. In the light of the symmetry for α, without loss of generality,
we consider only α ∈ [0, 0:5]. The parameter space Ω is defined as Ω = {ω :α ∈ [0, 0:5],β ∈ B,
||µ1|| �M, ||µ2|| �M}, whereM is a large positive scalar such that ||µÅ||<M, βÅ is an interior
point of B and B is a subset of Rq1 .
One of the key hypotheses involvingmixturemodels is that themixture is warranted. In family

studies, it delineates whether the data are familial or not. Formally, this hypothesis can be stated
as follows:

H0 : αÅ.1 − αÅ/||µ1Å − µ2Å|| = 0, versus H1 : αÅ.1 − αÅ/||µ1Å − µ2Å|| �= 0, .5/

where ||·|| is the Euclidean norm of a vector. Whether the null hypothesis or its alternative is
true has a critical bearing on asymptotic theory and statistical inference. When the alternative
hypothesis is true, the existing asymptotic theory established by Andrews (1999) is applicable.
Challenges arise under the null hypothesis, e.g. the derivation of the significance level (p-value).
As discussed by Lemdani and Pons (1999) and Lindsay (1995), there are at least three main

difficulties. First, ΩÅ is on the boundary of Ω. The lack of identifiability between α and the
µs is the second difficulty. Finally, the Fisher information matrix for ω is singular. Recently,
major progress has been made for finite mixture models by Bickel and Chernoff (1993), Chen
et al. (2001), Cheng and Liu (2001), Dacunha-Castelle and Gassiat (1999), Lemdani and Pons
(1999), Lindsay (1995) and references therein. It is noteworthy that covariates are absent from
their work, and the µs are scalar; moreover, previous results cannot accommodate non-
independent or non-identically distributed data. As our examples demonstrate, however, there
is a need from practical applications to consider the general model (3). For this, we establish
general asymptotic theory in the presence of covariates, nuisance parameters and high dimen-
sional µ-parameters.
The paper is organized as follows. In Section 2, we introduce two likelihood-ratio-based test

statistics and present related asymptotic theory. On the basis of these results, we propose a
resampling procedure for approximating the p-value. In Section 3, we perform some simulation
studies to demonstrate the power of the two test statistics. Two real data sets are also analysed.
It should be noted that our assumptions in this paper are not optimal. Some extensions are still
possible and warrant future research.

2. Test statistics

The log-likelihood function Ln.ω/ for data {yi,xi}n1 under model (3) is given by

Ln.ω/ =
n∑

i=1
log{.1 − α/ fi.β,µ1/=fiÅ + α fi.β,µ2/=fiÅ},

wherefiÅ = fi.yi,xi;βÅ,µÅ/ andfi.β,µ/= fi.yi,xi;β,µ/. To test hypothesis (5),we usually start
from the log-likelihood-ratio statistic:
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LRn = sup
ω∈Ω

{Ln.ω/} − sup
ω∈Ω0

{Ln.ω/},

where Ω0 = {ω ∈ Ω :α = 0:5,µ1 = µ2}: A challenging issue is to derive the asymptotic distribu-
tion of LRn. To do so, we need to define some notation.
For a generic symmetric q2 × q2 matrix B, Vecs.B/ and dvecs.B/ are defined as Vecs.B/=

.b11, b21,b22, . . . ,bq21, . . . ,bq2q2/
T and

dvecs.B/ = .b11, 2b21, b22, 2b31, 2b32, b33, . . . , 2bq21, . . . , 2bq2, q2−1,bq2q2/
T

respectively. Furthermore, we defineFi,1.β,µ/ = @β fi.β,µ/=fiÅ, Fi,2.µ/ = @µfi.βÅ,µ/=fiÅ and
Fi,6.µ/ = @2µµfi.βÅ,µ/=fiÅ. Let

wi.µ/ = .Fi,1.βÅ,µÅ/
T,Fi,2.µÅ/

T, dvecs.Fi,6.µ//
T/T,

Wn.µ/ = 1√
n

n∑
i=1

wi.µ/,

Jn.µ/ = 1
n

n∑
i=1

wi.µ/wi.µ/
T,

whereWn.µ/ is an r × 1 vector and Jn.µ/ is an r × r matrix. Finally, let k1.ω/ = .1− α/∆µ1 +
α ∆µ2, k2.ω/ = Vecs{.1 − α/∆µ⊗2

1 + α ∆µ⊗2
2 } and K.ω/ = .∆β, k1.ω/, k2.ω//, in which

a⊗2 = aaT, ∆µ1 = µ1 − µÅ and ∆µ2 = µ2 − µÅ.
UnderΩ0, Ln.ω/ simplifies toΣn

i=1 log{fi.β,µ/=fiÅ}. Standard asymptotic theory yields that

sup
ω∈Ω0

{2Ln.ω/} = Wn.µÅ/
TH{HT Jn.µÅ/H}−1HT Wn.µÅ/ + op.1/,

where H = .Iq1+q2 ,0
T/T is a {q1 + q2 + q2.q2 − 1/=2} × .q1 + q2/ matrix. Furthermore, if we

consider the maximum likelihood estimator ω̂M = .α̂M , β̂M , µ̂1M , µ̂2M/ = arg maxω∈Ω{Ln.ω/}
in Ω, we need to address several fundamental issues such as the consistency and rate of conver-
gence of K.ω̂M/ and the asymptotic expansion of Ln.ω̂M/. After some tedious manipulations
(see Zhu and Zhang (2003) for details), we find that

2Ln.ω̂M/ = sup
||µ2||�M

.Wn.µ2/
T Jn.µ2/

−1 Wn.µ2/ − inf
ω∈Ωµ2

[Qn{√
n K.ω/,µ2}]/ + op.1/

holds under assumptions 1–3 that are given in Appendix A, where Ωµ2 = {ω ∈ Ω : µ2 is fixed}
and

Qn.λ,µ2/ = .λ − Jn.µ2/
−1 Wn.µ2//

T Jn.µ2/.λ − Jn.µ2/
−1 Wn.µ2//:

Define the convex cone Λµ2 as

Λµ2 =
{

η : η =
( ∆µ2 Iq2
Vecs.∆µ⊗2

2 / 0

)
xT,x = .x1, . . . ,xq2+1/ ∈ [0,∞/ × Rq2

}
:

Then, the log-likelihood-ratio statistic becomes

LRn = sup
||µ2||�M

{V̂ .µ2/
T Jn.µ2/ V̂ .µ2/}−Wn.µÅ/

TH{HT Jn.µÅ/H}−1HT Wn.µÅ/+op.1/, .6/

whereQn{V̂ .µ2/,µÅ} = infλ∈Rq1×Λµ2
{Qn.λ,µÅ/}:
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We obtain the following theorems, whose detailed proofs are given in Zhu and Zhang (2003).

Theorem 1. Under assumptions 1–3 in Appendix A, the following results hold.

(a) K.ω̂M/ = Op.n
−1=2/:

(b) The log-likelihood-ratio statistic converges to the maxima of a stochastic process that is
indexed by µ2 in distribution as n→ ∞.

(c) If q2 = 1,
∫
µ |ĜM.µ/−G.µ/| dµ=Op.n

−1=4/, whereG.µ/= I.µ � µÅ/ is the true mixing
distribution and ĜM.µ/=G.µ̂1M , µ̂2M , α̂M/= .1 − α̂M/ I.µ � µ̂1M/ + α̂M I.µ � µ̂2M/.

To our knowledge, theorem 1, part (a), provides the convergence rate of K.ω̂M/ for the first
time under model (3). Our result has several implications. First, we confirm that the conver-
gence rate of β̂ (the maximum likelihood estimator) is n−1=2 under the conditions defined. van
der Vaart (1996) proved a similar result under semiparametric mixture models. Second, under
hypothesisH0, we prove that only k1.ω̂M/ and k2.ω̂M/ can reach the rate n−1=2, which is useful for
determining the asymptotic distributions of the estimators. Third, theorem 1, part (c), implies
that ĜM.µ/ converges toG.µ/ inL1-norm at the optimal rate n−1=4 under amore general model
than that considered by Chen (1995). It is important to note that theorem 1 of Chen (1995) gives
the lower bound for the optimal rate of convergence for estimating G.µ/ by using ĜM.µ/ in
L1-norm is at most n−1=4.
As in Chen et al. (2001), we consider an alternative approach to testing hypothesis (5) by

using a modified log-likelihood function

MLn.ω/ = Ln.ω/ + log.M/ log{4α.1 − α/},
where M is as defined above. Compared with the log-likelihood function, the extra term
log.M/ log{4α.1 − α/} in MLn.ω/ can keep α away from both 0 and 1, which partially solves
the identifiability problem. Let ω̂P be the resulting estimator as ω̂P = arg maxω∈Ω{MLn.ω/}.
The modified log-likelihood-ratio statistic is defined as

MLRn = 2MLn.ω̂P/ − sup
ω∈Ω0

{2MLn.ω/}:

Similarly to the log-likelihood-ratio statistic, we find that

MLRn = Wn.µÅ/
T[Jn.µÅ/−1−H{HT Jn.µÅ/H}−1HT]Wn.µÅ/− inf

λ∈Rq1×Λ0
{Qn.λ,µÅ/}+op.1/,

.7/
where Λ0 is a closed cone defined by

Λ0 = {η : η = .xT,Vecs.y⊗2//T, both x and y ∈ Rq2}:
We have the following asymptotic result for both ω̂P and MLRn.

Theorem 2.Under the assumptions of theorem 1, we have the following results.

(a) α̂P = Op.1/,∆β̂P = Op.n
−1=2/,∆µ̂1P = Op.n

−1=4/ and ∆µ̂2P = Op.n
−1=4/.

(b) The modified log-likelihood-ratio statistic converges to a random variableU2 in distribu-
tion as n → ∞.

(c) If q2 = 1,
∫
µ |ĜP.µ/ − G.µ/| dµ = Op.n

−1=4/, where ĜP.µ/ = .1 − α̂P/ I.µ � µ̂1P/ +
α̂P I.µ � µ̂2P/.

Theorem 2, part (a), gives the exact convergence rate of ω̂P . Theorem 2, part (b), determines
the asymptotic distribution of MLRn. Whereas the explicit form of this distribution is gener-
ally complicated, our result gives rise to a simple asymptotic distribution, 0:5χ2

1 + 0:5χ2
0, for
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MLRn when q2 = 1. This coincides with theorem 1 of Chen et al. (2001) when there are no
covariates, i.e. q1 = 0. Theorem 2, part (c), shows that the n−1=4 consistent rate for estimating
the mixing distribution G.µ/ is reachable by using ω̂P .
Until now, we have systematically investigated the order of convergence rate for both K.ω̂P/

and K.ω̂M/, and the asymptotic distributions of both LRn and MLRn. The next two issues are
also very important. The first is how to compute the critical values for these potentially com-
plicated distributions of test statistics. The second is to compare the power of LRn and MLRn.
In what follows, we study the empirical and asymptotic behaviour of these two statistics under
departures from hypothesis H0.

2.1. A resampling method
Although we have obtained the asymptotic distributions of the likelihood-based statistics, the
limiting distributions usually have complicated analytic forms. To alleviate this difficulty, we
use a resampling technique to calculate the critical values of the testing statistics. Although the
bootstrapping method is an obvious approach, it requires repeated maximizations of the likeli-
hood and modified likelihood functions. The maximizations are computationally intensive for
the finitemixturemodels. Thus, we prefer a computationallymore efficientmethod, as proposed
and used by Hansen (1996), Kosorok (2003) and others.
On the basis of equations (6) and (7), we only need to focus onWn.µ2/ and Jn.µ2/. If hypoth-

esisH0 is true, .β̂0, µ̂0/ = arg maxω∈Ω0{Ln.ω/} provides consistent estimators of βÅ and µÅ. By
substituting .βÅ,µÅ/ with .β̂0, µ̂0/ in the definitions of Wn.µ2/ and Jn.µ2/, we obtain ŵi.µ2/,
Ŵn.µ2/ and Ĵn.µ2/ accordingly, i.e.

ŵi.µ2/ = .Fi,1.β̂
0, µ̂0/T,Fi,2.β̂

0, µ̂0/, dvecs.Fi,6.β̂
0,µ2//

T/T,

Ŵn.µ2/ = 1√
n

n∑
i=1

ŵi.µ2/,

Ĵn.µ2/ = 1
n

n∑
i=1

ŵi.µ2/ ŵi.µ2/
T:

To assess the significance level and the power of the two test statistics, we need to obtain
empirical distributions for these statistics in lieu of their theoretical distributions. What follow
are the four key steps in generating the stochastic processes that have the same asymptotic
distributions as the test statistics.

Step 1: we generate independent and identically distributed random samples, {vi,m : i =
1, . . . ,n}, from the standard normal distribution N.0, 1/: Here, m represents a replication
number.
Step 2: we calculate

Ŵm
n .µ2/ =

n∑
i=1

ŵi.µ2/vi,m=
√
n

and

Qm
n .λ,µ2/ = .λ − Ĵ

−1
n .µ2/ W

m
n .µ2//

T Ĵn.µ2/.λ − Ĵ
−1
n .µ2/ W

m
n .µ2//:

It is important to note that Ŵm
n .µ2/ converges weakly toW.µ2/ as n → ∞. This claim can be

proved by using the conditional central limit theorem; see theorem (10.2) of Pollard (1990)
and theorem 2 of Hansen (1996).
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Step 3: the third step is to calculate the likelihood ratio

LRm
n = sup

||µ2||�M

{V̂ m.µ2/
T Ĵn.µ2/ V̂

m.µ2/} − Ŵm
n .µ̂

0/TH{HT Ĵn.µ̂
0/H}−1HT Ŵm

n .µ̂
0/,

and

MLRm
n = Ŵm

n .µ̂
0/T[Jn.µ0/−1 − H{HT Jn.µ

0/H}−1HT] Ŵm
n .µ̂

0/ − inf
λ∈Rq1×Λ0

{Qm
n .λ, µ̂

0/},

whereQm
n {V̂ m.µ2/,µ2} = infλ∈Rq1×Λµ2

{Qm
n .λ,µ2/}.

Step 4: we repeat the above three steps J times and obtain two realizations—{LRm
n :m=

1, . . . ,J} and {MLRm
n :m= 1, . . . ,J}. It can be shown that the empirical distribution of LRm

n

converges to the asymptotic distribution of LRn, and likewise for MLRm
n . Therefore, the

empirical distributions of these two realizations form the basis for calculation of the critical
values in hypothesis testing as well as the power analysis.

We approximate p1 = Pr.U1 > LRn/ and p2 = Pr.U2 > MLRn/ by using

p1 ≈ p̂J1 =
J∑

m=1
I.LRm

n > LRn/=J ,

p2 ≈ p̂J2 =
J∑

m=1
I.MLRm

n > MLRn/=J:

Since J is under our control, p̂J1 can bemade arbitrarily close top1 by using a sufficiently large J .
To guide the selection of J in practice, it is useful to note that .p̂J1 −p1/

√
J converges to a normal

distribution with mean 0 and variance p1.1−p1/ in distribution as J → ∞ and that p̂J1 almost
lies in .p1 − 2:5

√{p1.1 − p1/=J},p1 + 2:5
√{p1.1 − p1/=J}/; see also Hansen (1996). Thus, if

we want to set an error control δ0 for |p̂J1 − p1|, we can show that 2:5
√{p1.1 − p1/=J} � δ0.

For example, when p1 = 0:01, choosing J = 10000 yields an error of about 0.0025. Exactly the
same formula applies to p2 as to p1.

2.2. Asymptotic local power
An assessment of power is necessary for choosing a reasonable sample size as well as appropriate
and powerful tests of significance (Cox and Hinkley (1974), page 103). Often, there is no closed
form for the power calculation.Many researchers have considered alternatives by exploiting the
asymptotic local power. In our case, the distribution of J−1

n .µ2/ Wn.µ2/ plays a critical role in
determining the asymptotic local power of LRn andMLRn; see equations (6) and (7). Thus, we
explore its properties under a sequence of local alternatives.
Consider a sequence of local alternatives ωn consisting of αn = α0,βn = βÅ + n−1=2h1,µn

1 =
µÅ − n−1=4{α0=.1− α0/}0:5h2 and µn

2 = µÅ + n−1=4{.1− α0/=α0}0:5h2, where α0 is a constant
between 0 and 1, and h1 and h2 are q1×1 and q2×1 vectors respectively. Atωn,K.ωn/ = n−1=2h,
where hT = .hT1 ,0

T,Vecs.h⊗2
2 /T/. We have the following theorem.

Theorem 3.Under assumptions 1–3 in Appendix A and the alternatives ωn,

Jn.µ2/
−1 Wn.µ2/

d→N{J.µ2/
−1 J.µ2,µÅ/h,J.µ2/

−1}:
Theorem 3 can be used to compare the local power of our testing statistics. In particu-

lar, Jn.µÅ/−1 Wn.µÅ/ converges to N{h,J.µÅ/−1} in distribution. For instance, the asymptotic
power function that is associated with the modified log-likelihood-ratio statistic is
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pα.h/ = lim
n→∞[P{F0.MLRn/ � 1 − α|h}],

whereF0.·/ is theasymptoticdistributionofMLRn underhypothesisH0 asn→ ∞.As ||h|| → ∞,
the pα.h/ converges to 1, since MLRn becomes large as ||h|| increases.

3. Simulation study and real examples

Two computational issues are related to our test procedures. First, we must calculate three dif-
ferent estimators: .β̂0, µ̂0/, ω̂M and ω̂P . It is relatively straightforward to compute .β̂0, µ̂0/ and
ω̂P by using Newton–Raphson and/or EM algorithms. Since finding a global maximizer is still
an open problem, we employ the EM algorithm using 200 different starting-points. During the
computation, we useM = 10 to obtain ω̂P .
Secondly, to approximate the critical values of the asymptotic distributions, we need to obtain

two realizations: {MLRm
n : m = 1, . . . ,J} and {LRm

n : m = 1, . . . ,J}: Obtaining the latter is
actually a computationally intensive burden even if q2 is as small as 2. Hence, it is sensible to
consider replacing B.0,M/ = {µ; ||µ|| � M} with a discrete approximation B.0,M/A. Then,
LRm

n is approximated by

max
µ2∈B.0,M/A

{V̂ m.µ2/
T Ĵn.µ2/ V̂

m.µ2/} − ŴmT
n .µ̂0/H{HT Ĵn.µ̂

0/H}−1HT Ŵm
n .µ̂

0/:

Owing to the computational complexity, we only consider LRn when q2 = 1 and M = 10, i.e.
B.0, 10/ = [−10, 10]. We take B.0, 10/A = {−10,−10 + 0:02, . . . , 10 − 0:02, 10}.

3.1. Simulated data
In this subsection, we conduct some simulation studies to assess the performance of the two
tests that were introduced in Section 2. Data are drawn from themixture linear regressionmodel

yij = zij{Uiµ̃1 + .1 − Ui/µ̃2} + "ij,

where µ̃1 = β + µ1, µ̃2 = β + µ2 and "ij ∼N.0, 1/. From now on, we use .µ̃1, µ̃2/ instead of
.β,µ1,µ2/ to avoid the identifiability problem.
We consider two cases: q2 = 1 and q2 = 2. For q2 = 1, all the zijs are equal to 1. For q2 = 2,

zij = .1,uij/, where uij comes from the uniform [0, 2] generator. Therefore, we have parameters
µ̃1, µ̃2, α and σ. The true value of σ is 1 and the number of observations in each cluster is set
equal to 3. It should be noted that σ is the true nuisance parameter in the general model (3),
implying that q1 = 1.

For q2 = 1, four different settings of .α, µ̃1, µ̃2/, denoted A1, B1, C1 and D1, are considered.
Similarly, for q2 = 2, four other different settings of .α, µ̃1, µ̃2/, denoted A2, B2, C2 and D2,
are considered. See Table 1 for all eight designs. We choose sample sizes n = 50 and n = 100.

Table 1. Eight designs for the simulation study

Unknown parameter Results for the following designs:

A1 B1 C1 D1 A2 B2 C2 D2

α 0.5 0.5 0.5 0.2 0.5 0.5 0.5 0.2
µ1 1 1 1 1 12 12 12 12
µ2 1 1.4 2 2 12 1:4 × 12 1:707 × 12 1:707 × 12
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For each simulation, the three significance levels 10%, 5% and 1% are considered, and 50000
replications are used to estimate nominal significance levels (or rejection rates). To calculate
standard errors for the rejection rate of each case, we use 50000 replications to form 50 consec-
utive 1000 replications, which give 50 estimates of the rejection rate and the standard error of
these 50 estimates.
Table 2 presents the estimates and standard errors of the rejection rates for the log-likelihood-

ratio testing statistic. As expected, the power increases as does the distance between µ̃1 and µ̃2.
Moreover, the simulated critical values are again precise and the null rejection level is close to
the true rejection level.
Tables 3 and 4 report the estimates and standard errors of the rejection rates for the mod-

ified log-likelihood-ratio statistic. The proposed testing procedure based on MLRn performs
remarkably well. First, the power increases fast as the distance between µ̃1 and µ̃2 becomes
large. Second, the simulated critical values are quite accurate. In particular, the null rejection
level is quite close to the true rejection level. Third, as expected, a larger sample size produces
better results.

Table 2. Estimates and standard errors of rejection rates for the log-likelihood-ratio statistic of a one-
component mixture against a two-component mixture

True rate Results (q2 = 1) for the following designs and values of n:

A1 B1 C1 D1

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

0.010 Estimate 0.0151 0.0146 0.0399 0.0528 0.4943 0.8177 0.2886 0.5422
Standard error 0.0046 0.0044 0.0070 0.0065 0.0153 0.0139 0.0148 0.0182

0.050 Estimate 0.0596 0.0576 0.1253 0.1592 0.7218 0.9352 0.5077 0.7535
Standard error 0.0079 0.0075 0.0102 0.0105 0.0112 0.0071 0.0168 0.0145

0.100 Estimate 0.1072 0.1069 0.2031 0.2540 0.8192 0.9669 0.6281 0.8404
Standard error 0.0094 0.0094 0.0141 0.0132 0.0114 0.0054 0.0139 0.0128

Table 3. Estimates and standard errors of rejection rates for the modified log-likelihood-ratio statistic of a
one-component mixture against a two-component mixture

True rate Results (q2 = 1) for the following designs and values of n:

A1 B1 C1 D1

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

0.0100 Estimate 0.0151 0.0121 0.0404 0.0572 0.5601 0.8732 0.2886 0.5439
Standard error 0.0041 0.0038 0.0068 0.0082 0.0139 0.0086 0.0122 0.0165

0.0500 Estimate 0.0539 0.0520 0.1264 0.1659 0.7779 0.9607 0.5053 0.7525
Standard error 0.0079 0.0063 0.0101 0.0141 0.0131 0.0060 0.0132 0.0145

0.1000 Estimate 0.0981 0.0980 0.2075 0.2628 0.8641 0.9821 0.6270 0.8385
Standard error 0.0102 0.0094 0.0096 0.0163 0.0099 0.0040 0.0150 0.0115
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Table 4. Estimates and standard errors of rejection rates for the modified log-likelihood-ratio statistic of a
one-component mixture against a two-component mixture

True rate Results (q2 = 2) for the following designs and values of n:

A2 B2 C2 D2

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

0.0100 Estimate 0.0166 0.0148 0.2330 0.4843 0.9613 0.9998 0.7165 0.9611
Standard error 0.0046 0.0029 0.0121 0.0165 0.0056 0.0005 0.0159 0.0070

0.0500 Estimate 0.0636 0.0585 0.4459 0.7081 0.9905 0.9999 0.8502 0.9866
Standard error 0.0078 0.0073 0.0141 0.0138 0.0031 0.0002 0.0113 0.0037

0.1000 Estimate 0.1143 0.1078 0.5686 0.8061 0.9960 1.0000 0.9001 0.9923
Standard error 0.0103 0.0102 0.0143 0.0108 0.0019 0.0001 0.0087 0.0024

By inspecting Tables 2–4, we find that the log-likelihood-ratio statistic does not have any
advantage over the modified log-likelihood-ratio statistic. In fact, the opposite seems to be so.
Although we do not have a full explanation yet, the computational complexity could be one of
the reasons. Thus, on the basis of our simulation studies, we prefer to use the modified log-
likelihood-ratio statistic to test hypothesis (5) because of its easier computation and better
power.

3.2. Ames salmonella assay data
We reanalyse an assay data set that has been studied by Wang et al. (1996) among others. The
date set contains the number of revertant colonies of salmonella under different dose levels
of quinoline. At each of six dose levels of quinoline di, three plates are tested. To fit the data
set, Wang et al. (1996) chose the two-component Poisson regression (2) with n= 18, ni = 1 and
Poisson rates

λi = exp[xTi β + {µ1Ui + µ2.1 − Ui/}],
where xi = .di, log.di + 10//, i = 1, . . . , 18. They used the Akaike information criterion and
Bayes information criterion to facilitate the model selection process, but they did not have a
testing procedure to test hypothesis (5).
We use the modified log-likelihood-ratio statistic to test the hypothesis as stated in expres-

sion (5). First, we use the EM algorithm to obtain .α̂P , β̂P , µ̂1P , µ̂2P/
T = .0:723,−0:0013, 0:378,

1:844, 2:382/T. Next, using ω̂P and the results in Table 6 of Wang et al. (1996), we find that
MLRn = 12:447. Then, the approximation procedure is repeated J = 10000 times, leading to
p̂J = 0:0001. Since q2 = 1 in this case, the true asymptotic distribution ofMLRn is 0:5χ2

0+0:5χ2
1,

giving a p-value of 0.0002. Therefore, the data support the mixture Poisson regression with two
components.
We can also use the log-likelihood-ratio statistic to test the same hypothesis. It follows from

Table 6 of Wang et al. (1996) that the log-likelihood-ratio statistic LRn = 14:44. Although it is
difficult to compute the true p-value, the approximation procedure gives p̂10000 = 0:0004. Fur-
ther analyses such as residual analysis and the goodness of fit have been reported in Wang et al.
(1996).
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3.3. A risk factor analysis of preterm delivery
Although the survival rate has improved for preterm infants that are born with low (less than
2500 g) or even very low birth weights (less than 1000 g), preterm birth remains a major cause of
neurodevelopmental disability. Many epidemiological studies have been conducted to examine
risk factors for preterm deliveries. Here, we reanalyse a data set that has been collected and
extensively analysed by Dr Michael Bracken and his colleagues (see, for example, Zhang and
Bracken (1995)). The data for this study consisted of 3858 women whose pregnancies ended in a
singleton live-birth at Yale–New Haven Hospital, Connecticut, in 1980–1982. Preterm delivery
is defined as less than 37 weeks of gestational age, which is calculated from the first day of the
last menstrual period. On the basis of Zhang and Bracken (1995), we examine the following
eight putative risk factors: total number of pregnancies (v1), ethnic background (v2), use of
marijuana (v3), marital status (v4), hormones or diethylstilbestrol used by the mother (v5), par-
ity (v6), years of education (v7) and total alcohol use per day (v8). Among these risk factors,
v2, v3, v4 and v5 are dummy variables with values 0 or 1. For instance, v2 is an indicator for
whether a woman is black or not. Zhang and Bracken (1995) originally considered 15 variables,
but seven of them do not contribute to the risk of preterm births and hence are not considered
here.
To understand the potential relationship between the preterm delivery and above risk factors,

we fit the logistic regression model to the data set and report the output in Table 5. According
to the estimators and their corresponding standard errors in Table 5, the most significant risk
factors are the number of previous pregnancies, ethnicity and the years of education, as expected
from earlier studies (Zhang and Bracken, 1995). However, the remaining risk factors do not
appear to be significant at the 0.05 level.
Next, we use the logistic mixture regression

logit{P.Yi = 1|Ui/} = xiβ + zi{Uiµ1 + .1 − Ui/µ2},
where xi = .1, v1i, v2i, v3i/ and zi = .v4i, v5i, v6i, v7i, v8i/ for i = 1, . . . , 3858. The result becomes
intriguing when the two-component logistic regression model is used to analyse this data set;
see Table 5 for details. First, all eight putative risk factors under the logistic mixture model
become significant. Second, when we use the modified log-likelihood-ratio statistic to test the
hypothesis as stated in expression (5), MLRn = 20:810, giving rise to p̂J = 0:0002 with 10000
(i.e. J) repeated samples. This means that our procedure strongly favours the two-component
logistic model, and there is a significant disparity between the null hypothesis H0 in expression

Table 5. Modified log-likelihood estimators for the preterm data set†

α Intercept v1 v2 v3 v4 v5 v6 v7 v8

One-component mixture (modified log-likelihood −778.49)
−2.465 0.167 0.577 0.232 −0.109 0.131 −0.086 −0.061 −0.039
(0.463) (0.077) (0.210) (0.223) (0.218) (0.170) (0.110) (0.033) (0.073)

Two-component mixture‡ (modified log-likelihood −768.09)
0.509 −2.949 0.174 0.664 0.241 1.062 0.778 0.276 −0.159 0.218
(0.101) (0.116) (0.021) (0.059) (0.062) (0.133) (0.145) (0.094) (0.019) (0.039)

−1.361 −0.997 −0.990 0.094 −0.308
(0.166) (0.095) (0.052) (0.018) (0.044)

†Standard errors of the estimators are given in parentheses; MLRn = 20:810; p̂10000 = 0:0002.
‡α, the intercept and v1–v3 are shared, and v4–v8 are separated forU = 0 (upper values) andU = 1 (lower values).



14 H.-T. Zhu and H. Zhang

(5) and the observed sample. Third, by looking at the coefficients of v4–v8, we find that the
estimators in the two latent groups have opposite signs, explaining why they are insignificant
in the ordinary logistic model. This underscores the importance of the two-component model.
The opposite signs of the estimators indicate reversed relationships between these risk factors
and preterm births in the two latent groups.
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Appendix A

Before we present all the assumptions, we need to define the following derivatives of fi.β,µ/: Fi,3.β,µ/ =
@2β fi.β,µ/=fiÅ,Fi,4.µ/ = @β@µ fi.βÅ,µ/=fiÅ,Fi,5.µ/ = @β@

2
µ fi.βÅ,µ/=fiÅ and Fi,7.µ/ = @3µ fi.βÅ,µ/=fiÅ:

The following assumptions are sufficient conditions to derive our asymptotic results. Detailed proofs of
theorems 1–3 can be found in Zhu and Zhang (2003).

A.1. Assumption 1 (identifiability)
As n → ∞, supω∈Ω{n−1|Ln.ω/− L̄n.ω/|} → 0 in probability, where L̄n.ω/ = E{Ln.ω/}. For every δ > 0,
we have

lim inf
n→∞

.n−1[L̄n.ω̄n/ − sup
ω∈Ω=ΩÅ,δ

{L̄n.ω/}]/ > 0,

where ω̄n is the maximizer of L̄n.ω/ and

ΩÅ,δ = {ω : ||β − βÅ|| � δ, ||µ1 − µÅ|| � δ,α||µ2 − µÅ|| � δ} ∩ Ω

for every δ > 0.

A.2. Assumption 2
For a small δ0 > 0, let Bδ0 = {.β,µ/ : ||β − βÅ|| � δ0 and ||µ|| � M} ∩ Ω,

sup
.β,µ/∈Bδ0

{∣∣∣∣
∣∣∣∣ 1n

n∑
i=1

Fi,1.β,µ/

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣ 1n

n∑
i=1

Fi,3.β,µ/

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣ 1n

n∑
i=1

Fi,2.µ/

∣∣∣∣
∣∣∣∣ +

6∑
k=4

∣∣∣∣
∣∣∣∣ 1n

n∑
i=1

Fi,k.µ/

∣∣∣∣
∣∣∣∣
}

= op.1/,

sup
||µ||�M

{∣∣∣∣
∣∣∣∣ 1√

n

n∑
i=1

Fi,k.µ/

∣∣∣∣
∣∣∣∣
}

= Op.1/, k = 4, 6, 7,

sup
.β,µ/∈Bδ0

{
1
n

n∑
i=1

||Fi,1.β,µ/||3 + ||Fi,3.β,µ/||3 + ||Fi,2.µ/||3 +
7∑

k=4
||Fi,k.µ/||3

}
= Op.1/:

Moreover, max1�i�n sup.β,µ/∈Bδ0
{||Fi,1.β,µ/|| + ||Fi,2.µ/||2} = op.n

1=2/:

A.3. Assumption 3
.Wn.·/, Jn.·// ⇒ .W.·/, J.·//, where these processes are indexed by ||µ|| � M, and the stochastic pro-
cess {.W.µ/, J.µ// : ||µ|| � M} has bounded continuous sample paths with probability 1. Each J.µ/ is
a symmetric matrix and ∞ > sup||µ||�M [λmax{J.µ/}] � inf ||µ||�M [λmin{J.µ/}] > 0 holds almost surely.
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The process W.µ/ is a mean vector Rr-valued Gaussian stochastic process {W.µ/ : ||µ|| � M} such that
E{W.µ/ W.µ/T} = J.µ/ and E{W.µ/ W.µ′/T} = J.µ,µ′/ for any µ and µ′ in B.0,M/.

A.4. Remarks
Assumption 1 is a generalized definition of the identifiable uniqueness in the statistical literature. The
assumption supω∈Ω{n−1|Ln.ω/−L̄n.ω/|} →p 0 is the uniform laws of large numbers. Some sufficient condi-
tions for uniform laws of large numbers have been presented in the literature; see Pollard (1990).Moreover,
assumption 2 is quite reasonable in most situations. In assumption 3, to prove that Wn.µ/ weakly con-
verges to a Gaussian processW.µ/, we need to use the functional central limit theorem; see Pollard (1990).
Moreover, assumption 3 assumes the positive definitiveness of J.µ/, which is a generalization of the strong
identifiability conditions that were used in Chen (1995) and Chen and Chen (2001). Under the identical and
independent distribution framework, assumption (P0) of Dacunha-Castelle and Gassiat (1999) is a suffi-
cient condition for assumptions 1and2.Moreover,Dacunha-Castelle andGassiat’s (1999) assumption (P1)
is just the positive definitiveness of J.µ/ in assumption 3.
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