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Diffusion tensor imaging provides important information on tis-
sue structure and orientation of fiber tracts in brain white matter in
vivo. It results in diffusion tensors, which are 3×3 symmetric positive
definite (SPD) matrices, along fiber bundles. This paper develops a
functional data analysis framework to model diffusion tensors along
fiber tracts as functional data in a Riemannian manifold with a set of
covariates of interest, such as age and gender. We propose a statistical
model with varying coefficient functions to characterize the dynamic
association between functional SPD matrix-valued responses and co-
variates. We calculate weighted least squares estimators of the vary-
ing coefficient functions for the Log-Euclidean metric in the space
of SPD matrices. We also develop a global test statistic to test spe-
cific hypotheses about these coefficient functions and construct their
simultaneous confidence bands. Simulated data are further used to
examine the finite sample performance of the estimated varying co-
efficient functions. We apply our model to study potential gender
differences and find a statistically significant aspect of the develop-
ment of diffusion tensors along the right internal capsule tract in a
clinical study of neurodevelopment.

1. Introduction. Diffusion Tensor Imaging (DTI), which measures the
effective diffusion of water molecules, can provide important information on
the microstructure of fiber tracts and the major neural connections in white
matter (Basser, Mattiello and LeBihan, 1994a,b). It has been widely used to
assess the integrity of anatomical connectivity in white matter. In DTI, a 3×
3 symmetric positive definite (SPD) matrix, called a diffusion tensor (DT),
and its three eigenvalue-eigenvector pairs {(λk,vk) : k = 1, 2, 3} with λ1 ≥
λ2 ≥ λ3 are estimated to quantify the degree of diffusivity and the directional
dependence of water diffusion in each voxel (volume pixel). Multiple fiber
tracts in white matter can be constructed by consecutively connecting the
estimated principal directions (v1) of the estimated DTs in adjacent voxels
(Basser et al., 2000). Subsequently, some tensor-derived scalar quantities,

Keywords and phrases: Confidence band, Diffusion tensor imaging, Global test statistic,
Varying coefficient model, Log-Euclidean metric, Symmetric positive matrix

1
imsart-aoas ver. 2011/01/24 file: MVCM09202011.tex date: September 19, 2011

http://www.imstat.org/aoas/
http://arxiv.org/abs/math.PR/0000000
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such as mean diffusivity (MD=(λ1 + λ2 + λ3)/3), are commonly estimated
along these white matter fiber tracts for each subject.

In the recent DTI literature, there is an extensive interest in developing
fiber-tract based analysis for comparing DTIs in population studies (Gold-
smith et al., 2011; Goodlett et al., 2009; O’Donnell, Westin and Golby,
2009; Smith et al., 2006; Yushkevich et al., 2008; Zhu et al., 2010, 2011).
The fiber-tract based analysis usually consists of two major components,
including DTI atlas building and a follow-up statistical analysis (Goodlett
et al., 2009; Smith et al., 2006; Zhu et al., 2010). The DTI atlas building is
primarily to extract DTI fibers and to establish DTI fiber correspondence
across all DTI datasets from different subjects. The key steps of the DTI
atlas building include DTI registration, atlas fiber tractography, and fiber
parametrization. Finally, we get a set of individual tracts with the same
corresponding geometry but varying DTs and diffusion properties. Some
statistical approaches have been developed for the analysis of scalar tensor-
derived quantities along fiber tracts (Goldsmith et al., 2011; Goodlett et al.,
2009; Smith et al., 2006; Yushkevich et al., 2008; Zhu, Li and Kong, 2010;
Zhu et al., 2010, 2011), but little has been done on the analysis of whole
DTs along fiber tracts, which is the focus of this paper.

There is a growing interest in the DTI literature in developing statisti-
cal methods for the direct analysis of DTs in the space of SPD matrices.
Schwartzman, Mascarenhas and Taylor (2008) proposed parametric mod-
els for analyzing SPD matrices and derived the distributions of several test
statistics for comparing differences between the means of the two (or multi-
ple) groups of SPD matrices. Kim and Richards (2010) developed a nonpara-
metric estimator of the density function of a random sample of SPD matrices.
Zhu et al. (2009) developed a semi-parametric regression model with SPD
matrices as responses and covariates in a Euclidean space. Barmpoutis et al.
(2007) and Davis et al. (2007) developed nonparametric methods, including
tensor spline methods and local constant regression, to interpolate diffusion
tensor fields. However, no one has ever developed statistical methods for
functional analysis of DTs along fiber tracts.

In this paper, we propose a varying coefficient model for DT-valued func-
tions (VCMDTF). We use varying coefficient functions to characterize the
varying association between diffusion tensors along fiber tracts and a set of
covariates. We explicitly model the within-subject correlation among mul-
tiple DTs measured along a fiber tract for each subject. To account for the
curved nature of the SPD space, we employ the Log-Euclidean framework
in Arsigny (2006) and then use a weighted least squares estimation method
to estimate the varying coefficient functions. We also develop a global test
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statistic to test hypotheses on the varying coefficient functions and use a
resampling method to approximate the p−value. Finally, we construct a si-
multaneous confidence band to quantify the uncertainty of each estimated
coefficient function and propose a resampling method to approximate its
critical points. To the best of our knowledge, this is the first paper for
developing a statistical framework for modeling functional manifold-valued
responses, with covariates in Euclidean space.

There are several advantages of the analysis of DTs over scalar diffu-
sion properties along fiber tracts. As shown in Yuan et al. (2011), directly
modeling DTs along fiber bundles as a smooth SPD process allows us to in-
corporate a smoothness constraint to further reduce noise in the estimated
DTs along the fiber bundles. This leads to the further reduction of noise in
estimated scalar diffusion properties along the fiber bundles. Moreover, the
sole use of diffusion properties, which ignores the directional information of
DT, can decrease the statistical power in detecting the difference in DTs
oriented in different directions.

The rest of the paper is organized as follows. Section 2 presents VCMDTF
and related statistical inference. Section 3 examines the finite sample per-
formance of VCMDTF via simulation studies. Section 4 illustrates an ap-
plication of VCMDTF in a clinical study of neurodevelopment. Section 5
presents concluding remarks.

2. Data and Methods.

2.1. Early Brain Development Study of White Matter Tracts. We con-
sider 96 healthy infants (36 males and 60 females) from the neonatal project
on early brain development led by Dr. Gilmore at the University of North
Carolina at Chapel Hill. The mean gestational age of these infants is 245.6
days with SD: 18.5 days (range: 192-270 days). A 3T Allegra head only MR
system was used to acquire all the images. The system was equipped with
a maximal gradient strength of 40 mT/m and a maximal slew rate of 400
mT/(m·msec). The DTIs were obtained by using a single shot EPI DTI se-
quence (TR/TE=5400/73 msec) with eddy current compensation. The six
non-collinear directions at the b-value of 1000 s/mm2 with a reference scan
(b=0) were applied. The voxel resolution was isotropic 2 mm, and the in-
plane field of view was set to 256 mm in both directions. To improve the
signal-to-noise ratio of the DTIs, a total of five repetitions were acquired
and averaged.

We processed the DTI dataset as follows. We used a weighted least squares
estimation method (Basser, Mattiello and LeBihan, 1994a; Zhu et al., 2007b)
to construct the diffusion tensors. We used a DTI atlas building pipeline
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(Goodlett et al., 2009; Zhu et al., 2010) to register DTIs from multiple
subjects to create a study specific unbiased DTI atlas, to track fiber tracts in
the atlas space, and to propagate them back into each subject’s native space
by using registration information. Then, we calculated DTs and their scalar
diffusion properties at each location along each individual fiber tract by using
DTs in neighboring voxels close to the fiber tract. Since the description of
the DTI atlas building has been described in detail (Goodlett et al., 2009;
Zhu et al., 2010), we do not include these image processing steps here for the
sake of simplicity. Fig. 1 (a) displays the fiber bundle of the right internal
capsule fiber tract (RICFT). Fig. 1 (b) presents DTs along a representative
RICFT obtained from each of 10 subjects, in which each DT is geometrically
represented by an ellipsoid. In this ellipsoidal representation, the lengths of
the semiaxes of the ellipsoid equal the square root of the three eigenvalues
of a DT, while the three eigenvectors define the direction of the three axes.

Fig 1. (a) The fiber bundle of the right internal capsule fiber tracts in the atlas space. (b)
The ellipsoidal representations of full tensors along a representative right internal capsule
fiber tract obtained from each of 10 selected subjects, colored with fractional anisotropy
(FA) values.

Our final data set includes DTs and diffusion properties sampled along
the RICFT and a set of covariates of interest from all n = 96 subjects.
Specifically, let Sym+(3) be the set of 3 × 3 SPD matrices and xj ∈ [0, L0]
be the arc length of the j-th point on the RICFT relative to a fixed end
point for j = 1, · · · , nG , where L0 is the longest arc length and nG is the
number of points on the RICFT. For the i-th subject, there is a diffusion
tensor at the j-th point on the RICFT, denoted by Si(xj) ∈ Sym+(3), for
i = 1, · · · , n. Let zi be an r× 1 vector of covariates of interest including the
gestational age at birth and gender. Finally, our data set can be represented
as {(zi; (x1, Si(x1)), · · · , (xnG , Si(xnG))) : i = 1, . . . , n}.
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In this study, we have two specific aims. The first one is to compare DTs
along the RICFT between the male and female groups. The second one is
to delineate the development of fiber DTs across time.

2.2. Varying Coefficient Model for SPD Matrix-valued Functional Data.
In this section, we present our VCMDTF. The code for VCMDTF written
in Matlab along with its documentation and a sample data set will be freely
accessible from http://www.bios.unc.edu/research/bias/software.html. To
make the code easily accessible, we developed a Graphical User Interface
(GUI), also freely downloadable from the same website.

To proceed, we need to introduce some notation. Let Sym(3) be the set
of 3× 3 symmetric matrices with real entries. For any A = (akl) ∈ Sym(3),
we define vecs(A) = (a11, a21, a22, a31, a32, a33)

T to be a 6× 1 vector and

vec(A) = (a11, a12, a13, a21, a22, a23, a31, a32, a33)
T

to be a 9× 1 vector. Let Ivecs(·) be the inverse operator of vecs(·) such that
Ivecs(vecs(A)) = A for any A ∈ Sym(3). The matrix exponential of A ∈
Sym(3) is given by exp(A) =

∑∞
m=0A

m/m! ∈ Sym+(3). For any 3× 3 SPD
matrix S, there is a logarithmic map of S, denoted as log(S) = A ∈ Sym(3),
such that exp(A) = S. Let a⊗2 = aaT for any vector or matrix a.

Since the space of SPD matrices is a curved space, we use the Log-
Euclidean metric (Arsigny, 2006) to account for the curved nature of the
SPD space. Specifically, we take the logarithmic map of the DTs Si(x) ∈
Sym+(3) to get log(Si(x)) ∈ Sym(3), which has the same effective dimen-
sionality as a six-dimensional Euclidean space. Thus, we only model the
lower triangular portion of log(Si(x)) as follows:

vecs(log(Si(x))) = B(x)zi + ui(x) + εi(x),(2.1)

where B(x) is a 6 × r matrix of varying coefficient functions for character-
izing the dynamic associations between Si(x) and zi, ui(x) is a 6× 1 vector
characterizing the within-subject correlation between the log-transformed
DTs, and εi(x) is a 6 × 1 vector of measurement errors. It is also assumed
that εi(x) and ui(x) are independent and identical copies of SP (0,Σε) and
SP (0,Σu), respectively, where SP(0,Σ) denotes a stochastic process with
mean 0 and covariance matrix function Σ(x, x′) for any x, x′ ∈ [0, L0]. Let
1(·) be an indicator function. Assume that εi(x) and εi(x

′) for x 6= x′ are
independent and thus Σε(x, x

′) = Σε(x, x)1(x = x′). It follows that the co-
variance structure of vecs(log(Si(xj))), denoted by ΣS(x, x′), is given by

ΣS(x, x′) = Σu(x, x′) + Σε(x, x)1(x = x′).(2.2)
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Model (2.1) is a multivariate varying coefficient model with a 6 × 1 vector
response, and thus it can be regarded as a generalization of univariate vary-
ing coefficient models, which have been widely studied and developed for
longitudinal, time series, and functional data (Fan, Yao and Cai, 2003; Fan
and Zhang, 1999, 2008; Wang, Li and Huang, 2008; Wu and Chiang, 2000).

2.3. Weighted Least Squares Estimation. Before estimating the varying
coefficient functions in B(x), we need to introduce a few facts about the
Log-Euclidean metric for the space of SPDs (Arsigny, 2006). The use of
the Log-Euclidean metric results in classical Euclidean computations in the
domain of matrix logarithms. Particularly, under the Log-Euclidean metric,
the geodesic distance between S1 and S2 in Sym+(3) is uniquely given by

(2.3) d(S1, S2) =
√

tr[{log(S1)− log(S2)}⊗2],

which equals the Euclidean distance between log(S1) and log(S2) in Eu-
clidean space Sym(3). However, there is a subtle, but important, difference
between regarding S(x) as a single point in Sym+(3) and treating log(S(x))
as a vector in Euclidean space. By regarding S(x) as a point in Sym+(3),
we treat all elements of S(x) as a single unit and use a single bandwidth
to smooth DTs. In contrast, by treating log(S(x)) as a vector in Euclidean
space, traditional smoothing methods smooth each element of log(S(x)) in-
dependently (Fan and Gijbels, 1996; Wand and Jones, 1995; Wu and Zhang,
2006).

We use the local linear regression method and the weighted least squares
estimation to estimate B(x) (Fan and Gijbels, 1996; Ramsay and Silverman,
2005; Wand and Jones, 1995; Welsh and Yee, 2006; Wu and Zhang, 2006;
Zhang and Chen, 2007). Since the local linear regression method adapts
automatically at the boundary points (Fan and Gijbels, 1992), it is ideal for
dealing with DTs and scalar diffusion properties along fiber tracts with two
ends (see Fig. 1). Let h(1) be a given bandwidth, Ḃ(x) = dB(x)/dx be a
6× r matrix, and Ir be the r× r identity matrix. Using Taylor’s expansion,
we can expand B(xj) at x to obtain

(2.4) B(xj) ≈ B(x) + Ḃ(x)(xj − x) = Bh(1)(x){Ir ⊗ yh(1)(xj − x)},

where yh(xj − x) = (1, (xj − x)/h)T and Bh(1)(x) = [B(x), h(1)Ḃ(x)]
is a 6 × 2r matrix. Based on (2.1) and (2.4), B(xj)zi can be approxi-
mated by Bh(1)(x){Ir ⊗ yh(1)(xj − x)}zi. For a fixed bandwidth h(1), we
can calculate a weighted least squares estimate of Bh(1)(x), denoted by
B̂h(1)(x) = [B̂(x;h(1)), h(1)Ḃ(x;h(1))], by minimizing an objective function
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given by
(2.5)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)d(log(Si(xj)), Ivecs(Bh(1)(x){Ir ⊗ yh(1)(xj − x)}zi))2,

where Kh(1)(·) = K(·/h(1))/h(1) is rescaling of the kernel function K(·), such
as the Gaussian or uniform kernel (Fan and Gijbels, 1996; Wand and Jones,
1995). The explicit form of B̂(x;h(1)) can be found in the Appendix B.

We pool the data from all n subjects and develop a cross-validation

method to select an estimated bandwidth h(1), denoted by ĥ
(1)
e . Let B̂(x;h(1))(−i)

be the weighted least squares estimator of B(x) for the bandwidth h(1)

based on the observations with the i-th subject excluded. We define a cross-
validation score, denoted by CV1(h

(1)), as follows:

(2.6) CV1(h
(1)) = (nnG)−1

n∑
i=1

nG∑
j=1

d(log(Si(xj)), Ivecs(B̂(x;h(1))(−i)zi))
2.

We select an estimated bandwidth h(1), denoted by ĥ
(1)
e , by minimizing

CV1(h
(1)). Finally, we can calculate a weighted least squares estimate of

B(x), denoted by B̂e(x) = B̂(x; ĥ
(1)
e ).

2.4. Smoothing Individual Functions and Estimating Covariance Matri-
ces. To simultaneously construct the individual function ui(x), we also em-
ploy the local linear regression method. Let u̇i(x) = dui(x)/dx. Taylor’s
expansion of ui(xj) at x gives

(2.7) ui(xj) ≈ ui(x) + u̇i(x)(xj − x) = Ui(x)yh(2)(xj − x),

where Ui(x) = [ui(x), h(2)u̇i(x)] is a 6× 2 matrix. For each fixed x and each
bandwidth h(2), the weighted least square estimator of Ui(x), denoted by
Ûi(x;h(2)) = [ui(x;h(2)), h(2)u̇i(x;h(2))], can be calculated by minimizing an
objective function given by

nG∑
j=1

Kh(2)(xj − x)d(log(Si(xj)), Ivecs(B̂e(xj)zi + Ui(x)yh(2)(xj − x)))2.

Let Ri be an nG × 6 matrix with the j-th row vecs(log(Si(xj)))− B̂e(xj)zi
and S be an nG×nG smoothing matrix with the (i, j)-th element K̃0

h(2)
(xj−

xi, xi), where K̃0
h(2)

(·, ·) is the empirical equivalent kernel (Fan and Gijbels,
1996). It can be shown that

(2.8) (ûi(x1), · · · , ûi(xnG))T = SRi.
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We pool the data from all n subjects and select an estimated bandwidth of

h(2), denoted as ĥ
(2)
e . We define a generalized cross-validation score, denoted

by GCV(h(2)), as follows:

(2.9) GCV(h(2)) = n−1
∑n
i=1 tr{(Ri − SRi)⊗2}
{1− n−1tr(S)}2

.

We select an estimated bandwidth h(2), denoted by ĥ
(2)
e , by minimizing

GCV(h(2)). Finally, by substituting ĥ
(2)
e into (2.8), we can calculate a weighted

least squares estimate of ui(x), denoted by ûi,e(x).
After obtaining ûi,e(x), we can estimate the mean function u(x) and the

covariance function Σu(x, x′). Specifically, we estimate u(x) and Σu(x, x′) by
using their empirical counterparts based on the estimated ûi,e(x) as follows:

ûe(x) = n−1
n∑
i=1

ûi,e(x) and Σ̂u(x, x′) = (n− 6)−1
n∑
i=1

ûi,e(x)ûi,e(x
′)T .

We construct a nonparametric estimator of the covariance matrix Σε(x, x)
as follows. Let ε̂i(xj) = vecs(log(Si(xj))) − B̂e(xj)zi − ûi,e(xj) be the esti-
mated residuals for i = 1, · · · , n and j = 1, · · · , nG. We consider the kernel
estimate of Σε(x, x) given by

(2.10) Σ̂ε(x, x;h(3)) = (n− 6)−1
n∑
i=1

nG∑
j=1

Kh(3)(xj − x)ε̂i(xj)
⊗2∑nG

j=1Kh(3)(xj − x)
.

We pool the data from all n subjects and select an estimated bandwidth

of h(3), denoted as ĥ
(3)
e . Let Σ̃ε(xj , xj) = (n−6)−1

∑n
i=1 ε̂i(xj)ε̂i(xj)

T be an
estimate of Σε(xj , xj) and Σ̂ε(x, x;h(3))(−i) be the leave-one-out weighted
least squares estimator of Σ̂ε(x, x). We define a cross-validation score, de-
noted by CV2(h

(3)), as follows:

(nnG)−1
n∑
i=1

nG∑
j=1

tr{[ε̂i(xj)⊗2 − Σ̂ε(xj , xj ;h
(3))(−i)]⊗2Σ̃ε(xj , xj)

−1}.

We select an estimated bandwidth h(3), denoted by ĥ
(3)
e , by minimizing

CV2(h
(3)). Finally, by substituting ĥ

(3)
e into (2.10), we can calculate a weighted

least squares estimate of Σε(x, x), denoted by Σ̂ε,e(x, x).

2.5. Asymptotic Properties. We will use the following theorems to make
statistical inference on varying coefficient functions. The detailed assump-
tions of these theorems can be found in the Appendix A and their proofs are
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similar to those in Zhu, Li and Kong (2010). Thus, we omit them for the sake
of space. We need some notation. Let B̈(x) = d2B(x)/dx2 and G(0,Σ) be
a Gaussian process with zero mean and covariance matrix function Σ(x, x′)
for any x, x′ ∈ [0, L0].
Theorem 1. If the assumptions (C1)-(C6) in the Appendix hold, then

√
n{vec(B̂(x;h(1))−B(x)−0.5u2B̈(x)h(1)2[1+op(1)]) : x ∈ [0, L0]} ⇒ XB(x),

where ⇒ denote weak convergence of a sequence of stochastic processes,
XB(·) follows a Gaussian process G(0,Σu ⊗ Ω−1z ), and Ωz is the limit of
n−1

∑n
i=1 z

⊗2
i as n→∞.

Theorem 1 establishes weak convergence of B̂(x;h(1)) as a stochastic pro-
cess indexed by x ∈ [0, L0] and forms the foundation for constructing a global
test statistic and simultaneous confidence bands for {B(x) : x ∈ [0, L0]}.
Theorem 2. If the assumptions (C1)-(C7) in the Appendix hold, then

sup
(x,x′)∈[0,L0]2

|Σ̂u(x, x′;h(3))− Σu(x, x′)| = op(1).

Theorem 2 shows the uniform convergence of Σ̂u(x, x′;h(3)). This is use-
ful for constructing global and local test statistics for testing the covariate
effects.

2.6. Hypothesis Tests. In neuroimaging studies, many scientific ques-
tions of interest require the comparison of fiber bundle diffusion tensors
along fiber bundles across two (or more) diagnostic groups and the assess-
ment of the development of fiber bundle diffusion tensors along time. Such
questions can often be formulated as linear hypotheses of B(x) as follows:

(2.11) H0 : Cvec(B(x)) = b0(x) for all x vs. H1 : Cvec(B(x)) 6= b0(x),

where C is a c× 6r matrix of full row rank and b0(x) is a given c× 1 vector
of functions.

We propose both local and global test statistics. The local test statistic
can identify the exact location of significant location on a specific tract. At
a given point xj on a specific tract, we test the local null hypothesis

H0(xj) : Cvec(B(xj)) = b0(xj) v.s. H1(xj) : Cvec(B(xj)) 6= b0(xj).

We use a local test statistic Tn(xj) defined by

(2.12) Tn(xj) = nd(xj)
T {C(Σ̂u(xj , xj)⊗ Ω̂−1z )CT }−1d(xj),
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where Ω̂z = n−1
∑n
i=1 z

⊗2
i and d(x) = Cvec(B̂e(x) − bias(B̂e(x))) − b0(x).

Following Fan and Zhang (2000), a smaller bandwidth leads to a smaller
value of bias(B̂e(x)). Moreover, according to our simulation studies below,
we have found that the effect of dropping bias(B̂e(x)) is negligible and there-
fore, we drop it from now on.

To test the null hypothesis H0 : Cvecs(B(x)) = b0(x) for all x, we propose
a global test statistic Tn defined by

(2.13) Tn =

∫ L0

0
Tn(x)dx.

Let GC(·) be a Gaussian process with zero mean and covariance matrix
function ΣC(x, x′), which is the limit of

{C(Σ̂u(x, x)⊗Ω̂−1z )CT }−1/2{C(Σ̂u(x, x′)⊗Ω̂−1z )CT }{C(Σ̂u(x′, x′)⊗Ω̂−1z )CT }−1/2.

It follows from Theorem 1 that
√
n{C(Σ̂u(x, x) ⊗ Ω̂−1z )CT }−1/2d(x) con-

verges weakly to GC(x). Therefore, it follows from the continuous mapping
theorem that as both n and nG converge to infinity, we have

(2.14) Tn ⇒
∫ L0

0
GC(x)TGC(x)dx.

Based on the result (2.14), we develop a wild bootstrap method to approx-
imate the p-value of Tn. The detailed steps of the wild bootstrap method
are given in Appendix B.

2.7. Confidence Band. Based on model (2.16), we construct a confidence
band for S(B(x), z) = exp(Ivecs(B(x)z)) ∈ Sym+(3) over x ∈ [0, L0] for a
fixed z. Specifically, at a given significance level α, we construct a simulta-
neous confidence region in the space of SPD matrices for each z based on
the critical value Cz(α) such that

(2.15) P (d(S(B(x), z), S(B̂(x), z)) ≤ Cz(α) for all x ∈ [0, L0]) = 1− α.

Note that d(S(B(x), z), S(B̂(x), z)) =
√

tr([Ivecs({B̂e(x)−B(x)}z)]⊗2). By
using Theorem 1, we have that as n→∞,

√
nd(S(B(x), z), S(B̂(x), z))⇒

√
tr[{Ivecs(XB(x)z)}⊗2].

We develop an efficient resampling method (Kosorok, 2003; Zhu et al., 2007a)
to approximately draw random samples from {XB(x) : x ∈ [0, L0]}, denoted
by {XB(x)(g) : x ∈ [0, L0]} for g = 1, . . . , G. The detailed steps of such
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a resampling method can be found in Appendix C. Subsequently, we can

calculate
√

tr[{Ivecs(XB(x)(g)z)}⊗2] for all g and use them to approximate
Cz(α) for any given α.

Moreover, for B(x) = (βkl(x)), we can construct confidence bands for its
individual varying coefficient function βkl(x) for all (k, l). Specifically, at a
given significance level α, we construct a confidence band for each βkl(x)
such that

(2.16) P (β̂L,αkl (x) < βkl(x) < β̂U,αkl (x) for all x ∈ [0, L0]) = 1− α,

where β̂L,αkl (x) and β̂U,αkl (x) are the lower and upper limits of the confidence
band. Let ekl be a 6r × 1 vector with the (l − 1)r + k-th element equal to
1 and all others equal to 0. It follows from Theorem 1 and the continuous
mapping theorem that

sup
x∈[0,L0]

|
√
n{β̂kl,e(x)− βkl(x)}| ⇒ sup

x∈[0,L0]
|eTklXB(x)|.

We define the critical point Ckl(α) to satisfy P (supx∈[0,L0] |e
T
klXB(x)| ≤

Ckl(α)) = 1 − α. Thus, a 1 − α simultaneous confidence band for βkl(x) is
given by

(2.17)

(
β̂kl,e(x)− Ckl(α)√

n
, β̂kl,e(x) +

Ckl(α)√
n

)
.

Similar to Cz(α), the critical point Ckl(α) can be approximated as the 1−α
empirical percentile of supx∈[0,L0] |e

T
klXB(x)(g)| for all g = 1, . . . , G.

3. Simulation Studies. We conducted four sets of Monte Carlo simu-
lations to examine the finite sample performance of VCMDTF. We simulated
noisy diffusion tensors according to model (2.1) along the RICFT with nG =
112 points (Fig. 1 (a)). Specifically, we set n = 96 and zi = (1,Gi,GAgei)
for i = 1, . . . , 96, where Gi and GAgei, respectively, denote gender and ges-
tational age. To mimic real imaging data, we used DTs along the RICFT
from all 96 infants in our clinical data to estimate B(x) by B̂e(x), ui(x) by
ûi(x) via (2.8), and εi(x) by ε̂i(x) = vecs(log(Si(x))− B̂e(x)zi− ûi(x)). We
fixed all functions in B(x) at their corresponding functions in B̂e(x) except
that the third column of B(x), denoted by (β13(x), . . . , β63(x))T , was set as c
times the third column of B̂e(x). Below, we set c at different values in order
to study the Type I and II error rates of our global test statistic in testing
the gestational age effect. According to our real data analysis in Section 4,
the gestational age effect corresponding to c = 1 is significant for our clinical
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data. Finally, at each point xj , we generated the simulated diffusion tensors
as follows:

Si(x) = exp(Ivecs(B(x)zi + τiûi(x) + τi(xj)ε̂i(x))),(3.1)

where τi and τi(xj) were independently generated from a N(0, 1) random
generator for i = 1, · · · , n and j = 1, · · · , nG.

3.1. Simulation 1 . We investigated the consequence of missing an im-
portant covariate. According to our real data analysis in Section 4, the GAge
effect is significant, whereas the gender effect is not significant. We fitted
two VCMDTF models including three-covariate (intercept, gender and ges-
tational age) and two-covariate (intercept and gender) models to smooth
the DTs along the RICFT and compare their performance in reconstructing
the true DTs along the RICFT. Note that the two-covariate model does not
include GAgei as a covariate. Fig. 2 presents the estimated diffusion tensors
using the three-covariate model (Fig. 2 (c)) and the two-covariate model
(Fig. 2 (d)). Inspecting Fig. 2 (e) reveals that the three-covariate model
leads a smaller mean geodesic distance between the true and estimated DTs
compared with the two-covariate model. Thus, the three-covariate model
outperforms the two-covariate one in recovering the true DTs along the
RICFT.

3.2. Simulation 2 . We investigated the finite sample performance of
the global test statistic Tn based on the whole DT. In neuroimaging stud-
ies, some scientific questions require the assessment of the development of
diffusion tensors along fiber tracts across time. In this simulation study, we
formulated the questions as testing the null hypothesis H0 : β13(x) = . . . =
β63(x) = 0 for all x along the RICFT. We first fixed c = 0 to assess the Type
I error rates for Tn, and then we set c = .2, .4, .6, .8, and 1.0 to examine the
Type II error rates for Tn at different effect sizes.

We applied the estimation procedure of VCMDTF to the noisy DTs along
the RICFT. We approximated the p-value of Tn by using the wild bootstrap
method with G = 1000 described in Appendix B. For each c, we set the sig-
nificance level α at both 0.05 and 0.01 and used 500 replications to estimate
the rejection rate of Tn. At a fixed α, if the Type I rejection rate is smaller
than α, then the test is conservative, whereas if the Type I rejection rate is
greater than α, then the test is anticonservative, or liberal. Fig. 3 presents
the rejection rates of Tn across all effect sizes at the two significance levels
(α = .05 or .01) by using full diffusion tensors. It is observed that Type I
error rates are well maintained at the two significance levels. In addition, the
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Fig 2. Ellipsoidal representations of the true (a), simulated (b) and estimated (c) (based
on three covariates) and (d) (based on two covariates) diffusion tensors along the RICFT,
colored with their FA values. The rainbow color scheme is used with red corresponding to
low FA value and purple corresponding to high FA value. Each set of 3 rows in (a)-(d)
represents one tract of 112 DTs and the three rows are read from left to right in the top
row, right to left in the middle row and then left to right in the bottom row. (e) Mean
geodesic distances between the estimated and true diffusion tensors (green solid line based
on three covariates and blue dash-dotted line based on two covariates) along the RICFT.
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Fig 3. Simulation study: Type I and Type II error rates as functions of c. Rejection rates
of Tn based on the wild bootstrap method are calculated at six different values of the effect
size c for sample size 96 at the (a) .05 and (b) .01 significance levels using DTs; FA values;
MD values; and joint values of FA and MD.

statistical power for rejecting the null hypothesis increases with the effect
size and the significance level, which is consistent with our expectation.

3.3. Simulation 3 . We demonstrated the power gain in using DTs com-
pared with the sole use of diffusion properties. For each simulated diffusion
tensor generated in Section 3.2, we calculated its three eigenvalues λ1, λ2 and
λ3 and two well-known scalar diffusion properties MD and FA. Specifically,
MD describes the amount of diffusion, whereas FA describes the relative
degree of anisotropy or the variation of the three eigenvalues of a 3× 3 SPD
matrix and is a scalar value between zero (all eigenvalues are the same) and
one (two eigenvlues equal 0) given by

(3.2) FA =

√
3{(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2}

2(λ21 + λ22 + λ23)
.

To compare the power of our method based on DTs with other methods
based on scalar diffusion properties, we applied an existing method for the
analysis of diffusion properties in Zhu et al. (2011) to three different scenar-
ios: (i) FA, (ii) MD, and (iii) (FA, MD). Then we tested the gestational age
effect in each scenario. Inspecting Fig. 3 reveals that the statistical power
for rejecting the null hypothesis increases with the effect size and the signifi-
cance level in all scenarios. Moreover, compared with the sole use of diffusion
properties, the use of DT dramatically increases the statistical power for re-
jecting the null hypothesis.
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Table 1
Simulated coverage probabilities for varying coefficient functions in B(x) = (βkl(x)) based

on 500 replications at the significance levels α = 0.01 and 0.05.

α = .05 α = .01
intercept gender GAge intercept gender GAge
l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

β1l(x) .942 .938 .946 .988 .988 .988
β2l(x) .936 .952 .956 .982 .992 .988
β3l(x) .940 .936 .948 .990 .992 .988
β4l(x) .946 .960 .938 .990 .998 .994
β5l(x) .932 .950 .942 .984 .988 .990
β6l(x) .942 .940 .946 .990 .988 .988

3.4. Simulation 4 . We examined the coverage probabilities of the si-
multaneous confidence bands for all varying coefficient functions βkl(x) in
B(x) and S(B(x), z). We used the same simulation setup as the second set
of simulations except that we fixed c = 1. We constructed the 95% and
99% simultaneous confidence bands for all βkl(x). Following Fan and Zhang
(2000), we used a smaller bandwidth with a shrinkage factor 6 to improve
the accuracy of the confidence bands.

Table 1 summarizes the empirical coverage probabilities based on 500
replications for α = .01 and .05. The coverage probabilities are quite close
to the prespecified confidence levels. Fig. 4 presents typical critical values
of 95% simultaneous confidence regions for vectors of coefficient functions
βk.(x), k = 1, · · · , 6. Fig. 5 summarizes the empirical coverage probabilities
for S(B(x), z) based on 500 replications at α = .01 and .05. The coverage
probabilities are quite close to the expected confidence levels.

4. Analysis of the Right Internal Capsule Fiber Tract. We fit-
ted VCMDTF to DTs along the RICFT with zi = (1,Gi,GAgei)

T for
i = 1, . . . , 96. We applied the estimation procedure in Section 2 to estimate
B(x), Σu(·, ·), and Σε(·, ·). Then, we constructed the global test statistics
Tn and the local test statistics Tn(xj) to test the gender effect and the
gestational age effect based on DTs along the RICFT. The p value of Tn
was approximated by using the resampling method with G = 5, 000 repli-
cations. Finally, we constructed the 95% simultaneous confidence bands for
the varying coefficient functions βkl(x).

We statistically test the effects of gender and gestational age. To test
the gender effect, we calculated the local test statistics Tn(xj) and their
corresponding p values across all points on the RICFT. It is shown in Fig. 6
(a) that most points do not have significant − log10(p) values, which are less
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Fig 4. Typical 95% simultaneous confidence bands for varying coefficient functions βkl(x).
The solid, dotted, and dash-dotted curves are, respectively, the true curves, the estimated
varying coefficient functions and their 95% confidence bands.
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Fig 5. Simulated coverage probabilities for D(z, β(x)) based on 500 simulations for α = .05
(solid lines with diamond markers) and α = .01 (solid lines with circle markers), (a) for
female (b) for male at different gestational ages, respectively.

than 1.3. Then, we also computed the global test statistic Tn = 792.70 and
its associated p-value p = 0.3934 indicating no gender effect. Inspecting Fig.
6 (b) reveals that the − log10(p) values of Tn(xj) for testing the gestational
age effect are greater than 1.5 at some points near the two ends and in the
middle part of the RICFT. A very high significant gestational age effect
was also found with Tn = 1361.16 and its p−value p = 0.0144. It may
indicate that DTs along the RICFT are significantly associated with the
gestational age, even though there is no gender difference among DTs along
the RICFT. We picked a grid point with a significant p value for Tn(x) and
observed that the diffusion tensors become larger with increasing gestational
age (Fig. 6 (c) and (d)). This trend can also be observed in Fig. 6 (e) and
(f) with all three eigenvalues increasing with the gestational age. Recall that
the three eigenvalues define the lengths of the semiaxes in the ellipsoidal
representation of a diffusion tensor, which reflects the magnitude of the
diffusion of water molecules.

We also calculated the global test statistics in Zhu et al. (2011) to assess
the covariates of interest by using FA values alone, MD values alone and
the joint values of FA and MD along the RICFT, respectively. The p-value
of the global test statistic in Zhu et al. (2011) was approximated using the
resampling method with G = 5, 000. The resulting p-values are reported in
Table 2. No significant gender effect was found for all scenarios, which indi-
cates no significant difference between male and female groups. We observed
a significant gestational age effect for both the case of MD values alone and
the joint values of FA and MD, but not for FA values alone. The p-value of
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Fig 6. The − log10(p) values of test statistics Tn(xj) for testing gender or gestational
age effect of diffusion tensors on the right internal capsule tract in panel (a) showing
no significant gender effect, in panel (b) showing significant gestational age effect.The
ellipsoidal representations of (c) raw and (d) smoothed diffusion tensors changing with the
gestational age at one point on the right internal capsule tract with significant gestational
age effect. The plots of largest (e), second largest (f) and smallest (g) eigenvalues.
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Table 2
The p-values of the global test statistics for testing the effects of gender and gestational

age (GAge) on the right internal capsule tract

DT FA MD (FA, MD)

gender 0.3934 0.8238 0.7326 0.7614
GAge 0.0144 0.1668 0.0156 0.0232

Tn based on the whole DT is the smaller than those based on the sole use
of diffusion properties.

Fig. 7 presents the estimated varying coefficient functions along with their
95% simultaneous confidence bands. In Fig. 7, almost all simultaneous con-
fidence bands contain the horizontal line crossing (0, 0) for the gender and
gestational age effects. This agrees with our previous analysis based on the
global and local test statistics for the gender effects. However, it seems that
there might be a discrepancy between the global test statistic and the si-
multaneous confidence band for the gestational age effect. We note several
methodological differences between the global test statistic and the simul-
taneous confidence band. First, the confidence band is constructed for each
individual function, whereas the global test statistic is based on all six co-
efficient functions βk3(x) (k = 1, . . . , 6) in B(x), which are associated with
gestational age. Secondly, the confidence band is based on the maximum test
statistic for controlling for family wise error rate, whereas the global p-value
of Tn is similar to controlling for false discovery rate. Thus, our simultane-
ous confidence bands can produce more conservative results as evidenced in
Figure 7. We also calculated the global test statistic based on the maximum
local test statistic over all points along the RICFT and approximated the
p-value for the maximum test statistic as 0.0494, which is close to the 0.05
significance level. This behavior is also confirmed by Fig. 7 since the hori-
zontal line passing through the origin is very close to the 95% simultaneous
confidence bands for β23(x) and β43(x).

Finally, Fig. 8 presents the 95% critical values for S(B(x), z) and the
estimated S(B(x), z) along the RICFT over gestational ages for female and
male groups, respectively. Inspecting Fig. 8 reveals that the variation of
S(B(x), z) is larger on the two boundary points (especially on the left side)
and smaller in the middle.

5. Discussion. We have developed the VCMDTF method for modeling
diffusion tensors along fiber bundles in the Riemannian manifold of SPD ma-
trices under the Log-Euclidean metric. From the application end, VCMDTF
is demonstrated in a clinical study of neurodevelopment for revealing the
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Fig 7. 95% simultaneous confidence bands for coefficient functions. The solid curves are
the estimated coefficient functions, and the dashed curves are the 95% confidence bands.
The thin horizontal line is the line crossing the origin.
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Fig 8. The 95% critical values for S(B(x), z) across gestational ages for female (a) and
male (b) groups, respectively. The ellipsoidal representation of the estimated S(B(x), z)
along the right internal capsule tract across gestational ages for female (c) and male (d)
groups, respectively.
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complex inhomogeneous spatiotemporal maturation patterns as the appar-
ent changes in fiber bundle diffusion tensors.

Several major issues remain to be addressed in future research. All fiber-
tract based methods including VCMDTF are only applicable to these promi-
nent white matter tracts and do not account for the uncertainties of tracking
these fiber tracts. It is important to develop new statistical methods to ap-
propriately account for such uncertainties in fiber-tract analysis especially
for inconspicuous fiber tracts. VCMDTF is based on the second-order dif-
fusion tensor. It may be interesting to extend VCMDTF to the analysis of
high angular resolution diffusion imaging (HARDI), which is important for
resolving the issue of fiber crossing (Assemlal et al., 2011). Furthermore, it
would be of great interest to extend VCMDTF to longitudinal studies and
family studies. Finally, we have treated DTs along fiber tracts as functional
responses, it would be interesting to treat DTs along fiber tracts as vary-
ing covariate functions to predict a scalar outcome (e.g., diagnostic group)
(Goldsmith et al., 2011).

APPENDIX A: ASSUMPTIONS

Assumption C1. εi(x) and ui(x) are identical and independent copies of
SP(0,Σε) and SP(0,Σu), respectively. εi(x) and εi(x

′) are independent for
any x 6= x′ ∈ [0, L0]. εi(x) and ui(x

′) are independent for any x, x′ ∈ [0, L0].
Moreover, with probability one, the sample path of ui(x) has continuous
second-order derivative on [0, L0] and E[supx∈[0,L0] ||ui(x)||r12 ] < ∞ and
E{supx∈[0,L0][||u̇i(x)||2 + ||üi(x)||2]r2} < ∞ for all r1, r2 ∈ (2,∞), where
|| · ||2 is the Euclidean norm.
Assumption C2. All components of B(x) and Σε(x, x) have continuous
second-order derivatives on [0, L0]. The fourth moments of εi(x) are contin-
uous on [0, L0]. All components of Σu(x, x′) have continuous second-order
partial derivatives with respect to (x, x′) ∈ [0, L0]

2. Moreover, Σε(x, x) and
Σu(x, x) are positive for all x ∈ [0, L0].
Assumption C3. The points X = {xj , j = 1, · · · , nG} are independently and
identically distributed with density function π(x), which has the bounded
support [0, L0]. For some constants πL and πU ∈ (0,∞) and any x ∈ [0, L0],
πL ≤ π(x) ≤ πU and π(x) has continuous second-order derivative.
Assumption C4. The kernel function K(t) is a symmetric density function
with a compact support [-1, 1] and is Lipschitz continuous.
Assumption C5. The covariate vectors zi are independently and identically
distributed with Ezi = µz and E[||zi||42] < ∞ and that E[z⊗2i ] = ΩZ is
invertible.
Assumption C6. Both n and nG converge to ∞, h(1) = o(1), nGh

(1) → ∞,
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and h(1)−1| log h(1)|1−2/q1 ≤ n1−2/q1G , where q1 ∈ (2, 4).
Assumption C7. E[||εi(xj)||q22 ] < ∞ for some q2 ∈ (4,∞), max(h(2), h(3)) =
o(1), nG(h(2) + h(3))→∞, (h(2))−4(log n/n)1−2/q2 = o(1), and
(h(3))−2(log n/n)1−2/q2 = o(1).

APPENDIX B: WILD BOOTSTRAP METHOD

We develop the four key steps of the wild bootstrap method for approxi-
mating the p-value of Tn as follows.

Step (i): Use the weighted least squares estimation to fit model (2.1) under
the linear constraint specified in H0, which yields B̂∗e (xj). Calculate û∗i,e(xj)

according to (2.8) and ε̂∗i,e(xj) = vecs(log(Si(xj)))− B̂e(xj)∗zi− û∗i,e(xj) for
i = 1, · · · , n and j = 1, · · · , nG.

Step (ii): Generate a random sample τ
(g)
i and τi(xj)

(g) from a N(0, 1)
random generator for i = 1, · · · , n and j = 1, · · · , nG and then construct

Ŝi(xj)
(g) = exp(Ivecs(B̂∗e (xj)zi + τ

(g)
i û∗i (xj) + τi(xj)

(g)ε̂∗i (xj))).

Then, based on Ŝi(xj)
(g), we recalculate B̂e(x)(g), and d(x)(g) = CB̂e(x)(g)−

b0(x). We compute

T(g)
n =

∫ L0

0
Tn(x)(g)dx,

Tn(xj)
(g) = nd(xj)

(g)T {C(Σ̂u(xj , xj)⊗ Ω̂−1z )CT }−1d(xj)
(g)

for j = 1, · · · , nG.
Step (iii): Aggregate the results of Step (ii) over g = 1, · · · , G to ob-

tain {T (g)
n,max = max1≤j≤nG Tn(xj)

(g) : g = 1, · · · , G} and calculate p(xj) =

G−1
G∑
g=1

1(T
(g)
n,max ≥ Tn(xj)) for each xj . The p(xj) is the corrected p-value

at the location xj .
Step (iv): Aggregate the results of Step (ii) over g = 1, · · · , G to obtain

{T(g)
n : g = 1, · · · , G} and calculate p = G−1

G∑
g=1

1(T
(g)
n ≥ Tn). If p is

smaller than a pre-specified significance level α, say 0.05, then we reject the
null hypothesis H0.
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APPENDIX C: RESAMPLING METHOD FOR APPROXIMATING
GAUSSIAN PROCESS

Recall that Bh(1)(x) = [B(x), h(1)Ḃ(x)] in (2.4) is a 6× 2r matrix. It can
be shown that B̂h(1)(x)T is given by

(C.1) Σ(h(1), x)−1
n∑
i=1

nG∑
j=1

Kh(1)(xj−x)[zi⊗yh(1)(xj−x)]vecs(log(Si(xj)))
T ,

where Σ(h(1), x) =
∑n
i=1

∑nG
j=1Kh(1)(xj−x)[z⊗2i ⊗yh(1)(xj−x)⊗2]. Thus, we

can obtain B̂(x;h(1)) as follows:

(C.2) B̂(x;h(1)) = [Ir ⊗ (1, 0)]B̂h(1)(x).

To approximately simulate from the Gaussian process XB(·), we develop
a resampling method as follows.

• Based on B̂(xj ;h
(1)), we calculate r̂i(xj) = vecs(log(Si(xj)))−B̂(xj ;h

(1))zi
for i = 1, . . . , n and j = 1, . . . , nG.

• For g = 1, · · · , G, we independently simulate {τ (g)i : i = 1, · · · , n} from
N(0, 1).
• For g = 1, · · · , G, we calculate a stochastic process XB(x)(g) given by

√
n[Ir⊗(1, 0)]Σ(h(1), x)−1

n∑
i=1

τ
(g)
i

nG∑
j=1

Kh(1)(xj−x)Ci(xj−x;h(1))r̂i,l(xj)
T ,

where Ci(xj − x;h(1)) = [zi ⊗ yh(1)(xj − x)] is a 2r × 1 vector.
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