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Intrinsic Regression Models for Positive-Definite
Matrices With Applications to Diffusion

Tensor Imaging
Hongtu ZHU, Yasheng CHEN, Joseph G. IBRAHIM, Yimei LI, Colin HALL, and Weili LIN

The aim of this paper is to develop an intrinsic regression model for the analysis of positive-definite matrices as responses in a Riemannian
manifold and their association with a set of covariates, such as age and gender, in a Euclidean space. The primary motivation and applica-
tion of the proposed methodology is in medical imaging. Because the set of positive-definite matrices do not form a vector space, directly
applying classical multivariate regression may be inadequate in establishing the relationship between positive-definite matrices and covari-
ates of interest, such as age and gender, in real applications. Our intrinsic regression model, which is a semiparametric model, uses a link
function to map from the Euclidean space of covariates to the Riemannian manifold of positive-definite matrices. We develop an estimation
procedure to calculate parameter estimates and establish their limiting distributions. We develop score statistics to test linear hypotheses on
unknown parameters and develop a test procedure based on a resampling method to simultaneously assess the statistical significance of lin-
ear hypotheses across a large region of interest. Simulation studies are used to demonstrate the methodology and examine the finite sample
performance of the test procedure for controlling the family-wise error rate. We apply our methods to the detection of statistical significance
of diagnostic effects on the integrity of white matter in a diffusion tensor study of human immunodeficiency virus. Supplemental materials
for this article are available online.

KEY WORDS: Diffusion tensor; Intrinsic regression; Positive-definite matrix; Riemannian manifold; Score statistic.

1. INTRODUCTION

Symmetric positive-definite matrices (SPD) arise in many
applications including diffusion tensor imaging (DTI), compu-
tational anatomy, and statistics. For instance, DTI, which tracks
the effective diffusion of water molecules in the human brain in
vivo, contains a 3 × 3 positive-definite matrix D, called a diffu-
sion tensor, at each voxel (three-dimensional pixel) of an imag-
ing space. Because water molecules tend to diffuse along the
pathways of white matter fibers, tracking their diffusion with
DTI allows investigators to map the microstructure and orga-
nization of those pathways. Specifically, the three eigenvalue-
eigenvector pairs {(λi,vi) : i = 1,2,3} of D (λ1 ≥ λ2 ≥ λ3) can
quantify the degree and direction, respectively, of diffusivity
and the principal directions (v1) of the diffusion tensors (DTs)
have been widely used to reconstruct the white matter fiber
tracts (Basser, Mattiello, and LeBihan 1994a, 1994b; Zhu et al.
2007). Statistical analysis of DTI measures (e.g., eigenvalues
and eigenvectors), diffusion tensors, and fiber tracts can reveal
disruptions in structural organization and the neuronanatomical
connectivity of the brains of persons with neurological and neu-
ropsychiatric illnesses, and substance use disorders (Lim and
Helpern 2002; Focke et al. 2008; Vernooij et al. 2008).
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In computational anatomy, a symmetric positive-definite de-
formation tensor S = (JJT)1/2 at each location of the image can
capture the directional information of shape change decoded in
the Jacobian matrices J (Grenander and Miller 1998; Lepore
et al. 2008). The directional shape change information decoded
in deformation tensors has been demonstrated to be more dis-
criminative than the determinant of J in several structural MRI
based studies of HIV/AIDS (Lepore et al. 2008). More gener-
ally, deformation tensors can be used to detect subtle changes
of brain structures across groups and along time. An appropri-
ate statistical analysis of deformation tensors is important for
understanding normal brain development, the neural bases of
neuropsychiatric disorders, and the joint effects of environmen-
tal and genetic factors on brain structure and function. A funda-
mental issue in many applications is modeling covariance ma-
trices for multivariate data, longitudinal data, spatial data, and
time series data (Chiu, Leonard, and Tsui 1996; Pourahmadi
1999, 2000; Anderson 2003).

Despite the extensive use of SPD matrices, a formal statis-
tical framework for using a set of covariates in a Euclidean
space to predict SPD matrices as responses has not yet been
developed. One may ignore the fact that SPD matrices are in
a nonlinear space and then directly apply classical multivari-
ate regression to studying the association between SPD ma-
trices and covariates. However, this method is not adequate in
many applications. As an illustration, we consider the “mean”
of SPD matrices. In Euclidean space, the mean of SPD matrices
is just the empirical average of SPD matrices, which can lead
to a swelling effect in imaging processing (Chefdhotel et al.
2004). In contrast, if one regards SPD matrices as points in Rie-
mannian manifold and calculates their Frechét mean (Frechét
1948; Karcher 1977), then the swelling effect completely disap-
pears (Pennec, Fillard, and Ayache 2006). Moreover, even when
SPD matrices are regarded as random elements in Riemannian
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manifold, the existing statistical methods can only compare dif-
ferences between the means of the two (or multiple) groups of
SPD matrices, which is equivalent to modeling SPD matrices
with a single categorical variable (Bhattacharya and Patrange-
naru 2003, 2005; Schwartzman 2006; Whitcher et al. 2007). For
instance, Schwartzman (2006) has developed several paramet-
ric models for SPD matrices and derived distributions of sev-
eral test statistics for testing differences in two groups of SPD
matrices. However, the use of parametric models to character-
ize SPD matrices in real applications requires further research.
Recently, Kim and Richards (2008) have studied the problem of
deconvolution density estimation on the space of SPD matrices.
Although much effort has been devoted to appropriately model-
ing covariance matrices in longitudinal data and time series set-
tings (Pourahmadi 1999, 2000), these covariance matrices are
not response variables as is the case in medical imaging.

To the best of our knowledge, this is the very first paper that
develops a semiparametric regression model with SPD matri-
ces as responses in a Remannian manifold and covariates in
Euclidean space. Compared with the existing literature, we ex-
tend the two-group model studied by Schwartzman (2006) to
allow for general covariates and generalize the normal distribu-
tional modeling in Schwartzman (2006) by assuming only that
certain appropriately defined residuals have mean zero. Our re-
gression model is semiparametric, and thus it avoids specifying
parametric distributions for random SPD matrices. We propose
an inference procedure to estimate the regression coefficients
in this semiparametric model. We establish asymptotic prop-
erties, including consistency and asymptotic normality, of the
estimates of the regression coefficients. We develop score sta-
tistics to test linear hypotheses on unknown parameters. Finally,
we develop a test procedure based on a resampling method to
simultaneously assess the statistical significance of linear hy-
potheses across a large region of interest.

The rest of this paper is organized as follows. We will first
review some basic results about the Riemannian geometrical
structure for the space of SPD matrices. We will next present
the semiparametric regression model and estimation methods
for estimating the regression coefficients. Then we will develop
score statistics to carry out hypothesis testing and develop a test
procedure for correcting for multiple comparisons. Simulation
studies will assess the empirical performance of the estimation
algorithms and test statistics. Finally, we will analyze a neu-
roimaging dataset to illustrate an application of these methods,
before offering some concluding remarks.

2. THEORY

In this section, we formally introduce a semiparametric re-
gression model for a SPD matrix response, develop an estima-
tion algorithm for estimating regression coefficients, and de-
velop a score statistic for testing linear hypotheses of the re-
gression coefficients. We then present a test procedure based on
a resampling method for correcting multiple statistical compar-
isons.

2.1 Model Formulation

We develop a formal regression model for SPD matrices.
Suppose we observe a m × m SPD matrix Si and a k × 1 covari-
ate vector xi, such as diagnostic status and age, for i = 1, . . . ,n.

Let Sym+(m) be the set of m × m SPD matrices, β be a p × 1
vector of regression coefficients in Rp and �(·, ·) be a map
from Rk × Rp to Sym+(m). The regression model is obtained
by modeling the “conditional mean” of Si given xi, denoted
by �i(β) = �(xi,β) ∈ Sym+(m). Note that we just borrow the
term “conditional mean” from Euclidean space, but we will for-
malize the notion of a “conditional mean” explicitly below.

Following Pourahmadi (2000), we consider a general spec-
ification of �(x,β) using the Cholesky decomposition of
�(x,β). For the ith observation, through a lower triangular
matrix Ci(β) = C(xi,β) = (cjk(xi,β)) (Pourahmadi 2000), the
Cholesky decomposition of �(xi,β) is given by

�(xi,β) = �i(β) = Ci(β)Ci(β)T . (1)

The specification in (1) has been widely used due to computa-
tional simplicity (Pourahmadi 1999, 2000). Now we need to
specify the explicit forms of cjk(xi,β) for all j ≥ k in order
to determine all entries in �i(β). These functions cjk(xi,β) in
Ci(β) can be regarded as link functions in generalized linear
models (McCullagh and Nelder 1989). For instance, for m = 2,
we may choose

Ci(β) =
(

zT
i β(1) 0

zT
i β(2) zT

i β(3)

)
, (2)

where zi = (1,xT
i )T and β(j) for j = 1,2,3 are subvectors of

β . To ensure the uniqueness of the Cholesky decomposition,
we may impose additional constraints that cjj(xi,β) > 0 for all
j = 1, . . . ,m. For instance, we may assume that Ci(β) takes the
form (

(zT
i β(1))

2 0

zT
i β(2) (zT

i β(3))
2

)
or

(3)(
exp(zT

i β(1)) 0

zT
i β(2) exp(zT

i β(3))

)
.

Compared with (3), the link function in (2) leads to a simpler
computation. However, there is an ambiguous sign problem
associated with (2), since �i(β) = Ci(β)PPTCi(β)T , where
P = diag(±1, . . . ,±1). In practice, we can standardize all co-
variates and impose additional sign constraints on the intercept
terms of β(1) and β(3) to remove this ambiguity. The link func-
tions in (2) and (3) can be easily generalized to m ≥ 3. When
xi = 0, �(0,β) = C(0,β)C(0,β)T represents an intercept ma-
trix, which is similar to the intercept in a linear model.

We may consider two direct reparametrizations of �i(β).
The first is a matrix-logarithmic model. If we consider the
spectral decomposition of � ∈ Sym+(m) given by OVOT ,
where O is a m × m orthonormal matrix and V is a m × m
diagonal matrix with positive entries, then the matrix loga-
rithm of � is log(�) = log(OVOT) = O log(V)OT , where
log(V) ∈ diag(m) with diagonal elements equal the loga-
rithm of the diagonal entries of V. Let vecs(U) represent
(U11, . . . ,U1m,U22, . . . ,U2m, . . . ,Umm)T for any m × m sym-
metric matrix U = (Uij) and let l(x,β) be a map from Rk × Rp

to Rm(m+1)/2. The matrix-logarithmic model assumes that the
matrix logarithm of �i(β) can be written as

vecs
[
log(�i(β))

] = l(xi,β). (4)

A graphical illustration is given in Figure 1. For instance, let B
be an m(m + 1)/2 × (k + 1) matrix. If we set l(xi,β) = Bzi
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Figure 1. Graphical illustration of two link functions in the (a) matrix-logarithmic and (b) geodesic models. In (a), the link function for
the matrix-logarithmic model equals �(x,β) = exp(g(x,β)) or log(�(x,β)) = g(x,β). In (b), the link function for the geodesic model equals
LogD(�(x,β)) = g(x,β), where D is the intercept matrix.

and β contains all unknown parameters in B, then we ob-
tain the matrix-logarithmic model for the covariance matrix in
Chiu, Leonard, and Tsui (1996). For m = 1, we have l(xi,β) =
(zT

i β(1)) and �i(β) = exp(zT
i β(1)) = exp(β1,1 + xT

i β1,(2)),

where β(1) = (β1,1,β
T
1,(2))

T . Thus, exp(β1,1) can be repre-
sented as an intercept when xi = 0, whereas β1,(2) characterizes
the “slope” vector.

The second is a “geodesic” model for �(xi,β). Intuitively,
a geodesic on the manifold Sym+(m) is a “straight line” on
Sym+(m). Let GL(m) be the set of m × m matrices of nonzero
determinant. For any C ∈ GL(m), we define the matrix expo-
nential transformation of C, denoted by exp(C), as exp(C) =∑∞

k=0 Ck/k, where C0 = Im is the m × m identity matrix and

Ck is the ordinary matrix multiplication of C k times. We con-
sider an intercept matrix D ∈ Sym+(m) and any square root
of D, denoted by B, such that B ∈ GL(m) and �(0,β) =
D = BBT , when xi = 0. Then, for a given l(xi,β), we con-
sider a “directional” matrix YD(xi,β) = YD,i(β) in the space
of m × m symmetric matrices, denoted by Sym(m), such that
vecs(YD,i(β)) = l(xi,β) and l(0,β) = 0. The geodesic model
assumes that

�(xi,β) = Ci(β)Ci(β)T = B exp(B−1YD,i(β)B−T)BT (5)

for i = 1, . . . ,n. As shown in proposition 2.2.7 of Schwartz-
man (2006), �(xi,β) is closely related to the geodesic passing
through D = BBT in the direction of YD,i(β) and the specifica-
tion of �(xi,β) in (5) is unique. We will formalize the notions
of “geodesic” and “direction” in Section 2.2. A graphical illus-
tration is given in Figure 1(b). Because the specifications (4)
and (5) involve the matrix exponential transformation, they can
be much more computationally difficult than specifications (2)
and (3).

We introduce a definition of “residual” to ensure that �i(β)

is the proper “conditional mean” of Si given xi. For instance,
in the classical linear model, the response is the sum of a re-
gression function and a residual term. Then, the regression
function is the conditional mean of the response only when
the conditional mean of the residual equals zero. Given two
points Si and �i(β) on the manifold Sym+(m), we need to
define the residual or “difference” between Si and �i(β). At
�i(β), we have a tangent space of the manifold Sym+(m), de-
noted by T�i(β) Sym+(m), which is a Euclidean space repre-
senting a first-order approximation of the manifold Sym+(m)

near �i(β). Then, we calculate the projection of Si onto
T�i(β) Sym+(m), denoted by Log�i(β)(Si), which is given by

Log�i(β)(Si) = Ci(β) log(Ci(β)−1SiCi(β)−T)Ci(β)T . (6)

Thus, Log�i(β)(Si) on T�i(β) Sym+(m) can be regarded as
the difference between Si and �i(β) for i = 1, . . . ,n. Since
Log�i(β)(Si) for different i are in different tangent spaces (or
Euclidean spaces), we must translate them back to the same
tangent space, such as the tangent space at the identity ma-
trix Im, denoted by TIm Sym+(m) (Schwartzman 2006). This
translation can be done using the group action of GL(m) intro-
duced in Section 2.2. Specifically, to translate Log�i(β)(Si) ∈
T�i(β) Sym+(m) into TIm Sym+(m), we follow Schwartzman
(2006) to define the residual of Si with respect to �i(β) as

Ei(β) = E�i(β)(Si) = Ci(β)−1 Log�i(β)(Si)Ci(β)−T

= log(Ci(β)−1SiCi(β)−T), (7)

for i = 1, . . . ,n. The Ei(β) are uniquely defined, because the
Cholesky decomposition is unique and Log�i(β)(Si) is inde-
pendent of the choice of the square root of �i(β). Moreover,
because all Ei(β) are in the same tangent space TIm Sym+(m)

and TIm Sym+(m) is a Euclidean space, we can apply classi-
cal multivariate analysis techniques in Euclidean space to the
analysis of E�i(β)(Si) (Anderson 2003).

The intrinsic regression model for SPD matrices is then de-
fined by

E[Ei(β)|xi] = 0 or E
[
Log�i(β)(Si)|xi

] = 0, (8)

for i = 1, . . . ,n, where the expectation is taken with respect to
the conditional distribution of Si given xi. Model (8) does not
assume any parametric distribution for Si given xi, and thus it
allows for a large class of distributions. In contrast, let � be an
m × m matrix in Sym+(m), Schwartzman (2006, p. 42) con-
sidered a symmetric matrix variate normal distribution of Ei
(Gupta and Nagar 2000), whose density is given by

p(Ei;0,�) = 1

(2π)m|�|2 exp

(
−1

2
tr(Ei�

−1)2
)

. (9)

Then, using Si = Ci(β) exp(Ei)Ci(β)T , the density of Si, de-
noted by p(Si;β), is

J(Ci(β)−1SiCi(β)−T)|Ci(β)Ci(β)T |2
(2π)2m|�|2

× exp

(
−1

2
tr
(
log(Ci(β)−1SiCi(β)−T)�−1)2

)
, (10)
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where J(Ci(β)−1SiCi(β)−T) is the Jacobian of the transfor-
mation Ei = Ci(β)−1SiCi(β)−T . Because the true distribution
of Ei may deviate from the Gaussian distribution in (9), it can
be very restrictive to assume a parametric distribution, such as
(10), for Si. In addition, our model (8) does not assume homo-
geneous variance across all i. This is also desirable for applica-
tions, such as the analysis of imaging data, including diffusion
tensor data, because between-subject and between-voxel vari-
ability in the imaging measures (e.g., DT) can be substantial.

2.2 Geometrical Structure of Sym+(m)

We summarize some basic results from Schwartzman (2006)
about the geometrical structure of Sym+(m) as a Riemannian
manifold (Do Carmo 1992; Lang 1999). The space Sym+(m) is
a submanifold of the Euclidean space Sym(m). Geometrically,
the spaces Sym+(m) and Sym(m) are differentiable manifolds
of m(m + 1)/2 dimensions and they are homeomorphically re-
lated by the matrix exponential transformation and logarithm.

We first introduce the tangent vector and tangent space at any
D ∈ Sym+(m). For a small scalar δ > 0, let C(t) be a differen-
tiable map from (−δ, δ) to Sym+(m) such that it passes through
C(0) = D. The tangent vector at D is defined as the derivative
of the smooth curve C(t) with respect to t at t = 0. The set of
all tangent vectors at D forms the tangent space of Sym+(m)

at D, denoted by TD Sym+(m). As shown in proposition 2.2.3
of Schwartzman (2006), TD Sym+(m) is identified with a copy
of Sym(m). For instance, when D = Im, we consider the curve
C(t) = exp(tY) ∈ Sym+(m) satisfying C(0) = Im for any Y ∈
Sym(m) and t ∈ (−δ, δ). Then, the derivative of C(t) at t = 0 is
just Y and thus TIm Sym+(m) = Sym(m). Second, we introduce
an inner product of any two tangent vectors in the same tangent
space, which varies smoothly along the manifold. We consider
the scaled Frobenius inner product of any two tangent vectors
YD and ZD in TD Sym+(m), which is defined by

〈〈YD,ZD〉〉 = tr(YDD−1ZDD−1). (11)

Let B ∈ GL(m) be any square root of D ∈ Sym+(m) such
that D = BBT and let γD(t;YD) be the geodesic on Sym+(m)

passing through D in the direction of the tangent vector YD ∈
TD Sym+(m). As shown in proposition 2.2.7 of Schwartzman
(2006), γD(t;YD) is uniquely given by

γD(t;YD) = B exp(tB−1YDB−T)BT for all t ∈ (−∞,∞).

(12)
Given the geodesic γD(t;YD), the Riemannian exponential map
ExpD(YD), which maps the tangent vector YD ∈ TD Sym+(m)

to a point X ∈ Sym+(m), is uniquely defined as

X = ExpD(YD) = γD(1;YD) = B exp(B−1YDB−T)BT . (13)

When D = Im, ExpD reduces to the matrix exponential exp(·).
Recall that in the geodesic model, we assume that �(0,

β) = D = BBT and �(xi,β) = γD(1;YD,i(β)), in which
vecs(YD,i(β)) = l(xi,β) and l(0,β) = 0.

The Riemannian logarithmic map at D, denoted by LogD(·),
maps X ∈ Sym+(m) onto the tangent vector YD in
TD Sym+(m). Specifically, LogD : Sym+(m) → TD Sym+(m) at
D = BBT ∈ Sym+(m) is uniquely defined as

YD = LogD(X) = B log(B−1XB−T)BT . (14)

The Riemannian exponential and logarithmic maps satisfy

YD = LogD(ExpD(YD)) and X = ExpD(LogD(X)).

(15)
Recall that in the definition of “conditional residual,” we
have two points D = �(xi,β) and X = Si on Sym+(m) and
then we define Log�(xi,β)(Si) on T�(xi,β) Sym+(m). Because
Log�(xi,β)(Si) is independent of the square root of �(xi,β),
we can choose the Cholesky decomposition of �(xi,β) =
Ci(β)Ci(β)T in the definition of Log�(xi,β)(Si).

A nice property of Sym+(m) is that a group action of
GL(m) on Sym+(m) can relate any two (X,D) ∈ Sym+(m) and
the tangent spaces at X and D, respectively. Specifically, the
group action of GL(m) on Sym+(m) consists of all transfor-
mations φB(X) = BXBT for any B ∈ GL(m). For any (X,D) ∈
Sym+(m), there exists B ∈ GL(m) such that BXBT = D. The
group action of GL(m) on Sym+(m) induces a group ac-
tion between TX Sym+(m) and TφB(X) Sym+(m). Explicitly, if
Y ∈ TX Sym+(m), then φB(Y) = BYBT ∈ TφB(X) Sym+(m).

Particularly, we have applied the group action to translate
Log�i(β)(Si) ∈ T�i(β) Sym+(m) to Ci(β)−1 Log�i(β)(Si) ×
Ci(β)−T ∈ TCi(β)−1�i(β)Ci(β)−T Sym+(m) = TIm Sym+(m) for
i = 1, . . . ,n.

We consider the geodesic distance between any two points on
Sym+(m). Let B ∈ GL(m) be any square root of D, the geodesic
distance between D and X in Sym+(m) is uniquely given by

d(D,X) = √〈〈LogD(X),LogD(X)〉〉

=
√

tr(log2(B−1XB−T)). (16)

The geodesic distance has many nice properties. For instance,
the geodesic distance is a proper metric satisfying positive def-
initeness, symmetry, and the triangle inequality. Specifically,
d(D,X) = d(X,D). The geodesic distance is also invariant un-
der group actions, that is, d(D,X) = d(BDBT ,BXBT) for any
B ∈ GL(m).

2.3 Estimation

We calculate an intrinsic least squares estimator (ILSE) of
the parameter vector β , denoted by β̂ , by minimizing the total
residual sum of squares:

β̂ = argmin
β

Gn(β) = argmin
β

n∑
i=1

tr(Ei(β)2). (17)

Thus, β̂ solves the estimating equations given by

∂βGn(β) =
n∑

i=1

∂β tr(Ei(β)2)

=
n∑

i=1

tr
(
∂β

[
log(Ci(β)−1SiCi(β)−T)

]2) = 0, (18)

where ∂ denotes partial differentiation with respect to a parame-
ter vector, such as β . The ILSE is closely related to the intrinsic
mean �IM of S1, . . . ,Sn ∈ Sym+(m), which is defined as

�̂IM = argmin
�

n∑
i=1

d(�,Si)
2, (19)
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where d(·, ·) has been defined in equation (16). In this case,
both �i and Ci(β) are independent of i and the covariates. Let
β = (c11, c21, c22, . . . , cm1, . . . , cmm) be the entries of the lower
triangular portion of C(β) = (cjk) such that � = C(β)C(β)T .
It follows from (16) that

∑n
i=1 tr(Ei(β)2) = ∑n

i=1 d(�,Si)
2,

which leads to �̂IM = C(β̂)C(β̂)T .
We now develop an annealing optimization algorithm for ob-

taining β̂ . Our annealing algorithm consists of five steps. In
Step 1, we first calculate the Cholesky decompositions of all
Si, denoted by Si = C̃iC̃T

i , and then we fit a multivariate lin-
ear regression model with the lower part of C̃i as the response
and the corresponding part of Ci(β) as the mean function,
which yield the initial value β(0). Then, starting from β(0), we
use the downhill simplex method to search for another initial
value β(1) (Nelder and Mead 1965). In Step 2, starting from
β(k), we use the Gibbs sampler coupled with the Metropolis–
Hasting algorithm to iteratively draw N0 (say, 200) depen-
dent observations {β(k,l) : l = 1, . . . ,N0} from exp(−Gn(β)/τk).
Among the {β(k,l) : l = 1, . . . ,N0}, we find the optimal β̃(k) =
argminβ(k,l){Gn(β)}. In Step 3, we use the downhill simplex

method with β̃(k) as the starting point to search for β(k+1).
In Step 4, we iterate between Steps 2 and 3 for k = 1, . . . ,M0

(say, M0 = 4) and increase τk at each iteration. We choose τ1 to
achieve an acceptance rate of the Metropolis–Hasting algorithm
within the Gibbs sampler around 0.25 and then we slightly re-
duce the acceptance rate to around 0.15 as k increases. We save
the optimal βB, which minimizes Gn(β), among all β(k,l) and
β(k) during the iterations. In Step 5, starting from βB, we use
the Newton–Raphson algorithm to calculate β̂ as described be-
low. Compared with other optimization methods, such as the
simulated annealing algorithm, we can efficiently find β̂ due
to several nice features. According to our experience, β(1) is
usually close to β̂ , and we always use the downhill simplex
method to search for a new optimal estimator after drawing a
small number of Monte Carlo samples. Thus, we avoid using
large values of N0 and M0.

Let ∂βGn(β
(t)) and ∂2

βGn(β
(t)), respectively, denote the first

and second-order partial derivatives of Gn(β) with respect to β

evaluated at β(t). The Newton–Raphson algorithm yields

β(t+1) = β(t) + ρ
{−∂2

βGn
(
β(t))}−1

∂βGn
(
β(t)). (20)

In addition, we choose 0 < ρ = 1/2k0 ≤ 1 for some k0 ≥ 0 such
that Gn(β

(t+1)) ≤ Gn(β
(t)). The Newton–Raphson algorithm

stops when the absolute difference between consecutive β(t)’s
is smaller than a predefined small number, say 10−4. At the fi-
nal iteration, we set β̂ = β(t). In addition, because −∂2

βGn(β
(t))

may not be positive definite, we approximate −∂2
βGn(β

(t)) in
order to stabilize the Newton–Raphson algorithm. Details re-
garding ∂βGn(β

(t)), and ∂2
βGn(β

(t)) and its approximation are
given in lemma 1 of the supplemental document.

2.4 Asymptotic Properties

We first introduce some notation to describe the limiting be-
havior of the ILSE for SPDs. Let β∗ be the true value of β such
that (8) holds at β∗. Let Ci∗ denote Ci(β∗) and �i∗ = �i(β∗) =
Ci∗CT

i∗; B denotes the parameter space for β; ‖ · ‖ denotes the

Euclidean norm of a vector or a matrix; a⊗2 = aaT for any vec-
tor a; and →L denotes convergence in distribution.

We establish consistency and asymptotically normality of β̂ .
We obtain the following theorems, whose detailed assumptions
and proofs can be found in the supplemental document.

Theorem 1. (a) For model (8), if assumptions (C1), (C2), and
(C3) in the supplemental document are true, then β̂ converges
to β∗ in probability.

(b) For model (8), under assumptions (C1)–(C4), we have
{

n∑
i=1

[
∂β tr(Ei(β̂)2)

]⊗2

}−1/2

[−∂2
βGn(β̂)](β̂ − β∗)

→L N(0, Ip) (21)

as n → ∞.

Theorem 1 has several important applications. Theorem 1(a)
establishes weak convergence of β̂ . According to Theorem 1(b),
the covariance matrix of β̂ under model (8) can be consistently
estimated by

[−∂2
βGn(β̂)]−1

{
n∑

i=1

[
∂β tr(Ei(β̂)2)

]⊗2

}
[−∂2

βGn(β̂)]−1. (22)

Moreover, we can use Theorem 1(b) to construct confidence
cones of β and its functions. Since Theorem 1 only establishes
the asymptotic properties of β̂ when the sample size is large,
these properties may be inadequate to characterize the finite
sample behavior of β̂ for relatively small sample sizes. In the
case of small and moderate sample sizes, we may have to resort
to higher-order approximations, such as saddlepoint approxi-
mations and bootstrap methods (Davison and Hinkley 1997;
Butler 2007).

2.5 Testing Linear Hypotheses

Our choice of hypotheses to test is motivated by scientific
questions, which involve a comparison of SPDs across diagnos-
tic groups or detecting change in SPDs across time (Schwartz-
man 2006; Whitcher et al. 2007; Lepore et al. 2008). These
questions usually can be formulated as testing linear hypotheses
of β as follows:

H0 : Rβ = b0 vs. H1 : Rβ �= b0, (23)

where R is an r × p matrix of full row rank and b0 is an r × 1
specified vector. We test the null hypothesis H0 : Rβ = b0 using
a score test statistic Wn defined by

Wn = LT
n,μÎ−1

μμLn,μ, (24)

where μ = Rβ , Ln,μ = n−1/2 ∑n
i=1 Ûi,μ(β̃), and Îμμ =

n−1 ∑n
i=1 Ûi,μ(β̃)Ûi,μ(β̃)T , in which β̃ denotes the estimate

of β under H0 and the explicit expressions of Ûi,μ(β̃) and Ln,μ

are given in the supplemental document (Rotnitzky and Jewell
1990).

Theorem 2. For model (8), if assumptions (C1)–(C4) in the
supplemental document are true, then the statistic Wn is asymp-
totically distributed as χ2(r), a chi-square distribution with r
degrees of freedom, under the null hypothesis H0.
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An asymptotically valid test can be obtained by comparing
sample values of the test statistic with the critical value of the
right-hand tail of the χ2(r) distribution at a prespecified signif-
icance level α. That is, we reject H0 if Wn ≥ χ2

α(r), and do not
reject H0 otherwise, where χ2

α(r) is the upper α-percentile of
the χ2(r) distribution.

2.6 Multiple Hypotheses

In imaging applications, we need to test the hypotheses H0

against H1 across multiple brain regions or across the many
voxels of the imaging volume. Thus, the next step entails using
statistical methods (e.g., random field theory, false discovery
rates, permutation methods) to adjust p-values for these mul-
tiple statistical tests. To test H0 in all voxels of the region un-
der study, we consider the maximum of the score test statistics
given by

Wn,D = max
d∈D

Wn(d), (25)

where Wn(d) denotes the score test statistic at voxel d and D
denotes the brain region. The maximum statistic Wn,D plays a
crucial role in controlling the family-wise error rate.

We propose to use a test procedure that is based on a re-
sampling method to approximate the null distribution of Wn,D
(Kosorok 2003; Lin 2005). The test procedure is implemented
as follows:

Step 1. We calculate the score test statistic Wn(d) at each
voxel d, and then we compute Wn,D = maxd∈D Wn(d).

Step 2. Generate n realizations of ε denoted by {ε(k)
i : i =

1, . . . ,n}, where ε equals ±1 with equal probability.
Step 3. Calculate Wn(d)(k) = Ln,μ(d)(k)T [Îμμ(d)]−1 ×

Ln,μ(d)(k), and then compute W(k)
n,D = maxd∈D Wn(d)(k),

where Ln,μ(d)(k) = n−1/2 ∑n
i=1 Ûi,μ(β̃,d)ε

(k)
i .

Step 4. Repeat Steps 2–3 K0 times and calculate {W(k)
n,D : k =

1, . . . ,K0}. Finally, the p-value of Wn,D is approximated

by pμ,D = K−1
0

∑K0
k=1 I(W(k)

n,D ≥ Wn,D). We reject the null
hypothesis H0 : Rβ = b0 across all voxels of the region
when pμ,D is smaller than a prespecified value α, say
0.05.

Step 5. Calculate the adjusted p-value of Wn(d) at each
voxel d of the region according to pD(d) ≈ K−1

0 ×∑K0
k=1 I(W(k)

n,D ≥ Wn(d)).

There are several advantages of using the resampling method
in the above test procedure. The above procedure needs to
compute Ûi,μ(β̃,d) and Îμμ only once. It also avoids repeated
analyses of permuted datasets in the permutation methods, be-
cause fitting the regression models for SPD matrices across all
voxels of an imaging volume can take up to more than 20 hours
for each permuted dataset. In contrast, the proposed resampling
method takes less than 5 minutes for K0 = 1,000.

3. SIMULATION STUDIES

We conducted three sets of Monte Carlo simulations. All
computations for these simulation studies were done in C++
on an IBM ThinkCentre M50 workstation. The first set of sim-
ulations was to evaluate the accuracy of the parameter estimates

and their associated variance estimates for the proposed intrin-
sic regression model. We set m = 3 and generated the simulated
data as follows. We considered the Cholesky decomposition
(1) of �(xi,β) with vecs(Ci(β)T) = (zT

i β1, zT
i β2, zT

i β3, zT
i β4,

zT
i β5, zT

i β6)
T , in which zi = (1, xi1)

T was a 2 × 1 vector of
covariates of interest, for i = 1, . . . ,n. We generated xi1 inde-
pendently from a Gaussian generator with zero mean and unit
variance. Thus, β = (βT

1 , . . . ,βT
6 )T is a 12 × 1 vector. Then,

we simulated Ei from a N(0,�) distribution and calculated
Ci(β∗) exp(Ei)Ci(β∗)T , in which we set βk∗ = [1 + 0.1 × (k −
1)]1T

2 for k = 1, . . . ,6. We chose two different �’s as follows:
�1 = 0.6I3 and �2 = 0.3I3 + 0.3131T

3 , where 13 = (1,1,1)T .
For each �, we set n = 20 and 80 and then simulated 500 data
sets for each case. For each simulated dataset, we applied the
annealing optimization algorithm with N0 = 200 and M0 = 4,
which took an average CPU time of about 30 seconds to obtain
β̂ and Cov(β̂) in (22).

Based on 500 parameter estimates, we calculated the bias, the
mean of the estimated standard error estimates (SE), the stan-
dard deviation of the estimated standard error estimates (SD–
SE) and the root-mean-square error (RMS) (Table 1). All rela-
tive efficiencies (the ratio of the mean of the standard deviation
estimates to the root mean-square error) are close to 1.0, indi-
cating that matrix (22) is an accurate estimate of diag(Cov(β̂)).
As expected, the root mean-square error decreases as the sam-
ple size increases. Moreover, comparing the results from �1
and �2, we note that increasing the correlation in � only
slightly decreases the bias and SD of β̂ .

The second set of simulations examined the finite sample per-
formance of the score statistic Wn. We used the same setup
as the first set of simulations except that we set β = 0, and
then varied the second component of β j = (βj,1, βj,2)

′ for j =
1, . . . ,6. We were interested in testing whether the effect of the
covariate xi1 is significant. Letting β ·,2 = (β1,2, . . . , β6,2)

T , we
tested the following hypotheses:

H0 :β ·,2 = 0 and H1 :β ·,2 �= 0.

To assess the type I and II error rates for Wn, we chose four
different values for β ·,2: 0×16, 0.2×16, 0.4×16, and 0.6×16,
and chose �1 and �2. For each �, we set n = 20, 40, and 80
and then simulated 1,000 datasets for each case.

The score statistic Wn performs reasonably well for relatively
small sample sizes (Table 2). The type I error rates were not
excessive even for both the 5% and 1% significance levels at
n = 40. Increasing the sample size can increase the power of re-
jecting the null hypothesis. Comparing the results from �1 and
�2, we note that increasing the correlation in � only slightly
influences the finite sample performance of Wn.

In the third set of simulations, we examined the finite sample
performance of Wn,D . We generated 3 × 3 SPDs at all 2,500
pixels of a 50 by 50 image slice for each of all n subjects. We
used the same setup as the first set of simulations with an excep-
tion. We only consider �1, the variance of Ei(d), at each pixel
and for any two pixels d and d′, the correlation of Ei,k(d) and
Ei,k(d′) equals ρ‖d−d′‖, where ρ ∈ [0,1]. We tested the null hy-
pothesis H0 :β ·,2(d) = 0 at all pixels on the slice. We set n = 40
and 80. We first assumed β ·,2(d) = 0 at all pixels on the slice
to assess the family-wise error rate. To assess the power, we se-
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Table 1. Bias (×10−2), RMS (×10−2), SE (×10−2), SD–SE (×10−2), and RS of all 12 parameters under �1 and �2. BIAS denotes the bias
of the mean of the ILSE estimates; RMS denotes the root-mean-square error; SE denotes the mean of the standard deviation estimates; SD–SE
denotes the standard deviation of the standard deviation estimates; RS denotes the ratio of RMS over SD. Two different sample sizes {20,80}

and 500 simulated datasets were used for each case

n = 20 n = 80

BIAS RMS SE SD–SE RS BIAS RMS SE SD–SE RS

�1
β1 2.60 6.10 6.73 2.20 1.10 0.58 3.59 3.37 0.68 0.94
β2 1.78 6.10 6.61 1.72 1.08 0.06 3.90 3.61 0.55 0.92
β3 1.88 7.06 6.96 1.32 0.98 0.69 3.91 3.56 0.35 0.91
β4 1.15 6.86 6.89 1.30 1.01 0.35 3.83 3.51 0.33 0.92
β5 3.83 15.34 17.24 4.22 1.12 1.08 8.35 8.58 1.20 1.02
β6 2.83 15.07 16.97 3.76 1.12 0.54 8.45 8.46 0.95 1.01
β7 1.43 8.75 8.07 1.42 0.92 −0.37 4.19 4.10 0.39 0.98
β8 0.48 8.32 7.98 1.40 0.96 −0.44 4.12 4.06 0.38 0.98
β9 5.14 29.38 32.06 7.57 1.09 1.6 14.84 16.07 2.23 1.08
β10 3.97 28.88 31.59 7.14 1.09 1.05 14.84 15.85 1.77 1.07
β11 3.62 20.32 19.91 3.87 0.98 1.00 10.63 10.15 0.85 0.96
β12 2.69 20.11 19.68 3.83 0.98 0.53 10.48 10.03 0.84 0.96

�2
β1 2.76 6.87 6.73 2.21 0.97 0.59 4.00 3.7 0.57 0.93
β2 1.81 6.72 6.61 1.63 0.98 0.46 3.97 3.7 0.53 0.93
β3 1.96 7.74 7.23 1.27 0.93 0.23 3.72 3.54 0.36 0.95
β4 1.24 7.43 7.15 1.26 0.96 0.03 3.67 3.5 0.36 0.95
β5 3.08 11.63 12.61 2.85 1.08 1.02 6.87 6.33 0.73 0.92
β6 1.87 11.78 12.41 2.31 1.05 0.86 6.9 6.3 0.7 0.91
β7 1.56 8.44 8.26 1.46 0.98 0.11 4.5 4.2 0.34 0.93
β8 0.62 8.09 8.17 1.44 1.01 0.04 4.5 4.1 0.34 0.91
β9 2.75 18.90 19.75 4.14 1.04 1.06 10.74 9.93 1.09 0.93
β10 1.33 18.84 19.46 3.68 1.03 0.86 10.79 9.82 0.93 0.91
β11 3.87 16.68 15.49 2.54 0.93 −0.58 7.45 7.44 0.66 0.99
β12 2.88 16.46 15.31 2.51 0.94 −0.91 7.22 7.37 0.65 1.02

lected a region-of-interest (ROI) with 40 pixels on the reference
slice and set β ·,2(d) at 0.3 × 16, 0.6 × 16, and 0.9 × 16 for any
point d in the ROI. For each simulated dataset, we applied the
annealing optimization algorithm with N0 = 200 and M0 = 5

to the simulated data at each pixel and the test procedure to all
2,500 pixels, which took an average CPU time of about 8 hours.

We used the family-wise error rate as the type I error rate and
estimated it based on 100 replications with significance level

Table 2. Comparisons of the rejection rates for score test statistics under �1 and �2. Three differing sample sizes {20,40,80} and 1,000
simulated datasets were used for each case and two significance levels, 5% and 1%, were considered. The null and alternative hypotheses were,

respectively, given by H0 :β ·,2 = 0 and H1 :β ·,2 �= 0. Two methods including the resampling method (RE) and χ2 distribution [χ2(6)] were
used to calculate the rejection rates

n = 20 n = 40 n = 80

5% 1% 5% 1% 5% 1%

β·,2 RE χ2(6) RE χ2(6) RE χ2(6) RE χ2(6) RE χ2(6) RE χ2(6)

�1
0 × 16 0.143 0.031 0.037 0 0.067 0.043 0.026 0.007 0.067 0.037 0.017 0.003
0.2 × 16 0.513 0.177 0.253 0.011 0.957 0.883 0.796 0.461 1 1 0.991 0.971
0.4 × 16 0.597 0.213 0.293 0.022 0.993 0.951 0.832 0.481 1 1 1 1
0.6 × 16 0.773 0.442 0.520 0.042 1 1 1 0.983 1 1 1 1

�2
0 × 16 0.126 0.023 0.037 0 0.063 0.037 0.017 0.003 0.061 0.033 0.013 0.003
0.2 × 16 0.581 0.221 0.302 0.010 0.977 0.953 0.851 0.491 1 1 0.991 0.991
0.4 × 16 0.602 0.227 0.321 0.032 0.991 0.981 0.871 0.562 1 1 1 1
0.6 × 16 0.903 0.51 0.611 0.051 1 1 1 0.981 1 1 1 1
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Table 3. Comparisons of the family-wise error rates and average powers for the test procedure under two different correlations ρ = 0.0 and 0.5.
We considered two different sample sizes {40,80} and 100 simulated datasets for each case at the 5% significance level. In all voxels, the null

and alternative hypotheses were, respectively, given by H0 :β·,2(d) = 06 and H1 :β ·,2(d) �= 06. We considered four different β·,2(d)

{0.0 × 16,0.3 × 16,0.6 × 16,0.9 × 16} for all voxels within the region of interest, whereas we set β·,2(d) = 06 for all voxels outside the region
of interest. FWR denotes the family wise error rate and Apower denotes the average rejection rate for voxels inside the region of interest

n = 40 n = 80

ρ = 0.0 ρ = 0.5 ρ = 0.0 ρ = 0.5

β·,2(d) FWR Apower FWR Apower FWR Apower FWR Apower

0.0 × 16 0.12 0.00 0.06 0.00 0.08 0.00 0.07 0.00
0.3 × 16 0.18 0.10 0.12 0.10 0.06 0.56 0.06 0.57
0.6 × 16 0.14 0.67 0.06 0.68 0.02 1.00 0.03 1.00
0.9 × 16 0.12 0.83 0.10 0.85 0.08 1.00 0.06 1.00

α = 5%. We also calculated the average of the probabilities of
rejecting each of the 40 pixels in the ROI as an estimate of the
average power using 100 replications and a significance level of
α = 5%.

For the test statistic Wn,D , our test procedure worked rea-
sonably well for relatively small sample sizes (Table 3). The
family-wise error rates for our test procedure were not particu-
larly accurate for n = 40 when the correlation is zero; in con-
trast, they improved at n = 40 and ρ = 0.5. Thus, the sample
size could somewhat influence the finite sample performance
of our test procedure, particularly when the sample sizes are
small.

4. HIV IMAGING DATA

We assess the integrity of white matter in human immunod-
eficiency virus (HIV). White matter is one of the three main
solid components of the central nervous system (CNS) and is
composed of bundles of myelinated nerve cell processes (or ax-
ons), which connect various gray matter areas (the locations of
nerve cell bodies) of the brain to each other, and carry nerve
impulses between neurons. The white matter is important for
passing messages between different areas of gray matter within
the CNS. After initial HIV infection, the virus is detectable in
the CNS before antibodies are detectable in the blood and HIV
could be cultured from brain tissue as early as 15 days (Davis
et al. 1992; Rausch and Davis 2001). Since DTI can detect the
subtle disruption of white matter structural integrity by assess-
ing the degree to which fiber tracts within the white matter have
lost their directional organization (Basser, Mattiello, and LeBi-
han 1994a, 1994b; Lim and Helpern 2002; Focke et al. 2008;
Vernooij et al. 2008), DTI may be an important tool for detect-
ing the early CNS HIV involvement.

We considered 47 subjects, in which 29 were HIV+ subjects
(21 males and 8 females) and 18 were healthy (9 males and 9
females) controls from a cross-sectional study. The ages of the
HIV+ subjects ranged from 30 to 52 years (mean: 40.0, SD: 5.6
years) and those of healthy controls ranged from 27 to 54 years
(mean: 41.2, SD: 7.4 years). For each subject, both diffusion-
weighted images and T1 weighted images were acquired. Dif-
fusion gradients with a b-value of 1,000 s/mm2 were applied
in six noncollinear directions, (1,0,1), (−1,0,1), (0,1,1),
(0,1,−1), (1,1,0), and (−1,1,0). A b = 0 reference scan was
also obtained for diffusion tensor matrix calculations. Forty-six
contiguous slices with a slice thickness of 2 mm covered a field

of view (FOV) of 256×256 mm2 with an isotropic voxel size of
2 × 2 × 2 mm3. Eighteen acquisitions were used to improve the
signal-to-noise ratio (SNR) in the images. High resolution T1
weighted (T1W) images were acquired using a 3D MP-RAGE
sequence. Then, a weighted least squares estimation method
was used to construct the diffusion tensors (Basser, Mattiello,
and LeBihan 1994b; Zhu et al. 2007).

All images were visually inspected before analysis to ensure
no bulk motion. A two-step image registration approach was
utilized to spatially normalize the DTI parameters. The first step
used a B-spline model based on a bidirectional elastic registra-
tion method to align the T1 weighted images of all subjects
including both normal controls and HIV+ subjects to the T1
weighted images (template) of an arbitrarily chosen 41-year-
old female healthy subject. In order to minimize biases induced
by the choice of the template, the symmetry between the im-
age pair to be coregistered was ensured through enforcing the
consistency between the forward (e.g., from subject X to the
template) and backward (from the template to subject X) trans-
formations. The second step was to align each subject’s DTI im-
ages to his/her own anatomical T1 weighted images with a 12-
parameter affine registration tool in FSL 3.2 (Analysis Group,
FMRIB, Oxford, U.K.), so that DTI results can be spatially nor-
malized through the spatial transformation obtained from high
resolution T1 elastic registration. The tensor reorientation ma-
trix at each voxel was derived as a rotation matrix approximat-
ing the transformation matrix (from T1 registration) through a
singular value decomposition (SVD) (Alexander et al. 2001; Xu
et al. 2003).

To control for the effects of covariates (diagnosis, age, and
gender), we considered model (2) for Ci(β) for diffusion ten-
sors at each voxel. The zi = (1, x1i, x2i, x3i)

T is a 4 × 1 vector,
in which x1i is Age/10, x2i is gender, and x3i denotes the di-
agnosis (1 HIV+ and 0 Healthy control). Moreover, we limited
the statistical analysis within the major white matter regions
which contains 17,444 voxels with mean fractional anisotropy
(FA) value in normal volunteers greater than 0.4. We applied the
annealing optimization algorithm with N0 = 200 and M0 = 4,
which took an average CPU time of approximately 80 hours to
carry out the statistical analysis.

We detected the statistical significance of diagnosis (or
age) on the integrity of white matter at all voxels with FA
value greater than 0.4. Here, R is a 6 × 24 matrix and b0 =
(0,0,0,0,0,0)T for the hypotheses on either diagnosis or age.



Zhu et al.: Regression Models for Positive-Definite Matrices 1211

Figure 2. Significance testing of diagnosis effect: color-coded maps of raw and adjusted p-values in four selected ROIs of the reference
brain. The color scale reflects the magnitude of the values of − log10(P), with black to blue representing smaller values (0–1) and red to white
representing larger values (1.88–3). Row 1: adjusted − log10(P) values of the score statistics based on our test procedure for the correction of
multiple comparisons. Row 2: raw − log10(P) values of the score statistics based on a χ2 distribution. Row 3: selected ROIs with FA values
greater than 0.4. After correcting for multiple comparisons, statistically significant diagnosis effects remain in the superior internal capsule area.

The uncorrected p-values based on the score statistics were
color coded at each voxel in the selected regions of the ref-
erence brain (Figure 2). To correct for multiple comparisons,
we applied our test procedure to calculate the adjusted p-value
pD(d) at each voxel in the selected regions of the reference
brain (Figure 2). Color-coded maps of p-values using either the
uncorrected p(d) alone or the corrected pD(d) indicated several
large-scale diagnosis and age effects for white matter integrity.
The test procedure for correcting for multiple hypotheses, how-
ever, captured far fewer points of differences in the selected re-
gions of the reference brain (Figure 2). As previously reported
in studies of HIV (Kure et al. 1990; Pomara et al. 2001), the pa-
tients with HIV+ exhibited the subtle disruption of white matter
structural integrity in the internal capsule and inferior longitudi-
nal fasciculus. Our studies based on diffusion tensors thus seem

to confirm these earlier results obtained with FA values (Pomara
et al. 2001). We also picked two voxels and presented their dif-
fusion tensors using an ellipsoid representation (Figure 3). We
observed significant differences between HIV+ subjects and
healthy controls (Figure 3a) and observed different age trends
between HIV+ subjects and healthy controls (Figure 3b).

5. DISCUSSION

We have developed a general statistical framework for an
intrinsic regression model of positive-definite matrices as re-
sponses in a Riemannian manifold and their association with a
set of covariates, such as age and gender, in Euclidean space.
The intrinsic regression model is based on the first moment of
imaging measures and therefore it avoids any parametric as-
sumptions regarding SPD matrices. We have proposed several

Figure 3. Ellipsoid representation of diffusion tensors from two voxels to illustrate significant effects of diagnosis and age. Panel (a): testing
diagnosis effect. Panel (b): testing age effect.
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link functions to map covariates in Euclidean space to positive-
definite matrices in the Riemannian manifold Sym+(m). We
have developed an annealing optimization algorithm to search
for the ILSE of β . The test procedure based on the resam-
pling method not only accounts for multiple comparisons across
the entire region of interest under investigation, but it also as-
ymptotically preserves the dependence structure among the test
statistics. Our simulation studies have demonstrated that the
methodology developed here provides relatively accurate con-
trol of the family-wise error rate.

We also note several limitations of our procedures. There is
a computational issue with the estimation procedure for com-
puting β̂ . Since Gn(β) is generally not concave and can have
many local minima, the annealing optimization algorithm pro-
posed here cannot guarantee to locating the global minimum β̂
of Gn(β) for arbitrary link function. More advanced optimiza-
tion algorithms are needed for more complex link functions.
Our test procedure based on Wn,D and the resampling method
performs reasonably well for relatively larger sample sizes, say
100. However, further improvement on controlling the family-
wise error rates is needed. We may either use other compu-
tationally extensive methods, such as permutation method, in
order to achieve better control of the family-wise error rates,
or use other multiple comparison procedures, such as the false
discovery rate.

Many issues still merit further research. One major issue is
to develop diagnostic measures for assessing the influence of
individual observations in semiparametric regression for SPD
matrices. Another major issue is to construct goodness-of-fit
statistics for testing possible misspecification in (7). Moreover,
it is of interest to develop nonparametric regression methods
for SPD matrices (Fan and Gijbels 1996). We will study these
issues in our future work.

SUPPLEMENTAL MATERIALS

Supplemental materials include assumptions, proofs of The-
orems 1 and 2, and a figure for significance testing of age ef-
fects.

[Received February 2008. Revised February 2009.]
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