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SUMMARY

We develop diagnostic measures for assessing the influence of individual observations when
using empirical likelihood with general estimating equations, and we use these measures to con-
struct goodness-of-fit statistics for testing possible misspecification in the estimating equations.
Our diagnostics include case-deletion measures, local influence measures and pseudo-residuals.
Our goodness-of-fit statistics include the sum of local influence measures and the processes of
pseudo-residuals. Simulation studies are conducted to evaluate our methods, and real datasets are
analyzed to illustrate the use of our diagnostic measures and goodness-of-fit statistics.

Some key words: Diagnostic measure; Empirical likelihood; Estimating equation; Goodness-of-fit statistic; Resampling
method.

1. INTRODUCTION

Diagnostic measures such as residuals and Cook’s distance have been widely used to identify
influential observations in various regression models, such as generalized linear models (Cox
& Snell, 1968; Cook & Weisberg, 1982; Davison & Tsai, 1992; Zhu et al., 2001). Cook (1986)
proposed a general approach for assessing the local influence of a minor perturbation to a
statistical model, which has been further investigated by many authors, such as Zhu & Lee (2001)
and Critchley & Marriott (2004). In addition, classical diagnostic measures including residuals
and Cook’s distance can be used to construct goodness-of-fit statistics (Stute, 1997; Lin et al.,
2002; Zhu & Zhang, 2004). However, little has been done to extend these diagnostic approaches
to more general statistical models, and in particular to general estimating equations.

The method of general estimating equations provides a flexible framework for analyzing
independent and correlated data (Hansen, 1982; Qin & Lawless, 1994; Owen, 2001; Imbens,
2002). Methods such as the generalized method of moments and empirical likelihood have
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been implemented, and statistics have been constructed for testing possible misspecification of
the estimating equations when the number of equations exceeds the number of parameters. For
instance, Qin & Lawless (1994) applied empirical likelihood to combine the estimating equations,
to prove asymptotic efficiency of the empirical likelihood estimators and to present an empirical
likelihood ratio statistic as a goodness-of-fit statistic. Empirical likelihood has been used to
substitute for a parametric likelihood in many settings, such as survival analysis and time series
analysis (Qin & Lawless, 1994; Kitamura, 1997; Owen, 2001; Chen & Cui, 2003).

However, few diagnostic measures have been developed in the context of empirical likelihood,
even though lack of robustness to outliers has been noted by Tsao & Zhou (2001). To the best of
our knowledge, only three diagnostic measures, namely empirical likelihood displacement, length
and shape measures, have been proposed (DiCiccio & Monti, 2001; Lazar, 2005). For instance,
the empirical likelihood displacement measures the influence of an individual observation on
the estimators based on empirical likelihood. Quantifying the magnitude of those diagnostic
measures remains an open problem, and measures such as residuals and local influence have not
been formally defined.

2. AN OVERVIEW OF EMPIRICAL LIKELIHOOD FOR COMBINING ESTIMATING EQUATIONS

We assume that x1, . . . , xn are independent observations from a d-variate unknown distribution
F with a p-dimensional parameter θ = (θ1, . . . , θp)T. Without assuming a parametric form for
F , we can still infer about θ using r ( � p) functionally independent estimating functions

g(x, θ) = (g1(x, θ), . . . , gr (x, θ))T,

which satisfy the unconditional moment condition

EF {g(x, θ0)} = 0, for θ0 ∈ �, (1)

where EF denotes the expectation with respect to F . Equation (1) is often referred to as the
estimating equations or moment condition model (Hansen, 1982; Qin & Lawless, 1994; Owen,
2001; Imbens, 2002).

Example 1. Let x1 = (y1, x1,(2)), . . . , xn = (yn, xn,(2)) be independent observations from a
d-variate distribution F such that

E(yi |xi,(2)) = µ
(
xT

i,(2)β
)
, var(yi |xi,(2)) = σ 2V

{
µ

(
xT

i,(2)β
)}

, (2)

for i = 1, . . . , n, where yi = xi,(1), the expectation is taken with respect to the conditional dis-
tribution of y given x(2), θ = (β, σ 2) ∈ R p, p = d, and µ(·) and V (·) are known functions.
Following the reasoning described in Chen & Cui (2003), g(x, θ) can be chosen as(

e(x)µ′(xT
(2)β

)
xT

(2)V
{
µ

(
xT

(2)β
)}−1

,
[
e(x)2σ−4V

{
µ

(
xT

(2)β
)}−1 − σ−2]ω(

xT
(2)β

))T
, (3)

where e(x) = y − µ(xT
(2)β), µ′(xT

(2)β) = dµ(u)/du evaluated at u = xT
(2)β, and ω(xT

(2)β) is an
(r − p)-dimensional weighted function. The first (p − 1) components of g(x, θ) are associated
with the quasi-score

∂β

∫ µ(xT
(2)β)

y
(y − u)[V {µ(u)}]−1/du

and the last (r − p) components of g(x, θ) are associated with the variance structure in (2), where
∂β denotes partial differentiation with respect to β. A question of interest is to infer about θ

using (3).
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The empirical likelihood function is given by

L(F) =
n∏

i=1

d F(xi ) =
n∏

i=1

pi

(Owen, 2001; Qin & Lawless, 1994), where pi = d F(xi ) = pr(Xi = xi ). Moreover, the covari-
ance matrix for F is assumed to be nonsingular. Under condition (1), a profile empirical likelihood
ratio function for θ is defined as

L E (θ) = sup

{
n∏

i=1

pi |pi � 0,

n∑
i=1

pi = 1,

n∑
i=1

pi g(xi , θ) = 0

}
.

As shown in Qin & Lawless (1994) and Owen (2001), we have

L E (θ) =
n∏

i=1

n−1{1 + tn(θ)Tg(xi , θ)}−1

and the value of L E (θ) can be achieved by

pi (θ) = n−1{1 + tn(θ)Tg(xi , θ)}−1,

where tn(θ), an r × 1 vector, is the root of
∑n

i=1 g(xi , θ){1 + tTg(xi , θ)}−1 = 0.
A maximum empirical likelihood estimator of θ , denoted by θ̂ , can be obtained by maximizing

the empirical loglikelihood function

lE (θ) =
n∑

i=1

lE,i (θ) = −
n∑

i=1

log{1 + tn(θ)Tg(xi , θ)},

where lE,i (θ) = − log{1 + tn(θ)Tg(xi , θ)}. Qin & Lawless (1994) established the asymptotic
normality of θ̂ and t̂ = t̂n(θ̂): as n → ∞, in distribution,

√ n(θ̂ − θ0) → N {0, Cθ }, √ n(t̂ − 0) → N {0, Ct },
where the covariance matrices Cθ and Ct are given, respectively, by Cθ = (S21S−1

11 S12)−1 and
Ct = S−1

11 + S−1
11 S12S−1

22·1S21S−1
11 · In addition, we define S22·1 = −S21S−1

11 S12 and

S = S(0, θ0) =
(

S11 S12

S21 0

)
=

(
EF (g⊗2) −EF (∂θ g)T

−EF (∂θ g) 0

)
(0,θ0)

,

in which g = g(x, θ0), ∂θ g = ∂θ g(x, θ0), ∂θ denotes partial differentiation with respect to θ and
a⊗2 = aaT for any vector a.

The maximum empirical likelihood estimator also has some properties under a misspecified
model (Chen et al., 2007). Condition (1) is misspecified if EF {g(x, θ)} � 0 for all θ ∈ �. Even
though some estimating equations in (1) are misspecified, (t̂, θ̂ ) can be obtained by optimizing
the empirical likelihood function:

(t̂, θ̂ ) = arg max
θ

arg min
t

{Qn(t, θ)},

where Qn(t, θ) = −n−1 ∑n
i=1 log{1 + tTg(xi , θ)}. Under some conditions (Chen et al., 2007),

Qn(t, θ) converges to Q(t, θ) = − ∫
log{1 + tTg(x, θ)}/d F(x) almost surely (van der Vaart &

Wellner, 1996, Ch. 2·4), and (t̂, θ̂ ) converges to

(t∗, θ∗) = arg max
θ

arg min
t

{Q(t, θ)}

in probability. In particular, if condition (1) holds, then t∗ = 0 and θ∗ = θ0.
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Moreover, empirical likelihood ratio statistics have been developed for testing linear or nonlin-
ear hypotheses about θ and possible misspecification of the estimating equations under condition
(1). For instance, WE (θ0) = 2lE (θ̂) − 2lE (θ0) has a limiting chi-squared distribution and can
be used to test H0 : θ = θ0, while W1 = −2lE (θ̂), which converges weakly to a chi-squared
distribution with r − p degrees of freedom, can be used to test the assumption under (1).

3. THREE TYPES OF DIAGNOSTIC MEASURE FOR EMPIRICAL LIKELIHOOD

OF ESTIMATING EQUATIONS

3·1. Case-deletion influence measures

To quantify the effects of deleting the i th observation xi on θ̂ , we define the maximum empirical
likelihood estimators of θ for the full sample X and a subsample X[i], in which xi is deleted from X ,
respectively, as follows. For the full sample X , we define

Qn(t, θ) = n−1
n∑

i=1

�i (t, θ) = −n−1
n∑

i=1

log{1 + tTg(xi , θ)},

where �i (t, θ) = − log{1 + tTg(xi , θ)}. Thus, we can obtain θ̂ and t̂ = tn(θ̂) by jointly solving
the following equations:

Q1,n(t, θ) = ∂t Qn(t, θ) = −n−1
n∑

i=1

g(xi , θ){1 + tTg(xi , θ)}−1 = 0,

Q2,n(t, θ) = ∂θ Qn(t, θ) = −n−1
n∑

i=1

∂θ g(xi , θ)t{1 + tTg(xi , θ)}−1 = 0,

where ∂ denotes partial differentiation with respect to a parameter vector, such as t . For instance,
∂θ g(x ; θ) is a p × r matrix with (k, l)th element ∂θk gl(x ; θ). For the subsample X[i], we define
Qn[i](t, θ) as Qn[i](t, θ) = −n−1 ∑n

j=| i log{1 + tTg(x j , θ)}. Similarly to θ̂ and t̂ , we define θ̂[i]

and t̂[i] as the roots of

Q1,n[i](t, θ) = ∂t Qn[i](t, θ) = 0, Q2,n[i](t, θ) = ∂θ Qn[i](t, θ) = 0.

Following the reasoning in Cook & Weisberg (1982, Ch. 2), we introduce two case-deletion
measures to quantify the distance between the maximum empirical likelihood estimator of θ with
and without the i th observation deleted from the full sample. Cook’s distance ECDi (M) is given
by

ECDi (M) = (
θ̂[i] − θ̂

)T M
(
θ̂[i] − θ̂

)
, (4)

where M is chosen to be a positive definite matrix. For instance, M can be −∂2
θ lE (θ) evaluated

at θ̂ , where ∂2
θ represents the second-order derivative of lE (θ) with respect to θ . We use ECDi to

denote ECDi (M) with M = −∂2
θ lE (θ̂). Similar to the likelihood displacement (Cook, 1986), the

empirical likelihood displacement (Lazar, 2005) is defined by

ELDi = 2
{

lE (θ̂) − lE
(
θ̂[i]

)}
. (5)

If the values of ECDi and ELDi are large, then the i th observation is an influential point.
We can quantify the effects on θ̂ of deleting two or more observations (Cook & Weisberg,

1982). We define θ̂[I ] as the maximum empirical likelihood estimator of θ for a subsample X[I ],
in which xi for all i ∈ I are deleted from X , where I is an index set with m I observations, and
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Diagnostic measures for empirical likelihood 493

define

ECDI (M) = (
θ̂[I ] − θ̂

)T M
(
θ̂[I ] − θ̂

)
, ELDI = 2

{
lE (θ̂) − lE

(
θ̂[I ]

)}
. (6)

However, calculating case-deletion measures requires evaluating n!/{m I !(n − m I )!} cases, which
can be computationally intensive for large m I .

3·2. Local influence measures

We consider the local influence method for a case-weight perturbation ω ∈ Rn , for which the
empirical log-likelihood function lE (θ |ω) is defined by lE (θ |ω) = ∑n

i=1 ωi lE,i (θ)· In this case,
ω = ω0, defined to be an n × 1 vector with all elements equal to 1, represents no perturbation to
the empirical likelihood, because lE (θ |ω0) = lE (θ). Thus, the empirical likelihood displacement
is defined as LDE (ω) = 2[lE (θ̂) − lE {θ̂ (ω)}], where θ̂ (ω) is the maximum empirical likelihood
estimator of θ based on lE (θ |ω). Let ω(a) = ω0 + ah with ω(0) = ω0 and dω(a)/da|a=0 = h,
where h is a direction in Rn . Thus, the normal curvature of the influence graph (ωT, LDE (ω))T is
given by

Ch(ω0) = hT HLDE (ω0)h,

where

HLDE (ω0) = −2
∂2LDE {θ̂ (ω)}

∂ω∂ωT

∣∣∣∣∣
ω0

= 2�T{−∂2
θ lE (θ)

}−1
�

∣∣∣∣∣
ω0,θ̂

,

in which � = ∂2
θωLDE (θ, ω) is a p × n matrix with (k, i)th element given by ∂θk lE,i (θ).

We consider two local influence measures based on the normal curvature Ch(ω0) as follows.
Let λ1 � · · · � λp � λp+1 = · · · = λn = 0 be the ordered eigenvalues of the matrix HLDE (ω0)

and let {vm = (vm1, . . . , vmn)T : m = 1, . . . , n} be the associated orthonormal basis, that is,
HLDE (ω0)vm = λmvm . Thus, the spectral decomposition of HLDE (ω0) is given by

HLDE (ω0) =
n∑

m=1

λmvmvT
m .

The most popular local influence measures include v1, which corresponds to the largest eigenvalue
λ1, as well as Cei = ∑p

m=1 λmv2
mi , where ei is an n × 1 vector with i th component 1 and 0

otherwise. The v1 represents the most influential perturbation to the empirical likelihood function,
whereas the i th observation xi with a large Cei can be regarded as influential.

3·3. Pseudo-residuals

The pseudo-residuals are key tools for revealing departures from assumption (1). We define a
vector of pseudo-residuals for each observation, given by

Ri = (Ri,1, . . . , Ri,r )T = g(xi , θ̂ ), for i = 1, . . . , n.

The Ri can be regarded as a generalization of residuals from a class of parametric models to
general estimating equations (Cox & Snell, 1968). The values of the Ri may be used to detect
anomalous or influential observations (Cook & Weisberg, 1982). Since EF (Ri ) are close to zero
under condition (1), it is worthwhile to inspect Ri against some function of data, which may
provide an assessment of the adequacy of the estimating equations in (1). Moreover, test statistics
based on pseudo-residuals can be constructed to assess an overall goodness-of-fit, see § 4·2.

We further develop standardized pseudo-residuals. We introduce (σ 2
1 , . . . , σ 2

r ) =
diag{EF (g⊗2)} and its estimator (σ̂ 2

1 , . . . , σ̂ 2
r ), which is formally discussed in § 3·4. Then we
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define a vector of standardized pseudo-residuals as

Rs
i = (

Rs
i,1, . . . , Rs

i,r

)T = (g1(xi , θ̂)/σ̂1, . . . , gr (xi , θ̂)/σ̂r )T.

We may consider xi as an ‘outlier’ if |Rs
i, j |, for some j , exceeds a threshold, such as 3 (Cook &

Weisberg, 1982, p. 22).
We also consider an alternative definition of standardized pseudo-residuals. In some statistical

problems, such as regression, xi may have a natural partition, (xT
i,(1), xT

i,(2))
T, and we have

EF {g(xi , θ)|X(2)} = 0, for all i = 1, . . . , n,

where X(2) = (x1,(2), . . . , xn,(2)). We define (σ 2
i,1, . . . , σ

2
i,r ) = diag[EF {g(xi , θ)⊗2|X(2)}] as a

function of X(2) and θ and define its estimator (σ̂ 2
i,1, . . . , σ̂

2
i,r ), as discussed in § 3·4. Thus,

conditional on X(2), the standardized pseudo-residuals for the i th observation are defined by

Rs
(c)i = (

Rs
(c)i,1, . . . , Rs

(c)i,r

)T = (g1(xi , θ̂ )/σ̂i,1, . . . , gr (xi , θ̂ )/σ̂i,r )T. (7)

For example, consider a linear regression yi = xT
i,(2)β + σεi , where εi ∼ N (0, 1). Thus, xi has a

natural partition (yi , xT
i,(2))

T and xi,(1) = yi . If β̂ denotes the ordinary least-squares estimator of

β, we choose Ri = xi,(2)(yi − xT
i,(2)β̂) and thus

Rs
(c)i = yi − xT

i,(2)β̂

σ̂ √ (1 − hii )
(1, . . . , 1)T,

where σ̂ is a consistent estimator of σ and hii = xT
i,(2)(

∑n
j=1 x⊗2

j,(2))
−1xi,(2).

3·4. Stochastic behaviour of diagnostic measures under the correct model

For diagnostic purposes, it is desirable to obtain a one-step, computationally feasible approx-
imation of θ̂[i], because exact calculation of θ̂[i] requires running nested optimization routines
for each observation (Owen, 2001, Ch. 12). Moreover, if the number of estimating equations
r and the sample size n are relatively large, then calculating θ̂[i] exactly for each observation
can be computationally prohibitive. For instance, for some nonlinear functions µ(·) and V (·) in
Example 1, calculating θ̂ and θ̂[i] for each observation can be computationally intensive (Chen &
Cui, 2003).

We obtain the following theorems, for which the assumptions and detailed proofs can be found
in the Appendix.

PROPOSITION 1. Suppose that Assumptions A1–A3 in the Appendix and equation (1) are true.
Then

(i) the one-step approximation for θ̂[i] is

θ̂[i] = θ̂ + Op(n−1) = θ̂ − n−1S−1
22·1S21S−1

11 g(xi , θ̂ ){1 + op(1)};
(ii) the one-step approximation for t̂[i] is

t̂[i] − t̂ = Op(n−1) = −n−1(S−1
11 + S−1

11 S12S−1
22·1S21S−1

11

)
g(xi , θ̂ ){1 + op(1)}.

Proposition 1(i) and (ii), respectively, provide the one-step approximations θ̂ and t̂ , which can
be used to reduce the burden of calculating the maximum empirical likelihood estimator for each
X[i]. The matrices S11, S12 and S22·1 can be approximated by their corresponding sample means,
say S11 � n−1 ∑n

i=1 g(xi , θ̂ )⊗2. The formulae can be further generalized to measure the effects
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Diagnostic measures for empirical likelihood 495

of deleting more than one observation on θ̂ and t̂ . For instance, if the index set is I = {i, j}, then
the one-step approximations for θ̂[i, j] and t̂[i, j] are, respectively, given by

θ̂[i, j] − θ̂ = Op(n−1) = −n−1S−1
22·1S21S−1

11 {g(xi , θ̂ ) + g(x j , θ̂ )}{1 + op(1)},
t̂[i, j] − t̂ = Op(n−1) = −n−1(S−1

11 + S−1
11 S12S−1

22·1S21S−1
11

){g(xi , θ̂ ) + g(x j , θ̂ )}{1 + op(1)}.
We examine the properties of pseudo-residuals, such as their expectations. We may then develop

both formal and informal diagnostic tools for the examination of the adequacy of estimating
equations. However, without additional information about the distribution of xi , it is not feasible
to determine the joint distribution of g(xi , θ̂ ). We instead consider the expectations and variances
of pseudo-residuals as follows.

PROPOSITION 2. Suppose that Assumptions A1–A3 in the Appendix and equation (1) are true.
Then

EF [gk(xi , θ̂)] � −n−1 EF
{
∂θ gk(xi )

TS−1
22·1S21S−1

11 g(xi )
} − n−1tr

[
EF

{
∂2
θ gk(xi )

}
S−1

22·1
]

σ̂ 2
k � varF

{
gk(xi )} − 2n−1EF {gk(xi )∂θ gk(xi )

TS−1
22·1S21S−1

11 g(xi )
}

− n−1EF
{
∂θ gk(xi )

TS−1
22·1∂θ gk(xi )

}
,

for k = 1, . . . , r, where g(xi ) = g(xi , θ0) and gk(xi ) = gk(xi , θ0). Furthermore, if we consider
the standardized pseudo-residuals in (7), then

σ̂i,k � varF {gk(xi )|X(2)} − 2n−1EF
[
gk(xi )

{
∂θ gk(xi )

TS−1
22·1S21S−1

11 g(xi ) − µi,k
}|X(2)

]
+ n−1EF

[{
∂θ gk(xi )

TS−1
22·1S21S−1

11 g(xi )
}⊗2|X(2)

]
,

for k = 1, . . . , r , where µi,k = EF {∂θ gk(xi )TS−1
22·1S21S−1

11 g(xi )|X(2)}.
Proposition 2 shows that the bias of EF (Ri,k) has order n−1 under condition (1), so that Ri,k

should oscillate around 0. Therefore, if many |Ri,k | are significantly greater than zero, then one
should question whether or not all estimating functions in (1) are correctly specified. Moreover,
all submatrices of S such as S11 can be consistently estimated using those of Sn(t̂, θ̂ ).

We examine the properties of the case-deletion and local influence measures, such as their
asymptotic expansions. These properties are useful for understanding the connections among
these diagnostic measures.

THEOREM 1. If Assumptions A1–A3 in the Appendix and condition (1) are satisfied, then

Cei = 2ECDi {1 + op(1)} = 2ELDi {1 + op(1)}= − 2n−1�T
i S−1

22·1�i {1 + op(1)}
= Op(n−1), (8)

n∑
i=1

Cei = 2
n∑

i=1

ECDi {1 + op(1)} = 2
n∑

i=1

ELDi {1 + op(1)}= 2p + op(1), (9)

where �i = ∂θ lE,i (xi ; θ̂) = S21S−1
11 g(xi , θ̂ ) + op(1).

Theorem 1 extends the classical diagnostic measure from parametric models to the empirical
likelihood for estimating equations (Zhu & Zhang, 2004). Equation (8) gives a geometric interpre-
tation for the two case-deletion measures 2ECDi and 2ELDi , which are asymptotically equivalent to
the normal curvature along the direction ei . The asymptotic equivalence in (8) can be regarded as
reminiscent of the equivalence between the empirical log likelihood ratio and Wald test statistics
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within the framework of the empirical likelihood. Since the sum of the Cei’s is close to 2p and
the xi ’s are independently and identically distributed, each Cei ’s should be near their mean, 2p/n.
Thus, a point with a large Cei value may be regarded as extremely influential (Cook, 1986; Zhu
& Zhang, 2004). Similar arguments hold for ECDi and ELDi .

3·5. Stochastic behaviour of diagnostic measures under misspecified model

In this section, we evaluate the effects of misspecified estimating equations on the expectations
of pseudo-residuals and the sums of the case-deletion and local influence measures. We also
quantify the effects of deleting an observation on θ̂ under misspecified estimating equations.

We first define

S̃(t, θ) =
(

S̃11 S̃12

S̃21 S̃22

)
(t,θ )

, H̃ (t, θ) =
(

EF (a2g⊗2) EF {a2gtT∂θ g}
EF {a2(∂θ g)TtgT} EF [a2{(∂θ g)Tt}⊗2]

)
(t,θ )

,

where g = g(x, θ), a−1 = 1 + tTg(x, θ), S̃11 = EF (a2g⊗2), S̃12 = EF (a2gtT∂θ g) − EF (a∂θ g),
S̃21 = S̃T

21, and S̃22 = EF [a2{(∂θ g)Tt}⊗2] − EF (atT∂2
θ g). We use the subscript ∗ to indicate that

a vector, or a matrix, and its elements are evaluated at (t∗, θ∗). For instance, H̃∗ = H̃ (t∗, θ∗) and
S̃∗ = S̃(t∗, θ∗).

THEOREM 2. If condition (1) is misspecified and Assumption A4 in the Appendix is true, then
the following hold:

(i) EF {gk(xi , θ̂ )} � EF {gk(xi , θ∗)} = O(1) for some k;
(ii) θ̂[i] − θ̂ = Op(n−1) = −n−1 S̃−1

22·1∗�i∗{1 + op(1)},
t̂[i] − t̂ = Op(n−1) = −n−1{ai∗ S̃−1

11∗g(xi , θ∗) + S̃−1
11∗ S̃12∗ S̃−1

22·1∗�i∗
}{1 + op(1)}

where ai∗ = {1 + tT∗ g(xi , θ∗)}−1,

�i∗ = ∂θ lE,i (xi ; θ∗) = −ai {∂θ tn(θ∗)g(xi , θ∗) + ∂θ g(xi , θ∗)tn(θ∗)}
and S̃22·1∗ = S̃22∗ − S̃21∗ S̃−1

11∗ S̃12∗;

(iii)
∑n

i=1 Cei = 2
∑n

i=1 ECDi {1 + op(1)} = 2
∑n

i=1 ELDi {1 + op(1)} = λ0 + op(1), where

λ0 = tr
{

S̃−1
22·1∗

( − S̃21∗ S̃−1
11∗, Ip

)
H̃∗

( − S̃21∗ S̃−1
11∗, Ip

)T}
. (10)

Theorem 2 has some implications. Compared with O(n−1) under the correct condition (1),
Theorem 2(i) shows an order of O(1) for the bias of the pseudo-residuals under the misspecified
model. If all pseudo-residuals gk(xi , θ∗) are close to a positive, or negative, scalar for some
k, then we may suspect some misspecification in (1). Theorem 2(ii) measures the effects of
deleting an observation on the maximum empirical likelihood estimator under the misspecified
model. Theorem 2(iii) indicates that

∑n
i=1 Cei converges to λ0, which is different from 2p.

Since λ0 reduces to 2p under the corrected model,
∑n

i=1 Cei − 2p can be used to check model
misspecification; see § 4·1.

4. GOODNESS-OF-FIT STATISTICS

4·1. Goodness-of-fit statistics based on local influence measures

The sum of the local inference measure, or the case-deletion measure, for each case i may be
used to test model misspecification in (1); see Theorems 1 and 2.
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THEOREM 3. If Assumptions A1–A3 in the Appendix and condition (1) are satisfied, then we
have

Ln(θ̂) = n−1/2
n∑

i=1

(nCei − 2p) = n−1/2
n∑

i=1

k(xi , θ0) + op(1),

where k(xi , θ0) is defined in the proof. Furthermore, if σ 2
L = EF {k(xi , θ0)2} > 0, then Ln(θ̂ )

converges to N (0, σ 2
L ) in distribution.

Theorem 3 has the following implications. The statistic Ln(θ̂) can be regarded as an information
matrix test for the empirical likelihood, because, in parametric models, the sum of the local-
influence measure for each case is closely related to White’s (1982) information matrix test (Zhu &
Zhang, 2004). Moreover, because of the asymptotic equivalence in (9), both n−1/2 ∑n

i=1(2nECDi −
2p) and n−1/2 ∑n

i=1(2nELDi − 2p) converge to N (0, σ 2
L ) in distribution under the correct model

(1). Theorem 1 establishes the limiting distribution of Ln(θ̂) under the correct model (1) and gives
an explicit formula for σ 2

L , the variance of Ln(θ̂). To estimate σ 2
L , we can calculate {k(xi ; θ̂) : i =

1, . . . , n} and the sample variance s2
L ,c of {k(xi ; θ̂) : i = 1, . . . , n}. Therefore, we can compute

the p-value for Ln = Ln(θ̂)/sL ,c using the standard normal distribution. Combining Theorems
1–3, we can obtain

Ln(θ̂) = √ n

(
n∑

i=1

Cei − λ0

)
+ √ n(λ0 − 2p) = √ n{λ0 − 2p + op(1)}.

Thus, Ln(θ̂) � n1/2c0 when λ0 − 2p = c0 � 0 for a scalar c0. Therefore, the statistic Ln =
Ln(θ̂)/sL ,c is a useful tool for testing the hypothesis H0 : λ0 = 2p versus H1 : λ0 � 2p·

4·2. Goodness-of-fit statistics based on pseudo-residuals

To develop a residual-based test, we assume that zi is a subcomponent of xi for each observation
and that

EG{g(xi , θ0)|zi } = 0 for a θ0 ∈ � and i = 1, . . . , n, (11)

where G is the conditional distribution of x given z. Note that (11) is only a sufficient condition
for (1). Moreover, (11) arises naturally within the framework of regression, because estimating
functions for regression models are primarily based on the conditional distribution of the responses
given the covariates (Wooldridge, 1990; Stute, 1997; Lin et al., 2002). For instance, in regression
problems, xi has a natural partition (xT

i,(1), xT
i,(2))

T, where xi,(1) is a vector of responses and xi,(2)

is a vector of covariates. In this case, zi can be any subcomponent of xi,(2) or a function of xi,(2)

(Lin et al., 2002; Stute, 1997).
We are interested in testing the following hypotheses:

H0 : (11) is true versus H1 : (11) is not true. (12)

Proposition 1 has shown that, under the null hypothesis H0, a plot of Ri, j against zi should
oscillate around 0. This motivates us to combine the pseudo-residuals with zi to construct several
stochastic processes of z ∈ [−∞,∞] as follows:

GFk(z; θ̂) = n−1/2
n∑

i=1

Ri,k1(zi � z) = n−1/2
n∑

i=1

gk(xi , θ̂ )1(zi � z), (13)

for k = 1, . . . , r , where 1(A) denotes the indicator function of an event A.

 at U
niversity of N

orth C
arolina at C

hapel H
ill on O

ctober 5, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


498 H. ZHU, J. G. IBRAHIM, N. TANG & H. ZHANG

The pseudo-residual process in (13) is closely related to residual processes in some specific
parametric and semiparametric models including generalized estimating equations for longitu-
dinal data (Stute, 1997; Lin et al., 2002). For instance, consider the linear regression model
yi = xT

i,(2)β + σεi and g(xi , θ̂ ) = xi,(2)(yi − xT
i,(2)β̂). Let xi,k(2) be the kth component of xi,(2). If

we choose zi to be the mth component of xi,(2), then

GFk(z; θ̂) = n−1/2
n∑

i=1

xi,k(2)
(
yi − xT

i,(2)β̂
)
1(xi,m(2) � z).

Moreover, when xi,1(2) = 1 for i = 1, . . . , n, GF1(z; θ̂) reduces to the residual process
n−1/2 ∑n

i=1(yi − xT
i,(2)β̂)1(zi � z) for the linear regression model (Stute, 1997). Similarly, fol-

lowing the arguments in Lin et al. (2002), we may choose zi as xT
i,(2)β̂. As shown below, for each

k, GFk(z; θ̂) converges weakly to a centred Gaussian process GFk(z) under H0 (van der Vaart &
Wellner, 1996). Based on this result, we can construct Kolmogorov–Smirnov test statistics given
by

KSn,k = sup
z

|GFk(z; θ̂)|, for k = 1, . . . , r . (14)

We establish the weak convergence of GFk(z; θ̂) and KSn,k under the null hypothesis H0 as
follows.

THEOREM 4. If Assumptions A1–A3 and A5 in the Appendix and the null hypothesis H0 in
(12) are true, then GFk(z; θ̂) converges weakly to GFk(z) in the Skorokhod space D[−∞,+∞];
the Skorokhod space is the set of all right-continuous real functions on [−∞,∞] having limits
on the left. Also, KSn,k converges weakly to supz |GFk(z)|, where GFk(z) is a Gaussian process with
zero mean and covariance function

�k(z1, z2) = EF [{gk(x)1(Z � z1) − Dk(z1)g(x)}{gk(x)1(Z � z2) − Dk(z2)g(x)}] (15)

for any z1 and z2, k = 1, . . . , r , where gk(x) = gk(x, θ0), g(x) = g(x, θ0) and Dk(z) =
EF {1(Z � z)∂θ gk(x)T}S−1

22·1S21S−1
11 .

Theorem 4 formally characterizes the asymptotic distributions of the stochastic processes of
interest {GFk(z; θ̂) : k = 1, . . . , r}, which form the foundation for using {KSn,k : k = 1, . . . , r} as
test statistics.

Since the null hypothesis H0 states that all estimating equations in (11) are correctly specified,
we need to combine the {KSn,k : k = 1, . . . , r} and test whether or not any of the {KSn,k : k =
1, . . . , r} show any patterns beyond random fluctuation. However, because the variances of
{gk(x, θ̂) : k = 1, . . . , p} may be quite different, we must adjust such differences between the
variances of gk(x, θ̂) before we combine {KSn,k : k = 1, . . . , r}. Thus, based on {KSn,k : k =
1, . . . , r}, we construct another maximum statistic as follows:

KSn = max
1 � k � r

[
KSn,k{(Sn,11)k,k}−1/2], (16)

where (Sn,11)k,k is the (k, k)th element of Sn,11(t̂, θ̂ ) = ∂2
t Qn(t̂, θ̂ ). The continuous mapping the-

orem yields that KSn converges weakly to max1 � k � r [supz |GFk(z)|{(S11)k,k}−1/2], where (S11)k,k

is the (k, k)th element of S11. Note that {KSn,k : k = 1, . . . , r} and KSn are applicable to the cases
with r � p, whereas the empirical likelihood ratio statistic W1 is limited to the cases with r > p.

Following the arguments in Theorem 4, we can establish the power of the statistic KSn , when
model (1) is misspecified.
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COROLLARY 1. If model (1) is misspecified and Assumptions A4 and A5 in the Appendix are
true, then, for k = 1, . . . , r , GFk(z; θ̂) = √ nEF {gk(x, θ∗)1(Z � z)} + Op(1) and KSn converges to
∞ in probability.

4·3. A resampling method

Two complications exist in applying the asymptotic results in Theorem 4 for testing the
hypotheses in (12). First, the limiting distributions {supz |GFk(z)| : k = 1, . . . , r} have compli-
cated analytical forms. Thus, we cannot use these limiting distributions directly to calculate the
critical value of the test statistics {KSn,k : k = 1, . . . , r}. Secondly, because we test r hypothe-
ses simultaneously, we need to correct properly for multiple comparisons in order to control
the familywise error rate. In particular, we need to account for the correlations among all the
{KSn,k : k = 1, . . . , r}.

In the following, we devise a resampling method for approximating the p-values of {KSn,k :
k = 1, . . . , r}. In particular, in Step 2, we correct for multiple comparisons by accounting for the
correlations among the {KSn,k : k = 1, . . . , r}.

Step 1. Generate independent and identically distributed random samples, {v(q)
i : i = 1, . . . , n},

from N (0, 1) for q = 1, . . . , Q, where Q is the number of replications, Q = 1000, say.
Step 2. Calculate

GFk(z; θ̂)(q) = n−1/2
n∑

i=1

v
(q)
i {gk(xi , θ̂ )1(zi � z) − D̂k(z)g(xi , θ̂ )}

for k = 1, . . . , r , where D̂k(z) = {n−1 ∑n
i=1 ∂θ gk(xi , θ̂)T1(zi � z)}S−1

n,22·1Sn,21S−1
n,11. Note that,

conditional on the observed data, GFk(z; θ̂)(q) converges weakly to the desired Gaussian pro-
cess in Theorem 4 as n → ∞ (Kosorok, 2003; van der Vaart & Wellner, 1996).

Step 3. Calculate the test statistics KS
(q)
n,k = supz |GFk(z; θ̂)(q)| for k = 1, . . . , r and obtain

{KS
(q)
n,k : q = 1, . . . , Q; k = 1, . . . , r}.

Step 4. Calculate the p-value of KSn,k using {KS
(q)
n,k : q = 1, . . . , Q} for each k.

Step 5. Calculate KSn = max1 � k � r [KSn,k{(Sn,11)k,k}−1/2] and

KS
(q)
n = max

1 � k � r

[
KS

(q)
n,k{(Sn,11)k,k}−1/2] for q = 1, . . . , Q.

Step 6. Finally, we compute the p-value of KSn using {KS
(q)
n : q = 1, . . . , Q}; that is,

p = Q−1
Q∑

q=1

1
(

KS
(q)
n > KSn

)
. (17)

5. SIMULATION STUDIES AND REAL DATA EXAMPLES

5·1. Preamble

We conducted Monte Carlo simulations and real data analyses to examine the finite-sample
performance of the diagnostic measures and their associated goodness-of-fit statistics. First, we
applied all diagnostic measures to an artificial dataset, in which an ‘outlier’ was added. We
expected that most of the diagnostic measures would detect the ‘outlier’. Secondly, we evaluated
the rates of the Type I and Type II errors for Ln and KSn and compared them with W1 when used
as goodness-of-fit statistics.
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In all empirical work, we used the following procedures. We first used the modified conjugate
gradient method to calculate the maximum empirical likelihood estimator θ̂ . We approximated the
p-values of Ln and W1 based on 799 bootstrap samples, which led to their asymptotic refinements
(Owen, 2001). Moreover, we used Q = 999 replications in the resampling procedure to calculate
the p-values of KSn and {KSn,k : k = 1, . . . , r}.

5·2. Simulation studies

Experiment 1. Following the simulation study in Chen & Cui (2003), we consider the following
generalized linear model:

yi = µ
(
xT

i,(2)β
) + σ V

{
µ(xT

i,(2)β)
}1/2

εi , (18)

for i = 1, . . . , n, where µ(t) = exp(t), V (t) = t2, xi = (yi , xT
i,(2))

T and εi ∼ N (0, 1) is indepen-

dent of xi,(2). The xT
i,(2) = (xi,1(2), xi,2(2)) were simulated from an N (0, I2) distribution and the

true value of θT = (β1, β2, σ
2)T was set at (1·0, 1·0, 0·5)T. We set n = 200 and changed y200 into

y200 + 5·0 in order to add an ‘outlier’.

We applied the diagnostic measures to detect y200 as an influential observation by using the
following process. As in Chen & Cui (2003), we considered the estimating functions

g(xi , θ) =

⎛
⎜⎜⎜⎝

e(xi,(2), β)∂βµ
(
xT

i,(2)β
)
/V

{
µ

(
xT

i,(2)β
)}

e(xi,(2), β)2/V
{
µ

(
xT

i,(2)β
)} − σ 2

e(xi,(2), β)2w(xi,(2), β)/V
{
µ

(
xT

i,(2)β
)} − σ 2w(xi,(2), β)

⎞
⎟⎟⎟⎠ , (19)

where e(xi,(2), β) = yi − µ(xT
i,(2)β) and w(xi,(2), β) = ∂β V {µ(xT

i,(2)β)}/V {µ(xT
i,(2)β)}. The max-

imum empirical likelihood estimator of θ was calculated as θ̂ = (0·952, 0·997, 0·641)T. Figure 1
shows that the 200th observation was classified as the most influential observation by Cei , ECDi ,
Ri,3(c) and Ri,4(c), but not by v1, a plot not presented here.

Experiment 2. We assessed the performance ofLn , KSn and {KSn,k}r
1 as goodness-of-fit statistics

by evaluating rates of Type I and II errors associated with each of these statistics. We simulated
data from a linear regression model yi = xi,(2)θ + εi , for i = 1, . . . , n, where xi = (yi , xi,(2)),
θ0 = 1·0, and xi,(2) and εi were independently generated from an N (0, 1) distribution. Since
EF (yi − xi,(2)θ) = 0 and EF {(yi − xi,(2)θ)2 − 1·0} = 0, we can infer θ by using the estimating
functions

g(xi , θ) =
⎛
⎝ yi − xi,(2)θ + c

(yi − xi,(2)θ)2 − 1·0

⎞
⎠ ,

where c is a fixed scalar. In particular, EF {g(x, θ)} = 0 when c = 0. We used n = 100 and n = 50
to obtain simulated datasets. For each simulated dataset, the significance level was set at 0·05.
We chose zi = xi,(2) in calculating {KSn,k : k = 1, 2} and KSn , and we estimated the rejection
rates of the five goodness-of-fit statistics including Ln , W1, {KSn,k : k = 1, 2} and KSn , using 500
replications.

Table 1 presents estimates for the rejection rates for the five goodness-of-fit statistics at the 5%
significance level. We observed that, except for KSn,1, the Type I errors for the other four statistics
were not excessive. Consistent with our expectations, the power for detecting misspecification
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Fig. 1. Results from a simulated dataset. Index plots of diagnostic measures: (a) Cei ; (b) ECDi ; (c) Ri,3; (d) Ri,4.

Table 1. Comparison of the rejection rates for the goodness-of-fit
statistics at the 0·05 significance level

n = 100 n = 50
Bootstrap Resampling Bootstrap Resampling

c Ln W1 KSn,1 KSn,2 KSn Ln W1 KSn,1 KSn,2 KSn

0·0 0·05 0·04 0·01 0·06 0·05 0·03 0·04 0·01 0·04 0·03
0·2 0·08 0·19 0·32 0·13 0·23 0·09 0·08 0·13 0·08 0·11
0·4 0·32 0·70 0·74 0·23 0·68 0·23 0·53 0·41 0·21 0·37
0·5 0·45 0·82 0·85 0·27 0·81 0·36 0·79 0·58 0·25 0·51
0·6 0·60 0·73 0·90 0·34 0·88 0·41 0·84 0·67 0·31 0·60
0·7 0·67 0·76 0·89 0·42 0·87 0·51 0·82 0·77 0·38 0·70
0·8 0·67 0·71 0·91 0·44 0·90 0·47 0·87 0·86 0·40 0·83
1·0 0·61 0·61 0·98 0·66 0·98 0·45 0·78 0·90 0·57 0·90

of the estimating equations increased with the scalar c and the sample size n. However, we
also observed peculiar behaviour with W1 and Ln , because their power for rejecting estimating
equations increased with c at the beginning and then decreased. The cause of this behaviour
warrants further investigation. Finally, W1 outperformed Ln and KSn outperformed W1 at both
n = 50 and n = 100. Moreover, compared with the resampling method in § 4·3, the bootstrap
method is much more computationally intensive.

 at U
niversity of N

orth C
arolina at C

hapel H
ill on O

ctober 5, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


502 H. ZHU, J. G. IBRAHIM, N. TANG & H. ZHANG

5·3. Steam data

We considered a dataset from Draper & Smith (1981, p. 205) consisting of 25 observations.
Each observation includes the pounds of steam used monthly (yi ), the operating days per month
(xi,1(2)), and the average atmospheric temperature (xi,2(2)). Following Draper & Smith (1981), we
considered a linear regression model yi = xT

i,(2)β + σεi , where xi,(2) = (1, xi,1(2), xi,2(2), x2
i,2(2))

T,

β = (β1, β2, β3, β4)T, and εi ∼ N (0, 1). Let �n,i (θ) be the loglikelihood function for the i th
observation for the linear regression model. We considered 10 estimating functions

g(xi , θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
yi − xT

i,(2)β
)
xi,(2)/σ

2

{
1·0 − (

yi − xT
i,(2)β

)2/
σ 2}/

2{
3 − (

yi − xT
i,(2)β

)2/
σ 2}(

yi − xT
i,(2)β

)
xi,(2)/(2σ 2){(

yi − xT
i,(2)β

)4/
σ 4 − 4

(
yi − xT

i,(2)β
)2/

σ 2 + 1
}/

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where θ = (βT, σ 2)T and xi = (yi , xT
i,(2))

T. In g(xi , θ), the first 5 estimating functions were based
on ∂θ�n,i (θ), whereas the last 5 were related to the last row of ∂2

θ �n,i (θ) + {∂θ�n,i (θ)}⊗2. We
calculated the maximum empirical likelihood estimate of θ as

θ̂ = (11·982, 0·229, −0·201, 0·001, 0·342)T.

Moreover, we chose zi = xT
i,(2)β̂.

We applied the diagnostic tools as follows. The standardized residuals and local influence mea-
sures indicated that Case 6 was the most influential observation; see Fig. 2(a). We approximated
the p-values of the statistics Ln and W1 as 0·044 and 0·014, respectively. Using zi = xT

i,(2)β̂, we

calculated the p-values of {KSn,k}10
1 as 0·044, 0·058, 0·010, 0·007, 0·371, 0·158, 0·188, 0·079,

0·044 and 0·296, respectively, and the p-value of KSn was 0·022; see Fig. 2(c) and (d). Thus,
these p-values of Ln , W1 and KSn suggest that the steam data might not follow the posited linear
relationship between yi and xi,(2) at nominal level α = 5%. These findings are consistent with
previous results (Zhu & Zhang, 2004). However, after deletion of the 6th case, the p-values of
the three goodness-of-fit statistics are greater than 0·10, which indicates that these statistics are
sensitive to influential observations and outliers.

Furthermore, we calculated two-case case-deletion measures ECDi, j and ELDi, j . The ELDi, j

indicated that both (4, 6) and (4, 10) were the most influential pairs; see Fig. 3(b). Similar
findings were obtained using ECDi, j , not presented here. The inspection of the scatter-plot of
(xi,1(2), xi,2(2), yi ) revealed that two points, 4 and 10, with small xi,1(2) values were far away from
other points in the predictor space; see Fig. 3(a). This result indicated that our diagnostic measure
based on single-case deletion can suffer from the well-known masking effect (Lawrance, 1995).

6. DISCUSSION

Many issues still merit further research. One major issue is to generalize the diagnostic
measures in § 3 from independently and identically distributed data to weakly correlated data
(Kitamura, 1997), longitudinal data (Lin et al., 2002) and survival data (Ibrahim et al., 2001).
Another major issue is to develop diagnostic measures for assessing the effects of deleting
individual observations on the empirical likelihood confidence region for θ (Lazar, 2005; Owen,
2001). Moreover, it is of interest to generalize our results for the maximum empirical likelihood
estimator in § 2 to generalized empirical likelihood estimators (Imbens, 2002).

 at U
niversity of N

orth C
arolina at C

hapel H
ill on O

ctober 5, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Diagnostic measures for empirical likelihood 503

Fig. 2. The steam data: (a) Cei ; (b) {Ri,k}10
1 ; (c) KSn,3; (d) KSn,4.

Fig. 3. The steam data: (a) scatterplot of (xi,1(2), xi,2(2), yi ); (b) ELDi, j .
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APPENDIX

Technical details

We define

Sn(t, θ ) =
(

∂t Q1,n (∂θ Q1,n)T

(∂t Q2,n)T ∂θ Q2,n

)
, Sn[i](t, θ ) =

⎛
⎝ ∂t Q1,n[i]

(
∂θ Q1,n[i]

)T

(
∂t Q2,n[i]

)T
∂θ Q2,n[i]

⎞
⎠ ,

in which all elements are evaluated at (t, θ ). We use ‖ · ‖ to denote the Euclidean norm of a vector or a
matrix.

We make the following assumptions.

Assumption A1. The true value θ0 of θ is an interior point of � ⊂ R p. The point 0 is inside the convex
hull of the points g(x1, θ ), . . . , g(xn, θ ).

Assumption A2. In a neighbourhood of the true value θ0, g(x, θ ) has a second-order continuous
derivative with respect to θ and ||∂θ g(x, θ )||, ||∂2

θ g(x, θ )|| and ||g(x, θ )||3 are bounded by some integrable
function g0(x) with EF {g0(x)} < ∞.

Assumption A3. The rank of EF {∂θ g(x, θ0)} is p and EF {g(x, θ0)g(x, θ0)T} is positive definite.

Assumption A4. (i) As n → ∞, (t̂, θ̂ ) and (t̂[i], θ̂[i]) converge to (t∗, θ∗) in probability.
(ii) The function log{1 + tTg(x, θ )} is twice continuously differentiable in a neighbourhood of (t∗, θ∗),

denoted by N , and ∫
sup
N

[‖ log{1 + tTg(x, θ )}‖ + ‖∂θ log{1 + tTg(x, θ )}‖2

+ ‖∂2
θ log{1 + tTg(x, θ )}‖]d F(x) < ∞.

(iii) The matrix −EF [∂2
η log{1 + tTg(x, θ )}] at (t∗, θ∗) is positive definite, where η = (tT, θT)T.

Assumption A5. The z1, . . . , zn are independent observations from an unknown marginal distribution
of F with respect to z, and the distribution of zi is continuous.

Assumptions A1–A3 have been used to examine the asymptotic properties of the maximum empirical
likelihood estimator (Qin & Lawless, 1994; Owen, 2001). Some sufficient conditions for Assumption
A.4(i) can be found in Chen et al. (2007). Assumptions A4(ii) and (iii) are standard conditions ensuring a
Taylor expansion of Qn(t, θ ) at (t∗, θ∗).

Proof of Proposition 1. Using Theorem 1 in Qin & Lawless (1994), we can
obtain θ̂ − θ0 = Op(n−1/2), t̂ = Op(n−1/2), θ̂[i] − θ0 = Op(n−1/2) and t̂[i] = Op(n−1/2). Thus,
θ̂ − θ̂[i] = Op(n−1/2) and t̂ − t̂[i] = Op(n−1/2). Expanding Q1,n[i](t̂[i], θ̂[i]) and Q2,n[i](t̂[i], θ̂[i]) at (t̂, θ̂ )
yields

0 = Q1,n[i](t̂, θ̂ ) + [{∂θ Q1,n[i](t̂, θ̂ )}T(θ̂[i] − θ̂ ) + ∂t Q1,n[i](t̂, θ̂ )T(t̂[i] − t̂)]{1 + op(1)},
0 = Q2,n[i](t̂, θ̂ ) + [∂θ Q2,n[i](t̂, θ̂ )T(θ̂[i] − θ̂ ) + ∂t Q2,n[i](t̂, θ̂ )T(t̂[i] − t̂)]{1 + op(1)}.

Since max1� i � n |t̂Tg(xi , θ̂ )| = op(1), Q2,n(t̂, θ̂ ) = 0 and Q1,n(t̂, θ̂ ) = 0 (Owen, 2001; pp. 218–21), we

obtain Q1,n[i](t̂, θ̂ ) = Op(n−1) and Q2,n[i](t̂, θ̂ ) = Op(n−1). Furthermore, it follows from Assumption A2
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that both Sn(t̂, θ̂ ) and Sn[i](t̂, θ̂ ) converge to S(t0, θ0) = O(1) almost surely, as n → ∞. Thus, we obtain
((t̂[i] − t̂)T, (θ̂[i] − θ̂ )T)T = Op(n−1) and(

t̂[i] − t̂

θ̂[i] − θ̂

)
= −n−1S−1

(
g(xi , θ̂ )

∂θ g(xi , θ̂ )t̂

)
{1 + op(1)} = −n−1S−1

(
g(xi , θ0)

0

)
{1 + op(1)}.

Thus, Proposition 1(i) and (ii) immediately follow from the definition of S and the explicit form of S−1. �

Proof of Proposition 2. Let gk(xi ) = gk(xi , θ0). Expanding gk(xi , θ̂ ) at θ0 gives

gk(xi , θ̂ ) = gk(xi ) + ∂θ gk(xi )
T(θ̂ − θ0) + 0·5(θ̂ − θ0)T

{
∂2
θ gk(xi )

}
(θ̂ − θ0) + Op

(
n−3/2

)
.

As shown in Qin & Lawless (1994), θ̂ − θ0 = −n−1S−1
22·1S21S−1

11

∑n
i=1 g(xi ) + op(n−1/2). Therefore, we

can obtain

EF {∂θ gk(xi )
T(θ̂ − θ0)} � −n−1 EF

{
∂θ gk(xi )

TS−1
22·1S21S−1

11

n∑
i=1

g(xi )

}
,

EF

{
(θ̂ − θ0)T∂2

θ gk(xi )(θ̂ − θ0)
}

� −n−1tr
[
EF

{
∂2
θ gk(xi )

}
S−1

22·1
]
,

in which we use S22·1 = −S21S−1
11 S21. Furthermore, to calculate σ̂k , the contribution from the term (θ̂ −

θ0)T{∂2
θ gk(xi )}(θ̂ − θ0) has an order higher than Op(n−1), which is negligible. Thus, we obtain

gk(xi , θ̂ ) = gk(xi ) − n−1∂θ gk(xi )
TS−1

22·1S21S−1
11 g(xi ) − n−1∂θ gk(xi )

TS−1
22·1S21S−1

11

n∑
j=1, j=| i

g(x j ).

The proof of Proposition 2 can then be completed after some algebraic manipulations. �

Proof of Theorem 1. For Cei , we first calculate �i as follows:

�i = ∂θ lE,i (xi ; θ̂ ) = −∂θ tn(θ̂)g(xi , θ̂ ) + op(1) = S21S−1
11 g(xi , θ0) + op(1).

Thus, Cei = −2n−1�T
i S−1

22·1�i + op(1). Furthermore, for ELDi , expanding lE (θ̂[i]) at θ̂ , we obtain
lE (θ̂[i]) − lE (θ̂) = 0·5(θ̂[i] − θ̂ )T{∂2

θ lE (θ̂ )}(θ̂[i] − θ̂ ){1 + op(1)}. Substituting Proposition 1(i) and (ii) into
lE (θ̂[i]) yields that ELDi = −n−1�T

i S−1
22·1�i {1 + op(1)}. Similarly to the argument for ELDi , we can de-

rive the asymptotic expansion for ECDi . It follows from Cei = −2n−1�T
i S−1

22·1�i + op(1) that
∑n

i=1 Cei =
2p + op(1). Similarly to Cei , we can prove that the sums of ELDi and of ECDi are close to 2p. �

Proof of Theorem 2. We can follow the reasoning in Propositions 1 and 2 and Theorem 1 to prove
Theorem 2(i)–(iii). For instance, similarly to the argument for Proposition 2(i), we can obtain

η̂[i] − η̂ = n−1S(θ∗, t∗)−1{1 + t∗Tg(xi , θ∗)}−1

(−g(xi , θ∗)

−∂θ g(xi , θ∗)Tt∗

)
{1 + op(1)},

where η̂T
[i] = (t̂T

[i], θ̂
T
[i]). Using Assumption A4(ii), we thus prove Theorem 2(ii). �

Proof of Theorem 3. We can obtain

∂2
θ lE (θ̂ ) = ∂θ Q2,n − ∂θ tn(θ̂ )∂t Q1,n∂θ tn(θ̂ )T =

n∑
i=1

[
∂2
θ �i (t̂, θ̂ ) − ∂θ tn(θ̂)∂2

t �i (t̂, θ̂ ){∂θ tn(θ̂)}T
]
.

It follows from the definition of Cei that

Ln(θ̂ ) = n−1/22
n∑

i=1

tr
({ − n−1∂2

θ lE (θ̂ )
}−1[

�i�
T
i + ∂2

θ �i (t̂, θ̂ ) − ∂θ tn(θ̂)∂2
t �i (t̂, θ̂ ){∂θ tn(θ̂)}T

])
.
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Let gi = g(xi , θ̂ ). Since �i is a function of t̂ , we expand �i at t0 = 0 to obtain

�i = ∂θ tn(θ̂)gi + ∂θ gi t̂ − t̂Tgi∂θ tn(θ̂ )gi + Op(1)||t̂ ||2.

Similarly to �i , we use a Taylor expansion to obtain

∂2
t �i (t̂, θ̂ ) = (1 − 2t̂Tgi )gi g

T
i + Op(1)||t̂ ||2, ∂2

θ �i (t̂, θ̂ ) = −∂θ (∂θ gi )(Ip ⊗ t̂) + Op(1)||t̂ ||2,
where ⊗ denotes the usual Kronecker product. Combining the above results, we obtain

�i�
T
i + ∂2

θ �i (t̂, θ̂ ) − ∂θ tn(θ̂ )∂2
t �i (t̂, θ̂ ){∂θ tn(θ̂ )}T

= ∂θ tn(θ̂)gi t̂
T(∂θ gi )

T + ∂θ gi t̂ gT
i {∂θ tn(θ̂)}T − ∂θ (∂θ gi )(Ip ⊗ t̂) + Op(1)||t̂ ||2.

Thus,

Ln(θ̂ ) =
[

n−1
n∑

i=1

4gT
i

{
∂θ tn(θ̂)

}T{ − n−1∂2
θ lE (θ̂)

}−1
∂θ gi

]
n1/2 t̂

− 2tr

[{−n−1∂2
θ lE (θ̂ )

}−1

{
n−1

n∑
i=1

∂θ (∂θ gi )

}
√ n(Ip ⊗ t̂)

]
.

Furthermore, let A1 = EF [∂θ {∂θ g(x ; θ0)}] and A2 = EF {g(x ; θ0)TS−1
11 S12(S21S−1

11 S12)−1 ∂θ g(x ; θ0)}.
We have n−1

∑n
i=1 ∂θ (∂θ gi ) = A1 + op(1) and

n−1
n∑

i=1

4gT
i

{
∂θ tn(θ̂ )

}T{−n−1∂2
θ lE (θ̂ )}−1∂θ gi = −4A2 + op(1).

Therefore, Ln(θ̂) = −4A2n1/2 t̂ − 2 tr{(S21S−1
11 S12)−1 A1 √ n(Ip ⊗ t̂)} + op(1)· Since √ nt̂ =

−A3n−1/2
∑n

i=1 g(xi , θ0){1 + op(1)}, we obtain Ln(θ̂) = n−1/2
∑n

i=1 k(xi ; θ0) + op(1), where
A3 = S−1

11 + S−1
11 S12S−1

22·1S21S−1
11 and

k(xi ; θ0) = 2tr
[(

S21S−1
11 S12

)−1
A1{Ip ⊗ A3g(xi ; θ0)

}
] + 4A2 A3g(xi ; θ0).

It follows from the Lindeberg–Feller theorem that n−1/2
∑n

i=1 k(xi , θ0) → N (0, σ 2) in distribution. �
Proof of Theorem 4 and Corollary 1. Proofs of Theorem 4 and Corollary 1 follow from the standard

empirical process theory (van der Vaart & Wellner, 1996, Ch. 2). The detailed proofs can be found in a
supplementary report, which is available upon request. �
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