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SUMMARY

In this paper we develop a general framework of Bayesian influence analysis for assessing
various perturbation schemes to the data, the prior and the sampling distribution for a class of
statistical models. We introduce a perturbation model to characterize these various perturbation
schemes. We develop a geometric framework, called the Bayesian perturbation manifold, and
use its associated geometric quantities including the metric tensor and geodesic to characterize
the intrinsic structure of the perturbation model. We develop intrinsic influence measures and
local influence measures based on the Bayesian perturbation manifold to quantify the effect of
various perturbations to statistical models. Theoretical and numerical examples are examined to
highlight the broad spectrum of applications of this local influence method in a formal Bayesian
analysis.

Some key words: Influence measure; Perturbation manifold; Perturbation model; Prior distribution.

1. INTRODUCTION

A formal Bayesian analysis of data z = (z1, . . . , zn) involves the specification of a sampling
distribution p(z | θ) and a prior distribution p(θ), where θ = (θ1, . . . , θk)

T represents the param-
eters of inferential interest and varies in an open set � of Rk . To carry out Bayesian inference,
we usually use Markov chain Monte Carlo methods to simulate samples from the posterior distri-
bution p(θ | z), which is proportional to p(z | θ)p(θ). Subsequently, we can calculate posterior
quantities of θ in Rk , such as the posterior mean M(h) = ∫ h(θ)p(θ | z)dθ of a function h(θ).
For notational simplicity, we do not emphasize the dominating measure explicitly throughout
the paper. There is a great deal of interest in the degree to which posterior inferences are sensi-
tive to p(θ), p(z | θ) and (z1, . . . , zn) (Kass et al., 1989; McCulloch, 1989; Berger, 1990, 1994;
Dey et al., 1996; Gustafson, 2000; Sivaganesan, 2000; Oakley & O’Hagan, 2004).

There are three major formal influence techniques, including case influence measures and
global and local robustness approaches, for quantifying the degree of dependence of the pos-
terior distribution on these three key elements of Bayesian analysis including the prior, the
sampling distribution and the data (Berger, 1990, 1994). In Bayesian analysis, case influence
measures primarily calculate the influence of a set of observations in order to identify out-
liers and influential observations. Most case influence measures are based on the posterior
and/or predictive distribution through either case deletion or perturbation (Guttman & Peña,
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1993; Peña & Guttman, 1993; Carlin & Polson, 1991; Peng & Dey, 1995). For instance, sev-
eral case influence diagnostics have been developed to quantify the possible outlyingness of
a set of observations based on mean-shift or variance-shift models (Guttman & Peña, 1993;
Peña & Guttman, 1993).

The key idea of the global robustness approach is to compute a range of posterior quantities
as the perturbation to each of the three key elements changes in a certain set of distributions,
and then determine the extremal ones. There are drawbacks with this approach, including the
scale chosen for the posterior quantities, the size of the perturbation and its limitation to lin-
ear functionals as well as simplicity of models. To address the scale issue, several scaled ver-
sions of the range have been proposed for the prior perturbation class (Ruggeri & Sivaganesan,
2000).

The local robustness approach primarily computes the derivatives of posterior quantities
with respect to a minor perturbation to p(θ) and p(z | θ). In the frequentist literature, Cook’s
(1986) influence approach is particularly useful for perturbing p(z | θ) in order to detect influ-
ential observations and assess model misspecification in parametric and semiparametric mod-
els (Zhu & Lee, 2001; Zhu et al., 2007). McCulloch (1989) further extends the local influence
approach of Cook (1986) to assess the effects of perturbing the prior in a Bayesian analysis. In
the Bayesian literature, several analogues of local influence have been developed using either the
curvature of influence measures (Lavine, 1992; Dey & Birmiwal, 1994; Millar & Stewart, 2007;
Van der Linde, 2007) or the Fréchet derivative of the posterior with respect to the prior (Berger,
1994; Gustafson & Wasserman, 1995; Dey et al., 1996; Gustafson, 1996; Berger et al., 2000).
Very little has been done on developing general Bayesian influence analysis methods for simul-
taneously perturbing z, p(θ) and p(z | θ), assessing their effects and examining their applications
in statistical models (Berger et al., 2000). To our knowledge, Clarke & Gustafson (1998) is one
of the few papers on simultaneously perturbing

{
z, p(θ), p(z | θ)

}
in the context of independent

and identically distributed data.
A key motivation for the proposed methodology is to unify influence concepts for many com-

plex Bayesian models, for which very few or no methods exist, so that the effects of different
perturbations can be identified. These models include many Bayesian parametric and semipara-
metric models, perhaps with missing data; see the Supplementary Material. Our development
includes formal assessment of outliers and influential points as well as sensitivity analyses regard-
ing the three major components of the Bayesian model: the prior, sampling distribution, and the
data. For instance, sensitivity to the data can be evaluated by perturbing all the data points by
random noise, redoing the analysis, and getting a spectrum of different inferences defined by
noise (Wang et al., 2009; Clarke, 2010).

2. THE BAYESIAN PERTURBATION MODEL AND MANIFOLD

2·1. The Bayesian perturbation model

We develop a Bayesian model to characterize various perturbation schemes to z, p(z | θ) and
p(θ). We introduce perturbations into the model p(z, θ) = p(z | θ)p(θ) through a vector ω =
ω(z, θ), which varies in a set �. That is, ω is a mapping from the product space of the sample
space Z and the parameter space � to �. Generally, ω includes many perturbation schemes
including the additive ε-contamination class to the prior as detailed below. Moreover, ω must be
chosen carefully so that the perturbation is meaningful and sensible.

Let p(z, θ | ω) be the probability density of (z, θ) for the perturbed model. We assume that the
probability measures of p(z, θ | ω) for all ω ∈ � have a common dominating measure and that
there is an ω0 ∈ � such that p(z, θ | ω0) = p(z, θ) for all (z, θ). We refer to p(z, θ | ω0) = p(z, θ)
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as the baseline joint distribution, where ω0 can be regarded as the central point of � represent-
ing no perturbation. We define the Bayesian perturbation model M as a family of probability
densities p(z, θ | ω) as ω varies in �. The Bayesian perturbation model includes individual per-
turbation schemes to z, p(θ) and p(z | θ), and their combinations. We focus on each individual
scheme as follows.

Example 1. The Bayesian perturbation model for the prior includes many existing schemes,
such as the additive ε-contamination class and the linear and nonlinear perturbation classes. For
instance, the additive ε-contamination scheme is given by p(θ | ω) = p(θ) + λ{g(θ) − p(θ)},
where λ ∈ [0, 1] and g(θ) belongs to a class of contaminating distributions, denoted by G (Berger,
1994; Dey & Birmiwal, 1994). In this case, � = {ω = λ{g(θ) − p(θ)} : (λ, g(·)) ∈ [0, 1] × G}
and ω(z, θ) are independent of the data. Thus, ω0 = 0 and p(z, θ | ω) = p(z | θ)p(θ | ω).

Example 2. The Bayesian perturbation model for the data includes many perturba-
tion schemes to individual data observations of z (Cook, 1986; Guttman & Peña, 1993;
Peña & Guttman, 1993; Zhu et al., 2007). The perturbation scheme to data points is proposed
for identifying outliers and influential observations. As an illustration, we consider the standard
linear regression model yi = xT

i β + εi , where xi is a p × 1 covariate vector, β is a p × 1 vec-
tor of regression coefficients and the εi are independently and identically distributed N (0, σ 2)

random variables. Let cl be an l × 1 vector with all elements equal to c for a fixed scalar c
and an integer l, written as 1n , 1p and 0m . A perturbation scheme to perturb the covariate xi

is given by xi (ωi ) = xi + ωi 1p. In this case, zi = (yi , xT
i )T, θ = (βT, σ 2)T, ω = (ω1, . . . , ωn)

T,
ω0 = 0n and � is a subset of Rn . An alternative perturbation scheme to the linear regression
model is the well-known mean shift model (Guttman & Peña, 1993; Peña & Guttman, 1993).
It is assumed that yi = xT

i β + ωi + εi for i in a set of k distinct integers chosen from the set
{1, . . . , n}, denoted by I = {i1, . . . , ik}, and yi = xT

i β + εi for all other is. In this case, the per-
turbation scheme is ω = (ωi1, . . . , ωik )

T and ω0 = 0k . Another important scheme is a geomet-
ric mixture model for case deletion or case weights (Millar & Stewart, 2007; Van der Linde,
2007). Specifically, let q(zi ) be an arbitrary density of zi independent of θ , then the geomet-
ric mixture model for perturbing the i th observation is given by p(z | θ, ω) = {∏ j |= i p(z j |
θ)}p(zi | θ)λq(zi )

1−λ/{∫ p(zi | θ)λq(zi )
1−λdzi }, where ω = λ varies in [0, 1] and p(zi | θ) is the

density of zi under the linear model assumption. In this case, ω0 = 1 represents no perturbation.
When λ = 0, p(zi | θ) disappears in p(z | θ, 0), which is equivalent to deleting zi .

Example 3. The Bayesian perturbation model for the sampling distribution includes many
perturbation schemes to p(z | θ) such as the additive ε-contamination class. We may also consider
a class of perturbed sampling distributions p(z | θ, ω) defined by

p(z | θ, ω) = p(z | θ) exp

⎧⎨
⎩

m∑
j=1

ω j u j (z; θ) − 0·5
m∑

j=1

ω2
j u j (z; θ)2 − C(θ, ω)

⎫⎬
⎭ , (1)

where C(θ, ω) is the normalizing constant, ω = (ω1, . . . , ωm)T is an m × 1 vector and u j (z; θ)

is a fixed scalar function having zero mean under p(z | θ). In this case, ω0 = 0m represents no
perturbation. The number m in the perturbation (1) can either be as small as 1 or can increase
with n (Copas & Eguchi, 2005; Zhu et al., 2007).
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2·2. The Bayesian perturbation manifold

We develop a new geometric framework, called a Bayesian perturbation manifold, to measure
each perturbation ω in the Bayesian perturbation model. Based on this manifold, we are able to
measure the amount of perturbation, the extent to which each component of a perturbation model
contributes to p(z, θ) and the degree of orthogonality for the components of the perturbation
model. Such a quantification is useful for rigorously assessing the relative influence of each
component in the Bayesian analysis, and can reveal any discrepancies among the data, the prior
or the sampling model.

For an infinite dimensional set �, we assume throughout the paper that M forms a Rieman-
nian Hilbert manifold (Friedrich, 1991; Lang, 1995) under some regularity conditions. For a
given p(z, θ | ω) ∈M, we consider a smooth curve C(t) = p{z, θ | ω(t)} through the space of
perturbation modelsMwith open interval domains containing 0 and p{z, θ | ω(0)} = p(z, θ | ω).
Note that ω may be different from ω0. We require C(t) to be smooth enough such that 
̇{z, θ |
ω(t)} = d log p{z, θ | ω(t)}/dt , called the tangent or derivative vector, exists with

∫

̇{z, θ |

ω(t)}2 p{z, θ | ω(t)}dzdθ < ∞ for all t in the open interval domain. Since p{z, θ | ω(t)} is the
joint density of (z, θ) given ω(t), that is

∫
p{z, θ | ω(t)}dzdθ = 1, the tangent space of M at ω,

denoted by TωM, is formed by the tangent vectors 
̇{z, θ | ω(0)} for all possible smooth curves
C(t) such that

∫

̇{z, θ | ω(0)}p{z, θ | ω(0)}dzdθ = 0. We can introduce the inner product of any

two tangent vectors v1(ω) and v2(ω) in TωM as

< v1, v2 > (ω) =
∫

{v1(ω)v2(ω)}p(z, θ | ω)dzdθ. (2)

When ω varies in a Euclidean space and is independent of z and θ , the inner product < v1, v2 >

(ω) in (2) is closely associated with the Fisher information. See Example 6 for details. Thus,
the squared length ||v(ω)||2 of a tangent vector v(ω) ∈ TωM is < v, v > (ω) = ∫ v(ω)2 p(z, θ |
ω)dzdθ . The length of the curve C(t) from t1 to t2 is

SC {ω(t1), ω(t2)} =
∫ t2

t1
[< 
̇{z, θ | ω(t)}, 
̇{z, θ | ω(t)} > {ω(t)}]1/2dt. (3)

Next, we need to introduce the concept of a geodesic, which is a direct extension of the straight
line in Euclidean space, on M. Consider a real function f (ω) defined on M and a smooth
curve p{z, θ | ω(t)} in M with p{z, θ | ω(0)} = p(z, θ | ω) and 
̇{z, θ | ω(0)} = v(ω). We define
d f [v](ω) = limt→0 t−1( f [p{z, θ | ω(t)}] − f [p{z, θ | ω(0)}]) as the directional derivative of f
at the perturbation distribution p(z, θ | ω) in the direction of v(ω) ∈ TωM. We consider two
smooth vector fields u(ω) and v(ω), which are not only the tangent vectors in TωM, but also
smooth functions of ω in �. We define the directional derivative of a vector field u(ω) in the
direction of v(ω), called the connection, which is given by du[v](ω) = limt→0 t−1[u{ω(t)} −
u{ω(0)}]. Intuitively, if ω varies in a Euclidean space, then du[v](ω) is closely associated with
the second derivative of 
(z, θ | ω) with respect to ω. We consider the Levi–Civita connection,
which has several nice geometric properties (Amari, 1990; Lang, 1995) and is given by

∇vu(ω) = du[v](ω) − 0·5{u(ω)v(ω)p(z, θ | ω) −
∫

u(ω)v(ω)p(z, θ | ω)dzdθ}.

A geodesic with respect to the Levi–Civita connection on M is a smooth curve γ (t) = p{z, θ |
ω(t)} on M with open interval domain (a, b) and 
̇{z, θ | ω(t)} = v{ω(t)} such that the Levi–
Civita connection ∇vv{ω(t)} = 0. Intuitively speaking, as one moves tangent vectors of a
geodesic along the same geodesic, one can keep them pointing in the same direction. Moreover,
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geodesics can be interpreted as the shortest local path between points on M. For a fixed pertur-
bation distribution p(z, θ | ω) and a given direction of v(ω) ∈ TωM, there is a unique geodesic
γ (t) = p{z, θ | ω(t)} with open interval domains covering 0 such that γ (0) = p(z, θ | ω) and
γ̇ (0) = v(ω). Finally, based on these geometric quantities of M, we introduce the definition of
a Bayesian perturbation manifold.

DEFINITION 1. A Bayesian perturbation manifold (M, < u, v >, ∇vu) is the manifold M
with an inner product < u, v > and the Levi–Civita connection ∇vu.

When � is an open set of Rm , under some regularity conditions, the Bayesian perturbation
manifold is an m-dimensional manifold (Amari, 1990, p. 16; Kass & Vos, 1997; Zhu et al., 2007).
Now, we examine some examples of Bayesian perturbation manifolds based on several perturba-
tions to the data, the prior, and the sampling distribution.

Example 1, continued. We consider the Bayesian perturbation model for the ε-contamination
class to the prior given by M= {{(1 − λ)p(θ) + λg(θ)}p(z | θ) : λ ∈ [0, 1], g(·) ∈ G}. In this
case, ω(t) = t{g(θ) − p(θ)} for a given g(·) ∈ G, and therefore we consider the smooth
curve Cg(t) = p{z, θ | ω(t)} = [p(θ) + t{g(θ) − p(θ)}]p(z | θ). It can be shown that vg{ω(t)} =

̇{z, θ | ω(t)} = {g(θ) − p(θ)}/[p(θ) + t{g(θ) − p(θ)}]. For any two densities g1(·) and g2(·) in
G, we can calculate the tangent vectors vgi {ω(0)} = {gi (θ) − p(θ)}{p(θ)}−1 for i = 1, 2 and their
inner product as

< vg1, vg2 > (ω0) =
∫

[g1(θ){p(θ)}−1 − 1][g2(θ){p(θ)}−1 − 1]p(θ)dθ,

which is also independent of p(z | θ). In particular, < vg, vg > (ω0) = ∫ {g(θ)/p(θ) −
1}2 p(θ)dθ reduces to the L2 norm considered in Gustafson (1996).

We further consider a Bayesian perturbation model for the sole perturbation scheme to hyper-
parameters of the prior given by M= {p(z, θ | ω) = p(θ | ω)p(z | θ) : ω = (ω1, . . . , ωm)T}, in
which ω is independent of both z and θ . Let ω(t) = (ω1, . . . , ω j−1, ω j + t, ω j+1, . . . , ωm)T,

(θ | ω) = log p(θ | ω) and ωk(t) be the kth component of ω(t). Since 
(z, θ | ω) = log p(θ |
ω) + log p(z | θ), we have


̇{z, θ | ω(0)} = d
{z, θ | ω(t)}/dt |t=0=
m∑

k=1

[ω̇k(t)∂ωk 
{θ | ω(t)}] |t=0= ∂ω j 
(θ | ω),

where ω̇k(t) = dωk(t)/dt and ∂ω j = ∂/∂ω j . Therefore, TωM is spanned by the m functions
∂ω j 
(θ | ω) pointwise in ω. Since

∫
p(z | θ)dz = 1, the inner product between ∂ω j 
(θ | ω) and

∂ωk 
(θ | ω), denoted by G jk(ω), is given by

G jk(ω) =
∫

∂ω j 
(θ | ω)∂ωk 
(θ | ω)p(θ | ω)p(z | θ)dzdθ

=
∫

∂ω j 
(θ | ω)∂ωk 
(θ | ω)p(θ | ω)dθ, (4)

which is independent of p(z | θ).
Furthermore, suppose that p(θ) = p(θ1)p(θ2 | θ[1]) . . . p(θm | θ[m−1]) has a hierarchical struc-

ture, where θ[ j] = (θ1, . . . , θ j ) and p(θ j | θ[ j−1]) denote the density of the conditional distri-
bution of θ j given θ[ j−1]. Then, we perturb each level of p(θ) such that p(θ | ω) = p(θ1 | ω1)

p(θ2 | θ[1], ω2) . . . p(θm | θ[m−1], ωm),
∫

p(θ1 | ω1)dθ1 = 1 and
∫

p(θ j | θ[ j−1], ω j )dθ j = 1 for
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j = 2, . . . , m. In this case, TωM is spanned by the m functions ∂ω1 log p(θ1 | ω1) and
∂ω j log p(θ j | θ[ j−1], ω j ) for j = 2, . . . , m. Moreover, G jk(ω) = 0 for all j |= k. For instance,
it can be shown that G12(ω) = ∫ ∂ω1 log p(θ1 | ω1)∂ω2 log p(θ2 | θ[1], ω2)p(θ | ω)dθ = ∂ω1∂ω2∫

p(θ1 | ω1)p(θ2 | θ1, ω2)dθ2dθ1 = ∂ω1∂ω21 = 0. Thus, different components of ω are orthogonal
to each other (Zhu et al., 2007). Furthermore, it follows from (4) that G11(ω) = ∫ {∂ω1 log p(θ1 |
ω1)}2 p(θ1 | ω)dθ1 and G j j (ω) = ∫ {∂ω j log p(θ j | θ[ j−1], ω j )}2 p(θ j | θ[ j−1], ω)dθ j for j � 2.

Combining the above results, we are led to the following proposition, whose proof can be
found in the Supplementary Material.

PROPOSITION 1. Consider any Bayesian perturbation model to the prior given by M= {p(θ |
ω)p(z | θ) : ω ∈ �}. If ω is independent of z, then the metric tensor of its Bayesian perturbation
manifold M is independent of the specification of the sampling distribution p(z | θ).

Proposition 1 has important implications. The independence property ensures that existing
results on local robustness to the prior can be considered as a special case of the new method
developed here (McCulloch, 1989; Gustafson, 1996).

Example 4. Consider a Bayesian perturbation model given by

M=
{

p(z, θ | ω) = p(θ | ωp)p(z | θ, ωs) : ω = (ωT
p, ω

T
s )

T,

∫
p(θ | ωp)dθ

=
∫

p(z; θ, ωs)dz = 1

}
,

in which ωp = (ω1, . . . , ωm)T and ωs = (ωm+1, . . . , ωm+n)
T are assumed to be independent of

both z and θ . We consider ω(t) = (ω1, . . . , ω j−1, ω j + t, ω j+1, . . . , ωm+n)
T with ω(0) = ω for

each j ∈ {1, . . . , m + n}. Thus, ω̇k(0) = dωk(0)/dt = 1 for k = j and 0 otherwise. Letting 
(θ |
ωp) = log p(θ | ωp) and 
(z | θ, ωs) = log p(z | θ, ωs), we have


̇{z, θ | ω(0)} =
m+n∑
k=1

ω̇k(0)∂ωk log p(z, θ | ω) = ∂ω j 
(θ | ωp) + ∂ω j 
(z | θ, ωs). (5)

Since ωs and ωp have no components in common, TωM is spanned by m + n functions including
∂ω j 
(θ | ωp) for j = 1, . . . , m and ∂ω j 
(z | θ, ωs) for j = m + 1, . . . , m + n. Note that

∫
∂ωk 
(θ |

ωp)∂ω j 
(z | θ, ωs)p(z, θ | ω)dzdθ = ∫ ∂ωk p(θ | ωp)∂ω j p(z | θ, ωs)dzdθ = ∂ωk 1∂ω j 1 = 0 holds
for any j, k. Therefore, it follows from (5) that the inner product of ∂ω j 
(z, θ | ω) and ∂ωk 
(z, θ |
ω), denoted by G jk(ω), is

∫
∂ω j 
(θ | ωp)∂ωk 
(θ | ωp)p(z, θ | ω)dzdθ +

∫
∂ω j 
(z | θ, ωs)∂ωk 
(z | θ, ωs)p(z, θ | ω)dzdθ.

(6)
Moreover, the first term of (6) can be simplified to

∫
∂ω j 
(θ | ωp)∂ωk 
(θ | ωp)p(θ | ωp)dθ since∫

p(z | θ, ωs)dz = 1. For j = 1, . . . , m and k = m + 1, . . . , m + n, it follows from (6) that <

∂ω j 
(z, θ | ω), ∂ωk 
(z, θ | ω) >= 0 since ∂ωk 
(θ | ωp) = 0 and ∂ω j 
(z | θ, ωs) = 0. Thus, ωs and
ωp are orthogonal to each other with respect to < ∂ω j 
(z, θ | ω), ∂ωk 
(z, θ | ω) >.

Combining the above results, we obtain the following proposition.
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PROPOSITION 2. ConsiderM={p(z, θ |ω)= p(θ |ωp)p(z |θ, ωs) : ω=(ωT
p, ω

T
s )

T}. Assume
that ωp is independent of z and

∫
p(θ | ωp)dθ = ∫ p(z | θ, ωs)dz = 1. Consider two smooth

curves p{z, θ | ω(k)(t)} with ω(k)(t) = {ω(k),p(t), ω(k),s(t)}T such that ω(1)(0) = ω(2)(0) = ω

and ω(1),p(t) and ω(2),s(t) are independent of t . For any two tangent vectors vk(ω) = 
̇{z, θ |
ω(k)(0)} ∈ TωM for k = 1, 2, we have < v1, v2 > (ω) = 0.

Proposition 2 has important implications. For simultaneous perturbations to the prior and the
sampling distribution, it ensures that ωp and ωs are geometrically orthogonal to each other. Thus,
we can separate out the influence of the prior from that of the data and the sampling distribution.

Finally, we consider a simultaneous perturbation model, denoted by p(z, θ | ωp, ωd , ωs), in
which ωp, ωd and ωs represent individual perturbations to the prior, the data and the sampling dis-
tribution, respectively. In addition to Propositions 1 and 2, we can obtain the following theorem.

THEOREM 1. Let M= {p(z, θ | ω) = p(θ | ωp)p(z | θ, ωd , ωs) : ω = (ωp, ωd , ωs)} with∫
p(θ | ωp)dθ = ∫ p(z | θ, ωd , ωs)dz = 1 and that ωp is independent of z. Consider two

smooth curves p{z, θ | ω(k)(t)} with ω(k)(t) = {ω(k),p(t), ω(k),d(t), ω(k),s(t)}T passing through
ω(1)(0) = ω(2)(0) = ω and having two tangent vectors vk(ω) = 
̇{z, θ | ω(k)(0)} ∈ TωM,

k = 1, 2. Then:

(i) if ω(1),p(t) and {ω(2),d(t), ω(2),s(t)} are independent of t, then < v1, v2 > (ω) = 0;
(ii) if {ω(1),p(t), ω(1),d(t)} and {ω(2),p(t), ω(2),s(t)} are independent of t and p(z | θ, ωd , ωs) =

p1(z | θ, ωd)p2(z | θ, ωs) for any (ωd , ωs), then < v1, v2 > (ω) = 0.

For simultaneous perturbations to the prior, the data, and the sampling distribution, Theorem 1
(i) ensures that ωp and (ωd , ωs) are geometrically orthogonal to each other. If p(z | θ, ωd , ωs) =
p1(z | θ, ωd)p2(z | θ, ωs), then ωp, ωd , and ωs are geometrically orthogonal to each other.

3. INFLUENCE MEASURES AND THEIR PROPERTIES

3·1. Intrinsic influence measures

We consider some objective functions, such as the φ-divergence function, the posterior mean,
and the Bayes factor, and develop associated intrinsic influence measures for quantifying the
effects of perturbing the three key elements of a Bayesian analysis. An objective function of
interest for sensitivity analysis is often chosen to be a functional of the perturbed posterior
distribution of θ given z, given by p(θ | z, ω) = p(z, θ | ω)/

∫
p(z, θ | ω)dθ and p(θ | z, ω0),

which is the unperturbed posterior distribution of θ given z. Such an objective function, denoted
by f (ω, ω0) = f {p(θ | z, ω), p(θ | z, ω0)}, can be also regarded as a mapping from M × M
to R. Throughout the paper, we assume that f (ω, ω0) is a smooth function of ω and is a
path-independent function of p(θ | z, ω) and p(θ | z, ω0) such that f (ω, ω) = 0 for any ω ∈ �.
For instance, f (ω, ω0) can be set as the total variation distance of p(θ | z, ω0) and p(θ | z, ω)

(Dey et al., 1996). Most standard influence measures such as the range (Berger, 1990, 1994) can
be regarded as special cases of f (ω, ω0).

A large value of these influence measures can be caused by both the perturbation ω to the base-
line distribution regardless of the observed data and the discrepancies between the observed data
and the fitted model p(z, θ). Since the purpose of any influence analysis is to detect the discrep-
ancies between the observed data and p(z, θ), we suggest rescaling f (ω, ω0) by using the short-
est distance between p(z, θ | ω) and p(z, θ | ω0). We explicitly quantify the distance between
p(z, θ | ω) and p(z, θ | ω0) by using their minimal geodesic distance, denoted by d(ω, ω0). If
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M is a complete and finite-dimensional Riemannian manifold, then the Hopf–Rinow theorem
states that any two points on M can be joined by a minimal geodesic (Ekeland, 1978). Fur-
thermore, if M is a complete infinite-dimensional Riemannian manifold, any two points on M
can be joined by a path which is almost a minimal geodesic (Ekeland, 1978). We introduce an
intrinsic influence measure for comparing ω and ω0 ∈ � as follows. Geometrically, an intrinsic
measure is invariant to certain reparameterizations.

DEFINITION 2. The intrinsic influence measure for comparing p(θ | z, ω) to p(θ | z, ω0) is
defined as IGI f (ω, ω0) = f (ω, ω0)2/d(ω, ω0)2.

The proposed IGI f (ω, ω0) can be interpreted as the ratio of the change of the objective func-
tion relative to the minimal distance between p(z, θ | ω) and p(z, θ | ω0) on M. Since f (ω, ω0)

is path-independent and d(ω, ω0) is invariant to smooth reparametrization of ω, IGI f (ω, ω0)

is also invariant. Moreover, we suggest identifying the most influential ω in �, denoted by ω̂I ,
which maximizes IGI f (ω, ω0) for all ω ∈ �.

Example 5. We consider the logarithm BF(ω, ω0) = log
∫

p(z, θ | ω)dθ − log
∫

p(z, θ |
ω0)dθ of the Bayes factor for comparing p(z | θ, ω) and p(z | θ, ω0), which can be regarded
as a statistic for testing hypotheses of ω against ω0 (Kass & Raftery, 1995). Under mild con-
ditions, BF(ω, ω0) is a smooth mapping from M to R. We can set f (ω, ω0) = BF(ω, ω0) and
obtain the intrinsic influence measure

IGIB F (ω, ω0) = BF(ω, ω0)2

d(ω, ω0)2
.

3·2. First-order local influence measures

We consider the local behaviour of f {ω(t), ω0} as t approaches 0 along all possible smooth
curves p{z, θ | ω(t)} passing through ω0, that is ω(0) = ω0. Since f {ω(t), ω0} is a function from
R to R, it follows by Taylor’s series expansion that f {ω(t), ω0} = f {ω(0), ω0} + ḟ {ω(0)}t +
0·5 f̈ {ω(0)}t2 + o(t2), where ḟ {ω(0)} and f̈ {ω(0)} denote the first- and second order derivatives
of f {ω(t), ω0} with respect to t evaluated at t = 0. We need to distinguish between ḟ {ω(0)} |= 0
for some smooth curves ω(t) and ḟ {ω(0)} = 0 for all smooth curves ω(t). We first consider
the case ḟ {ω(0)} |= 0 for some smooth curves ω(t). Let 
̇{z, θ | ω(0)} = v ∈ Tω(0)M. Then,
ḟ {ω(0)} = d f [v]{ω(0)} is the directional derivative of f in the direction of v ∈ Tω(0)M (Lang,
1995). We are led to the following definition.

DEFINITION 3. The first-order local influence measure is defined as FI f [v]{ω(0)} =
limt→0 IGI f {ω(0), ω(t)} = [d f [v]{ω(0)}]2/[< v, v > {ω(0)}].

To carry out a sensitivity analysis, we use the tangent vector vF,max in Tω(0)M, which max-
imizes FI f [v]{ω(0)} and is invariant to reparameterization of ω(t). We now have the following
result.

THEOREM 2. The quantity FI f [v]{ω(0)} is invariant to smooth reparameterization of ω(t).

In addition to the invariance property in Theorem 2, FI f [v]{ω(0)} is a direct generaliza-
tion of the first-order measure for a finite-dimensional perturbation manifold (Zhu et al., 2007;
Wu & Luo, 1993).

Example 5 (continued). We set f {ω(t), ω0} = BF{ω(t), ω0}. Since d[BF{ω(t), ω0}]/
dt = ∫ 
̇{z, θ | ω(0)}[p{z, θ | ω(0)}/ ∫ p{z, θ | ω(0)}dθ ]dθ = ∫ 
̇{z, θ | ω(0)}p{θ | z, ω(0)}dθ ,
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we have

FI f [v]{ω(0)} = [
∫


̇{z, θ | ω(0)}p{θ | z, ω(0)}dθ ]2∫

̇{z, θ | ω(0)}2 p{z, θ | ω(0)}dzdθ

.

It is relatively easy to compute FI f [v]{ω(0)} for a specific perturbation. For instance, for the
contamination to the prior given by p{θ | ω(t)} = p(θ) + t{g(θ) − p(θ)}, it can be shown that

FI f [v]{ω(0)} = (
∫

[g(θ){p(θ)}−1 − 1]p{θ | z, ω(0)}dθ)2∫
[g(θ){p(θ)}−1 − 1]2 p(θ)dθ

= [pg(z){p(z)}−1 − 1]2∫
[g(θ){p(θ)}−1 − 1]2 p(θ)dθ

,

where p(z) = ∫ p(z | θ)p(θ)dθ and pg(z) = ∫ g(θ)p{z | θ, ω(0)}dθ . Since the ratio of pg(z)
to p(z) is the Bayes factor in favour of g(θ) versus p(θ), FI f [v]{ω(0)} is the square of the
normalized Bayes factor of g(θ) versus p(θ).

Example 6. Consider the Bayesian perturbation manifold M= {p(z, θ | ω) : ω ∈ � ⊂ Rm}
and p{z, θ | ω(t)} as a smooth curve on M, in which ω is not a function of z and θ , such as
the perturbation scheme in the mean-shift model, and ω(t) = {ω1(t), . . . , ωm(t)}T is a smooth
vector of t . Let vh = (vh,1, . . . , vh,m)T = dω(0)/dt . By using the chain rule, we have

v{ω(0)} = d
{z, θ | ω(t)}/dt |t=0=
m∑

k=1

ω̇k(t)∂ωk 
{z, θ | ω(0)} =
m∑

k=1

vh,k∂ωk 
{z, θ | ω(0)},

d f [v]{ω(0)} = d f {ω(t), ω0}/dt |t=0=
m∑

k=1

vh,k∂ωk f {ω(0)} = vT
h∂ω f {ω(0)}, (7)

< v, v > {ω(0)} =
m∑

j,k=1

vh, jvh,k < ∂ω j 
{z, θ | ω(0)}, ∂ωk 
{z, θ | ω(0)} > {ω(0)}

= vT
hG{ω(0)}vh,

where ∂ωk f (ω) denotes the first-order partial derivative of f (ω, ω0) with respect to ωk

and G{ω(0)} = ∫ [∂ω
{z, θ | ω(0)}]⊗2 p(z, θ | ω)dzdθ is an m × m Fisher information matrix
with respect to ω. Thus, it follows from (7) and the definition of FI f [v]{ω(0)} that
FI f [v]{ω(0)} = [d f [v]{ω(0)}]2/[ < v, v > {ω(0)}] = [vT

h∂ω f {ω(0)}]2/vT
hG{ω(0)}vh . Finally, we

obtain vF,max{ω(0)} = argmaxvFI f [v]{ω(0)} = [G{ω(0)}]−1/2∂ω f {ω(0)}.

3·3. Second-order local influence measures

We use f̈ {ω(0)} to assess the second-order local influence of ω to a statistical model
(Zhu et al., 2007). However, for a general smooth curve ω(t) on M, f̈ {ω(0)} is not geometri-
cally well behaved (Lang, 1995; Zhu et al., 2007). We consider only the geodesic p{z, θ | ω(t)},
denoted by Expω(0)(tv), passing through Expω(0)(tv) |t=0= ω(0) with initial direction 
̇{z, θ |
ω(0)} = v{ω(0)} ∈ Tω(0)M. It follows from a Taylor’s series expansion (Lang, 1995; Zhu et al.,
2007) that

f {Expω(0)(tv), ω0} = f {ω(0), ω0} + td f [v]{ω(0)} + 0·5t2 f̈ {Expω(0)(tv)} |t=0 +o(t2), (8)

where f̈ {Expω(0)(tv)} = d2 f {Expω(0)(tv), ω0}/dt2. Geometrically, f̈ {Expω(0)(tv)} |t=0 in (8)
is called the Riemannian Hessian and is denoted by Hess( f )(v, v){ω(0)} (Lang, 1995). The
Riemannian Hessian is symmetric. We now introduce a second-order influence measure.
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DEFINITION 4. The second-order influence measure in the direction v ∈ Tω(0)M is defined
as SI f [v]{ω(0)} = Hess( f )(v, v){ω(0)}/[< v, v > {ω(0)}].

Geometrically, SI f [v]{ω(0)} is invariant to scalar transformations and smooth transforma-
tions. To carry out a sensitivity analysis, we use the tangent vector vS,max ∈ Tω(0)M, which
maximizes SI f [v]{ω(0)} for all v ∈ Tω(0)M. There is a direct connection between the second-
order measures in finite- and infinite-dimensional spaces. Therefore, the diagnostic method pro-
posed here can be regarded as an extension of existing local influence approaches (Cook, 1986;
Zhu et al., 2007) to an infinite dimensional setting.

Example 6, continued. We consider the Bayesian perturbation model in Exam-
ple 6. If d f [v]{ω(0)} = 0 for all v ∈ Tω(0)M, then Hess( f )(v, v){ω(0)} reduces to
vT

h H f {ω(0)}vh , where H f {ω(0)} = ∂2
ω f {ω(0)}, in which ∂2

ω f {ω(0)} denotes the second-
order partial derivative of f (ω, ω0) with respect to ω (Zhu et al., 2007). In this case,
SI f [v]{ω(0)} = vT

h H f (ω, ω0)vh/vT
hG{ω(0)}vh and vS,max equals the eigenvector of

G(ω)−1/2 H f {ω(0)}G(ω)−1/2 corresponding to its largest eigenvalue. Let e j be an m × 1
vector with j th element 1 and 0 otherwise. We also suggest an index plot of SI f [e j ] to examine
influential cases (Zhu et al., 2007, p. 2572).

3·4. Bayesian influence analysis

We now summarize the four key steps in carrying out our proposed influence analysis.

Step 1. Construct a Bayesian perturbation model p(z, θ | ω).

Step 2. Given the Bayesian perturbation model, we calculate the geometric quantities, such
as < v, v > {ω(0)}, of the perturbation manifold.

Step 3. Choose an objective function f (ω, ω0) and calculate IGI f (ω, ω0) and ω̂I =
argmaxω∈�IGI f (ω, ω0).

In Step 3, we need to compute f (ω, ω0) and d(ω, ω0). Since f (ω, ω0) is a function of p(θ |
z, ω) and p(θ | z, ω0), we use Markov chain Monte Carlo methods to draw random samples
from p(θ | z, ω) and p(θ | z, ω0) and then evaluate f (ω, ω0) (Chen et al., 2000). We use the
Dijkstra algorithm (Dijkstra, 1959) to approximate the geodesic distance between p(z, θ | ω)

and p(z, θ | ω0). The main idea of this method is to discretize the model {p(z, θ | ω) : ω ∈ �}
into a simpler space {p(z, θ | ω) : ω ∈ �D}, where �D contains a set of the refined grid points
of � and then we approximate d(ω, ω0) (Dijkstra, 1959). Based on the set of the refined grid
points �D , we then calculate {IGI f (ω, ω0) : ω ∈ �D} and approximate ω̂I by using argmaxω∈�D

IGI f (ω, ω0).

Step 4. If d f [v]{ω(0)} |= 0, then we calculate vF,max to assess local influence of minor pertur-
bations to the model. However, if d f [v]{ω(0)} is 0 for all v, then we compute SI f [v]{ω(0)} and
find vS,max = argmax[SI f [v]{ω(0)}].

In Step 4, we need to compute FI f [v]{ω(0)} and SI f [v]{ω(0)}. For many infinite-dimensional
manifolds, such as the additive ε-contamination class, v varies in a set V , which may be
well approximated by a finite number of grid points {vl : l = 1, . . . , K0}. We can approx-
imate argmaxv[FI f [v]{ω(0)}] and argmaxv[SI f [v]{ω(0)}] by argmaxvl

[FI f [vl ]{ω(0)}] and
argmaxvl

[SI f [vl]{ω(0)}], respectively.
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4. A THEORETICAL EXAMPLE

We consider a dataset z = (z1, . . . , zn)
T to illustrate the potential applications of our pro-

posed diagnostics. Assume that z1, . . . , zn are independent and identically distributed from a
N (θ, 1) distribution and the baseline prior distribution of θ is the density corresponding to a
N (μ0, σ

2
0 ) distribution. Letting z̄ =∑n

i=1 zi/n, we have p(θ | z) ∝ exp[−0·5(n + 1/σ 2
0 ){θ −

(nz̄ + μ0/σ
2
0 )/(n + 1/σ 2

0 )}2].
We first consider a simple perturbation to the location of the baseline prior, whose perturbed

model is given by

p(z, θ | ω) = p(z | θ)p(θ | ω) = p(z | θ) exp{−0·5(θ − ω − μ0)
2/σ 2

0 }/(2πσ 2
0 )0·5

for ω ∈ [ωL , ωU ], where ωL and ωU are known scalars. We set E(θ | z, ω) = ∫ θp(θ | z, ω)dθ =
{nz̄ + (ω + μ0)/σ

2
0 }/(n + 1/σ 2

0 ) and f (ω, ω0) = E(θ | z, ω) − E(θ | z, ω0). Thus, following
Berger (1990), we have that the range of f (ω, ω0) equals f (ωU , ω0) − f (ωL , ω0) = (ωU −
ωL)/(nσ 2

0 + 1). A large range can be caused by a large ωU − ωL , which is associated with the
size of the perturbation to the prior, as shown later.

We compute the intrinsic structure of p(z, θ | ω) and the intrinsic influence measure. We
can calculate the geodesic distance between p(z, θ | ωL) and p(z, θ | ωU ). Since ω(t) = t and

̇{z, θ | ω(t)} = (θ − μ0 − t)/σ 2

0 , we have < 
̇{z, θ | ω(t)}, 
̇{z, θ | ω(t)} > {ω(t)} = 1/σ 2
0 and

d(ωL , ωU ) = ∫ ωU
ωL

dt/σ0 = (ωU − ωL)/σ0, which is the size of the sole perturbation to the prior
regardless of the data. Both small σ0 and large ωU − ωL can introduce large perturbations. When
f (ω, ω0) = E(θ | z, ω) − E(θ | z, ω0), we have IGI f (ω, ω0) = σ 2

0 /(nσ 2
0 + 1)2, which is inde-

pendent of ω. This indicates that relative to the perturbation of the prior, f (ω, ω0) does not
change too much. A large range gives a false indication of the extent of nonrobustness, which is
actually caused by large perturbations to the prior (Sivaganesan, 2000).

Secondly, we consider a simultaneous perturbation to the prior and the model, given by

p(z, θ | ω) ∝ exp

{
−0·5

n∑
i=1

(zi − ωi − θ)2 − 0·5(θ − μ0 − ωn+1)
2/σ 2

0

}
, (9)

where ω = (ω1, . . . , ωn+1)
T ∈ Rn+1. In this case, ω0 = 0n+1 represents no perturbation. Let δi j

equal 1 for i = j and 0 otherwise. Following Example 6, we can show that for i, j = 1, . . . , n,

∂ωi 
(z, θ | ω) = (zi − ωi − θ), ∂ωn+1
(z, θ | ω) = (θ − μ0 − ωn+1)/σ
2
0 ,

< ∂ωi 
(z, θ | ω), ∂ω j 
(z, θ | ω) > (ω) = δi j , < ∂ωi 
(z, θ | ω), ∂ωn+1
(z, θ | ω) > (ω) = 0,

< ∂ωn+1
(z, θ | ω), ∂ωn+1
(z, θ | ω) > (ω) = 1/σ 2
0 . (10)

Thus, when σ0 |= 1, ωi for i = 1, . . . , n and ωn+1 introduce different levels of perturbation to the
fitted model p(z, θ | ω). Furthermore, since < ∂ωi 
(z, θ | ω), ∂ω j 
(z, θ | ω) > (ω) for all i, j are
independent of ω, the manifoldM determined by (9) is a flat manifold (Lang, 1995). For any ω in
Rn+1, the geodesic connecting p(z, θ | ω) and p(z, θ | ω0) is given by p(z, θ; tω) for t ∈ [0, 1].
By using (3), we can show that d(ω, ω0)2 =∑n

i=1 ω2
i + ω2

n+1/σ
2
0 , which quantifies the size of

the perturbation scheme (9) to the prior and the fitted model.
We calculate the logarithm of the Bayes factor BF(ω, ω0) as discussed in Example 5. Since

the terms in the exponential function of (9) form a quadratic function of θ , we can explicitly
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calculate BF(ω, ω0) = P(ω) − P(ω0), where P(ω) = log
∫

p(z, θ | ω)dθ equals

C − 0·5
[
(ωn+1 +μ0)

2/σ 2
0 +

n∑
i=1

(zi −ωi )
2 −
{
(ωn+1 +μ0)

/
σ 2

0 +
n∑

i=1

(zi −ωi )
}2/

(n + 1/σ 2
0 )
]
,

and C is a scalar independent of ω. Now recall the results of Example 5. For a smooth curve
ω(t) ∈ Rn+1 with ω(0) = ω0, FI f [v]{ω(0)} is determined by ∂ωBF(ω, ω0) and vF,max(ω) =
{G(ω0)}−1/2∂ωBF(ω, ω0), in which G(ω0) = diag(1, . . . , 1, σ−2

0 ) as calculated in (10). Taking
derivatives of BF(ω, ω0) with respect to ω, we get

∂ωn+1BF(ω, ω0) = −(ωn+1 + μ0)/σ
2
0 + {(ωn+1 + μ0)/σ

2
0 +

n∑
i=1

(zi − ωi )}/(nσ 2
0 + 1),

∂ωi BF(ω, ω0) = zi − ωi − {(ωn+1 + μ0)/σ
2
0 +

n∑
i=1

(zi − ωi )}/(n + 1/σ 2
0 )

for i = 1, . . . , n, which yields

vF,max(ω
0) =

{
z1 − nz̄ + μ0/σ

2
0

n + 1/σ 2
0

, . . . , zn − nz̄ + μ0/σ
2
0

n + 1/σ 2
0

,
n(z̄ − μ0)σ0

nσ 2
0 + 1

}T

. (11)

By inspecting the first n components of vF,max(ω
0), we can identify outlying points zi which

are far from the posterior mean of θ , while the last component of vF,max(ω
0) can pick up an

influential hyperparameter μ0.
Thirdly, we consider a simultaneous perturbation to the prior and the sampling distribution,

p(z, θ | ω) ∝ exp

{
−0·5

n∑
i=1

ωi (zi − θ)2 − 0·5ωn+1(θ − μ0)
2/σ 2

0 + 0·5
n+1∑
i=1

log(ωi )

}
,

where ω = (ω1, . . . , ωn+1)
T ∈ Rn+1. In this case, ω0 = 1n+1 represents no perturbation. Follow-

ing Example 6, we can show that for i, j = 1, . . . , n,

∂ωi 
(z, θ | ω) = −0·5(zi − θ)2 + 0·5ω−1
i ,

∂ωn+1
(z, θ | ω) = −0·5(θ − μ0)
2/σ 2

0 + 0·5ω−1
n+1,

< ∂ωi 
(z, θ | ω), ∂ω j 
(z, θ | ω) > (ω) = 0·5ω−2
i δi j , (12)

< ∂ωi 
(z, θ | ω), ∂ωn+1
(z, θ | ω) > (ω) = 0,

< ∂ωn+1
(z, θ | ω), ∂ωn+1
(z, θ | ω) > (ω) = 0·5ω−2
n+1.

Thus, G(ω0) is an (n + 1) × (n + 1) identity matrix.
We consider a sensitivity analysis for predictive distributions (Lavine, 1992; Millar & Stewart,

2007). Let zn+1 denote a future observation from N (θ, 1), the predictive density of zn+1
given z, denoted by p(zn+1 | z, ω), is shown to be N {(∑n

i=1 ωi zi + ωn+1μ0/σ
2
0 )/(

∑n
i=1

ωi + ωn+1/σ
2
0 ), 1/(

∑n
i=1 ωi + ωn+1/σ

2
0 )}. We set f (ω, ω0) = ∫ zn+1 p(zn+1 | z, ω)dzn+1 −∫

zn+1 p(zn+1 | z, ω0)dzn+1. Now recall the results of Example 6 and the metric tensor in (12).
For a smooth curve ω(t) ∈ Rn+1 with ω(0) = ω0, FI f [v]{ω(0)} is determined by ∂ω f (ω) and
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vF,max(ω) = ∂ω f (ω, ω0), which are given by

∂ωn+1 f (ω, ω0) = σ−2
0 μ0

/(
n∑

i=1

ωi + ωn+1/σ
2
0

)

− σ−2
0

(
ωn+1μ0/σ

2
0 +

n∑
i=1

ziωi

)/(
n∑

i=1

ωi + ωn+1/σ
2
0

)2

,

∂ωi f (ω, ω0) = zi

/(
n∑

i=1

ωi + ωn+1/σ
2
0

)

−
(

ωn+1μ0/σ
2
0 +

n∑
i=1

ziωi

)/(
n∑

i=1

ωi + ωn+1/σ
2
0

)2

for i = 1, . . . , n. This yields that vF,max(ω
0) is proportional to

1

n + 1/σ 2
0

(
z1 − nz̄ + μ0/σ

2
0

n + 1/σ 2
0

, . . . , zn − nz̄ + μ0/σ
2
0

n + 1/σ 2
0

,
n(μ0 − z̄)σ 2

0

nσ 2
0 + 1

)T

. (13)

We observe that vF,max(ω
0) in (13) is closely associated with vF,max(ω

0) in (11), and thus
vF,max(ω

0) is able to pick up outlying points zi and an influential hyperparameter μ0.
Finally, we examine a more general setting in which zi (i = 1, . . . , 50) are independent

N (θi , 1) variables, with the θi independently generated from a Dirichlet process prior D P(c0 F1),
where the base measure F1 is that of a N (5, 1) distribution and the confidence parameter c0 is set
equal to 2 (Escobar, 1994). Furthermore, the zi were changed to zi + 5 for i = 49 and 50, which
can be regarded as two outliers. We fit a model with zi ∼ N (θi , 1) and θi ∼ D P(2F0), where F0
is the probability measure of a N (0, 1) distribution. The base measure F0 is misspecified due to
the difference between the means of a N (0, 1) and the true base measure N (5, 1). We consider a
simultaneous perturbation to the prior and the data. We have

p(z, θ | ω) ∝ exp

(
−0·5

n∑
i=1

(zi − ωi − θi )
2

+
n∑

i=1

log

⎡
⎣c0 F0(θi )+c0ωn+1{F1(θi )−F0(θi )}+

i−1∑
j=1

δθ j (θi )

⎤
⎦
⎞
⎠. (14)

In this case, ω0 = 0n+1 represents no perturbation. By differentiating 
(z, θ | ω) = log p(z, θ | ω)

in (14) with respect to each component of ω, we have that for i = 1, . . . , n,

∂ωi 
(z, θ; ω) = zi − ωi − θi ,

∂ωn+1
(z, θ | ω) =
n∑

i=1

c0{F1(θi ) − F0(θi )}
c0 F0(θi ) + c0ωn+1{F1(θi ) − F0(θi )} +∑i−1

j=1 δθ j (θi )
.
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Fig. 1. Simultaneous perturbation model using a Dirichlet process prior and perturbing individual observa-
tions: (a) local influence measures vB,max(ω

0) for the logarithm of the Bayes factor f (ω, ω0) = BF(ω, ω0),
from which the outlying cases 49 and 50 and the perturbation to the Dirichlet process prior were detected;

(b) index plot of metric tensor gii (ω
0) for the perturbation (15).

Since
∫
(zi − ωi − θi )p(z, θ | ω)dz = 0 and

∫
(zi − ωi − θi )(z j − ω j − θ j )p(z, θ | ω)dz = δi j ,

we have

< ∂ωi 
(z, θ | ω), ∂ω j 
(z, θ | ω) > (ω) = δi j , < ∂ωi 
(z, θ | ω), ∂ωn+1
(z, θ | ω) > (ω) = 0,

< ∂ωn+1
(z, θ | ω), ∂ωn+1
(z, θ | ω) > (ω) = E[{∂ωn+1
(z, θ | ω)}2].

Similar to (11), we set f (ω, ω0) = BF(ω, ω0) and substitute the results from (7) to calculate
vF,max(ω

0) using 50 000 Markov chain Monte Carlo samples generated from the posterior dis-
tribution p(θ1, . . . , θn | z1, . . . , z50) after a 5000 sample burn-in. Inspecting the components of
vF,max(ω

0) reveals the outlying cases 49 and 50 and shows the sensitivity to the misspecified
base measure F0 of the Dirichlet process prior for θi in Fig. 1.

In addition to this theoretical example, an extensive simulation and a real data analysis involv-
ing missing data are given in the Supplementary Material. In practice, we suggest an iterative
process to carry out the four-step influence analysis in § 3·4. If one is concerned about sensitivity
to the prior, then one may introduce some finite-dimensional perturbation as in Example 1 to
all hyperparameters of the prior and identify influential hyperparameters according to their local
influence measures. Then, for a few influential hyperparameters, one further perturbs their asso-
ciated prior distribution using the additive ε-contamination class and then carries out intrinsic
influence analysis. If one is concerned about the sampling distribution, then one may introduce
various perturbations including the additive ε-contamination class and the perturbation model
(1) to p(z | θ) and use the local influence measures to detect which part of p(z | θ) is sensitive
to minor perturbations. Then, one may focus on these influential parts and carry out an intrinsic
influence analysis. After refining the prior and the sampling distribution, one may then perturb
individual observations and detect a set of influential observations. After examining the infor-
mation from each influence analysis, we carry out a simultaneous perturbation to z, p(θ) and
p(z | θ). We start with a local influence analysis to examine the sensitivity of all components and
then focus on a few influential components using an intrinsic influence analysis.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online includes the proof of Proposition 1, a
real data analysis on missing data problems and an extensive simulation.

APPENDIX

Proof of Proposition 1. Consider any two smooth curves p{z, θ | ω(k)(t)} = p{θ | ω(k)(t)}p(z | θ)

with p{z, θ | ω(k)(0)} = p(θ | ω)p(z | θ) for k = 1, 2. For each k, by differentiating 
{z, θ | ω(k)(t)}
with respect to t , we obtain a tangent vector vk(ω) = 
̇{z, θ | ω(k)(0)} = d log p{θ | ω(k)(t)}/dt |t=0∈
TωM, which is independent of p(z | θ). Furthermore, letting dt = d/dt , the inner product of
v1(ω) and v2(ω) is given by

∫
[dt log p{θ | ω(1)(t)}][dt log p{θ | ω(2)(t)}]p{z, θ | ω}dzdθ = ∫ [dt log p{θ |

ω(1)(t)}][dt log p{θ | ω(2)(t)}]p{θ | ω}dθ, which is also independent of p(z | θ). �

Proof of Proposition 2. Consider two smooth curves p{z, θ | ω(k)(t)} with ω(k)(t) =
{ω(k),p(t)T, ω(k),s(t)T}T such that ω(1)(0) = ω(2)(0) = ω and ω(1),p(t) and ω(2),s(t) are independent
of t . Let 
(z | θ, ω(1),s) = log p(z | θ, ω(1),s). Since ω(1),p(t) is independent of t ,

v1(ω) = 
̇{z, θ | ω(1)(0)} = d

dt
log p{θ | ω(1),p(t)} |t=0 + d

dt
log p{z | θ, ω(1),s(t)} |t=0= 
̇{z | θ, ω(1),s(0)}.

Let 
(θ | ω(2),p) = log p(θ | ω(2),p). Similarly, we have

v2(ω) = 
̇{z, θ | ω(2)(0)} = d

dt
log p{θ | ω(2),p(t)} |t=0= 
̇{θ | ω(2),p(0)}.

Thus, the inner product of v1(ω) and v2(ω), denoted by < v1, v2 > (ω), is given by∫

̇{θ | ω(2),p(0)}
̇{z | θ, ω(1),s(0)}p(z, θ | ω)dzdθ =

∫
dp{θ | ω(2),p(0)}

dt

dp{z | θ, ω(1),s(0)}
dt

dzdθ

=
∫ (

dp{θ | ω(2),p(0)}
dt

[∫
dp{z | θ, ω(1),s(0)}

dt
dz
])

dθ

=
∫ (

dp{θ | ω(2),p(0)}
dt

d[
∫

p{z | θ, ω(1),s(0)}dz]

dt

)
dθ

=
∫ [

dp{θ | ω(2),p(0)}
dt

d1

dt

]
dθ = 0.

�

Proof of Theorem 1. Since Theorem 1 (i) follows from Proposition 2, we focus on Theorem 1 (ii).
Since {ω(1),p(t), ω(1),d(t)} and {ω(2),p(t), ω(2),s(t)} are independent of t and p(z | θ, ωd , ωs) = p1(z |
θ, ωd)p2(z | θ, ωs), we have

v1(ω) = 
̇{z, θ | ω(1)(0)} = d

dt
log p1{z | θ, ω(1),s(t)} |t=0,

v2(ω) = 
̇{z, θ | ω(2)(0)} = d

dt ′ log p2{z | θ, ω(2),d(t
′)} |t ′=0.

Thus, < v1, v2 > (ω) is given by∫
d log p1{z | θ, ω(1),s(t)}

dt

∣∣∣∣
t=0

d log p2{z | θ, ω(2),d(t ′)}
dt ′

∣∣∣∣
t ′=0

p(z, θ | ω)dzdθ

=
∫

dp1{z | θ, ω(1),s(0)}
dt

dp2{z | θ, ω(2),d(0)}
dt ′ p(θ | ωp)dzdθ = d21

dtdt ′ = 0.
�

Proof of Theorem 2. Consider a smooth curve p{z, θ | ω(t)}. Let R(s) : [c1, c2] → [−ε, ε] be the first-
order differential map such that R(c3) = 0 and Ṙ(c3) = d R(s)/ds |s=c3 |= 0 for a c3 ∈ (c1, c2). Then,
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p[z, θ | ω{R(s)}] is a differential map from [c1, c2] to M. It follows from the chain rule that ḟ [ω{R(s)}] =
ds f [ω{R(s)}, ω0] = dr f {ω(r), ω0}Ṙ(s) and ds
[z, θ | ω{R(s)}] = dr
{z, θ | ω(r)}Ṙ(s), where Ṙ(s) =
ds R(s), dc = d/dc, dr = d/dr , and ds = d/ds. Thus, as ω(0) = ω0, we have

d f [Ṙ(c3)v][ω{R(c3)}] = Ṙ(c3)d f [v](ω), and < Ṙ(c3)v, Ṙ(c3)v > (ω) = Ṙ(c3)
2 < v, v > (ω). �
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PEÑA, D. & GUTTMAN, I. (1993). Comparing probabilistic methods for outlier detection in linear models. Biometrika

80, 603–10.
PENG, F. & DEY, D. K. (1995). Bayesian analysis of outlier problems using divergence measures. Can. J. Statist. 23,

199–213.
RUGGERI, F. & SIVAGANESAN, S. (2000). On a global sensitivity measure for Bayesian inference. Sankhya 62, 110–27.
SIVAGANESAN, S. (2000). Global and local robustness approaches: uses and limitations. In Robust Bayesian Analysis,

Eds D. Rios Insua and F. Ruggeri. Lecture Notes in Statistics 152, pp. 89–108, New York: Springer.

 at U
niversity of N

orth C
arolina at C

hapel H
ill on O

ctober 5, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


Bayesian influence analysis 323

VAN DER LINDE, A. (2007). Local influence on posterior distributions under multiplicative modes of perturbation.
Bayesian Anal. 2, 319–32.

WANG, Q., STEFANSKI, L. A., GENTON, M. G. & BOOS, D. D. (2009). Robust time series analysis via measurement
error modeling. Statist Sinica 19, 1263–80.

WU, X. & LUO, Z. (1993). Second-order approach to local influence. J. R. Statist. Soc. B 55, 929–36.
ZHU, H. T., IBRAHIM, J. G., LEE, S. Y. & ZHANG, H. P. (2007). Perturbation selection and influence measures in local

influence analysis. Ann. Statist. 35, 2565–88.
ZHU, H. T. & LEE, S. Y. (2001). Local influence for incomplete data models. J. R. Statist. Soc. B 63, 111–26.

[Received November 2009. Revised January 2011]

 at U
niversity of N

orth C
arolina at C

hapel H
ill on O

ctober 5, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/



