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Summary. This paper proposes a method to assess the local influence in a minor perturbation of a
statistical model with incomplete data. The idea is to utilize Cook’s approach to the conditional
expectation of the complete-data log-likelihood function in the EM algorithm. It is shown that the
method proposed produces analytic results that are very similar to those obtained from a classical
local influence approach based on the observed data likelihood function and has the potential to
assess a variety of complicated models that cannot be handled by existing methods. An application
to the generalized linear mixed model is investigated. Some illustrative artificial and real examples
are presented.
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1. Introduction

An assessment of local influence in minor perturbations of a statistical model is important in
data analysis. Cook (1986) proposed a simple and unified approach for such an assessment.
This important work used the geometric normal curvature (Bates and Watts, 1980) to
characterize the behaviour of an influence graph based on a well-behaved likelihood function.
In recent years, it has been applied to various statistical models; see for example Beckman et
al. (1987) for the mixed model analysis of variance, Escobar and Meeker (1992) for regres-
sion models with censored data and Tsai and Wu (1992) for transformation models, among
others. However, it is very difficult to obtain local influence measures for some complex
models because the building-blocks in the associated diagnostic measures involve intractable
integrals. In addition, the underlying computational burden is heavy for problems with
missing data.

The EM algorithm (Dempster et al., 1977) is a powerful method for computing maximum
likelihood estimates for incomplete-data problems. Many complicated statistical models can
be analysed by treating latent variables in the model as hypothetical missing data and
applying the EM algorithm. See Lee and Poon (1998), McCulloch (1997), Meng and van Dyk
(1997) and Wei and Tanner (1990), among many others.

Inspired by the power and wide applicability of the EM algorithm, we propose in this paper
a method to assess local influence for incomplete data. The idea is to apply a procedure similar
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to that in Cook (1986) to the conditional expectation of the complete-data log-likelihood
function instead of the observed data log-likelihood function. This procedure not only pro-
duces analytic results that are very similar to those obtained from a classical local influence
approach but also makes possible an assessment of local influence for complicated models.

The paper is organized as follows. In Section 2, we introduce an objective function and
propose a procedure to assess local influence in a model perturbation for incomplete data.
Some nice properties and motivation for the procedure are discussed. To illustrate the
methodology proposed two data examples are presented in Section 3. In Section 4, we apply
the procedure to generalized linear mixed models and illustrate this with a real example.
Technical proofs are given in Appendix A.

2. Local influence under incomplete data

To introduce the new methodology and some notation, we briefly review the EM algorithm.
Let Y, =(Y,, Y,) be the complete-data set with a density p(Y.|0) parameterized by an r-
dimensional parameter vector § € ® C R", where Y, and Y,, are the observed data and the
missing data respectively. The complete-data log-likelihood

L(01Y.) = log{p(Y.]0)}
is simple in most statistical applications, whereas the observed data log-likelihood

Lo(01Y,) = log{p(Y,|0)}

is complicated. A standard EM algorithm consists of two steps: the expectation (E) step and
the maximization (M) step. The E-step evaluates

0(010”) = E{L(0]Y)|Y,, 07},

where the expectation is taken with respect to the conditional distribution p(Y,,|Y,, 6"). The
M-step determines a 6" that maximizes Q(0]6""). Under mild conditions, the sequence {6}
obtained from the EM algorithm iterations converges to the maximum likelihood estimate 6
(Wu, 1983).

2.1. Motivation

Consider a perturbation vector w = (wy, . . ., wp)T varying in an open region Q C R". Let
L0, w|Y,) and L.(0, w|Y.) be the observed data and complete-data log-likelihoods for the
perturbed model. We assume that there is an «” such that L (0, °|Y,) = L,(0]Y,) and
L.(0,°|Y,) = L.(6|Y,) for all 4. Let §,(w) be the maximum likelihood estimator of # from
L,(0, w|Y,). For simple statistical models, Cook (1986) considered the likelihood displace-
ment function

LD(w) = 2[L,(0]Y,) — Lo {0,(w)| Y, }]

and used it to assess the local influence of a minor perturbation. Although this approach is
very useful, we encounter serious difficulties when applying it to complicated models, because
of the intractable likelihood function. Hence, it is natural to consider alternatives to replace
LD(w).

Motivated by recent advances relating to the EM algorithm, we propose the following Q-
displacement function as an alternative to LD(w):
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fo(w) =2[0019) — 0{0(w)I6}] M
where f(w) is the estimate of # which maximizes
0(0. wlf) = E{L(0, wI Y)Y, 0}.

This function can be regarded as a measure of the difference between § and d(w); it is greater
than or equal to 0 and achieves its global minimum at w”. When no perturbation is intro-
duced, A(w’) equals the maximum likelihood estimate . Attention should be paid to
situations where key results of the analysis are seriously influenced by a minor perturbation
of Q(6, w|h). It will be shown empirically in Section 3 that the approach proposed gives good
results in some well-understood situations, so we can expect it to work well in other settings.
Moreover, when there are no missing data, f,(w) reduces to LD(w). Thus, normal curvature
based on f(w) can be regarded as a generalization of the normal curvature based on LD(w).

A reason for using LD(w) is that it may be interpreted in terms of the asymptotic confidence
region {0: 2{L,(0) — L,(0)} < x*(«)}, where x*(a) is the upper a-point of a y>-distribution
with r degrees of freedom (Cook, 1986). Another motivation for our procedure is an anal-
ogous result for fy(w). Let I, and I, be the observed information matrix and the missing
information matrix (Louis, 1982) respectively. Under mild conditions, I, is positive definite
with spectral decomposition /. = BU'BT, where T = diag(v,, . . ., 7,). Let I}{> = Br''/?B"
and I;bs/2 = BIr'?B", where I'/* = diag(mm, R %1/2) and T2 = diag(yl_l/ e fyf'/z).

Theorem 1.

(a) Let 6, be the true paramelzter vectlozr. Then, if the maximum eigenvalue of the semi-
positive definite matrix 7, Imisl(:bs/ converges to 0 in probability,

2(0(010) — 0(B:10)) > 2,

where —© denotes convergence in distribution.

(b) If D is a non-negative matrix with eigenvalues \{ > ... > X. > 0, and, if I;bls/ 2Imislgbls/ ’
converges to D in probability, then
AA N L
2{0(010) — Q(6,10)} — X,
where X has the same distribution as Z;_; (1 + )\:)Z,?, with Z,, . . ., Z, independently

and identically distributed as N[0, 1].

Proofs for theorem 1 and the other theorems are sketched in Appendix A. It can be seen
from equation (8) in Appendix A that the Q-distance 2{Q(0|0) — 0Q(6,10)} is different from
the likelihood distance

2{Lo(9) = Lo(00)} = (0 — 00) " Lns(8 — b0) + 0, (10 — 6y 1)

If the amount of missing data is much less than observed data, condition (a) of theorem 1 is
satisfied. The Q-distance and the likelihood distance are then closely related; in particular,
their asymptotic distributions are both y?. Theorem 1, part (b), gives the asymptotic
distribution of the Q-distance when the amount of missing data may be large. It indicates
that the difference between the asymptotic distributions of these distances is then more
substantial. On the basis of theorem 1, an asymptotic confidence region for 6 is {6:
2{0(010) — 0(010)} < X()}, where X (o) is the upper a-point of the distribution of X.
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Moreover, the theorem can be applied to test hypothesis H: 6 = 6, against H,: 0 # 0,. It can
also be applied to other inference, especially to statistical models with missing data.

2.2. Q-displacement function and normal curvature
Following the arguments in Cook (1986), the influence graph of f,(w) is defined as

aw) = W', folw)' 2

The normal curvature Crom of a(w) at ’ in the direction of a unit vector h from R” can be
used to summarize the local behaviour of f,(w). Define

0. = 0°0{0(w)|0}/0wdw"|,_0,
0u(0) = 0°0(010)/ 606" |,
and
A, =00, wlf)/00w™ |4 g

Using the rationale given in Cook (1986), it can be shown that the normal curvature Crpon of
a(w) at o is

Cron=—20"0,h=2h"AL{—0y(0)} ' Ah. (3)

Although Cook’s (1986) normal curvature is very useful, it may take any value and is not
invariant under a uniform change of scale. Hence, there is no objective criterion to judge its
size and the relative size of directions corresponding to large normal curvatures. Recently, on
the basis of LD(w), Poon and Poon (1999) introduced a conformal normal curvature which is
a one-to-one function of the normal curvature and takes values in [0, 1]. Also, this curvature
is invariant under conformal reparameterization of w. A conformal reparameterization is a
smooth map ¢: 2 — @ from the domain 2 to a new domain ® of the same dimension such
that the Jacobian matrix of ¢, M, is non-singular throughout Q and there is a positive
number 7 satisfying MM" = 7ID,, where ID, is an r x r identity matrix. An example of a
conformal reparameterization is ¢(w) = Mw + ¢. See Poon and Poon (1999) for more dis-
cussion and examples. On the basis of these nice properties, objective bench-marks to judge
size were constructed. Inspired by Poon and Poon (1999), a conformal normal curvature is
introduced for our procedure. On the basis of equation (3), the conformal normal curvature
By, p at «’ in a unit direction h is defined as

—2h"0_oh

Bion = 4520 @

The norm of —20,, is taken as the trace of the matrix, differently from Poon and Poon
(1999). Two important properties of By, , are given by the following theorem.

Theorem 2.

(a) Invariance under reparameterization of 0 —if ¢: ® — W is differentiable with a non-
singular Jacobian, then Cy, , and By, , are invariant with respect to any reparameter-
ization ¢ = (0).

(b) Invariance under conformal reparameterization of w—Ilet ¢ = ¢(w) be a conformal
reparameterization of w. Then By, n in any unit direction at «” is invariant with respect
to the conformal reparameterization ¢ = ¢(w).
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Theorem 2 points out the important property that Cy, , and By, , are invariant with respect
to any reparameterization of 6. Hence, results obtained via Cj, , or By, j, are parameterization
independent. Moreover, for a conformal reparameterization of w, By, n is still invariant.

2.3. Assessment of local influence

The previous arguments suggest that we should assess local influence by using —Q , or
equivalently Ao and —0,(#). Under regularity conditions, —0_o is semipositive definite. To
give a clear picture of —20 0, we consider its spectral decomposition

iy r T
=200 =) \ee;, ®)
i=1

where {()\;, €;)}7_, are eigenvalue-eigenvector pairs of =20 with A, > ... >\ >\, =
... =\, =0 and eigenvectors {e;}2_,. Since 2,”»:1 ef,- = 1, if all elements e;; in e; are identical,
then they all equal p~'/?, which can be used as a bench-mark to assess the size of each case.
Also, since the X; = \;/X}_, A\, sum to 1, if all X; are identical, then they all equal 1/r, which
can be used as a bench-mark to judge the size of an eigenvalue.

To detect influential observations, Cook (1986) pointed out that h,,, —e, provides
important information for assessing the influence of a minor perturbation. Some previous
work (Lesaffre and Verbeke, 1998; Poon and Poon, 1999) proposed to inspect all Cy, , for
further information, where u; is a basic perturbation vector with jth entry 1 and other entries
0. Since tr(—20 ) = X, ), it can be seen that

CfQ.u,‘ = ; )\ie?ja
S ©
By, = ; Ai€jj-

T heorem 3. For any unit direction h, By, x satisfies the inequality 0 < By, » < 1. In par-
ticular, By, e, = Ak

Theorem 3 indicates that By, n is a normalized measure, and its magnitude can be easily
interpreted. Hence, objective bench-marks to judge size can be constructed as follows.
Consider all eigenvalue—eigenvector pairs of —20_0. An eigenvector e; of —20,, is called m,
influential if By, ., = my /r. Since each component of e; can be greater or smaller than 0, it is
difficult to judge size in some cases. Moreover, it seems to be unreasonable to treat all the
{e;}'_, equally. On the basis of these considerations, we propose to inspect > = (7, . . ., e%,,)T
with the standardized eigenvalue \; of e; fori =1, . . ., p. We call the weighted sum of all n1,-
influential eigenvectors,

M(m()) = ~Z Xielza

iAi=my/r

the aggregate contribution vector of all my-influential eigenvectors. The jth component of
M(my) is M(my); = &, )\N,-ef,, where K is the largest i such that \; > m,/r. On the basis of
{M(m,);: j=1, ..., p}, we can assess the size of each case. In particular, when m, =0,
M) = T, Ne’.

Theorem 4. The mean of {M(my),} is M(my) = =X, X;/p. In particular, M(0), = By, for
any j, and their mean is M(0) = 1/p.
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Theorem 4 indicates that M(0); and By, , of the basic perturbation vector u; are closely
related. On the basis of theorems 3 and 4, we can use M(m,) as a bench-mark to determine
the significance of contributions from an individual case. For instance, Poon and Poon (1999)
proposed to use 2 M(m,), which is similar to what is often done for leverage in linear
regression analysis. An alternative that takes into account the variation of M(my); is to take

M(my) + 2 Sy, (my)

as a bench-mark, where S,,(m,) is the corresponding sample standard error. This bench-mark
works quite well in our empirical studies.

3. Examples

In this section we show that the method proposed gives analytic results that are similar to
those obtainable from the local influence approach (Cook, 1986) based on the classical
observed data likelihood. The idealized example and the aerosol data from Beckman et al.
(1987) will be used.

3.1. An idealized example

Beckman e al. (1987), page 417, analysed an idealized data set with LD(w) via Cook’s (1986)
approach and three perturbation schemes. We use the same perturbation schemes and the
same data, and then follow them in adding two standard errors to a single data point and to a
single random effect. In our approach, h,,, and M(0); are derived from f,(w). To save space,
we only report local influence measures based on the whole parameter vector. The data set
was constructed from the model

Yi=p+ A4 +e€

where i=1,...,10, j=1,2, 3 and =0, so n=30. It is assumed that 4, ~ N(0, o%),

€;; ~ N(0, 0%) and 4, and ¢; are independent with 0, = 3 and o = 1. Here, 4, . . ., 4, are
treated as missing data. The complete-data log-likelihood function is

0 3 (p—pu—A) 1o 42

L61Y) = —15 log(@®) 5 log(e) — 3. 5- L2 A _ 5 A

2 2
i=1 j=1 20 o1 205

On differentiating L.(A]Y,) with respect to 8 = (u, o°, o)" twice, we have

30 10 3 )’}U
= =Y 0
o? ;; o*
OLOY,) 03 P, AP 15
T T | m i =l A 0
i=1 j=1 i=1 j=1
0 47 5
0 0 By
i=1 04 Oy

where J;; = y;; — u — A;. Since
3
A Y, ~ N{(3 + 02022)_1 > (.Vij — ), (30_2 + 022)_1 },
=1

an evaluation of the conditional expectation is straightforward.
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First, we cons1der a perturbation scheme via an n x 1 vector w such that var(e;) = azw,}l.

In this case, w’ = 1 and

yh@wW9:<% ¥ 0

Qw007 o2’ 204’

so perturbing o® does not involve o%. Figs 1(a) and 1(b) display index plots of h,,,, and M 0);,
in which the indices are the corresponding data point numbers. We observe that all the M(O)
are smaller than the bench-mark 0.083 = 1/30 + 2 x 0.025, so there is no influential data
point. Figs 1(c) and 1(d) are reconstructions of Figs 1(a) and 1(b) after adding 20 = 2 to y; 3.
Only M(0),, is greater than the bench-mark 0.201 = 1/30 + 2 x 0.084. Thus, a minor change
in the error variance of y,o ; will have a strong influence on the analysis. Increasing the 10th
group {Y0.1> Y10.2> Y10.3} by 204 = 6 has little influence on local influence measures, so the
resulting plots are not shown.

Secondly, we consider a perturbation scheme via a 10 x 1 vector w such that var(4;) =
w;'o%; here

L0, wl Yo _ A?
Ow,00T " 20%

and perturbation of ¢ does not influence 1 and ¢°. Plots of h,,,, and M (0); are presented in
Fig. 2, where the indices refer to group i = 1, , 10. Fig. 2(a) shows that the smallest and
the largest M(0); are smaller than the bench- mark 0.43 =1/10+2 x 0.165. From Figs 2(c)
and 2(d), the eﬁect of a minor modification 4, + 6 is remarkable; M(0),, is greater than the
bench-mark 0.670 = 1/10 4+ 2 x 0.285. Since y,4 3 + 20 has little influence, the corresponding
results are not presented.

Finally, we consider a perturbation of the response vector such that y;(w) = y; + w;;. In
this case, w’ = 0 represents a non-perturbation situation and

PLO wIY) _ (1 Fy
dw,00T (02’ o*’ )
Index plots for all parameters are presented in Figs 3(a) and 3(b). Those for h,,, and M(0);
are very similar to Figs 1(a) and 1(b). After y,,; has been increased by 2o, it is identified to
be influential in Fig. 3(c) and its corresponding M(0),, is greater than the bench-mark
0.092 = 1/30 4+ 2 x 0.029, but not as dramatically as in Fig. 1(c). When the 10th group is
perturbed, plots of hy,, and M(0), are very similar to Figs 1(a) and 1(b). For brevity, the
details are not displayed. These results suggest that diagnostics obtained via a perturbation of
the responses may be less sensitive than diagnostics derived from a perturbation to the model.
Results obtained via our approach are very similar to those obtained in Beckman et al. (1987)
via the classical local influence approach based on the observed data likelihood. Index plots of
h,... presented in Figs 1-3 are virtually the same as the corresponding plots given in Fig. 2 of
Beckman et al. (1987). In addition, index plots M(0), provide more information to assess the
local influence, and it seems that the bench-mark proposed works well in this analysis.

3.2. Analysis of the aerosol data
Beckman er al. (1987) also analysed an aerosol data set with the mixed model

yii"[ = U + Q; + ﬂ] + Zj/c + Eij/c[’ for i, ] = 1, 2 and k, = 1, 2, 3,
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Fig. 1. Index plots of M(0); and h,,, for perturbation of the error variances: (a), (b) original local influence
measures; (c), (d) local influence measures obtained after 20 = 2 has been added to y;q 5 (- , bench-mark for
M(0))

where y,;, is the percentage penetration, o is a fixed effect for the ith aerosol type, §; is a fixed
effect for the jth filter manufacturer, z; is a random effect for the kth filter nested within the
Jth manufacturer and €, is the error associated with the /th replication in the (ijk)th cell. It is
assumed that z; ~ N[0, orl, e ~ N[O, 0%], and z; and €, are independent. The maximum
likelihood estimate of 6 = (u, oy, By, o°, o3)" was found to be (0.992, 0.197, —0.597, 0.136,
0.633)". Beckman et al. (1987) found that cases y,,,; and y,,, are influential, with y,,,, more
influential than y 5.

We consider a perturbation scheme via a 36 x 1 perturbation vector w such that
var(e;y) = az/wl:,k,. Here, z; (j =1, 2; k =1, 2, 3) are treated as Y,,. The complete-data log-
likelihood function is
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Fig. 2. Index plots of M(0); and h,, for perturbation of the random-effects variances: (a), (b) original local
influence measures; (c), (d) local influence measures obtained after 20, = 6 has been added to Ay (-« ,
bench-mark for M(0))

1 1 Wiy 1 zh
Ly(6, w|Y) = =3 log(o}) — 18 log(e”) +5 3 logwy) =5 3 —OT 32 =z,
ikl ijkd O j.k OF

where e;;; = y;u — 1 — o; — B, — z;. By differentiation,

L9, w|Y,) . o Tenw e
C bl C — 1 _1 I _1 J , 0, - 1JK LJKi ,
6(4)”“60 < ’ ( ) ’ ( ) 2 0'2 0'2

and non-zero elements in —9*L (0| Y/ 000" are given by
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PLOY,) OLO)Y) FLOY) 36

oudp 0, 08,08, o
LY _ €l
aﬂadz iji k1 0—4 ’
PLOY) <z 3
dordor ik ok ot
CPLOIY) e 18
do20o? T ot ot
O*L(6|Y,) i
_ c — 1 i+1 ll
80[]80'2 i.]Z/}l( )
I’L(0)Y,) 1€
_ T =V Vi
85180’2 i‘j.zk,l( ) 0'4

Since
il Y, 0~ {(6 +oop) ! EIJ Vijgr — = a; = ), (607 + 07! },

where Yk = (Vije1s Vs y11k3’ Wajicts Vajias J/2/k3) we can replace z; and Z/k by their expecta-
tions E(z; 10, Y) and E(z 210, Y). Thus, A and Q,(0) can be obtained. These basic building-
blocks for obtaining the diagnostic measures are easier to obtain than those presented in
Beckman et al. (1987) with the observed data likelihood function. Fig. 4 shows the index plots
of M(0); and h,,,,. The bench-mark for M(0);is 0.199 = 1/36 + 2 x 0.086. From Fig. 4(a) and
this bench mark, vy, is identified as mﬂuennal with its M(0); about 0.187. Again, y y, is
more influential than y,,5,. Fig. 4(b) is very similar to Fig. 3(a) of Beckman et al. (1987). If we
only consider h,,,,, then y,,, and y,,5, are identified as influential. Hence our procedure gives
essentially the same analytic results as would be obtained from a local influence approach
with the classical observed data likelihood.

4. Extension to the generalized linear mixed model

In this section we illustrate the potential of our approach in analysing models in which it is
very difficult or even impossible to achieve local influence analysis via the observed data
likelihood. We sketch the methodology for generalized linear mixed models.

4.1. Generalized linear mixed models
The analysis of generalized linear mixed models has received much attention in the recent
literature (see for example Breslow and Clayton (1993)). However, even estimation is non-
trivial because it usually involves the computation of high dimensional integrals. Several
approaches have been proposed, notably Breslow and Clayton (1993) using Laplace’s
method, Zeger and Karim (1991) using the Gibbs sampler, McCulloch (1997) using a Monte
Carlo Newton—Raphson algorithm and Aitkin (1999) using the EM algorithm with numerical
integration implemented as finite mixture maximum likelihood.

Data typically consist of a response y;;, covariate vectors x;; (s; x 1) and z; (s, x 1) for
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Fig. 3. Index plots of M(0); and hy,, for perturbation of the response vector: (a), (b) original local influence
measures; (c), (d) local influence measures obtained after 20 = 2 has been added to y;q 5 (- , bench-mark for
M(0))

i=1,...,Lj=1,... nandn=%_, n.Itis assumed that, conditional on b;, y;; follows a

density of the form

Vi — a(0;)
¢

Conditional means p;; = E(y;|b;) = a(0;;) are related to regression coefficients 3 and b; via the
link relationship

p(yij|bi) = exp{ + C(J’ij’ ¢)}

py = alk(x0 + b)),
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where (1) = da(u)/du and k() is a known link function. In the following, we assume that
b; ~ N(0, X). The observed data log-likelihood involves intractable integrals of high dimen-
sion, so it is very difficult to assess the local influence on the basis of this function.

To apply our proposed method, {b; i=1, ... I} are treated as missing data. The
complete-data log-likelihood is

k(xB +zib) + alk(xjB +2zib)} L1

Yij - I
L0, )—ZE : > 3b7 =7, — 3 log 2.

i=1 j=1 ¢
For a given perturbation scheme, it is straightforward to derive 9*L.(A|Y,)/0006 and 0*L(6,
w|Y,)/000w. However, the conditional expectations involved in building-blocks A and
0,(0) of the local influence measure cannot be evaluated in closed form. We handle this
difficulty via Monte Carlo integration. Let {YY, s =1, . . ., S} be a sample randomly drawn
from the conditional distribution p(Y |Y,, §). Then the building-blocks are computed as

L0, w|Y,, YY)
Awo ~S Z T ’
et 000w W0
S (92 (9 ( )) (7)
. LY, Y¢
9 —_ v o mZ
Ol ; o800 s

Techniques for sampling from a general density include rejection sampling, importance re-
sampling (Rubin, 1987), the Gibbs sampler (Geman and Geman, 1984) and the Metropolis—
Hasting algorithm (Metropolis et al., 1953; Hasting, 1970) among others.

4.2.  An illustrative example with longitudinal data

Thall and Vail (1990), Table 2, analysed a data set from a clinical trial of 59 epileptics who
were randomly assigned to treatment (7" = 1) and placebo (7" = 0) groups as an adjuvant to the
standard chemotherapy. Each patient reported the number of seizures in each of four 2-week
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observation periods. The response variable y;;, the seizure count for patient i on the jth visit, is
assumed to be conditionally Poisson distributed with mean p;; such that

log{p(b)} = x;;8+ by + by, Visit,/ 10,

where b; = (b;;, b,)". The covariates x;; are the intercept term, the logarithm of a pre-
experiment base-line count B of seizures, treatment 7, their interaction B x T, the logarithm
of the patient’s age and a variable Visit; for each of four clinic visits (-3, —1, 1, 3). We
assume that random effects b, and b,, are independent, b, ~ N(0, o},) and b;, ~ N(0, 03,).
This gives a random-effect model which is not invariant under the location change in the
Visit; covariate. The maximum likelihood estimate of 6 is (87, 61, 622) = (—1.36, 0.88, —0.93,
0.34, 0.48, —0.27, 0.50, 0.72).

On the basis of a plot of random effects (b,;, b;,), Breslow and Clayton (1993) pointed out
that patient 135 has a marked improvement over time after an initially high seizure rate,
patients 227, 225 and 112 have the highest overall count level relative to the expectation based
on the covariables and patient 232 has especially low or zero counts. These patients were
regarded informally as ‘outliers’ (see also Thall and Vail (1990)). As an illustration of our
procedure, we consider a perturbation scheme such that

-1 2
var(b;) = w; o7,

for i=1, ..., 59. Expressions for matrices 8°L.(0, w| YC)/é)Qé)wT and &*L.(0)] YC)/BOBGT can
be derived via standard matrix calculus. Building-blocks A » and —0,(#) cannot be evaluated
in closed form, so they are approximated as in expression (7) by random observations
Y =0, by s=1,...,8; i=1,... 59} sampled from the conditional distribution
p(b;|Y,, 0) via the Metropolis—Hasting algorithm (Gamerman, 1997; Zeger and Karim, 1991).
The algorithm is implemented as follows: at the rth iteration with a current value bfr), a new
candidate b, is generated from N{b\”, C(0)}, where
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4 4
2 () + it 2:1 pi(b;) Visit;
j:

chy=|",

4
Z ,Uzjj(bi) ViSitj Z szj(bi) ViSit]Z + (72_22
=1 =
The probability of accepting this new candidate is

min {1, p(b;| Yy, 0)/p(0{| Y, §)).

We used a burn-in phase of 2000 cycles and then further collected S = 10000 random obser-
vations with a spacing of 2. Thus, 22000 iterations were run to calculate A_ and —0,(9).
Results obtained from M(0); are presented in Fig. 5. From Fig. 5 and using 0.095 =
1/59 +2 % 0.029 as a bench-mark for M(0),, the 112th, 135th, 225th, 227th and 232nd
patients are identified as influential. This conﬁrms the finding of Breslow and Clayton (1993).
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Appendix A

A.1.  Proof of theorem 1
Under mild conditions, the asymptotic distribution of Iobs(G 0,) is N[0, ID,] (Cox and Hinkley, 1974).
Since the complete-information matrix —Q(8]9) is the sum of I, and I, it follows that

2{00010) = 0610)) = (0 — 60) " {=0010)}(0 — 6,) + 0,(110 — 6, I*) @®)

A 1/2 —1/2 —1/2.,1/2 2 A
= (0 — 00) " Toe(ID, + T oo Iio T oo )o@ — 05) + 0,110 — 6, 1)

Assertions in theorem 1 can be proved by this result and the multivariate Slutzky theorem (Lehmann
(1999), page 283).

A.2. Proof of theorem 2

(a) Let o = (¢) and & = () be the transformation of ¢ and its inverse respectively. If f is the max-
imizer of 0 under L,(0]Y,), then ¢ = 9(0) is the maximizer of ¢ under L,(¢|Y,) = L, {0(¥)| Y, }.
Let Q(4, wlY) = Q{6(v), w|f}; then

O, wid) _ (90 \' 9Q(0. wlf)
HpowT T \ T 00wT

and

PO, wld) _ (06 \' 000, wIf) 0 (0060, w0)\'[ 0
oo™\ T 90007 oyt o0 HOPT |’
where [-][] denotes array multiplication; see Wei (1998) for details. It follows from Q,(9) = 0 that

Cy,.n and B, are invariant with respect to reparameterlzatlon of 6.
(b) The second pdrt can be proved via the same reasoning as in Poon and Poon (1999).
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A.3. Proof of theorem 3

Since {e;}%_; is a standardized orthonormal basis in R”, it follows from equation (6) that
BfQ,ek = eZ(—ZQw)ek Z:l A= )‘k/Z} A= 5\1«
For any unit direction h, h = £, he, and £, i* = 1. Therefore,
ro, 2o,
Bfg,h = Zl hi BfQ,e,- = Zl >‘ihi .

Thus, by 0 < X; < 1, we have 0 < By, , < T/ hj =1

A.4. Proof of theorem 4
Since X, ef,- = 1, we obtain

_ 4 K _r K
Mimo) = > M(mo);/p = 3- A3 e;/p = > M.

Jj=

If my = 0, then M(0), = X, Nej; and M(0) = 1/p. It follows from equations (6) that M(0), = By, ,,.
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