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Abstract

The aim of this paper is to develop a semiparametric model for describing the variability

of the medial representation of subcortical structures, which belongs to a Riemannian man-

ifold, and establishing its association with covariates of interest, such as diagnostic status,

age and gender. We develop a two-stage estimation procedure to calculate the parameter

estimates. The first stage is to calculate an intrinsic least squares estimator of the parameter

vector using the annealing evolutionary stochastic approximation Monte Carlo algorithm

and then the second stage is to construct a set of estimating equations to obtain a more ef-

ficient estimate with the intrinsic least squares estimate as the starting point. We use Wald

statistics to test linear hypotheses of unknown parameters and establish their limiting dis-

tributions. Simulation studies are used to evaluate the accuracy of our parameter estimates

and the finite sample performance of the Wald statistics. We apply our methods to the

detection of the difference in the morphological changes of the left and right hippocampi

between schizophrenia patients and healthy controls using medial shape description.

Keywords: Intrinsic least squares estimator; Medial representation; Semiparametric model; Wald

statistic.
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1 Introduction

The medial representation of subcortical structures provides a useful framework for describing

shape variability in local thickness, bending, and widening for subcortical structures (Fletcher

et al., 2004). In the medial representation framework, a geometric object is represented as a set

of connected continuous medial primitives, called medial atoms. See Figure 1 for a hippocampus

example. For 3-dimensional objects, these medial atoms are formed by the centers of the inscribed

spheres and by the associated spokes from the sphere centers to the two respective tangent points

on the object boundary. Specifically, a medial atom m = (OT , r, sT0 , s
T
1 )T is formed by a position

O, the center of the inscribed sphere; a radius r, the common spoke length; and (s0, s1), the two

unit spoke directions (Pizer et al., 2003; Styner et al., 2004). A medial atom can be regarded as

a point on a Riemannian manifold, M(1) = R3×R+×S2×S2, where S2 is the sphere in R3 with

radius one. A medial representation model consisting of K medial atoms can be described as the

direct product of K copies of M(1), i.e., M(1)K =
∏K

i=1M(1). The existing statistical analytical

methods for the medial representation include principal geodesic analysis, the estimation of

extrinsic and intrinsic means, and a permutation test for comparing medial representation data

from two groups (Fletcher et al., 2004). The scientific interests of some neuroimaging studies,

however, typically focus on establishing the association between subcortical structure and a set of

covariates, particularly diagnostic status, age, and gender, thus requiring a regression modeling

framework for medial representation.

There are several challenging issues including multiple directions on S2 and the complex

correlation structure among different components of M(1) in developing medial representation

regression models with a set of covariates. Although there is a sparse literature on regression

modeling of a single directional response and a set of covariates of interest (Mardia and Jupp,

1983; Jupp and Mardia 1989), these regression models of directional data are based on particular

parametric distributions, such as the von Mises-Fisher distribution (Mardia, 1975; Mardia and
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Jupp, 1983; Presnell et al., 1998). For instance, existing circular regression models assume that

the angular response follows the von Mises-Fisher distribution with either the angular mean ηi or

the concentration parameter κi being associated with the covariates xi (Gould, 1969; Johnson and

Wehrly, 1978; Fisher and Lee, 1992). However, it remains unknown whether it is appropriate

to directly apply these parametric models for a single directional measure to simultaneously

characterize the two spoke directions at each atom, which are correlated. Moreover, the two

spoke directions may be correlated with other components of each atom and this provides further

challenges in developing a parametric model to simultaneously model all components of each atom

of the medial representation.

Figure 1: (a) A medial representation model m = (OT , r, sT0 , s
T
1 )T at an atom, where O is the

center of the inscribed sphere, r is the common spoke length, and (s0, s1) are the two unit spoke

directions; (b) a skeleton of a hippocampus with 24 medial atoms; (c) the smoothed surface of

the hippocampus.

The rest of this paper is organized as follows. In Section 2, we formulate the semiparametric

regression model and introduce the two-stage estimation procedure for estimating the regression

coefficients. Then, we establish asymptotic properties of our estimates and then develop Wald

statistics to carry out hypothesis testing. Simulation studies in Section 3 are used to assess

the finite sample performance of the parameter estimates and Wald test statistics. In Section
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4, we illustrate the application of our statistical methods to the detection of the difference in

morphological changes of the hippocampi between schizophrenia patients and healthy controls

in a neuroimaging study of schizophrenia.

2 Theory

2.1 Inverse Link functions

Suppose we have an exogenous q × 1 covariate vector xi and a medial representation for a

particular sub-cortical structure, denoted by Mi = {mi(d) : d ∈ D}, for the i−th subject, where

d represents an atom of the medial representation. For notational simplicity, we temporarily

drop atom d from our notation. We formally introduce a semiparametric regression model for

medial representation responses and covariates of interest from n subjects. The regression model

involves modeling a conditional mean of a medial representation response mi at an atom given

xi, denoted by µi(β) = µ(xi,β), where β is a p× 1 vector of regression coefficients in B ⊂ Rp.

Thus, µ(·, ·) is a map from Rq × Rp to M(1) and µi(β) = (µoi(β)T , µri(β),µ0i(β)T ,µ1i(β)T )T ,

which is a 10×1 vector and µoi(β), µri(β), µ0i(β), and µ1i(β) are the ‘conditional means’ of the

location Oi, the radius ri, and the two spoke directions s0i and s1i respectively, given xi, for the

i-th subject. Note that for spoke directions, we borrow the term conditional mean for random

variables in Euclidean space.

We need to formalize the notion of conditional mean explicitly. For the location component

of a medial representation, we may set µoi(β) = (g1(xi,β1), g2(xi,β2), g3(xi,β3))
T , where gk(·, ·)

is a known inverse link function and βk is a pk × 1 coefficient vector for k = 1, 2, 3. There are

many different ways of specifying gk(xi,βk). The simplest one is the linear inverse link function

gk(xi,βk) = xTi βk. We may also represent gk(xi,βk) as a linear combination of basis functions

{ψj(xi) : j = 1, . . . , J}, such as B-splines, that is gk(xi,βk) =
∑J

j=1 ψj(xi)βkj, in which βkj is

the j-th component of βk. In this way, we can approximate a nonlinear function of xi using the
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linear combination of basis functions. For the radius component, we may use µri(β) = g4(xi,β4),

where β4 is a p4×1 coefficient vector for a medial representation radius. Since a radius is always

positive, a natural inverse link function is g4(xi,β4) = exp(xTi β4), among other possible choices.

As the two spoke directions at each atom of a medial representation are spherical responses, we

develop a link function µ0i(β) ∈ S2 for the first spoke direction at a specific atom for notational

simplicity. Let xi,d be a qd × 1 vector of all the discrete covariates, xi,c are a qc × 1 vector

of all the continuous covariates and their potential interactions with xi,d, β5d and β5c are the

regression parameters corresponding to xi,d and xi,c, respectively, and β5 contains all unknown

parameters in β5d and β5c. From now on, all covariates have been centered to have mean zero.

We assume that all first spoke directions associated with the same discrete covariate vector xi,d

are concentrated around a center on the sphere given by

g5(xi,d,β5d) = (sin(θ(xi,d)) cos(φ(xi,d)), sin(θ(xi,d)) sin(φ(xi,d)), cos(θ(xi,d)))
T , (1)

where θ(xi,d) and φ(xi,d) are, respectively, the colatitude and the longitude, and β5d includes all

unknown parameters θ(xi,d) and φ(xi,d) for different xi,d.

We then describe the stereographic projection of projecting µ0i(β) on the plane with base

point g5(xi,d,β5d), denoted by Tst;g5(xi,d,β5d)(µ0i(β)) (Downs, 2003). A graphic illustration of the

stereographic projection T−1st;(0,0,1)(u, v,−1) is given in Figure 2 (a). The stereographic projec-

tion Tst;g5(xi,d,β5d)(µ0i(β)) is defined as the point of intersection for the plane passing through

g5(xi,d,β5d) with the normal vector g5(xi,d,β5d), which is given by g5(xi,d,β5d)
T{(u, v, w)T −

g5(xi,d,β5d)} = 0 for (u, v, w) ∈ R3, and the line passing through −g5(xi,d,β5d) and µ0i(β):

µ0i(β)− t{g5(xi,d,β5d) +µ0i(β)} for t ∈ (−∞,∞). With some calculation, it can be shown that

Tst;g5(xi,d,β5d)(µ0i(β)) is given by

Tst;g5(xi,d,β5d)(µ0i(β)) =
2µ0i(β)

1 + µ0i(β)Tg5(xi,d,β5d)
− g5(xi,d,β5d){µ0i(β)Tg5(xi,d,β5d)− 1}

1 + µ0i(β)Tg5(xi,d,β5d)
.

Let R be a rotation matrix in SO(3) such that RT = R−1 and det(R) = 1, where det(R) denotes

the determinant of R and SO(3) is the set of 3× 3 rotation matrices. By applying the rotation
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matrix R to both g5(xi,d,β5d) and µ0i(β), we have

Tst;Rg5(xi,d,β5d)(Rµ0i(β)) = RTst;g5(xi,d,β5d)(µ0i(β)). (2)

We consider a specific rotation matrix for rotating s1 = (s1,u, s1,v, s1,w)T ∈ S2 to s2 =

(s2,u, s2,v, s2,w)T ∈ S2, denoted by Rs1,s2 , such that Rs1,s2s1 = s2. We need to calculate η =

arccos(sT1 s2) = arccos(s1,us2,u + s1,vs2,v + s1,ws2,w) and s3 = s1× s2/ ‖s1 × s2‖ = (s3,u, s3,v, s3,w)T ,

where s1× s2 = (s1,vs2,w − s1,ws2,v, s1,ws2,u− s1,us2,w, s1,us2,v − s1,vs2,u)T and ‖·‖ is the Euclidean

norm of a vector. Then, Rs1,s2 is given by
s23,ucη + cos(η), s3,us3,vcη − s3,w sin(η), s3,us3,wcη + s3,v sin(η)

s3,us3,vcη + s3,w sin(η), s23,vcη + cos(η), s3,vs3,wcη − s3,u sin(η)

s3,us3,wcη − s3,v sin(η), s3,vs3,wcη + s3,u sin(η), s23,wcη + cos(η)

 , (3)

where cη = 1− cos(η).

The inverse link function µ0i(β) is explicitly given as follows. By letting R = Rg5(xi,d,β5d),(0,0,−1)T

in (2), in which (0, 0,−1)T is the south pole of S2, we have

Tst;(0,0,−1)T (Rg5(xi,d,β5d),(0,0,−1)Tµ0i(β)) = Rg5(xi,d,β5d),(0,0,−1)TTst;g5(xi,d,β5d)(µ0i(β)). (4)

We assume that

Tst;(0,0,−1)T (Rg5(xi,d,β5d),(0,0,−1)Tµ0i(β)) = (xTicβ5c,−1)T , (5)

where β5c is a qc × 2 matrix. Let T−1
st;(0,0,−1)T be the inverse map of the stereographic projection

mapping from the plane with base point (0, 0,−1) back to S2 such that

T−1
st;(0,0,−1)T ((u, v,−1)) =

(
4u

u2 + v2 + 4
,

4v

u2 + v2 + 4
,
u2 + v2 − 4

u2 + v2 + 4

)
.

Please see Fig. 2 (a) for details. Note that Rg5(xi,d,β5d),(0,0,−1)T ∈ SO(3), the inverse link function

µ0i(β) is given by

µ0i(β) = R(0,0,−1)T ,g5(xi,d,β5d)T
−1
st;(0,0,−1)T ((xTi,cβ5c,−1)T ). (6)
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When β5c = 0 indicating no continuous covariate effect, µ0i(β) reduces to g5(xi,d,β5d). Sim-

ilarly, for the second spoke direction, we introduce β6d and β6c as the regression parameters

corresponding to xi,d and xi,c, respectively, and then we define g6(xi,d,β6d) and µ1i(β), respec-

tively, as the center associated with the same discrete covariate vector xi,d and the inverse link

function by following (1) and (6). We have discussed various inverse link functions for µ(xi,β),

but these link functions can be misspecified for a given data set. To avoid such misspecification,

we may estimate these inverse link functions nonparametrically. It is a topic for future research.

2.2 Intrinsic regression model

Now, we introduce a definition of a residual to ensure that µi(β) is the proper conditional

mean of mi given xi. For instance, in a classical linear model, the response is the sum of

the regression function and the residual, and the conditional mean of the response equals the

regression function. Given two points mi and µi(β) on the manifold, we need to define the

residual or difference between them. At µi(β), we have the tangent space of M(1), denoted by

Tµi(β)
M(1), which is a Euclidean space representing a first order approximation of the manifold

M(1) near µi(β). We calculate the projection of mi onto Tµi(β)
M(1), denoted by Lµi(β)

(mi),

as follows:

Lµi(β)
(mi) = (Oi − µoi(β), log(ri/µri(β)),Lµ0i(β)

(s0i)
T ,Lµ1i(β)

(s1i)
T )T , (7)

where Lµki(β)
(ski) = arccos(µki(β)T ski)s̃ki/||s̃ki||, in which s̃ki = ski − {µki(β)T ski}µki(β) for

k = 0, 1. Thus, Lµi(β)
(mi) can be regarded as the residual or difference between mi and µi(β)

in Tµi(β)
M(1). Geometrically, Lµi(β)

(mi) is associated with the Riemannian Exponential and

Logarithm maps on M(1).

We introduce the Riemannian Exponential and Logarithm maps on M(1). Let the tangent

vector θ = (θo, θr,θs0 ,θs1)
T ∈ TmM(1), where θo ∈ R3 is the location tangent component,

θr ∈ R is the radius tangent component, and θs0 and θs1 ∈ R3 are the two directional tangent
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components. Let γm(t;θ) be the geodesic on M(1) passing through γm(0;θ) = m ∈ M(1) in

the direction of the tangent vector θ ∈ TmM(1). The Riemannian Exponential map, denoted

by Expm(·), maps the tangent vector θ at m to a point m1 ∈ M(1) and Expm(θ) = γm(1;θ).

The Riemannian Logarithm map, denoted by Lm(m1), maps m1 ∈M(1) onto the tangent vector

θ = Lm(m1) ∈ TmM(1). The Riemannian Exponential map and Logarithm map are inverses of

each other, that is Expm(Lm(m1)) = m1.

Because a medial representation is the product space of several spaces, the Riemannian

Exponential/Logarithm map for M(1) is the product of the Riemannian Exponential/Logarithm

maps for each space. Let m = (OT , r, sT0 , s
T
1 )T and m1 = (OT

1 , r1, s
T
0,1, s

T
1,1)

T be two points in

M(1) and θ ∈ TmM(1). We give the explicit form of the Exponential and Logarithm maps for

each space of interest. For the space of locations, Expo(θo) = O + θo, and Lo(O1) = O1 −O.

For the space of radiuses, Expr(θr) = r exp(θr) and Lr(r1) = log(r1/r). For the space S2,

Exps0(θs0) = cos(‖θs0‖2)s0 + sin(‖θs0‖2)θs0/ ‖θs0‖2 . Let s̃0,1 = s0,1 − (sT0 s0,1)s0 6= 0. If s0 and

s0,1 are not antipodal (s0 6= −s0,1), we can get Ls0(s0,1) = arccos(sT0 s0,1)s̃0,1/ ‖s̃0,1‖2 . Thus, for

the space M(1), the Riemannian Exponential and Logarithm maps are, respectively, given by

Expm(θ) = (OT + θTo , r exp(θr),Exps0(θs0)
T ,Exps1(θs1)

T )T , (8)

Lm(m1) = (OT
1 −OT , log(r1/r),Ls0(s0,1)

T ,Ls1(s1,1)
T )T . (9)

Although the Lµi(β)
(mi) ∈ Tµi(β)

M(1) are in different tangent spaces, we can use parallel

transport to translate them to the same tangent space at an overall base point, denoted by

B(β). We choose B(β) = (0, 0, 0, 1,g5(β5d)
T ,g6(β6d)

T )T , where g5(β5d) and g6(β6d) are the

mean directions of g5(xi,d,β5d) and g6(xi,d,β6d) for all possible xi,d, respectively. We use parallel

transport formulated by a rotation matrix,

R(µi(β)⇒ B(β)) = diag{I3, 1,Rµ0i(β),g5(β5d)
,Rµ1i(β),g6(β6d)

}, (10)

to translate Lµi(β)
(mi) ∈ Tµi(β)

M(1) into {R(µi(β)⇒ B(β))}Lµi(β)
(mi) ∈ TB(β)

M(1). An

illustration of the parallel transport is given in Figure 2 (b). Finally, we define the rotated
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residual of mi with respect to µi(β) as

Ei(β) = {R(µi(β)⇒ B(β))}Lµi(β)
(mi) for i = 1, . . . , n. (11)

The Ei(β) are uniquely defined in the same tangent space T
B(β)

M(1), which is a Euclidean space.

The intrinsic regression model for medial representations M(1) at an atom is then defined by

E{Ei(β) | xi} = 0, E[{R(µi(β)⇒ B(β))}Lµi(β)
(mi) | xi] = 0 (12)

for i = 1, . . . , n, where the expectation is taken with respect to the conditional distribution of

Ei(β) given xi (Le, 2001). In model (12), the nonparametric component is the distribution of mi

given xi, which is left unspecified, while the parametric component is the mean function µi(β),

which is assumed to be known. Moreover, our model (12) does not assume a homogeneous

variance across all atoms and subjects. This is also desirable for real applications, because

between-subject and between-atom variabilities can be substantial.

At atom d, let Ei(β, d) be {R(µi(β, d) ⇒ B(β, d))}Lµi(β,d)
(mi(d)), where µi(β, d) is the

conditional mean of mi(d) given xi. Model (12) leads to an intrinsic regression model for M(1)K

given by

E{Ei(β, d) | xi} = 0 (13)

for all d ∈ D and i = 1, . . . , n. As a comparison, consider a multivariate regression model

Yi = Xiβ + εi and E(εi | xi) = E(Yi −Xiβ | xi) = 0, where Yi is a py × 1 vector and Xi is a

py× p design matrix depending on xi. It is clear that Ei(β, d) is closely related to εi = Yi−Xiβ

in the multivariate regression model and thus the intrinsic regression model (13) for M(1)K can

be regarded as a generalization of a standard multivariate regression.

The key advantage of translating tangent vectors on different tangent spaces to the same

tangent space is that we can directly apply most multivariate analysis techniques in Euclidean

space to the analysis of Ei(β) (Anderson, 2003). By using parallel transport to obtain Ei(β),

we can explicitly account for correlation structure among Ei(β) and then construct a set of
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estimation equations to calculate a more efficient parameter estimate. Please refer to the next

section for details.

2.3 Two-stage estimation procedure

We propose a two-stage estimation procedure for computing parameter estimates for the semi-

parametric medial representation regression model (12) as follows.

Stage 1 is to calculate an intrinsic least squares estimate of the parameter β, denoted by β̂I ,

by minimizing the square of the geodesic distance,

β̂I = argminβDn(β) = argminβ

n∑
i=1

Dn,i(β) = argminβ

n∑
i=1

dist{mi,µi(β)}2, (14)

where Dn,i(β) = dist{mi,µi(β)}2 and dist{mi,µi(β)} is the shortest distance between mi and

µi(β) on M(1). Since Dn(β) can be written as the sum of four terms: D
(1)
n (β) =

∑n
i=1{Oi −

µoi(β)}T{Oi−µoi(β)}, D(2)
n (β) =

∑n
i=1[log(ri)−log{µri(β)}]2, D(3)

n (β) =
∑n

i=1[arccos{sT0iµ0i(β)}]2

andD
(4)
n (β) =

∑n
i=1[arccos{sT1iµ1i(β)}]2, we can minimizeD

(k)
n (β) for k = 1, 2, 3, 4 independently

when they do not share any common parameters.

Computationally, we develop an annealing evolutionary stochastic approximation Monte

Carlo algorithm (Liang, 2011) for obtaining β̂I , whose details can be found in the supplementary

report. Moreover, according to our experience, the traditional optimization methods including

the quasi-Newton method do not perform well for optimizing Dn(β) and strongly depend on the

starting value of β. When µi(β) takes a relatively complicated form, Dn(β) is generally not

concave and can have multiple local modes. For instance, since µ1i(β) is a nonlinear function

of β and D
(4)
n (β) may not be a concave function of β over B, our prior experiences have shown

that the quasi-Newton method for optimizing D
(4)
n (β) can easily converge to local minima.

The estimate β̂I is closely associated with the intrinsic mean (Bhattacharya and Patrange-

naru, 2005) and does not involve the concept of parallel transport. If we replace |arccos(s)|2 by

1 − s in D
(3)
n (β) and D

(4)
n (β), then our fitting procedure in Stage 1 is effectively a maximum
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likelihood estimation for a model with the Fisher-distributed errors on the sphere and thus β̂I is

an extrinsic estimate. It will be shown in Theorem 1 below that β̂I is a consistent estimate, but

β̂I is not efficient, since it does not account for the correlation among the different components

of medial representations.

Stage 2 is to calculate a more efficient estimator of β, denoted by β̂E, which is a solution of

n∑
i=1

ĥE(xi)V̂
−1Ei(β) = 0, (15)

where ĥE(xi) = ∂βµi(β̂I){R(µi(β̂I)⇒ B(β̂I))}−1 = ∂βµi(β̂I){R(B(β̂I)⇒ µi(β̂I))}, V(β) =∑n
i=1 Ei(β)Ei(β)T/n, and V̂ = V(β̂I).

The equation (15) in Stage 2 is invariant to the rotation matrix R(B(β) ⇒ P0), where

P0 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1)T representing the center at the origin (0, 0, 0)T , the unit radius

r = 1, and the two spoke directions pointing towards the north pole (0, 0, 1)T . Specifically, we

can use the rotation matrix R(B(β) ⇒ P0) to rotate Ei(β) to {R(B(β) ⇒ P0)}Ei(β) for all i.

Correspondingly, ĥE(xi) and V−1 are, respectively, changed to ĥE(xi){R(B(β) ⇒ P0)}T and

{R(B(β)⇒ P0)}V−1{R(B(β)⇒ P0)}T . Thus, after applying the rotation R(B(β)⇒ P0), we

can show that ĥE(xi)V
−1Ei(β) equals

ĥE(xi){R(B(β)⇒ P0)}T{R(B(β)⇒ P0)}V−1{R(B(β)⇒ P0)}T{R(B(β)⇒ P0)}Ei(β),

which is independent of R(B(β)⇒ P0).

Model (12) is a conditional mean model (Chamberlain, 1987; Newey, 1993). The conditional

mean model implies that E{h(xi)Ei(β)} = E[h(xi)E{Ei(β) | xi}] = 0 for any vector function

h(·), which may depend on β. After some algebraic calculations, it can be shown that calculating

β̂I is equivalent to solving ∂βDn(β) = −2
∑n

i=1 ∂βµi(β)R(B(β) ⇒ µi(β))Ei(β) = 0, that is,

hI(xi) = ∂βµi(β)R(B(β) ⇒ µi(β)). However, it has been shown (Chamberlain, 1987; Newey,

1993) that the optimal function has the form hopt(xi,β) = E{∂βEi(β) | xi}var{Ei(β) | xi}−1,

which achieves the semiparametric efficiency bound for β. Therefore, hI(xi) is not an optimal

function and thus the intrinsic least squares estimate in Stage 1 is not an efficient estimator.
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Since E{∂βEi(β) | xi} and var{Ei(β) | xi} for each β do not have a simple form, we must esti-

mate them nonparametrically, which leads to a nonparametric estimate of hopt(x,β), denoted by

ĥopt(x,β). Although we may solve the estimating equations Fn(β) =
∑n

i=1 ĥopt(xi,β)Ei(β) = 0

to calculate the efficient estimator of β, it can be computationally challenging to solve Fn(β)

since nonparametrically, estimating the 8× p matrix E{∂βEi(β) | xi} and the 8× 8 inverse ma-

trix of var{Ei(β) | xi} can be very unstable for a relatively small sample size. Thus, we replace

var{Ei(β) | xi} by var{Ei(β)} and approximate E{∂βEi(β) | xi} by ∂βµi(β)R(B(β)⇒ µi(β)).

Moreover, in order to avoid calculating ∂βµi(β)R(B(β) ⇒ µi(β)) and var{Ei(β)} during

each numerical iteration, we calculate them at β̂I and then construct the objective function∑n
i=1 ĥE(xi)V̂

−1Ei(β) = 0 for calculating β̂E. The two-stage estimation procedure leads to sub-

stantial computational efficiency, since solving the complex estimating equations (15) is relatively

easy starting from β̂I . An alternative way is to directly minimize {
∑n

i=1 ∂βµi(β)R(B(β) ⇒

µi(β))V(β)−1Ei(β)}2, which is much more complex than Dn(β) and thus is computationally

difficult.

As a comparison between β̂E and β̂I , we consider a multivariate nonlinear regression model

Yi = F(xi,β) + εi with E(εi | xi) = E{Yi − F(xi,β) | xi} = 0 and var(εi | xi) = Σ, where

F(xi,β) is a vector of nonlinear functions of xi and β. In this case, Ei(β) = εi = Yi −F(xi,β),

β̂I = argminβ
∑n

i=1{Yi − F(xi,β)}T{Yi − F(xi,β)}, and ĥE(xi) = ∂βF(xi, β̂I). Then, Σ can

be estimated by using V̂ =
∑n

i=1{Yi−F(xi, β̂I)}{Yi−F(xi, β̂I)}T/n. Equation (15) reduces to∑n
i=1 ĥE(xi)V̂

−1{Yi−F(xi,β)} = 0, whose solution is just β̂E. Under mild conditions, it can be

shown that compared with β̂I , β̂E is a more efficient estimator of β and its asymptotic covariance

is given by {
∑n

i=1 ĥE(xi)V̂
−1ĥE(xi)

T}−1. In the context of highly concentrated spoke data, our

intrinsic regression model reduces to the multivariate nonlinear regression model and similar

to the multivariate nonlinear regression model, the two-stage approach can increase statistical

efficiency in estimating β.

11



2.4 Asymptotic properties

We establish consistency and asymptotic normality of β̂I and β̂E. The following assumptions are

needed to facilitate the technical details, although they are not the weakest possible conditions.

Assumption A1. The data {zi = (xi,mi) : i = 1, · · · , n} form an independent and identical

sequence.

Assumption A2. β∗ is an interior point of the compact set B ⊂ Rp and is the unique solution

for the model, E {hE(x)E(β)} = 0 , where hE(x) = ∂βµi(β∗){R(B(β∗) ⇒ µi(β∗))}V(β∗)
−1.

Moreover, β∗ is an isolated point of the set of all minimizers of the mapD(β) = E[dist{m,µ(x,β)}2]

on B, denoted by IB.

Assumption A3. In an open neighborhood of β∗, µ(x,β) has a second-order continuous

derivative with respect to β and ||L
µ(β)

(m)||, ||∂µL
µ(β)

(m)||, ||∂βµ(x,β)|| and ||∂2βµ(x,β)||

are bounded by some integrable function G(z) with E{G(z)2} <∞.

Assumption A4. In an open neighborhood of β∗, the rank of E
{
∂2βDn,i(β)

}
is p and

E[
{
∂βDn,i(β)

}⊗2
] is positive definite, where a⊗2 = aaT for a given vector a.

Assumption A1 is needed just for notational simplicity and can be easily modified to accom-

modate independent and non-identically distributed scenarios. Assumption A2 is an identifia-

bility condition. Assumptions A3 and A4 are standard conditions for ensuring the first order

asymptotic properties including consistency and asymptotic normality of M-estimators when the

sample size is large (van der Vaart and Wellner, 1996). We obtain the following theorems, whose

detailed proofs can be found in the Appendix.

Theorem 1. (a) If assumptions A1, A2, and A3 are true, then β̂I and β̂E converge to β∗ in

probability as n→∞, where β∗ is the solution of (12).

(b) Under assumptions A1-A4, we have

[E
n∑
i=1

{∂βDn,i(β̂I)
⊗2}]−1/2E{−∂2βDn(β̂I)}(β̂I − β∗)→ N(0, Ip) (16)

12



as n→∞, where Ip is a p× p identity matrix and → denotes convergence in distribution.

(c) Under assumptions A1-A4, we have

[
n∑
i=1

{ĥE(xi)V̂
−1Ei(β̂E)}⊗2]−1/2{

n∑
i=1

ĥE(xi)V̂
−1∂βEi(β̂E)T}(β̂E − β∗)→ N(0, Ip) (17)

as n→∞.

Theorem 1 has several important applications. Theorem 1 (a) establishes the consistency of

β̂E and β̂I . According to Theorems 1 (b) and (c), we can consistently estimate the covariance

matrices of β̂E and β̂I . For instance, the covariance matrix of β̂E, denoted by Σ̂E, can be

approximated by

{
n∑
i=1

ĥE(xi)V̂
−1∂βEi(β̂E)T}−1[

n∑
i=1

{ĥE(xi)V̂
−1Ei(β̂E)}⊗2]{

n∑
i=1

ĥE(xi)V̂
−1∂βEi(β̂E)T}−T . (18)

Moreover, we can use Theorem 1 (c) to construct confidence cones of β̂E and its functions. Since

Theorem 1 only establishes the asymptotic properties of β̂E when the sample size is large, these

properties may be inadequate to characterize the finite sample behavior of β̂E for relatively small

samples. In the case of small samples, we may have to resort to higher order approximations,

such as saddlepoint approximations and bootstrap methods (Butler, 2007; Davison and Hinkley,

1997).

Our choices of which hypotheses to test are motivated by scientific questions, which involve

a comparison of medial representation components across diagnostic groups. These questions

usually can be formulated as testing linear hypotheses of β as follows:

H0 : Aβ = b0 vs. H1 : Aβ 6= b0, (19)

where A is an r× p matrix of full row rank and b0 is an r× 1 specified vector. We test the null

hypothesis H0 : Aβ = b0 using a Wald test statistic Wn defined by

Wn = (Aβ̂E − b0)
T

(AΣ̂EAT )−1(Aβ̂E − b0). (20)

We are led to the following theorem.
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Theorem 2. If the assumptions A1-A4 are true, then the statistic Wn is asymptotically distributed

as χ2(r), a chi-square distribution with r degrees of freedom, under the null hypothesis H0.

An asymptotically valid test can be obtained by comparing sample values of the test statistic

with the critical value of a χ2(r) distribution at a pre-specified significance level α. However, for a

small sample size n, we observed relatively low precision of the chi-square approximation. Instead,

we calibrate Wn with a critical value of F 1−α
r,n−rr(n− 1)/(n − r), which leads to a slightly higher

precision of the F approximation, where F 1−α
r,n−r is the upper α-percentile of the Fr,n−r distribution.

That is, we reject H0 if Wn ≥ F 1−α
r,n−rr(n− 1)/(n− r), and do not reject H0 otherwise. The reason

that the F approximation outperforms the chi-square approximation is due to the fact that the

F approximation explicitly accounts for sample uncertainty in estimating the covariance matrix

of Aβ̂E.

3 Simulation studies and real data

3.1 Double directional data with covariates

We generated double directional responses as follows:

Rµ0i(β),(0,0,−1)T Lµ0i(β)
(s0i) = E0i, Rµ1i(β),(0,0,−1)T Lµ1i(β)

(s1i) = E1i,

where µ0i(β) and µ1i(β) were set according to (6), in which xi,d’s were fixed at 1 and xi,c’s were

independently simulated from a N(0, 1) distribution. It is assumed that both µ0i(β) and µ1i(β)

were, respectively, centered around g5(xi,d,β5d) = (u0, v0, w0)
T and g6(xi,d,β6d) = (u1, v1, w1)

T

according to (1) such that

u0
1− w0

= β5d,1 = 1.2,
v0

1− w0

= β5d,2 = 1.2,
u1

1− w1

= β6d,1 = 0.8, and
v1

1− w1

= β6d,2 = 0.8.

In addition, we imposed two constraints as follows:

β5c = (β5c,1, β5c,2)
T = β6c = (β6c,1, β6c,2)

T = (1, 1)T .
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We generated the errors E0i and E1i in T(0,0,−1)(S
2) from a 4-dimensional normal distribution,

N(0, 0.5Σ) with Σ being specified as

Σ =

 Σ0 Σ01

Σ01 Σ1

 ,Σ0 = Σ1 =

 1 ρ1

ρ1 1

 , Σ01 = ρ2

 1 ρ1

ρ1 1

 .

Subsequently, we rotated E0i onto the tangent space Tµ0i(β)
(S2) and E1i onto the tangent space

Tµ1i(β)
(S2), and then we used the Exp map defined in the supplementary report to obtain the

responses s0i and s1i. We set n = 40, 80, and 120, ρ1 = ρ2 = 0.5, and then we simulated

2000 datasets for each case to compare the biases and the root-mean-square error of the two

estimates: β̂I and β̂E. As seen in Table 1, β̂E has smaller root-mean-square error than β̂I for

every component of β, but some components of β̂E can be more biased.

We also calculated the mean of the estimated standard error estimates and the relative

efficiencies for all the components in β̂E and evaluated the finite sample performance of the

Wald statistic Wn for hypothesis testing. The results are quite similar to those from the single

directional case in the supplementary file, so we did not present them here to preserve space.

3.2 Schizophrenia study of the hippocampus

We consider a neuroimaging dataset about the medial representation shape of the hippocampus

structure in the left and right brain hemisphere in schizophrenia patients and healthy controls,

collected at 14 academic medical centers in North America and western Europe. The hippocam-

pus, a gray matter structure in the limbic system, is involved in processes of motivation and

emotions, and plays a central role in the formation of memory.

In this study, 238 first-episode schizophrenia patients (53 female, 185 male; mean/standard

deviation age, female 25.1/5.69 years; male 23.6/4.55 years) were enrolled who met the fol-

lowing criteria: age 16 to 40 years; onset of psychiatric symptoms before age 35; diagnosis of

schizophrenia, schizophreniform, or schizoaffective disorder according to DSM-IV criteria; and

15



Table 1: Bias (×10−3) and MS (×10−2) of β̂I and β̂E for double directional case. Bias denotes the

bias of the mean of the estimates; MS denotes the root-mean-square error. For each parameter,

the first row is for β̂I and the second is for β̂E. Moreover, the constraints β5c,1 = β6c,1 and

β5c,2 = β6c,2 are imposed.

n = 40 n = 80 n = 120

Bias MS Bias MS Bias MS

β5d,1 = 1.2 3.15 13.26 4.35 10.04 4.22 7.75

3.40 13.10 4.36 9.82 3.98 7.60

β5c,1 = β6c,1 = 1 9.29 19.19 1.74 12.76 7.43 10.31

8.93 18.02 0.89 12.09 7.27 9.81

β5d,2 = 1.2 9.44 13.69 2.05 10.19 0.86 7.80

9.81 13.29 0.88 9.59 0.43 7.69

β5c,2 = β6c,2 = 1 6.90 18.55 5.00 13.08 0.64 10.53

6.74 17.50 5.67 12.44 0.62 9.99

β6d,1 = 0.8 5.18 16.85 3.23 9.74 2.49 7.93

5.69 12.91 3.10 9.65 2.69 7.76

β6d,2 = 0.8 2.34 14.84 1.31 9.78 0.86 8.47

1.32 13.06 0.98 9.71 0.91 8.07
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various treatment and substance dependence conditions. 56 healthy control subjects (18 female,

38 male; mean/standard deviation age, female 24.8/3.30 years; male 25.3/4.21 years) were also

enrolled. Neurocognitive and magnetic resonance imaging (MRI) assessments were performed at

the first visit time.

The brain MRI data were first aligned to the Montreal Neurological Institute (MNI) space.

Hippocampi were segmented in the MNI space and then their medial representations were recon-

structed from those binary segmentations (Styner et al., 2004). Subsequently, these hippocampus

medial representations were realigned by using a rigid body variation of the standard Procrustes

method. The resulting alignment leads to a shape representation that is invariant to translation

and rotation, but not to scale. Scaling information is retained for studying changes in overall

size or volume.

The aim of our study was to investigate the difference of medial representation shape between

schizophrenia patients and healthy controls while controlling for other factors, such as gender and

age. The response of interest was the hippocampus medial representation shape at the 24 medial

atoms of the left and right brain hemisphere (Figure 1). Covariates of interest were Whole Brain

Volume (WBV), race including Caucasian, African American and others, age in years, gender,

and diagnostic status including patient and control.

The covariate vector is xi = (1, genderi, agei, diagi, race1i, race2i,WBVi)
T , where diag is the

dummy variable for patients versus healthy controls, and race1 and race2 are, respectively,

dummy variables for Caucasians and African Americans versus other races. For the loca-

tion component on the medial representation, we set µO(x,β) = (xTβ1,x
Tβ2,x

Tβ3)
T , where

βk (k = 1, 2, 3) are 7 × 1 coefficient vectors. For the radius component on the medial rep-

resentation, we set µr(x,β) = exp(xTβ4), where β4 is a 7 × 1 coefficient vector. For the

directional components on the medial representation, we used µ0(xi,β) as defined in (6), in

which xi,d = (genderi, diagi, race1i, race2i)
T , xi,c = (agei,WBVi)

T , β5 = (βT5d,β
T
5c)

T for s0 and

β6 = (βT6d,β
T
6c)

T for s1. Therefore, we have the coefficient vector β = (βT1 ,β
T
2 ,β

T
3 ,β

T
4 ,β

T
5 ,β

T
6 )T .
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Then we used the two-stage estimation procedure to obtain estimates of β and conducted hy-

pothesis testing using Wald statistics. Since the primary goal of the study is to investigate the

difference of medial representation shape between schizophrenia patients and healthy controls,

we paid special attention to the terms in β associated with diagnostic status.

First, we examined the overall diagnostic status effect on the whole medial representation

structure. The p-values of the diagnostic status effects across the atoms of both the left and

right reference hippocampi are shown in the first row (a) and (b) of Figure 3. The false discovery

rate approach (Benjamini and Hochberg, 1995) was used to correct for multiple comparisons, and

the corresponding adjusted p-values are shown in the first row (c) and (d) of Figure 3. There was

a large significant area in the left hippocampus and also some in the right hippocampus. The

significance area remains almost the same after correcting for multiple comparisons, but with an

attenuated significance level.

We also examined each component on the medial representation separately. For the radius

component of the medial representation, we presented the p-values of the diagnostic status effects

across the atoms in the second row (a) and (b) of Figure 3 and the adjusted p-values in the second

row (c) and (d). Before correcting for multiple comparisons, we observed a significant diagnostic

status difference in the medial representation thickness at the central atoms near the posterior

side in the left hippocampus and in some areas in the right hippocampus, whereas we did not

observe much of a significant diagnostic status effect after correcting for multiple comparisons.

For the location component of the medial representation, we showed the p-values of the

diagnostic status effects in the third row (a) and (b) of Figure 3 and the corresponding adjusted

p-values in the third row (c) and (d). We observed significant diagnostic status differences mainly

located around the anterior and lateral side of the left hippocampus though with clearly reduced

significance after correcting for multiple comparisons. Similar lateral results have also been

observed by Narr et al. (2004).

Similarly, for the two spoke directions on the medial representation, the p-values of the di-

18



agnostic status effects are shown in the last row (a) and (b) of Figure 3 and the corresponding

adjusted p-values are shown in the last row (c) and (d). Before correcting for multiple compar-

isons, there was some significant area around the anterior, posterior, and the medial side of the

left hippocampus, but not much in the right hippocampus. There was still some significance for

the diagnostic status effect around the same areas in the left hippocampus after correcting for

multiple comparisons, but nothing in the right hippocampus. The posterior orientation effect of

hippocampal differences in schizophrenia has also been shown by Styner et al. (2004) and basi-

cally constitutes a local bending change in that region. The anterior effect is novel and located

at the intersection of the hippocampal Cornu Ammonis 1 and Cornu Ammonis 2 regions.

We also examined the overall age effect on the whole medial representation structure. The

color-coded p-values of the age effect across the atoms of both the left and right reference hip-

pocampi are shown in the first row (a) and (b) of Figure 4. The false discovery rate approach was

used to correct for multiple comparisons, and the corresponding adjusted p-values are shown in

the first row (c) and (d) of Figure 4. There was a large significant area in the right hippocampus

and also some in the left hippocampus. The significance area remains almost the same after

correcting for multiple comparisons, but with an attenuated significance level.

Additionally, we looked at each component on the medial representation separately. For the

radius component of the medial representation, the color-coded p-values of the age effect across

the atoms are shown in the second row (a) and (b) of Figure 4 and the adjusted p-values are

shown in the second row (c) and (d). Before correcting for multiple comparisons, there was a

small age effect in the medial representation thickness at the central atoms near the posterior

side in the left hippocampus and in some areas in the right hippocampus. However, there was

not much of a significant diagnostic status effect after correcting for multiple comparisons.

For the location component of the medial representation, the color-coded p-values of the age

effect are shown in the third row (a) and (b) of Figure 4 and the corresponding adjusted p-values

are shown in the third row (c) and (d). Significant age effects were mainly located around the
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anterior and lateral side of the left hippocampus though with clearly reduced significance after

correcting for multiple comparisons.

For the two spoke directions on the medial representation, we showed the color-coded p-values

of the age effect in the last row (a) and (b) of Figure 4 and the corresponding adjusted p-values

are in the last row (c) and (d). Even after correcting for multiple comparisons, we observed

significant areas around the anterior, posterior, and the medial side of the right hippocampus

and some areas in the left hippocampus.

Finally, following suggestions from a reviewer, we examined the overall diagnostic status effect

without accounting for other factors. The p-values of the diagnostic status effects are shown in

Figure 5. Inspecting Figure 5 reveals a small significant area in the left and right hippocampi

before and after correcting for multiple comparisons. Comparing with Figure 3, we feel that such

attenuation in Figure 5 may be caused by omitting other factors such as age that are believed

to be associated with the variability of the medial representation of subcortical structures.

4 Discussion

We have proposed a semiparametric model for describing the association between the medial

representation of subcortical structures and covariates of interest, such as diagnostic status, age

and gender. We have developed a two-stage estimation procedure to calculate the parameter

estimates and used Wald statistics to test linear hypotheses of unknown parameters. We have

used extensive simulation studies and a real dataset to evaluate the accuracy of our parameter

estimates and the finite sample performance of the Wald statistics.

Many issues still merit further research. The two-stage estimation procedure can be easily

modified to simultaneously estimate all parameters across all atoms and imposing some struc-

tures (e.g., spatial smoothness) on the matrix of regression parameters across all atoms while

accounting for the correlations between different components of different atoms. This general-

20



ization requires a good estimate of the covariance matrix of Ei(β) across all atoms. We may

consider a shrinkage estimator of the covariance matrix of all Ei(β) as a linear combination of

the identity matrix and the sample covariance matrix V(β) (Ledoit and Wolf, 2004). Moreover,

for the matrix of regression parameters across all atoms, we may consider its sparse low-rank

matrix factorization to identify the underlying latent structure among all atoms (Witten, Tibshi-

rani, and Hastie, 2009; Dryden and Mardia, 1998; Fletcher et al., 2004), which will be a topic of

our future research. It is interesting to develop Bayesian models for the joint analysis of medial

representation data of subcortical structures (Angers and Kim, 2005; Healy and Kim, 1996).
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Appendix: Proofs of Theorems 1 and 2

We need the following lemma throughout the proof of Theorems 1 and 2.

Lemma 1. (i) Under Assumption A1, if f(z,β) is a vector of continuous functions in β for any

β in a compact set B and z, then

lim
δ→0

P ( sup
β,β′

∈B,||β′
−β||2<δ

||f(z,β)− f(z,β′)||2 > ε) = 0 ∀ε > 0. (21)

(ii) In addition to the assumptions in (i), if f(z,β) also satisfies supβ∈B ||f(z,β)||2 ≤ G1(z)

and E {G1(z)} <∞, then

sup
β∈B,||β′

−β||2<δ
||E {f(z,β)− f(z,β′)} ||2 → 0 as δ → 0 (22)

and
1

n

n∑
i=1

[f(zi,β)− E {f(zi,β)}] is stochastically equicontinuous on B. (23)

(iii) In addition to the assumptions in (ii), if E {G1(z)r} <∞ for any r > 1, then

sup
β∈B
|| 1
n

n∑
i=1

[f(zi,β)− E {f(zi,β)}] ||2 → 0 (24)

in probability, as n→∞.

(iv) In addition to the assumptions in (ii), if E
{

supβ∈B,||β′
−β||2<δ

||f(z,β)− f(z,β′)||22
}
≤

Cδψ for any δ > 0 in a neighborhood of 0 and some constants C and ψ, then

1√
n

n∑
i=1

[f(zi,β)− E {f(zi,β)}] is stochastically equicontinuous on B. (25)

The assumptions and result (21) of Lemma 1 (i) correspond to Jennrich’s (1969) Theorem 2.

The results in Lemma 1 (ii) correspond to Andrews’ (1992) Lemma 3. The results in Lemma 1

(iii) correspond to Andrews’ (1992) Theorem 1. The result in Lemma 1 (iv) is a special case of

Andrews’ (1994) Theorems 4 and 5.

Lemma 2. Let E(β,β′) be E {dist(µ(x,β),µ(x,β′))2}. We assume that (i) B is a compact set;

(ii) there is a point β ∈ B such that D(β) < ∞ and supβ′
∈B E(β,β′) < ∞; (iii) E(β,β′) is a

continuous function in β and β′. Then, IB is an non-empty compact set.
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Proof of Lemma 2. It follows from the triangle inequality that

dist(m,µ(x,β′))2 ≤ dist(m,µ(x,β))2 + dist(µ(x,β),µ(x,β′))2

+ 2dist(µ(x,β),µ(x,β′))dist(m,µ(x,β)).

Using the Schwarz inequality and the assumptions of Lemma 2, we have

D(β′) ≤ D(β) + E(β,β′) + 2
√
D(β)E(β,β′) <∞

for any β′ ∈ B. Thus, D(β) is a real continuous function of β in a compact set, which yields

that IB is an non-empty set. Since B is a compact set, it is trivial that IB is a compact set.

Proof of Theorem 1. We prove Theorem 1 (a) in two parts. The first part proves weak consistency

of β̂E. We set f(z,β) = dist(m, µ(β))2 = E(β)TE(β). It follows from Assumption A3 that

supβ∈B dist(m, µ(β))2 ≤ G(z)2. Thus, Lemma 1 (ii) and (iii) yield that supβ∈B |n
−1Dn(β) −

D(β)| → 0 in probability and D(β) is continuous in β uniformly over β ∈ Θ. Since IB is a

compact set and β∗ is an isolated point, β̂I is a consistent estimator of β∗. Furthermore, we can

show that supβ∈B |n
−1∑n

i=1[ĥE(xi)Ei(β)−E
{

ĥE(xi)Ei(β)
}

]| → 0 in probability. Using similar

arguments, we can show that β̂E is also a consistent estimator of β∗. Using the results of Lemma

1, we can show the asymptotic normality of β̂E and β̂I under conditions A1-A4 (Andrews, 1999).

Proof of Theorem 2. Using standard arguments, we can easily prove Theorem 2. Specif-

ically, as n → ∞, since it follows from Theorem 1 (ii) that Σ̂
−1/2
E (β̂E − β∗) → N(0, Ip),

(AΣ̂EA
T )−1/2A(β̂E − β∗)→ N(0, Ir), which finishes the proof of Theorem 2.
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Figure 2: Graphic illustration of (a) stereographic projection and (b) parallel transport. In

panels (a) and (b), N and O denote the north pole (0, 0, 1) and the origin (0, 0, 0), respectively,

and the red dash lines are the x, y, and z-axes. In panel (a), the red point (u, v,−1) is a selected

point on the plane z = −1 and the green point T−1
st;(0,0,−1)T ((u, v,−1)) is the inverse map of the

stereographic projection mapping from (u, v,−1) back to S2. In panel (b), the point A is on S2,

LA(s) is in TAS
2, and RA,NLA(s) ∈ TNS2 is the parallel transport of LA(s) from A to the north

pole N.
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Figure 3: The coded p−value maps of the diagnostic status effects from the schizophrenia study

of the hippocampus: rows 1, 2, 3, and 4 are for the whole medial representation structure, radius,

location, and two directions, respectively: at each row, the uncorrected p−value maps for (a) the

left hippocampus and (b) the right hippocampus; the corrected p−value maps for (c) the left

hippocampus and (d) the right hippocampus after correcting for multiple comparisons.
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Figure 4: The color-coded p−value maps of the age effect from the schizophrenia study of the

hippocampus: row 1, 2, 3, and 4 are for the whole medial representation structure, radius,

location, and two directions, respectively: at each row, the uncorrected p−value maps for (a) the

left hippocampus and (b) the right hippocampus; the corrected p−value maps for (c) the left

hippocampus and (d) the right hippocampus after correcting for multiple comparisons.
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Figure 5: The coded p−value maps of the diagnostic status effects without accounting for other

factors from the schizophrenia study of the hippocampus: rows 1, 2, 3, and 4 are for the whole

medial representation structure, radius, location, and two directions, respectively: at each row,

the uncorrected p−value maps for (a) the left hippocampus and (b) the right hippocampus;

the corrected p−value maps for (c) the left hippocampus and (d) the right hippocampus after

correcting for multiple comparisons.
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