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FRATS: Functional Regression Analysis
of DTI Tract Statistics

Hongtu Zhu*, Martin Styner, Niansheng Tang, Zhexing Liu, Weili Lin, and John H. Gilmore

Abstract—Diffusion tensor imaging (DTI) provides important
information on the structure of white matter fiber bundles as well
as detailed tissue properties along these fiber bundles in vivo. This
paper presents a functional regression framework, called FRATS,
for the analysis of multiple diffusion properties along fiber bundle
as functions in an infinite dimensional space and their association
with a set of covariates of interest, such as age, diagnostic status
and gender, in real applications. The functional regression frame-
work consists of four integrated components: the local polynomial
kernel method for smoothing multiple diffusion properties along
individual fiber bundles, a functional linear model for character-
izing the association between fiber bundle diffusion properties and
a set of covariates, a global test statistic for testing hypotheses of
interest, and a resampling method for approximating the p-value
of the global test statistic. The proposed methodology is applied
to characterizing the development of five diffusion properties in-
cluding fractional anisotropy, mean diffusivity, and the three eigen-
values of diffusion tensor along the splenium of the corpus callosum
tract and the right internal capsule tract in a clinical study of neu-
rodevelopment. Significant age and gestational age effects on the
five diffusion properties were found in both tracts. The resulting
analysis pipeline can be used for understanding normal brain de-
velopment, the neural bases of neuropsychiatric disorders, and the
joint effects of environmental and genetic factors on white matter
fiber bundles.

Index Terms—Diffusion tensor imaging, fiber bundle, functional
regression, global test statistic, registration.

1. INTRODUCTION

ATER molecules in the human brain diffuse preferen-
W tially along the major axis of white matter fiber bun-
dles. Thus, diffusion tensor imaging (DTI), which can track the
effective diffusion of water in the human brain in vivo, is used
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to accurately map in vivo the structure and orientation of fiber
tracts in the white matter of the brain [1], [2]. The directional
dependence of water diffusion in each voxel can be character-
ized by a matrix, called a diffusion tensor (DT), and the de-
gree of diffusivity can be quantified by using the three eigen-
value-eigenvector pairs of DT and its related parameters, such
as fractional anistropy (FA) [3]-[6]. There has been a wealth
of neuroimaging studies using a set of water diffusion related
parameters including FA, mean diffusivity (MD), and the three
eigenvalues of diffusion tensor as a marker for white matter tract
maturation and integrity found in [7]-[10], and many others.
Analyzing these water diffusion related parameters across sub-
jects requires specific statistical methods for the group analysis
of diffusion imaging data.

In the current literature, three major approaches to the group
analysis of diffusion imaging data are region-of-interest (ROI)
analysis, voxel based analysis, and fiber tract based analysis
[11]-[13]. The region-of-interest (ROI) method used in some
neuroimaging studies [14], [15] primarily averages diffusion
properties in some manually drawn ROIs for each subject and
then creates a single statistic per ROI [13]. Some major draw-
backs of ROl analysis are the difficulty in identifying meaningful
ROIs, particularly the long curved structures common in fiber
tracts, the instability of statistical results obtained from ROI
analysis, and the partial volume effect in relative large ROIs.
The ROI method is also based on a stringent assumption that
diffusion properties in all voxels of the same ROI are essentially
homogeneous, which is largely false for DTL.

Voxel based analysis is used more commonly than ROI
analysis in neuroimaging studies [16]-[19]. The first step
involves fitting a statistical model to the smoothed and regis-
tered diffusion properties imaging data from multiple subjects
at each voxel to generate a parametric map of test statistics
(or p-values). The second step is to correct for the multiple
comparisons across the many voxels of the imaging volume
[20]-[22]. It suffers from issues of alignment quality and the
arbitrary choice of smoothing extent [11], [20], [23], [24]. As
shown in [24], the final results of voxel-based analysis can
strongly depend on the amount of smoothing in the smoothed
diffusion imaging data.

With the drawbacks mentioned of ROI and voxel based
analysis, there is a growing interest in the DTI literature in de-
veloping fiber tract based analysis of diffusion properties, such
as eigenvalues and fractional anisotropy (FA) values [11], [12],
[25], [26]. For instance, Smith et al. develop a tract-based spatial
statistics framework for constructing local diffusion proper-
ties along the white matter skeleton followed by performing
pointwise hypothesis tests on the skeleton [11]. Yushkevich and
coauthors propose a model-based framework for the statistical
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analysis of diffusion properties on the medial manifolds of fiber
tracts followed by testing pointwise hypotheses on the medial
manifolds [25]. Similar to the work proposed in this paper,
Goodlett et al. propose to use a functional data analysis method
to compare a univariate diffusion property, such as fractional
anisotropy, across two (or more) populations for a single hypoth-
esis test per tract [26]. Their method is limited to a univariate
diffusion property and cannot control for other covariates of
interest, such as age, gender, and behavioral variables. More-
over, the permutation test and the Hotelling 7' statistic used in
[26] may be statistically oversensitive, because only the data in
the reduced principal component analysis space are permuted.
Statistically, such a procedure, which ignores substantial noise
in the original data, can lead to misleading results.

What these three methods do not account for is the compar-
ison of fiber bundle diffusion properties across groups and the
development of fiber bundle diffusion properties along time,
while controlling for other covariates of interest, such as gender
[11], [14], [16]-[19]. Making these comparisons requires a
regression modeling framework for the analysis of fiber bundle
diffusion properties and a set of covariates of interest, such as
age, diagnostic status, and gender. This paper presents a func-
tional regression analysis of DTT tract statistics, called FRATS,
for modeling the relationship between fiber bundle diffusion
properties and covariates of interest. Compared with [26] and
other existing literature, there are four methodological contribu-
tions in this paper. First, the local polynomial kernel method is
used to regularize multiple diffusion properties along individual
fiber bundles. Second, a functional linear model is developed
to characterize the association between fiber bundle diffusion
properties and any covariate of interest. Third, a global test
statistic is proposed for testing hypothesis of interest. Fourth, a
resampling method is developed for estimating the p-value of
the global test statistic. The proposed methodology is used to
characterize the development of five diffusion properties along
the splenium and right internal capsule tracts in a clinical study
of neurodevelopment in the University of North Carolina at
Chapel Hill.

II. METHODS

This paper introduces a set of statistical tools for the group
analysis of fiber bundle diffusion properties while control-
ling for a set of covariates of interest. Comparing diffusion
properties in populations of DTIs requires imaging methods
for establishing correspondence among regions of anatomy in
DTIs. For this purpose, we use the DTI atlas building methods
proposed in [26], which are included here for completion. The
focus of this paper is to develop the functional regression model
pipeline, called FRATS, for assessing the association between
fiber bundle diffusion properties and covariates of interest.

A. DTI Atlas Building

Before applying FRATS, a quality control pipeline is applied
to each of the subjects’ diffusion weighted images (DWIs)
to check if the DWIs contain large slice brightness artifacts,
intra-gradient Venetian blind artifacts, and motion artifacts
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using DTIPrep.! Skull stripping is then performed automati-
cally via a brain mask computed from both the nondiffusion
weighted baseline image and isotropic diffusion weighted
image using a free software itkEMS.2 Masking out the nonbrain
tissues stabilizes the subsequent DTI estimation and registra-
tion step. Diffusion tensors are estimated for each subject from
a series of cleaned diffusion weighted images using a weighted
least square tensor estimation [2], [27].

After DTT estimation, registration occurs and its accuracy is
crucial for identifying meaningful group differences. We use a
nonlinear fluid deformation based high-dimensional, unbiased
atlas computation method to carry out a large deformation non-
linear registration [28]. The atlas building procedure is initial-
ized by an affine registration and followed by a nonlinear reg-
istration of a feature image which is sensitive to the geometry
of white matter. Further reference of the DTI atlas building
procedure has been described in [26]. Then, we warp each of
the tensor images into the unbiased space and reorient them
using the finite strain approximation proposed by [29] to get the
aligned DTIs. After averaging all the registered DTIs, a study
specific unbiased DTI atlas is created. The tensor warping and
averaging are performed using a novel Log-Euclidean geom-
etry [30].

Major fiber bundles are tracked in the atlas space within 3D
Slicer.3 First, ROIs are drawn with the Editor module and then
fibers are tracked using a stream line method with the Tractog-
raphy module. Usually, the fibers directly generated in this way
contain some fibers not belonging to the bundle that we are inter-
ested in due to either the noise in DTI data or not proper ROI de-
lineation. We use FiberViewer to visualize and clean the fibers.
Tractography of atlas fiber bundles are more reliable than indi-
vidual ones because of the improved signal-to-noise ratio of the
atlas.

With the fiber bundles in atlas space, each subject’s DTI data
is transformed into the atlas space. When transforming the dif-
fusion properties from native space to the atlas space, tri-linear
interpolation is used to interpolate diffusion properties from the
native space. Finally, we get a set of individual tracts with cor-
responding geometry but varying diffusion properties. Within
FiberViewer, a cutting plane is first placed perpendicular to the
fibers at a location where the fibers are organized neatly to de-
fine the origin of arc length. The diffusion properties along fiber
tracts are then measured and plotted as functions of arc length.
Using FiberViewer, these plots from each subject are generated.
This allows us to conduct a group comparison analysis of the
along-bundle tensor properties. Except for 3D Slicer, all DTI
tools and itkEMS are part of the open source UNC NeuroLib
software repository.!

B. FRATS: Nonparametric Model

After spatial normalization of tensor images, we propose to
use a functional regression model to analyze diffusion proper-
ties along the same fiber bundle from multiple subjects. FRATS
consists of four major components: a regularization of individual

Thttp://www.ia.unc.edu/dev
Zhttp://www.ia.unc.edu/dev/download/itkems

3http://www.slicer.org
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Fig. 1. A schematic overview of FRATS: a nonparametric model for regularizing individual tracts, a functional linear model, a global test statistic for hypothesis
testing, and a resampling method for estimating the p-value of the global test statistic.

tracts, a functional linear model, a global test statistic for hypoth-
esis testing, and a resampling method for estimating the p-value
of the global test statistic. A schematic overview of FRATS is in
Fig. 1. We describe each of these components in detail below.

To regularize individual tracts, we develop a nonparametric
model for multiple diffusion properties (e.g., FA) along the same
fiber bundle as a smooth function of arc length from each subject
as follows. For the ¢th subject, we consider a m X 1 vector of
diffusion properties, denoted by y; ; = (ij1,---,Yijm)"»and
its associated arc length s; for the jth location grid point on the
fiber bundle for j = 1,...,Lgand ¢ = 1,...,n, where Ly and
n denote the numbers of grid points and subjects, respectively.
The nonparametric model is given by

yij = fi(sj) + € js (H
where £;(s) = (fi1(s),..., fim(s))T is an mx 1 vector of
continuous functions with second-order continuous derivative,
E[yi’j|fi(8j)] = fi(Sj), and COV[yiyj|fi(Sj)] = Z(S]’). Our aim
is to reconstruct the continuous function vector f;(s) based on
observed fiber bundle diffusion properties.

To simultaneously construct all individual function vec-
tors f;(s), we develop an adaptive local polynomial kernel
smoothing technique [31]-[36]. Specifically, using Taylor’s
expansion, we can expand f;(s;) at s to obtain

£i(s;) = fi(s) + £i(s)(s; — 5) = Asz;, )

where z; = (1,5; — 5)” and A; = [f;(s) fi(s)] is an mx 2
matrix with f;(s) = dfi(s)/ds. We develop an algorithm to
estimate A; as follows.

» Step (1.1) is to construct an initial estimate of f;(s) for
each ¢. Let a;,;, be the kth row of A; and K (-) be a kernel
function, such as the Gaussian, Epanechnikov, or uniform
kernels [31]. Without loss of generality, we assume that
the kernel function K'(-) is always a symmetric probability
density function. Throughout the paper, we take K (t) =
0.75(1 —t?)1(|t| < 1), where 1(-) is an indicator function.
For each £ and a fixed bandwidth h;,, we estimate a;.j, by
minimizing an objective function given by

Lo
Y (ijk — alyzi) K (55— 9),

J=1

where K, () = K(-/hi)/hi is a rescaled kernel func-

tion. With some calculation, it can be shown that
—-1

(€)

Lo Ly
i = | Y 2 Kn (s; =)z | Y Kn(s; = 8)2¥ij k-
=1 j=1

“)

Lete; o = (1,0)7. Then, since a;.x = (fix(s), fir(s))7T,
fi.x(s) can be estimated by

Lo
fin(s) = el rap, = Zng (85 = 8, 8)Yijk (%)
Jj=1
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where K i () are the empirical equivalent kernels [31].

Thus, fé,k = (ft (s )-~--fa e )T = SikYioks
where yi.r = (Yiths---»YiLok)' and S;p is the

smoother matrix for the kth measurement of the sth sub-
ject. For each k, we pool the data from all n subjects and
select the optimal bandwidth hj, denoted by hé <)7pf’ y
minimizing the generalized cross-validation score given

by

GCVy(hg) =

ZZ ULJ, ltr J)]) ) (6)

=1 j=1

Based on the optimal lAL,(:’())pt, we can estimate f; 5 (s) for
all <.

* Step (1.2) is to construct an estimator of the covariance
matrix ¥(s;) at s;. Specifically, we consider the unbiased
sample covariance matrix at s; given by

n

(n—m)™"Y [yi; — fi(s;)]%* (7

=1

where f;(s) = (fi1(8),-- ., fim(s ))" anda®? = aa” for
any vector a. It can be shown that E(sj) converges to the
true X(s,) in probability as both n and Lo go to infinity.

* Step (1.3) is to compute an adaptive estimator of f;(s) for
all 4 using the initial results from Steps (1.1) and (1.2). For
all k£ and a fixed bandwidth h, we estimate A; by mini-
mizing an objective function given by

X(sy) =

Lo

Z(YU A, ZJ)

i=1

(s5)” Az )Kp(sj—s). (8)

Yyij —

Let Z; = block diagonal(z? .,z ) beanm x 2m

z] .zl ..
matrix and B; = (aj, ... ,agjm)T It can be shown that
-1
Lg
Bi= |>_ Ku(sj — 5)Z]%(s;) "',
j=1
Lo
XY Ki(sj — 9)Z7%(s;) yijn (9)
=1

which leads to a new estimator of f; x(s), denoted by
fi,k(s)scc for each ¢ and k. Let S’iyk be the smoother
matrix for the kth measurement of the ith subject such
that £55° = (fir(51) ., fin(52,)°)" = Sinyiok
We pool the data from all n subjects and m measurements
and select the optimal bandwidth h, denoted by hqpy,
by minimizing the generalized cross-validation score,
denoted by GCV(h), given by

8 s = 80 v =]
i=1 j=1 n — n(ng)_l 3 tr(Si )
k=1
where (s )3 = (fia(s)ee, ..., fi,m(s)“"“)T. Based on

the optimal hopt, we can estimate f; 1 (s)%° for all ¢ and k.
Similar to the arguments in [35], it can be shown that when
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Y(s) varies across s, ﬁ,k(s)sec based on the optimal }Azopt
is more accurate than ka(s) obtained from Step (1.1).

+ Step (1.4) is to estimate the mean function f(s) and the
covariance function I'(s, t) of f;(s). Specifically, following
[34], [36], we can estimate f(s) and I'(s, ) by using their
empirical counterparts of the estimated f;(s)*° as

ﬂ@:mjiﬂﬁﬂ (11)
and -
D(s,t) =n=1 ) [fi(s)™ — £(s)][E:(t) — £(1)]". (12)

The diagonal of I'(s, s) reflects the variance of f;(s) at the
location s.

C. FRATS: Functional Linear Model

We develop a functional linear model to characterize the re-
lationship between all diffusion properties along fiber tracts and
a set of covariates of interest, such as age, group, and gender.
We assume that

fi(s) = B(s)x; + ni(s),

where B(s) is a m x p matrix of functions of s, x; is a px 1
vector of covariates of interest, and 7, (s) satisfies E[n;(s)|x;] =
0 and Cov(n;(s),n:(t)|xi;] = I';(s,t). B(s) characterizes the
association between fiber bundle diffusion properties and the
covariates of interest x;.

As an illustration, in our clinical study on early brain devel-
opment, we are interested in studying the evolution of the three
eigenvalues \; of diffusion tensor (A\; > Ao > A3) along two
selected fiber tracts in 128 healthy pediatric subjects [Fig. 2(a)
and Fig. 5(a)]. See clinical data and results section for details.
We consider a functional linear model of three eigenvalues along
a specific tract as follows:

fi,1(s) = (B11(s), Br2(s), B13(s), Bra(s))xi + mir(s)
fz 2(5) (B21(5), Ba2(8), B23(5), Baa(s))Xi + niz(s)
fi3(s)=(Bs1(s), B32(s), P33(s), B3a(s))xi+mis(s) (14)

where f; 1(-) equals the smoothed A; curve from the ith sub-
ject for k = 1,2, 3, and x; = (1, g;, Gage;, age;)T, in which
g; and Gage, denote gender and gestational age, respectively.
Moreover, gestational age is the age of a newborn infant, both
gestational age and age are continuous covariates, and gender is
a discrete covariate. In this case, m = 3, B(s) = (Bx(s)) is a
3 x 4 matrix, and x; = (1,g;, Gage;, age;)T .

We develop an estimation algorithm to estimate B(s) and
Iy (s,t) as follows.

* Step (2.1) is to estimate B(s). Let By/(s) be the kth row of
B(s). Then, based on the estimated function vectors f;(s),
we calculate the least-squares estimator of B(s), denoted
by B(s), by minimizing an objective function given by

Z [f sec _

i=1,....n, (13)

B(s)x:]T[fi(s)™° = B(s)xi].  (15)
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Spegiﬁcally, the least-squares estimator of By (s), denoted
by Bi(s), is given by

n -1 n
:(2@2) S e
1=1 1=1

fork=1,...,m

* Step (2.2) is to estimate I',(s,?). Let #);(s) = £;(s)5ec —
B(s)x;. Then, the covariance matrix T’ n(s,t) can be esti-
mated by

I, (s,t) =

Z 77t Th

The covariance matrix I'; (s, t) characterizes the variation
of 7;(s), which is different from I'(s, t).

To carry out statistical inference on B(s), we need
some asymptotic results for B(s). Let vec(B(s)) =
(B1(s)T, ..., Bn(s)T)T. Theoretically, following the ar-
guments in [36], it can be shown that under some regularity
conditions,

Valvee(B(s)) ~vee(B(s))+0

where —Z% denotes the convergence in distribution and
GP(0,T'p) is a Gaussian process with mean zero and co-

7)

( opt)] _)L GP(O FB) (18)

variance function T'p(s,t) = T,(s,t) ® Q%', in which
® denotes the Kronecker product of two matrices and
Qy = limpoeon 1Y, x?z. The asymptotic result in

(18) ensures the validity of constructing the global test statistic
detailed below.

D. FRATS: Global Test Statistic

We develop a global test statistic to test linear hypotheses of
B(s) in order to answer various scientific questions involving a
comparison of fiber bundle diffusion properties along fiber bun-
dles across two (or more) diagnostic groups and the develop-
ment of fiber bundle diffusion properties along time. We can
formulate these questions as linear hypotheses of B(s) as fol-
lows:

Hy:Cvec(B(s)) =bg(s) for all s (19)

versus

Hy:Cvec(B(s)) #bg(s)

where C is a7 X mp matrix of full row rank and by(s) is a given
rX 1 vector of functions.

As an illustration, we are interested in testing the age effect
on the evolution of the three eigenvalues of the diffusion tenors
along the two selected fiber tracts in 128 healthy pediatric sub-
jects in our clinical study on early brain development. Statisti-
cally, for model (1), testing the age effect can be formularized
as follows:

HQ : ,814 (S)
versus

(20)

= [Ba4(s) = B34(s) = 0 for all s

Hy :14(s) # 0 or Bau(s) # 0 or Bza(s) # 0.
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In this case, we have

0 001 0 O0O0OO0OO0OO0OTO0OTP O
C=(0 000 0O0O0OT1TO0OTUO0OU OO
0 000 O0OO0OO0OTOOO0OT 01
and by (s) = (0,0,0)T for all s. The use of multiple diffusion

properties in model (13) allows us to compare different func-
tions in B(s) associated with different diffusion properties. For
instance, suppose that we want to test

Hg . ,[314(3)

In this case, we have

= 524(8) for all s vs. Hl : ,[314(8) ;é 524(8).

C=(0 001 000 100 0 0)

and by (s) = (0) for all s.
We test the null hypothesis Hy : Cvec(B(s))
a global test statistic S,, defined by

= by(s) using

Sp = n/FO d(s)T[C(T, (s, s) © Q3HCTId(s)ds, (21)
0

where 0y = n~! S xP%d(s) = Cvec(B(s))—bo(s),and
Fy is the whole arc length of a specific fiber bundle. In order to
use S, as a test statistic, we need an asymptotic result. Specif-
ically, similar to the arguments in [36], we can show that under
some conditions and Hy, v/nd(s) and S,, converge weakly to
N(0,C(T,(s,5) ® Q3")CT) and a weighted x? distribution,
respectively, as n — o0.

In addition, at a given grid point s; on a specific tract, we
can also test the local null hypothesis Hy(s;) : Cvec(B(s;)) =
by(s;) using a local test statistic S,,(s;) defined by

Su(s;) = nd(5,)T[C(Ty (5;,5,) @ x)CTId(s)). @2)
Under some conditions and Ho(s;), /nd(s;) and S,(s;)
converge weakly to N(0,C([',(s;,5;) ® Q3')CT) and a
weighted x? distribution with r degrees of freedom, respec-
tively, as n — oo.

E. FRATS: Resampling Method

We develop a resampling method (or wild bootstrap method)
to approximate the p-value of .S,, [37], [38]. The resampling
method has four key steps as follows. R
» Step (3.1): Fit the functional linear model f;(s) =
B(s)x; + ni(s), ©=1,...,n, under the null hypothesm
Hy, which yields B*(s) and 1( ) = £i(s) — B*(s)x;.

* Step (3.2): Generate a random sample T(g ) froma N (0,1)
generator for i = 1,...,n and then construct fi(s)9) =
B*(s)x; +’T<g) 75 (s). Then, based on f;(s)(9), we calculate

-1,
)T = (Z X®2> Y oxfin(9) (23
i=1

for k = 1,...,m, where Bi(s)@T and f;;(5)@ are,
respectively, the kth row of B(s)) and f;(s)). Finally,
letd(s)(®) = Cvec(B(s)(?)—bg(s), we compute S =
nfy* ds)PTOy(s.5) ©  OF)CTI () ds
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Fig. 2. Splenium tract and diffusion properties along the splenium tract: (a) the
splenium tract extracted from the tensor atlas with color representing mean FA

value; (b) FA; (c) MD; (d) Aq; (e) Az; (f) As. The diffusion properties in (b)—(f)
are sampled along the atlas-normalized arc length for all 128 subjects.
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Fig. 3. Simulation study: Type I and Type II error rates. Rejection rates of .S,
based on the resampling method are calculated at five different values of ¢ for
sample sizes of 64, 128 subjects at the 5% (green) and 1% (red) significance
levels: (a) n = 128; (b) n = 64.
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Fig. 4. Results from the analysis of FA and MD on the splenium tract: recon-
structed curves f; (s)** for FA in panel (a) and MD in panel (b); (c) estimated
correlation between FA and MD along the tract; estimated covariance matrices
f‘(s, t) for FA in panel (d) and MD in panel (e); (f) estimated regression coef-
ficient functions for FA: B11(s) for intercept (blue), B12(s) for gender (red),
B13(s) for gestational age (green), and 314 (s) for age (black).

and S,(s5;)0 = nd(s)DT[C(Iy(s5,8,) ©
OHCT7d(s;)9) for j = 1,..., L.
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—log,,(p) values of test statistics S,,(s;) for testing gender effect in panel
(d), gestational age effect in panel (e), and age effect in panel (f) on MD.

e Step (3.3): Repeat Step (3.2) G times to obtain {S}ﬂ,?nax =
max;<j<r, Sn(s;)9 : g =1,...,G} and calculate

G
p(s;) =G ! Z 1(Saxe > Sn(s;))

g=1

for each s;. The p(s;) is the corrected p-value at the loca-
tion s;.

» Step (3.4): Repeat Step (3.2) G times to obtain {S,(Lg) 19 =
1,...,G} and calculate

G
p=G7' Y 1(SY > 8,).

g=1

If p is smaller than a pre-specified value o, say 0.05, then
we reject the null hypothesis Hy.

We note several advantages of using the resampling method in
the above test procedure. Computationally, the above procedure
only requires the repeated calculation of B,(Cg ) and Sv(zg ). Thus,
because computing B,(Cg) is very fast, the proposed test pro-
cedure is computationally efficient. The proposed resampling
method also performs better than parametric bootstrap. Specifi-
cally, the parametric bootstrap requires parametric assumptions
for n;(s). Moreover, for functional linear model (13), permuta-
tion method is not directly applicable without very strong as-
sumption such as complete exchangeability.

FE. Monte Carlo Simulations

We conducted a set of Monte Carlo simulations to evaluate
the Type I and II error rates of the global test statistic S,, based
on the resampling method. We simulated FA and MD measures
along the right internal capsule tract [Fig. 7(a)] obtained from
our clinical data according to

(FA;(s;), MD;(s;))"

=(fin(s5); fia(s;)" + €
fi1(s) = (B11(s), Br2(s), B13(s), f1a(s))xi +mi1(s)
fi2(8) = (B21(5), Ba2(5), F23(8), Baa(s))xi + Miz(s)
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Fig. 6. Results from the analysis of the three eigenvalues of diffusion tensor
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gender effect in panel (a), gestational age effect in panel (b), and age effect in
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and A3 in panel (d); scatter plots of Ay (red), A2 (blue), and A3 (green) against
gestational age and age in panels (e) and (f), respectively.
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Fig. 7. Right internal capsule tract and diffusion properties along the tract: (a)
the right internal capsule tract extracted from the tensor atlas with color repre-
senting mean FA value; (b) FA; (c) MD; (d) Aq; (e) Aa; (f) Az. The diffusion
properties in panels (b)—(f) are sampled along the atlas-normalized arc length
for all 128 subjects.

where x; = (L, g;, Gage;,age;)”, mi(s) = (nia(s),mia(s))"
is a 2 x 1 vector of Gaussian process with zero mean and co-
variance matrix I';(s,?) and ¢; ; is a 2 X 1 vector of Gaussian
random variables with zero mean and covariance matrix X(s;).
To mimic imaging data in practice, we used FA and MD mea-
sures along the right internal capsule tract from the 128 sub-
jects in our clinical data to estimate il(sj) of X(s;) via (7),
B(s) of B(s) via (16), and fn(s,t) via (17). Then, except for
(B12(s), B22(s)) for all s, we fixed all other parameters at their
values obtained from our clirAlical data, whereas we assumed
(Bra(s), Baz(s)) = c(Pr2(s), Paz(s)), where c is a scalar speci-
fied below and ((12(s), B322(s)) were estimators obtained from
our clinical data.

We tested the hypotheses Hy : $12(s) = [a22(s) = 0 for all
s along the right internal capsule tract against Hy : B12(s) # 0
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or (B22(s) # O for at least a s on the tract. We assumed ¢ = 0
to assess the Type I error rates for the global test statistic, and
then we assumed ¢ = 0.1, 0.2, 0.3, and 0.4 to examine the Type
II error rates for .S,,. In both cases,

01 000 O0 OO 0
€= <0 000010 0) and bo(s) = <0>
for all s. We setn = 128 and 64. For n = 128, we used the same
values of age, gestational age, and gender from all 128 subjects
in our clinical data. For n = 64, we randomly chose 32 males
and 32 females from our clinical data and used their values of
age, gestational age, and gender to simulate the values of FA

and MD along the right internal capsule tract.

For each simulation, the significance levels were set at & =
5% and 1%, and 1,000 replications were used to estimate the re-
jection rates. For a fixed «, if the Type I rejection rate is smaller
than «, then the test is conservative, whereas if the Type I rejec-

tion rate is greater than «, then the test is anticonservative, or
liberal.

G. Clinical Data

This study was approved by the Institute Review Board of
the University of North Carolina at Chapel Hill. A total of
128 healthy full-term subjects (75 M and 53 F) during the
first year of age were recruited and written informed consent
was obtained from their parents before imaging acquisition.
The subjects were taken from a larger study designated to
investigating early brain development at our institution. A total
of 128 neonates with a mean postnatal age of 25 4+ 17.9 days
(range: 9-144 days) were included in this study. Efforts were
made to ensure the subjects slept comfortably inside the MR
scanner, and thus none of the subjects was sedated during
imaging session. All subjects were fed and calmed to sleep on
a warm blanket with proper ear protection.

All images were acquired on a 3 T Allegra head only MR
system (Siemens Medical Inc., Erlangen, Germany) with a
maximal gradient strength of 40 mT/m and a maximal slew
rate of 400 mT/(m - ms). A single shot EPI DTI sequence
(TR/TE = 5400/73 ms) with eddy current compensation was
used to obtain DTI images. Diffusion gradients with a b-value
of 1000 s/mm? were applied in six noncollinear directions,
(1,0,1), (-1,0,1), (0,1,1), (0,1,—1), (1,1,0), and (—1,1,0).
The reference scan (b = 0) was also acquired for the construc-
tion of diffusion tensor matrices. Contiguous slices with slice
thickness of 2 mm were scanned to cover the whole brain. The
voxel resolution was isotropic 2 mm, and the in-plane field of
view was 256 mm in both directions. A total of five scans were
acquired and averaged to improve the signal-to-noise ratio of
the images.

A weighted least square estimation method was used to con-
struct the diffusion tensors [2], [27]. Then the image processing
steps in the DTI atlas building were used to process all 128 DTI
data sets and compute diffusion properties along all fiber tracts
of interest. For the sake of space, we chose two tracts of interest
including the splenium of the corpus callosum tract and the right
internal capsule tract (Figs. 2(a) and 7(a)) and then computed
fractional anistropy (FA), mean diffusivity (MD), and the three
eigenvalues of the diffusion tensors, denoted by A\; > Ay > A3,
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at each grid point on both tracts for each of the 128 subjects.
FA denotes the inhomogeneous extent of local barriers to water
diffusion, while MD measures the averaged magnitude of local
water diffusion. The three eigenvalues of diffusion tensor may,
respectively, reflect the magnitude of water diffusivity along and
perpendicular to the long axis of white matter fibers [39].

We applied FRATS to the joint analysis of FA and MD values
along the splenium tract as follows. We fitted the functional
linear model (13) to these smoothed FA and MD functions from
all 128 subjects, in which x; = (1, g;, Gage;, age;)” and m =
2, and then we used (16) to estimate the function of regression
coefficient vector f?(s). Secondly, we constructed the global
test statistic S,, to test the effects of all the three covariates for
FA alone, MD alone, and joint FA and MD, respectively, and
performed hypothesis testing on the whole splenium tract. The
p-value of S,, was approximated using the resampling method
with G = 10, 000. Based on the significant results for MD, we
further analyzed the three eigenvalues of diffusion tensors along
the splenium tract using the same steps.

Similar to the analysis of the splenium tract, we also applied
FRAST to the analysis of FA and MD values along the right in-
ternal capsule tract. Then, we fitted the functional linear model
(13) to these smoothed FA and MD functions from all 128 sub-
jects, in which x; = (1, g;, Gage;, age;)T and m = 2. We per-
formed formal hypothesis testings in order to examine the ef-
fects of gender, gestational age, and age on FA and MD values
along the right internal capsule tract. We further analyzed the
three eigenvalues of diffusion tensors along the right internal
capsule tract.

III. RESULTS

A. Monte Carlo Simulations

Overall, the rejection rates for S,, based on the resampling
method were accurate for all sample sizes (n = 64, or 128) at
both significance levels (o = 0.01 or 0.05) [Fig. 3(a) and (b)].
Consistent with our expectations, the statistical power for re-
jecting the null hypothesis increased with the sample size.

B. Clinical Data: Splenium Tract

We used the adaptive local polynomial kernel smoothing
technique to simultaneously smooth FA and MD function vec-
tors for each of 128 subjects, which leads to the smoothed curves
[Fig. 4(a) and (b)]. We computed the sample covariance matrix
and obtained correlation coefficient between FA and MD at
each grid point. We observed negative correlations at most grid
points [Fig. 4(c)]. Based on the smoothed FA and MD functions,
we estimated their mean functions and their covariance func-
tions using (11) and (12) [Fig. 4(d) and (e)]. Then, we fitted the
functional linear model (13) to the smoothed FA and MD func-
tions from all 128 subjects, in which x; = (1, g;, Gage;, age;)”
and m = 2. The elements of B(s) corresponding to FA are
shown in Fig. 4(f).

From our model, we performed formal hypothesis testings in
order to examine the effects of gender, gestational age, and age
on FA and MD values along the splenium tract. We first con-
sidered tests based on FA and MD, respectively, and performed
hypothesis testing at each grid point along the splenium tract
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TABLE I
p-VALUES OF S,, FOR TESTING THE EFFECTS OF GENDER, GESTATIONAL AGE
(GAGE), AND AGE ON THE SPLENIUM AND RIGHT INTERNAL CAPSULE TRACTS

Splenium Right internal capsule

gender  Gage age gender Gage age

FA 0.994  0.650 0404 | 0.664 0.012 0.001
MD 0.196 0.002 0072 | 0790 <10¢ <1074
(FA, MD) 0.111  0.004 0.038 | 0245 <107% <1074
A1 0212  0.006 0.105 | 0.821 0.0001 0.022
A2 0.169 0.005 0.142 | 0747 <107% <1074
A3 0.594 0.011 0.101 | 0753 <107* <10°%
(A1,A2,A3) | 0063 0004 0061 | 0298 <107% <1074

(Fig. 5). For FA alone, no significant effect of any covariate was
found, even though the —log;(p) value of S,(s) for age at
a single grid point was slightly greater than 2 [Fig. 5(c)]. For
MD alone, no significant gender effect was found [Fig. 5(d)],
whereas the effects of age and gestational age were significant
at the head and tail of the splenium tract [Fig. 5(e) and (f)].

For FA alone, no significant effects of all covariates were
found in Table I, which agrees with our previous findings based
on the local test statistics Sy, (). This indicates that the degree of
anisotropy on the splenium tract does not differ significantly be-
tween male and female groups and does not change significantly
with gestational age and age. For MD alone, we observed a sig-
nificant association between gestational age and MD and a mar-
ginal significance for age. This indicates a significant change of
the degrees of diffusivity, not the degree of anisotropy, along the
splenium tract. For joint FA and MD on the splenium tract, no
significant gender effect was found, whereas the effects of both
age and gestational age were significant.

Along the splenium tract, we observed positive correlations
among the three eigenvalues [Fig. 6(d)]. Particularly, large cor-
relations between A, and A3 along the splenium tract indicate
the small differences between A2 and A3 on the splenium tract
[Fig. 2(e) and (f)], whereas relatively weak correlations between
A1 and A3 indicate large differences between A1 and A3 along
the splenium tract [Fig. 2(d)]. Then, we fitted the functional
linear model (13) to the smoothed three eigenvalues functions
from all 128 subjects, in which x; = (1,g;, Gage;, age;)” and
m = 3.

We examined association between all covariates of interest
and all eigenvalues along the splenium tract by performing
formal hypothesis testing at each grid point. No significant
gender effect was found for all the three eigenvalues [Fig. 6(a)],
whereas significant gestational age effect was observed at the
head and tail of the splenium tract [Fig. 6(b)]. We observed
a similar association pattern between gestational age and the
three eigenvalues of DT [Fig. 6(b)]. We picked a grid point
with a significant p value of S, () and observed that the three
eigenvalues decrease with gestational age. For age, a similar
association pattern was observed for A5 and A3, whereas A\ was
significantly associated with age at the head of the splenium
tract [Fig. 6(c)].

C. Clinical Data: Right Internal Capsule Tract

We simultaneously smoothed the FA and MD function
vectors of all 128 subjects and then estimated their mean
functions [Fig. 8(a) and (d)] and their covariance functions
[Fig. 8(b) and (e)]. Then, we fitted the functional linear model



ZHU et al.: FRATS: FUNCTIONAL REGRESSION ANALYSIS OF DTI TRACT STATISTICS

FA
(a) " 7 arclength
MD
(d) ’ a"rc Ié}\gtf\ ° maré°len§°th5° e
M
[\
AL '
Mvv“ f\ \f‘v\/{

‘\f\f \

Y oN “ . N
@) " *akleigm © * )@ -

Fig. 8. Results obtained from the analysis of FA and MD on the right internal
capsule tract: the estimated mean function and covariance function for FA in
panels (a) and (b), respectively; the estimated mean function and covariance
function for MD in panels (d) and (e), respectively; (g) the correlation between
FA and MD; the — log,,(p) values of test statistics S,,(s;) for testing gesta-
tional age and age effect on FA (green), MD (blue), and (FA, MD) (red) in panels
(c) and (f), respectively; scatter plots of MD and FA measures from a selected
grid point against standardized gestational age, abbreviated as S-gestation age,
in panels (h) and (i), respectively.

(13) to the smoothed FA and MD functions from all 128
subjects, in which x; = (1, g;, Gage;, age;)” and m = 2. We
considered tests based on FA alone, MD alone, and (FA, MD),
respectively, and performed hypothesis testing at each grid
point along the right internal capsule tract [Fig. 8(c) and (f)].
No significant gender effect was found for all tests (Table I).
For FA alone, significant gestational age and age effects were
observed for the right internal capsule tract [Fig. 8(c) and (f)].
We observed negative correlations between FA and MD at most
grid points [Fig. 8(g)]. We picked a grid point with the signifi-
cant p value of S,,(s) at the significance level 5% and observed
the increasing pattern of FA with the standardized gestational
age [Fig. 8(i)]. For MD alone, significant gestational age and
age effects were found in the middle of the right internal capsule
tract [Fig. 8(f)]. We picked a grid point with the significant p
value of S, (s) and observed the decreasing pattern of MD with
the standardized gestational age [Fig. 8(h)].

We also constructed the global test statistic S,, to assess
the covariates of interest based on FA alone, MD alone, and
(FA, MD), respectively, and performed hypothesis testing
on the right internal capsule tract. The p-value of S,, was
approximated using the resampling method with G = 10 000.
The resulting p-values are reported in Table I. No significant
gender effect was found for all scenarios, which indicates no
significant difference between male and female groups. We
observed significant gestational age and age effects for both
FA and MD. Our results agree with previous DTI findings.
Current DTI studies including neonates have revealed that FA
and MD respectively increases and decreases with age. In white
matter, neonates have significantly lower anisotropy values and
significantly higher MD values compared to adults [40], [41].

We also observed positive correlations among the three eigen-
values [Fig. 9(b)]. We observed large correlation between A,
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Fig. 9. Results from the analysis of the three eigenvalues of diffusion tensor on
the right internal capsule tract: (a) the estimated mean functions for A, (red), A>
(blue), and A3 (blue); (b) correlations among A1, Az, and As; (c) scatter plot of
A1 (red), A2 (blue), and A5 (green) from a selected grid point against gestational
age; the — log, ,(p) values of test statistics .5, (s;) for testing gender effect in
panel (d), gestational age effect in panel (e), and age effect in panel (f) on A;
(red), A2 (blue), and A3 (green).

and A3 and relatively weak correlation between A; and A3. This
agrees with the small differences between Ay and A3 along the
right internal capsule tract [Fig. 7(d)—(f)] and the relatively large
differences between A1 and A3 in the middle of the right internal
capsule tract [Fig. 7(d)—(f)]. Then, we fitted the functional linear
model (13) to the smoothed three eigenvalues functions from all
128 subjects, in which x; = (1,g;, Gage;, age;)T and m = 3.
We performed formal hypothesis testings by examining the as-
sociation between all covariates of interest and the three eigen-
values along the right internal capsule tract at each grid point.
No significant gender effect was found for all the three eigen-
values [Fig. 9(d)]. Gestational age was strongly associated with
all the three eigenvalues [Fig. 9(e)]. The scatter plot at a selected
grid point shows the decreasing pattern for all eigenvalues with
the gestational age. We observed a moderate age effect on all
the three eigenvalues [Fig. 9(f)].

IV. CONCLUSION AND DISCUSSION

The contributions of our work are two folds. Technically, we
have presented a novel functional regression framework, called
FRATS, for analyzing multiple fiber bundle diffusion proper-
ties with a set of covariates of interest, such as age, diagnostic
status and gender, in real applications. FRATS can be used to
understand normal brain development, the neural bases of neu-
ropsychiatric disorders, and the joint effects of environmental
and genetic factors on white matter fiber bundles. From the ap-
plication end, FRATS is applied to characterizing the develop-
ment of diffusion properties on fiber bundles in a clinical study
of neurodevelopment. Our approach is able to reveal the com-
plex inhomogeneous spatiotemporal maturation patterns as the
apparent changes in FA, MD, and the three eigenvalues of DT.
Specifically, our results suggest that white matter maturation
patterns are different in different white matter regions.

There are still limitations that need to be addressed. First, we
have focused on the analysis of a set of water diffusion related
parameters based on diffusion tensor image rather than those
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based on high angular resolution diffusion image (HARDI), be-
cause diffusion tensor image is commonly used for character-
izing major white matter fiber bundles. In the future, we will
apply FRATS to water diffusion related parameters obtained
from HARDI [42]-[44]. Second, we have focused on tensor de-
rived univariate measures. It is also interesting to extend FRATS
to principal directions and full diffusion tensors on fiber bundles
[45]-[49]. Third, we have focused on analyzing fiber bundle dif-
fusion properties with a set of covariates. The proposed method-
ology can be readily extended to more complex fiber structures,
such as the medial manifolds of fiber tracts [25]. Fourth, we have
focused on cross-sectional studies. Extending FRATS to longi-
tudinal studies and family studies requires further research [50].

We have developed FRATS for statistically analyzing mul-
tiple diffusion properties along fiber bundle and assessing their
association with a set of covariates of interest in real applica-
tions. FRATS integrates four statistical tools for formally testing
hypothesis of interest and carrying out statistical inference in
real applications. The proposed methodology is demonstrated in
a clinical study of neurodevelopment. In this study, significant
age and gestational age effects on multiple diffusion properties
were examined and localized in two representative tracts. We
expect that this novel statistical tool will lead to new findings in
our clinical applications.
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