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MULTIVARIATE VARYING COEFFICIENT MODEL AND
ITS APPLICATION TO NEUROIMAGING DATA

By Hongtu Zhu∗, Runze Li† and Linglong Kong

University of North Carolina and The Pennsylvania State University

Motivated by recent work studying massive imaging data in the
neuroimaging literature, we propose multivariate varying coefficient
models (MVCM) for modeling the relation between multiple func-
tional responses and a set of covariates. We develop several statisti-
cal inference procedures for MVCM and systematically study their
theoretical properties. We first establish the weak convergence of the
local linear estimate of coefficient functions, as well as its asymptotic
bias and variance, and then we derive asymptotic bias and mean in-
tegrated squared error of smoothed individual functions and their
uniform convergence rate. We establish the uniform convergence rate
of the estimated covariance function of the individual functions and
its associated eigenvalue and eigenfunctions. We propose a global test
for linear hypotheses of varying coefficient functions, and derive its
asymptotic distribution under the null hypothesis. We also propose
a simultaneous confidence band for each individual effect curve. We
conduct Monte Carlo simulation to examine the finite-sample perfor-
mance of the proposed procedures.

1. Introduction. With modern imaging techniques, massive imaging
data can be observed over both time and space [37, 12, 31, 4, 14, 19]). Such
imaging techniques include functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), diffusion tensor imaging (DTI), positron
emission tomography (PET), and single photon emission-computed tomog-
raphy (SPECT) among many other imaging techniques. See, for example,
a recent review of multiple biomedical imaging techniques and their ap-
plications in cancer detection and prevention in Fass [12]. Among them,
predominant functional imaging techniques including fMRI and EEG have
been widely used in behavioral and cognitive neuroscience to understand
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functional segregation and integration of different brain regions in a sin-
gle subject and across different populations [14, 13, 23]. In DTI, multiple
diffusion properties are measured along common major white matter fiber
tracts across multiple subjects to characterize the structure and orientation
of white matter structure in human brain in vivo [2, 3, 49].

A common feature of most imaging techniques is that massive functional
data are observed at the same design points, such as time for functional
images (e.g., PET and fMRI) or arc length for white matter fiber tract, for
different individuals. As an illustration, we plot a diffusion property, called
fractional anisotropy (FA), measured at 75 grid points along the right in-
ternal capsule tract (Fig. 1 (a)) from 40 randomly selected infants and the
values of FA increase with gestational age at nearly all grid points (Figs. 1
(b) and (c)). Scientists are particularly interested in delineating the struc-
ture of the variability of these functional FA data and their association with
a set of covariates of interest, such as age. Furthermore, as another illustra-
tion, we consider the BOLD fMRI signal, which is based on hemodynamic
responses secondary to neural activity. We plot the estimated hemodynamic
response functions (HRF) corresponding to two stimulus categories from 14
subjects at a selected voxel of a common template space (Fig. 1 (d)). Al-
though the canonical form of the HRF is often used, when applying fMRI
in a clinical population with possibly altered hemodynamic responses (Figs.
1 (e) and (f)), using the subjects own HRF in fMRI data analysis may be
advantageous because HRF variability is greater across subjects than across
brain regions within a subject [29, 1]. We are particularly interested in de-
lineating the structure of the variability of the HRF and their association
with a set of covariates of interest, such as diagnostic group and age [28].
A varying-coefficient model, which allows its regression coefficients to vary
over some predictors of interest, is a powerful statistical tool for addressing
these scientific questions. Since it was systematically introduced to statisti-
cal literature by Hastie and Tibshirani [18], many varying-coefficient models
have been widely studied and developed for longitudinal, time series, and
functional data [9, 41, 8, 11, 39, 20, 33, 22, 21, 44, 17]). However, most
varying-coefficient models in the existing literature are developed for uni-
variate response.

Let yi(s) = (yi,1(s), . . . , yi,J(s))T be an J-dimensional functional response
vector for subject i, i = 1, . . . , n, and xi be its associated p × 1 vector of
covariates of interest. Moreover, s varies in [0, L0] and denotes the design
point, such as time for functional images (e.g., PET). A multivariate varying
coefficient model is defined as

(1.1) yi,j(s) = xT
i Bj(s) + ηi,j(s) + εi,j(s) for j = 1, . . . , J,
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Fig 1. Representative functional neuroimaging data: (a) the right internal capsule tract,
(b) fractional anisotropy (FA) values measured at 75 grid points from 40 randomly selected
infants, (c) 3D plot of FA functional curves from 40 randomly selected infants, (d) the
Bonferroni corrected p values of the t statistics from a selected slice and a selected voxel,
(e) and (f) the estimated hemodynamic response functions (HRF) corresponding to two
stimulus categories from 14 subjects.

where Bj(s) = (bj1(s), . . . , bjp(s))T is a p× 1 vector of functions of s, εi,j(s)
are measurement errors, and ηi,j(s) characterizes individual curve variations
from xT

i Bj(s). Moreover {ηi,j(s) : s ∈ [0, L0]} is assumed to be a stochastic
process indexed by s ∈ [0, L0] and used to characterize the within-curve
dependence. For image data, it is typical that the m functional responses
yi(s) are measured at the same location for all subjects and exhibit both
the within-curve and between-curve dependence structure. Thus, for both
ease of notation and the nature of imaging data, it is assumed throughout
this paper that yi(s) was measured at the same M location points s1 = 0 ≤
s2 ≤ . . . ≤ sM = L0 for all i.

Most varying coefficient models in the existing literature coincide model
(1.1) with J = 1 and without the within-curve dependence. Statistical infer-
ences for these varying coefficient models have been well studied. Particu-
larly, Hoover et al. [20] and Wu et al. [42] were among the first to introduce
the time-varying coefficient models for analysis of longitudinal data. Re-
cently, Fan and Zhang [11] gave a comprehensive review of various statistical
procedures proposed for many varying coefficient models. It is of particular
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interest in data analysis to construct simultaneous confidence bands (SCB)
for any linear combination of Bj(·) instead of pointwise confidence inter-
vals and to develop global test statistics for the general hypothesis testing
problem on Bj(·). For varying coefficient models (i.e., J = 1) without the
within-curve dependence, Fan and Zhang [10] constructed SCB using the
limit theory for the maximum of the normalized deviation of the estimate
from its expected value. It has been technically difficult to carry out sta-
tistical inferences including simultaneous confidence band and global test
statistic on Bj(t) in the presence of the within-curve dependence.

There have been several recent attempts to solve this problem in various
settings. For time series data, which may be viewed as a case with n = 1
and M → ∞, asymptotic SCB for coefficient functions in varying coeffi-
cient models can be built by using local kernel regression and a Gaussian
approximation result for non-stationary time series [45]. For sparse irregu-
lar longitudinal data, Ma et al. [30] construct asymptotic SCB for the mean
function of the functional regression model by using piecewise constant spline
estimation and a strong approximation result. For functional data, Zhang
and Chen [44] adopt the method of “smoothing first, then estimation” and
propose a global test statistic for testing Bj(·), but their results cannot be
used for constructing SCB for Bj(·).

In this paper, we propose an estimation procedure for the multivariate
varying coefficient model (1.1) by using local linear regression techniques,
and derive a simultaneous confidence band for the regression coefficient func-
tions. We further develop a test for linear hypotheses of coefficient functions.
The major aim of this paper is to investigate the theoretic properties of the
proposed estimation procedure and test statistics. The theoretic develop-
ment is challenging but of great interest for carrying out statistical infer-
ences on Bj(·). The major contributions of this paper are summarized as
follows.

1. We first establish the weak convergence of the local-linear estimator of
Bj(·), denoted by B̂j(·), by using advanced empirical process methods
[38, 26]. We further derive the bias and asymptotic variance of B̂j(·).
These results provide insight into how the direct estimation procedure
for Bj(·) using observations from all subjects outperforms the estima-
tion procedure with the strategy of “smoothing first, then estimation.”

2. After calculating B̂j(·), we reconstruct all individual functions ηi,k(·)
and establish their uniform convergence rates.

3. We derive uniform convergence rates of the proposed estimate for the
covariance matrix of η(s) and its associated eigenvalue and eigenvector
functions by using related results in Li and Hsing [27].
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4. Using the weak convergence of the local linear estimator of Bj(·), we
further establish the asymptotic distribution of a global test statis-
tic for linear hypotheses of the regression coefficient functions, and
construct an asymptotic SCB for each varying coefficient function.

The rest of this paper is organized as follows. In Section 2, we describe
MVCM and its estimation procedure and establish the theoretical proper-
ties. In Section 3, we establish the asymptotic distribution of a global test
statistic for linear hypotheses of the regression coefficient functions and con-
struct an asymptotic SCB for each varying coefficient function. In Section
4, we present two sets of simulation studies with the known ground truth
to examine the finite sample performance of the global test statistic and
SCB for each individual varying coefficient function. Technical conditions
and proofs are given in Section 5.

2. Estimation Procedures. Throughout this paper, we assume that
εi(s) = (εi,1(s), . . . , εi,J(s))T and ηi(s) = (ηi,1(s), . . . , ηi,J(s))T are mutu-
ally independent, and ηi(s) and εi(s) are independent and identical copies
of SP(0,Ση) and SP(0,Σε), respectively, where SP(µ,Σ) denotes a stochas-
tic process vector with mean function µ(t) and covariance function Σ(s, t).
Moreover, εi(s) and εi(t) are assumed to be independent for s 6= t and
Σε(s, t) takes the form of Σε(s, s)1(s = t), where 1(·) is an indicator func-
tion. Therefore, the covariance structure of yi(s), denoted by Σy(s, t), is
given by

(2.1) Σy(s, t) = Cov(yi(s),yi(t)) = Ση(s, t) + Σε(s, s)1(s = t).

2.1. Estimating varying coefficient functions. We will employ local linear
regression [7] to estimate the coefficient functions Bj(s). Specifically, we
apply the Taylor expansion for Bj(sm) at s as follows

(2.2) Bj(sm) = Bj(s) + Ḃj(s)(sm − s) = Aj(s)zhj
(sm − s),

where zhj
(sm − s) = (1, (sm − s)/hj)T and Aj(s) = [Bj(s) hjḂj(s)] is

a p × 2 matrix, in which Ḃj(s) = (ḃj1(s), . . . , ḃjp(s))T is a p × 1 vector
and ḃjl(s) = dbjl(s)/ds for l = 1, . . . , p. Let K(·) be a kernel function and
Kh(·) = h−1K(·/h) be the rescaled kernel function with a bandwidth h. We
estimate Aj(s) by minimizing the following weighted least squares function:

(2.3)
n∑

i=1

M∑
m=1

[yi,j(sm)− xT
i Aj(s)zhj

(sm − s)]2Khj
(sm − s).
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Let us now introduce some matrix operators. Let a⊗2 = aaT for any vector
a and C⊗D be the Kronecker product of two matrices C andD. For anM1×
M2 matrix C = (cj,l), denote vec(C) = (c1,1, . . . , c1,M2 , . . . , cM1,1, . . . , cM1,M2)

T .
Let Âj(s) be the minimizer of (2.3). Then

(2.4) vec(Âj(s)) = Σ(hj , s)−1
n∑

i=1

M∑
m=1

Khj
(sm−s)[xi⊗zhj

(sm−s)]yi,j(sm),

where Σ(hj , s) =
∑n

i=1

∑M
m=1Khj

(sm − s)[x⊗2
i ⊗ zhj

(sm − s)⊗2]. Thus, we
have

(2.5) B̂j(s) = (b̂j1(s), . . . , b̂jp(s))T = [Ip ⊗ (1, 0)]vec(Âj(s)),

where Ip is a p× p identity matrix.
Define ur(K) =

∫
trK(t)dt, vr(K) =

∫
trK2(t)dt, ḟ(s) = df(s)/ds, f̈(s) =

d2f(s)/ds2,
...
f (s) = d3f(s)/ds3, and g(l1,l2)(s, t) = ∂a+bg(s, t)/∂as∂bt for

any smooth functions f(s) and g(s, t), where r, a and b are any nonnega-
tive integers. Let H = diag(h1, . . . , hJ), B(s) = [B1(s), . . . , BJ(s)], B̂(s) =
[B̂1(s), . . . , B̂J(s)] and B̈(s) = [B̈1(s), . . . , B̈J(s)], where B̈j(s) = (b̈j1(s), . . . , b̈jp(s))T

is a p× 1 vector. The following theorem establishes the weak convergence of
{B̂(s), s ∈ [0, L0]}, which is essential for constructing global test statistics
and SCB for B(·). The assumptions and proofs of all theorems are given in
Section 5.
Theorem 1. Suppose that Assumptions (C1)-(C6) in Section 5 hold. The
following results hold:

(i)
√
n{vec(B̂(s) − B(s) − 0.5B̈(s)U2(K; s,H)H2[1 + op(1)]) : s ∈ [0, L0]}

converges weakly to a centered Gaussian process G(·) with covariance matrix
Ση(s, s′) ⊗ Ω−1

X , where ΩX = E[x⊗2] and U2(K; s,H) is a J × J diagonal
matrix, whose diagonal elements will be defined in Lemma 5 of Section 5.

(ii) The asymptotic bias and conditional variance of B̂j(s) given S = {s1, . . . , sM}
for s ∈ (0, L0) are, respectively, given by 0.5h2

ju2(K)B̈j(s)[1 + op(1)] and

n−1en(s) + (nMhj)−1π(s)−1v0(K)[Ση,jj(s, s) + Σε,jj(s, s)]Ω−1
X [1 +O(hj)]

+n−1{Ση,jj(s, s) + h2
ju2(K)[Σ(2,0)

η,jj (s, s)π(s) + 2Σ(1,0)
η,jj (s, s)π̇(s)

+Ση,jj(s, s)π̈(s)]π(s)−1 +Op(M−1) + op(h2
j )}Ω−1

X ,

where en(s) = Op((Mhj)−1/2) is a random matrix of S and Ση(s, s′) for
s 6= s′ with E[en(s)] = 0. This will be defined in Section 5.

Before discussing practical implementation issues of the proposed proce-
dure, let us discuss the implications of Theorem 1.
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1. The major challenge in proving Theorem 1 (i) is dealing with within-
subject dependence. This is because the dependence between η(s) and
η(s′) in the newly proposed multivariate varying coefficient model does
not converge to zero due to the within-curve dependence. It is worth
noting that for any given s, the corresponding asymptotic normality
of B̂(s) may be established by using related techniques in Zhang and
Chen [44]. However, the marginal asymptotic normality does not imply
the weak convergence of B̂(s) as a stochastic process in [0, L0], since
we need to verify the asymptotic continuity of {B̂(s) : s ∈ [0, L0]} to
establish its weak convergence. In addition, Zhang and Chen [44] con-
sidered “smoothing first, then estimation”, which requires a stringent
assumption such that n = O(M4/5). Readers are referred to Condi-
tion A.4 and Theorem 4 in Zhang and Chen [44] for more details. In
contrast, directly estimating B(s) using local kernel smoothing avoids
such stringent assumption on the numbers of grid points and subjects.

2. When xi only contains the intercept, model (1.1) reduces to the stan-
dard model for functional principal component analysis (FPCA). Al-
though there is an extensive literature on establishing the theoretical
results of FPCA and its extensions [27, 43, 16, 33, 32], the existing
results are primarily marginal convergence and uniform convergence
rate of mean function, and covariance function and associated eigen-
values and eigenfunctions. By using Theorem 1 (i), we can establish
the weak convergence of the mean functional curve in the model for
FPCA, which is a new result to the best of our knowledge. Moreover,
it is interesting to extend model (1.1) by incorporating covariate into
ηi,j(s) [24] and investigate its associated statistical methods.

3. Theorem 1 (ii) only provides us the asymptotic bias and conditional
variance of B̂j(s) given S for the interior points of (0, L0). The asymp-
totic bias and conditional variance at the boundary points 0 and L0 are
given in Lemma 5 in Section 5. The asymptotic bias of B̂j(s) is of the
order h2

j , as the one in nonparametric regression setting. Moreover, the
asymptotic conditional variance of B̂j(s) has a complicated form due
to the within-curve dependence. The leading term in the asymptotic
conditional variance is at the order of n−1, which is slower than the
standard nonparametric rate (nMhj)−1 with the assumption hj → 0
and Mhj → ∞. There is a new term at the order of n−1h2

j , which is
also introduced by the within-curve dependence. The new term en(s)
is at the order of (Mhj)−1/2 and has zero mean. If we consider the
asymptotic conditional variance of B̂j(s), then en(s) is dropped due
to E[en(s)] = 0.
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4. Choosing an optimal bandwidth hj is not a trivial task for model (1.1).
Generally, any bandwidth hj satisfying the assumption hj → 0 and
Mhj → ∞ can ensure the weak convergence of {B̂(s) : s ∈ [0, L0]}.
Ignoring the terms ne−1

n and n−1h2
jO(1) leads to an optimal band-

width for estimating B(s), ĥj = Op((nM)−1/5). In this case, n−1h2
j

and (nM)−1 reduce to Op(n−7/5M−2/5) and (nM)−6/5, respectively,
and their contributions depend on the relative size of n over M .

In practice, we may select the bandwidth hj by using cross-validation.
Specifically, for each j, we pool the data from all n subjects and select
a bandwidth hj , denoted by ĥj , by minimizing the cross-validation score
given by

(2.6) CVj,1(hj) = (nM)−1
n∑

i=1

M∑
m=1

[yi,j(sm)− xT
i B̂j(sm, hj)(−i)]2,

where B̂j(s, hj)(−i) is the local linear estimator of Bj(s) with the bandwidth
hj based on data excluding all the observations from the i-th subject.

2.2. Smoothing individual functions. We also employ the local linear re-
gression technique to estimate all individual functions ηi,j(s). Specifically,
we have the Taylor expansion for ηi,j(sm) at s:

(2.7) ηi,j(sm) = di,j(s)Tz
h
(2)
j

(sm − s),

where di,j(s) = (ηi,j(s), h
(2)
j η̇i,j(s))T is a 2 × 1 vector. We develop an algo-

rithm to estimate di,j(s) as follows. For each k and i, we estimate di,j(s) by
minimizing the weighted least squares function

(2.8)
M∑

m=1

[yi,j(sm)− xT
i B̂j(sm)− di,j(s)Tz

h
(2)
j

(sm − s)]2K
h
(2)
j

(sm − s).

Thus,

d̂i,j(s) = [
M∑

m=1

K
h
(2)
j

(sm − s)z
h
(2)
j

(sm − s)⊗2]−1

×
M∑

m=1

K
h
(2)
j

(sm − s)z
h
(2)
j

(sm − s)[yi,j(sm)− xT
i B̂j(sm)].

Let e1,2 = (1, 0)T . Then, ηi,j(s) can be estimated by

(2.9) η̂i,j(s) = eT
1,2d̂i,j(s) =

M∑
m=1

K̃0

h
(2)
j

(sj − s, s)[yi,j(sm)− xT
i B̂j(sm)],
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where K̃0

h
(2)
j

(·, ·) are the empirical equivalent kernels [7]. Finally, let Si,j

be the smoother matrix for the j-th measurement of the i-th subject and
Ri,j = (yi,j(s1)− xT

i B̂j(s1), . . . , yi,j(sM )− xT
i B̂j(sM ))T , we can obtain

(2.10) η̂i,j = (η̂i,j(s1), . . . , η̂i,j(sM ))T = Si,jRi,j .

We next study the asymptotic bias and covariance of η̂i,j(s) as follows. We
distinguish between two cases. The first one is conditioning on the design
points in S, X, and η. The other is conditioning on the design points in S
and X. We define K∗((s− t)/h) =

∫
K(u)K(u+ (s− t)/h)du.

Theorem 2. Under assumptions (C1)-(C6) in Section 5, the following re-
sults hold for all s ∈ (0, L0).

(a) Conditioning on (S,X,η), we have

Bias[η̂i,j(s)|S,η,xi]

= 0.5u2(K)[η̈i,j(s)h
(2)2
j + xT

i B̈j(sm)h2
j ][1 + op(1)] +Op(n−1/2),

Cov[η̂i,j(s), η̂i,j(t)|S,η,xi]

= K∗((s− t)/h(2)
j )Σε,jj(s, s)π(t)−1(Mh

(2)
j )−1[1 + op(1)]

−xT
i Ω−1

X xi(nMhj)−1π(s)−1π(t)−1Op(1).

(b) The asymptotic bias and covariance of η̂i,j(s) conditioning on S and X
are given by

Bias[η̂i,j(s)|S,X] = 0.5u2(K)xT
i B̈j(sm)h2

j [1 + op(1)],
Cov(η̂i,j(s)− ηi,j(s), η̂i,j(t)− ηi,j(t)|S,X)

= [1 + op(1)][0.25u2(K)2h(2)4
j Σ(2,2)

η,jj (s, t) +K∗((s− t)/h(2)
j )

×Σε,jj(s, s)π(t)−1(Mh
(2)
j )−1 + n−1xT

i Ω−1
X xiΣη,jj(s, t)].

(c) The mean integrated squared error (MISE) of all η̂i,j(s) is given by

n−1
n∑

i=1

∫ L0

0
E{[η̂i,j(s)− ηi,j(s)]2|S}π(s)ds(2.11)

= [1 + op(1)]× {v0(K)(Mh
(2)
j )−1

∫ L0

0
Σε,jj(s, s)π(s)ds

+n−1
∫ L0

0
Ση,jj(s, s)π(s)ds

+0.25u2
2(K)

∫ L0

0
[B̈j(s)T ΩXB̈j(s)h4

j + Σ(2,2)
η,jj (s, s)h(2)4

j ]π(s)ds}.
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(d) The optimal bandwidth for minimizing MISE (2.11) is given by

(2.12) ĥ
(2)
j =

 v0(K)
∫ L0
0 Σε,jj(s, s)π(s)ds

u2
2(K)

∫ L0
0 Σ(2,2)

η,jj (s, s)π(s)ds

1/5

M−1/5.

(e) The first order LPK reconstructions η̂i,j(s) using ĥ(2)
j in (2.12) satisfy

(2.13) sup
s∈[0,L0]

|η̂i,j(s)−ηi,j(s)| = Op(| log(M)|1/2M−2/5+h2
j +n−1/2),

for i = 1, · · · , n.

Remark. Theorem 2 characterizes the statistical properties of smoothing
individual curves ηi(s) after first estimating Bj(s). Conditioning on individ-
ual curves ηi,j(s), Theorem 2 (a) shows that Bias[η̂i,j(s)|S,X,η] is associated
with 0.5u2(K)xT

i B̈j(sm)h2
j , which is the bias term of B̂j(s) introduced in

the estimation step, and 0.5u2(K)η̈i,j(s)h
(2)2
j is introduced in the smoothing

individual functions step. Without conditioning on ηi,j(s), Theorem 2 (b)
shows that the bias of η̂i,j(s) is mainly controlled by the bias in the estima-
tion step. The MISE of η̂i,j(s) in Theorem 2 (c) is the sum of Op(n−1 + h4

j )

introduced by the estimation of Bj(s) and Op((Mh
(2)
j )−1 +h(2)4

j ) introduced
by the reconstruction of ηi,j(s). The optimal bandwidth for minimizing the
MISE of η̂i,j(s) is a standard bandwidth for LPK. If we use the optimal
bandwidth in Theorem 2 (d), then the MISE of η̂i,j(s) can achieve the order
of n−1 + h4

j +M−4/5.
For each j, we pool the data from all n subjects and select the opti-

mal bandwidth h
(2)
j , denoted by ĥ

(2)
j , by minimizing the generalized cross-

validation score given by

(2.14) GCVj,2(h
(2)
j ) =

n∑
i=1

RT
i,j(IM − Si,j)T (IM − Si,j)Ri,j

[1−M−1tr(Si,j)]2
.

Based on ĥ(2)
j , we can use (2.9) to estimate ηi,j(s) and ηi(s) for all i and j.

2.3. Functional principal component analysis. We consider a spectral de-
composition of Ση(s, t) = (Ση,jj′(s, t)) and a representation of ηi,j(s) for each
j. After obtaining η̂i(s), we estimate Ση(s, t) by using the empirical covari-
ance of the estimated η̂i(s) as follows:

Σ̂η(s, t) = (n− p)−1
n∑

i=1

η̂i(s)η̂i(t)
T .
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For each j, a spectral decomposition of Ση,jj(s, t) is assumed as follows:

(2.15) Ση,jj(s, t) =
∞∑
l=1

λj,lψj,l(s)ψj,l(t),

where λj,1 ≥ λj,2 ≥ . . . ≥ 0 are ordered values of the eigenvalues of a linear
operator determined by Ση,jj with

∑∞
l=1 λj,l < ∞ and the ψl,k(t)’s are the

corresponding orthonormal eigenfunctions (or principal components) [27, 43,
16]. The eigenfunctions form an orthonormal basis on the space of square-
integrable functions on [0, L0], and thus ηi,j(s) admits the Karhunen-Loeve
expansion as ηi,j(s) =

∑∞
l=1 ξij,lψj,l(t), where ξij,l =

∫ L0
0 ηi,j(s)ψj,l(s)ds is

referred to as the (j, l)-th functional principal component scores of the ith
subject. The ξij,l are uncorrelated random variables with E(ξij,l) = 0 and
E(ξ2ij,l) = λj,l. Furthermore, for j 6= j′, we have

Ση,jj′ =
∞∑
l=1

∞∑
l′=1

E(ξj,lξj′,l′)ψj,l(s)ψj′,l′(t).

Following Rice and Silverman [34], we can calculate the spectral decom-
position of Σ̂η,jj(s, t) for each j as follows:

(2.16) Σ̂η,jj(s, t) =
∑

l

λ̂j,lψ̂j,l(s)ψ̂j,l(t),

where λ̂j,1 ≥ λ̂j,2 ≥ . . . ≥ 0 are estimated eigenvalues and the ψ̂j,l(t)s’
are the corresponding estimated principal components. Furthermore, the
(j, l)th functional principal component scores can be computed using ξ̂ij,l =∑M

m=1 η̂i,j(sm)ψ̂j,l(sm)(sm−sm−1). We further show the uniform convergence
rate of Σ̂η(s, t) and its associated eigenvalues and eigenfunctions. This result
is useful for constructing the global and local test statistics for testing the
covariate effects.
Theorem 3. (i) Under assumptions (C1)-(C7) in Section 5, it follows that

sup
(s,t)∈[0,L0]2

|Σ̂η(s, t)−Ση(s, t)| = Op(n−1/2+(Mh
(2)
j )−1+h2

j+h
(2)2
j +(log n/n)1/2).

(ii) Under assumption (C1)-(C9) in Section 5, if the optimal bandwidths
h

(m)
j for m = 1, 2 are used to reconstruct B̂j(s) and η̂i,j(s) for all j, then for
l = 1, . . . ,Kj, we have the following results:

(a)
∫ L0
0 [ψ̂j,l(s)−ψj,l(s)]2ds = Op(n−1/2+(Mh

(2)
j )−1+h2

j+h
(2)2
j +(log n/n)1/2);

(b) |λ̂j,l − λj,l| = Op(n−1/2 + (Mh
(2)
j )−1 + h2

j + h
(2)2
j + (log n/n)1/2).



12 H. ZHU, R. LI AND L. KONG

Remark. Theorem 3 characterizes the uniform weak convergence rates
of Σ̂η(s, t), ψ̂j,l(·), and λ̂j,l for all j. It can be regarded as an extension of
Theorems 3.3-3.6 in Li and Hsing [27], which established the uniform strong
convergence rates of these estimates with the sole presence of intercept and
J = 1 in model (1.1). Another difference is that Li and Hsing [27] employed
all cross products yijyik for j 6= k and then used the local polynomial kernel
to estimate Ση(s, t). As discussed in Li and Hsing [27], their approach can
release the assumption on the differentiability of the individual curves. In
contrast, following Hall et al. [16] and Zhang and Chen [44], we directly fit
a smooth curve to ηij(s) for each i and estimate Ση(s, t) by the sample co-
variance functions. Our approach is computationally simple and can ensure
that all Σ̂η,j(s, t) are positive definite, whereas the approach in Li and Hsing
[27] cannot. Since we cannot release the assumption on the differentiability
of the individual curves in establishing the weak convergence of B̂j(s), we
do not employ Li and Hsing [27]’s approach.

We construct a nonparametric estimator of the covariance matrices Σε(s, s)
as follows. Let ε̂i(sm) = yi(sm) − B̂(sm)Txi − η̂i(sm) be estimated residu-
als for i = 1, . . . , n and m = 1, . . . ,M . We consider the kernel estimate of
Σε(s, s) given by

(2.17) Σ̂ε(s, s) = (n− J)−1
n∑

i=1

M∑
m=1

Kh(3)(sm − s)[ε̂i(sm)]⊗2∑M
m=1Kh(3)(sm − s)

.

Let Σ̃ε(sm, sm) = (n−m)−1∑n
i=1[ε̂i(sm)]⊗2 for m = 1, . . . ,M . To select the

optimal bandwidth h(3), denoted by ĥ(3), we minimize the cross-validation
score given by

CV(h(3)) = (nM)−1
n∑

i=1

M∑
m=1

tr{[ε̂i(sm)⊗2−Σ̂ε(sm, sm;h(3))(−i)]Σ̃ε(sm, sm)−1}2,

where Σ̂ε(s, s;h(3))(−i) is the weighted least squares estimator of Σ̂ε(s, s)
based on observed data with the observations from the i−th subject entirely
excluded.

We obtain the uniform convergence of Σ̂ε(s, s). We do not include the
uniform convergence rate of Σ̂ε(s, s) here because our focus is to derive the
asymptotic distribution of a global test statistic, which does not involve
Σε(s, s).
Corollary 1. Under assumptions (C1)-(C8) in Section 5, it follows that

sup
s∈[0,L0]

|Σ̂ε(s, s)− Σε(s, s)| = op(1).
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3. Test of Hypothesis and Simultaneous Confidence Bands. In
this section, we study global tests for linear hypotheses of coefficient func-
tions and SCB for each varying coefficient function. They are essential for
statistical inference on the coefficient functions.

3.1. Hypothesis test. Consider the linear hypotheses of B(s) as follows:

(3.1) H0 : Cvec(B(s)) = b0(s) for all s vs. H1 : Cvec(B(s)) 6= b0(s),

where C is a r× Jp matrix with rank r, and b0(s) is a given r× 1 vector of
functions. Define a global test statistic Sn as

(3.2) Sn =
∫ L0

0
d(s)T [C(Σ̂η(s, s)⊗ Ω̂−1

X )CT ]−1d(s)ds,

where Ω̂X =
∑n

i=1 x⊗2
i and d(s) = Cvec(B̂(s)−bias(B̂(s)))−b0(s). We will

derive the limiting distribution of Sn under H0.
To calculate Sn, we need to estimate the bias of B̂j(s) for all j. Based on

(2.5), we have

bias(B̂j(s)) = [Ip ⊗ (1, 0)]vec(Σ(ĥj , s)−1
n∑

i=1

M∑
m=1

Kĥj
(sm − s)(3.3)

×[xi ⊗ zĥj
(sm − s)]xi(sm)T [Bj(sm)− Âj(s)zĥj

(sm − s)]).

By using Taylor’s expansion, we have

Bj(sm)− Âj(s)zĥj
(sm − s) ≈ 2−1B̈j(s)(sm − s)2 + 6−1...

Bj(s)(sm − s)3,

where B̈j(s) = d2Bj(s)/ds2 and
...
Bj(s) = d3Bj(s)/ds3. Following the pre-

asymptotic substitution method of Fan and Gijbels [7], we replace Bj(sm)−
Âj(s)zĥj

(sm− s) by 2−1 ̂̈Bj(s)(sm− s)2 +6−1 .̂..Bj(s)(sm− s)2, in which ̂̈Bj(s)

and
.̂..
Bj(s) are estimators obtained by using local cubic fit with a pilot band-

width selected by CVj,1(hj) in (2.6).
We formally characterize the asymptotic distribution of Sn as follows.

Let XC(·) be a Gaussian process with zero mean and covariance structure
ΣC(s, t), which is the limit of Σ̂C(s, t) given by

[C(Σ̂η(s, s)⊗ Ω̂−1
X )CT ]−1[C(Σ̂η(s, t)⊗ Ω̂−1

X )CT ][C(Σ̂η(t, t)⊗ Ω̂−1
X )CT ]−1.

It follows from Theorem 1 that
√
n[C(Σ̂η(s, s) ⊗ Ω̂−1

X )CT ]−1d(s) converges
weakly to XC(s). Therefore, let ⇒ denote weak convergence of a sequence of
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stochastic processes; it follows from the continuous mapping theorem that
as both n and M converge to infinity, we have

(3.4) Sn ⇒
∫ L0

0
XC(s)TXC(s)ds.

Theorem 4. If assumptions (C1)-(C8) in Section 5 are true, then (3.4) is
true.

Remark. Theorem 4 is similar to Theorem 7 of Zhang and Chen [44].
Both characterize the asymptotic distribution of Sn. In particular, Zhang
and Chen [44] delineate the distribution of

∫ L0
0 XC(s)TXC(s)ds as a χ2-

type mixture. All discussions associated Theorem 7 with Zhang and Chen
[44] are valid here and therefore, we do not repeat them for the sake of space.

It is difficult to directly calculate the percentiles of
∫ L0
0 XC(s)TXC(s)ds.

Thus, we propose using a wild bootstrap method to obtain critical values of
Sn. The wild bootstrap consists of the following three steps.

Step 1, Fit model (1.1) under the null hypothesis H0, which yields B̂∗(sm),
η̂∗i,o(sm) and ε̂∗i,o(sm) for i = 1, . . . , n and m = 1, . . . ,M .

Step 2, Generate a random sample τ (g)
i and τi(sm)(g) from a N(0, 1) gen-

erator for i = 1, . . . , n and m = 1, . . . ,M and then construct

ŷi(sm)(g) = B̂∗(s)Txi + τ
(g)
i η̂∗i,o(sm) + τi(sm)(g)ε̂∗i,o(sm).

Then, based on ŷi(sm)(g), we recalculate H(1), B̂(s)(g), bias(B̂(s)(g)),
and d(s)(g) = Cvec(B̂(s)(g) − bias(B̂(s)(g))) − b0(s). We also note
that Cvec(B̂(s)(g)) ≈ b0 and Cvec(bias(B̂(s)(g))) ≈ 0. Thus, we can
drop the term bias(B̂(s)(g)) in d(s)(g) for computational efficiency.
Subsequently, we compute

S(g)
n = n

∫ L0

0
d(s)(g)T [C(Γ̂η(s, s)⊗ Ω̂−1

X )CT ]−1d(s)(g)ds.

Step 3, Repeat Step 2 G times to obtain {S(g)
n : g = 1, . . . , G} and then

calculate p = G−1
G∑

g=1
1(S(g)

n ≥ Sn). If p is smaller than a pre-specified

significance level α, say 0.05, then one rejects the null hypothesis H0.

3.2. Simultaneous confidence bands. Construction of SCB for coefficient
functions is of great interest in statistical inference for model (1.1). Theorem
1 allows us to construct SCB for coefficient functions bjl(s). For a given
confidence level α, we construct SCB for each bjl(s) as follows:

(3.5) P (b̂L,α
jl (s) < bjl(s) < b̂U,α

jl (s) for all s ∈ [0, L0]) = 1− α,
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where b̂L,α
jl (s) and b̂U,α

jl (s) are the lower and upper limits of SCB. Let ejl be
an Mp× 1 vector such that ejlvec(C) = cjl for any M × p matrix C = (cjl).
It follows from Theorem 1 that

(3.6)
√
n[b̂jl(·)− bjl(·)− bias(b̂jl(·))] ⇒ Gjl(·),

where Gjl(·) is a centered Gaussian process indexed by s ∈ [0, L0]. Therefore,
by using the continuous mapping theorem, we have

(3.7) sup
s∈[0,L0]

|
√
n[b̂jl(s)− bjl(s)− bias(b̂jl(s))]| ⇒ sup

s∈[0,L0]
|Gjl(s)|.

We define Cjl(α) such that P (sups∈[0,L0] |Gjl(s)| ≤ Cjl(α)) = 1 − α. Thus,
based on (3.7), a 1 − α simultaneous confidence band for bjl(s) is given as
follows:

(3.8)
(
b̂jl(s)− bias(b̂jl(s))−

Cjl(α)√
n

, b̂jl(s)− bias(b̂jl(s)) +
Cjl(α)√

n

)
.

The next issue is to determine Cjl(α).
Although there are several methods of determining Cjl(α) including ran-

dom field theory [40, 35], we develop an efficient resampling method to
approximate Cjl(α) as follows [48, 25]. Let el be a p × 1 vector with the
l-th element 1 and 0 otherwise, and r̂i,j(sm) = yi,j(sm) − xT

i B̂j(sm). For
g = 1, . . . , G, we independently simulate {τ (g)

i : i = 1, . . . , n} from N(0, 1),
and then we calculate a stochastic process Gj(s)(g), which is defined as fol-
lows:

√
n[Ip⊗(1, 0)]vec(Σ(hj , s)−1

n∑
i=1

τ
(g)
i

M∑
m=1

Khj
(sm−s)[xi⊗zhj

(sm−s)]r̂i,j(sm)).

It will be shown in Theorem 5 below that conditioning on the data, we have
elGj(·)(g) =⇒ Gjl(·). Finally, we calculate sups∈[0,L0] |elGj(s)(g)| for all g
and use their 1− α empirical percentile to estimate Cjl(α).

We consider conditional convergence for bootstrapped stochastic pro-
cesses. Since the arguments for establishing the wild bootstrap method for
approximating the null distribution of Sn and the bootstrapped process
{Gj(s)(g) : s ∈ [0, L0]} are similar, we focus on the bootstrapped process
{Gj(s)(g) : s ∈ [0, L0]} as follows.
Theorem 5. If assumptions (C1)-(C8) in Section 5 are true, then Gj(s)(g)(·)
converges weakly to Gj(·) conditioning on the data.

Theorem 5 validates the bootstrapped process of Gj(s)(g)(·). An interest-
ing observation is that the bias correction for B̂j(s) in constructingGj(s)(g)(·)
is unnecessary. It leads to substantial computational saving.
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4. Simulation studies. In this section, we present two simulation ex-
ample to demonstrate the performance of the proposed procedures.

Fig 2. Plot of Power Curves. Rejection rates of Sn based on the wild bootstrap method are
calculated at five different values of c (0, 0.1, 0.2, 0.3, and 0.4) for two sample sizes of n
(100 and 200) subjects at 5% (green) and 1% (red) significance levels.

Example 1. This example is designed to evaluate the Type I error rate and
power of the proposed global test Sn using Monte Carlo simulation. In this
example, the data were generated from a bivariate MVCM as follows:

(4.1) yi,j(sm) = xT
i Bj(sm) + ηi,j(sm) + εi,j(sm) for j = 1, 2,

where sm ∼ U [0, 1], εi,1 ∼ N(0, σ2
1), and εi,2 ∼ N(0, σ2

2) for all i = 1, . . . , n
and m = 1, . . . ,M . Let x = (1, x1, x2) and ηj(s) = ξj1ψj1(s) + ξj2ψj2(s),
where x1 ∼ N(0, 1), x2 ∼ N(0, 1), and corr(x1, x2) = 2−0.5, ξjl ∼ N(0, λjl)
for j = 1, 2 and l = 1, 2. Furthermore, sm, (x1, x2), ξ11, ξ12, ξ21, ξ22, ε1 and
ε2 are independent variables. The functional coefficients and eigenfunctions
were chosen as

b11(s) = s2, b12(s) = (1− s)2, b13(s) = 4s(1− s)− 0.4;
ψ11(s) =

√
2 sin(2πs), ψ12(s) =

√
2 cos(2πs);

b21(s) = 5(s− 0.5)2, b22(s) = s0.5, b23(s) = 4s(1− s)− 0.4;
ψ21(s) =

√
2 cos(2πs), ψ22(s) =

√
2 sin(2πs);

and variance parameters (λ11, λ12, σ
2
1, λ21, λ22, σ

2
2) = (1.2, 0.6, .2, 1, 0.5, 0.1).

Then, except for (b13(s), b23(s)) for all s, we fixed all other parameters at
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the values specified above, whereas we assumed (b13(s), b23(s)) = c(4s(1 −
s)− 0.4, 4s(1− s)− 0.4), where c is a scalar specified below.

We want to test the hypotheses H0 : b13(s) = b23(s) = 0 for all s against
H1 : b13(s) 6= 0 or b23(s) 6= 0 for at least one s. We set c = 0 to assess
the Type I error rates for Sn, and set c = 0.1, 0.2, 0.3, and 0.4 to examine
the power of Sn. We set M = 50, n = 200 and 100. For each simulation, the
significance levels were set at α = 0.05 and 0.01, and 100 replications were
used to estimate the rejection rates.

Fig 3. Typical simultaneous confidence bands with n = 500 and M = 50. The red solid
curves are the true coefficient functions, and the blue dashed curves are the confidence
bands.

Fig. 2 depicts the power curves. It can be seen from Fig. 2 that the rejec-
tion rates for Sn based on the resampling method are accurate for moderate
sample sizes, such as (n = 100, or 200) at both significance levels (α = 0.01
or 0.05). As expected, the power increases with the sample size.

Example 2. This example is used to evaluate the coverage probabilities of
SCB of the functional coefficients B(s) based on the resampling method and
the accuracy of the estimators of the eigenvalues and eigenfunctions of Ση

and the estimators of Σε. The data were generated from model (4.1) under
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Table 1
Empirical coverage probabilities of 1 − α SCB for all components of B1(·) and B2(·)

based on 200 simulated data sets.

α = 0.05
M b11 b12 b13 b21 b22 b23

25 0.915 0.930 0.945 0.920 0.915 0.945
50 0.925 0.940 0.945 0.930 0.925 0.950
75 0.945 0.950 0.955 0.945 0.945 0.955

α = 0.01
25 0.985 0.965 0.985 0.985 0.990 0.980
50 0.995 0.980 0.985 0.985 0.995 0.985
75 0.990 0.985 0.990 0.995 0.990 0.990

Fig 4. Boxplot for the eigenvalues λ̂11, λ̂12, λ̂21, and λ̂22 and the variances σ̂2
1 and σ̂2

2,
when M = 25, 50 and 75.

the same parameter values. Recall that Σε = diag(σ2
1, σ

2
2). We set n = 500

and M = 25, 50, and 75 and generated 200 datasets for each combination.
Based on the generated data, we calculated SCB for each component

of B1(s) and B2(s). Table 1 summarizes the empirical coverage probabil-
ities based on 200 simulations for α = 0.01 and α = 0.05. The coverage
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Fig 5. Plot of eigenfunctions and their pointwise confidence intervals. The red solid line
is the true eigenfunction, the middle green dashed line is the pointwise mean of estimated
eigenfunctions and other two blue dashed lines are the pointwise 1% and 99% percentiles
of the estimated eigenfunctions in 200 runs.

probabilities improve with the number of grid points M . When M = 75,
the differences between the coverage probabilities and the claimed con-
fidence levels are fairly acceptable. The Monte Carol errors are of size√

0.95× 0.05/200 ≈ 0.015 for α = 0.05. Fig. 3 depicts typical simultane-
ous confidence bands, where n = 500 and M = 50.

We estimated the eigenvalues λ11, λ12, λ21, and λ22 and the variances σ2
1

and σ2
2 for each simulated data set for M = 25, 50 and 75. The accuracy of

estimators improves with M . The performance of the estimators for M = 50
is almost as good as their performance for M = 75. Fig. 4 shows the em-
pirical distributions of λ̂jl and σ̂2

j for j = 1, 2 and l = 1, 2. The estimated
eigenvalues and variances should be compared with the true ones, which
are (1.2, 0.6, 1, 0.5, 0.2, 0.1). When M is large, the estimated eigenvalues and
variances are very close to their true values. We summarized the estimated
results on ψjl(s) for j = 1, 2 and l = 1, 2 in Fig. 5, in which we plotted
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the mean and the pointwise 1st and 99th percentiles of the estimated eigen-
functions with the true eigenfunctions. The performance of the estimated
eigenfunctions improves with M increasing as expected.

5. Technical Conditions and Proofs.

5.1. Assumptions. Throughout the paper, the following assumptions are
needed to facilitate the technical details, although they may not be the weak-
est conditions. We need to introduce some notation. Let N(µ,Σ) be a normal
random vector with mean µ and covariance Σ. We define the fourth moments
of ηi,j(s) to be γjj′ll′(s1, t1, s2, t2) = E[ηi,j(s1)ηi,j′(t1)ηi,l(s2)ηi,l′(t2)] for any
j, j′, l, and l′. Moreover, we do not distinguish the differentiation and con-
tinuation at the boundary points from those in the interior of [0, L0]. For
instance, a continuous function at the boundary of [0, L0] means that this
function is left continuous at 0 and right continuous at L0.

Assumption C1. εi(s) and ηi(s) are identical and independent copies of
SP(0,Σε) and SP(0,Ση), respectively, and εi(s) and εi(t) are indepen-
dent for s 6= t. Moreover, with probability one, the sample path of
ηi,j(s) has continuous second-order derivatives on [0, L0] and
E[sups∈[0,L0] ||η(s)||r1

2 ] <∞ and E{sups∈[0,L0][||η̇(s)||2+||η̈(s)||2]r2} <
∞ for some r1, r2 ∈ (2,∞), where || · ||2 is the Euclidean norm.

Assumption C2. All components of B(s) and Σε(s, s) have continuous sec-
ond derivatives on [0, L0]. The fourth moments of εi(s) are continuous
on [0, L0]. All components of Ση(s, t) have continuous second-order
partial derivatives with respect to (s, t) ∈ [0, L0]2. Moreover, Σε(s, s)
and Ση(s, s) are positive for all s ∈ [0, L0].

Assumption C3. The grid points S = {sm,m = 1, . . . ,M} are indepen-
dently and identically distributed with density function π(s), which has
the bounded support [0, L0]. For some constants πL and πU ∈ (0,∞)
and any s ∈ [0, L0], πL ≤ π(s) ≤ πU and π(s) has continuous second-
order derivative.

Assumption C4. The kernel function K(t) is a symmetric density function
with a compact support [−1, 1], and is Lipschitz continuous. Moreover,
0 < infh>0,s∈[0,L0] λmin(Ω1(h, s)) ≤ suph>0,s∈[0,L0] λmax(Ω1(h, s)) < ∞
where λmin(A) and λmax(A), respectively, denote the smallest and
largest eigenvalues of matrix A, and Ω1(h, s) is defined as

Ω1(h, s) =
∫ L0

0

(
1 h−1(u− s)

h−1(u− s) h−2(u− s)2

)
Kh(u− s)π(u)du.
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Assumption C5. The covariate vectors xis are independently and identically
distributed with Exi = µx and E[||xi||42] <∞. Assume that E[x⊗2

i ] =
ΩX is invertible.

Assumption C6. Both n and M converge to ∞, maxj hj = o(1), Mhj →∞,
and
maxj h

−1
j | log hj |1−2/q1 ≤M1−2/q1 for j = 1, . . . , J , where q1 ∈ (2, 4).

Assumption C7. E[|εi,j(sm)|q2 ] <∞ for some q2 ∈ (4,∞) and all j; maxj h
(2)
j =

o(1), Mh
(2)
j → ∞, and maxj(h

(2)
j )−4(log n/n)1−2/q2 = o(1) for j =

1, . . . , J .
Assumption C8. E[|εi,j(sm)|q3 ] <∞ for some q3 ∈ (4,∞) and all j; h(3) =

o(1), Mh(3) →∞, and (h(3))−2(log n/n)1−2/q3 = o(1).
Assumption C9. There is a positive integer Ej <∞ such that λj,1 > . . . >

λj,Ej > 0 and λj,Ej+1 = . . . = 0 for j = 1, · · · , J .

Remark. Assumption C1 requires sample-path differentiability, which is
a sufficient condition for establishing the weak convergence of local linear
estimator for B(s) [16, 44]. We are unable to relax this assumption. In
Assumption C2, we assume that Ση(s, s′) > 0 as |s−s′| is small. The bounded
support restriction on K(·) in Assumption C4 is not essential and can be
removed if we put a restriction on the tail of K(·). Assumptions C6-C8 on
bandwidths are similar to the conditions used in [27, 6].

5.2. Proofs. Detailed proofs are given in the supplementary material of
this paper [46]. The proof of Theorem 1 will be based on the following
lemmas. Throughout the proofs, Cks stand for a generic constant, and it
may vary from line to line. Let

Tε,j(hj , s) =
n∑

i=1

M∑
m=1

Khj
(sm − s)[xi ⊗ zhj

(sm − s)]εi,j(sm),

whose order is given in the following lemma.
Lemma 1. Under Assumptions C1-C6, we have that for each j,

(5.1) sup
s∈[0,L0]

n−1/2hj |Tε,j(hj , s)| = Op(
√
Mhj | log hj |) = op(Mhj).

Proof. Let Fn(sm) = n−1/2∑n
i=1 xiεi,j(sm). Then it follows by the definition

of Tε,j(hj , s) that

n−1/2hjTε,j(hj , s) = hj

M∑
m=1

Khj
(sm − s)Fn(sm)⊗ zhj

(sm − s).
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Let X = {x1, . . . ,xn} and T̃ε,j(hj , s) = {T ′ε,j(hj , s) − E[T ′ε,j(hj , s)|X,S]},
where

T ′ε,j(hj , s) =
√
n

M∑
m=1

Khj
(sm − s)Fn(sm)1(||Fn(sm)||2 ≤ γM )⊗ zhj

(sm − s),

in which γM is a positive number to be specified below. The proof of Lemma
1 consists of three steps. In Step 1, we show that

(5.2) sup
s∈[0,L0]

n−1/2hj ||Tε,j(hj , s)− T̃ε,j(hj , s)||2 = op(
√
Mhj | log hj |).

In Step 2, we define an equally-spaced grid S̃ = {s̃l = lhj : l = 0, . . . , L0h
−1
j }

and then show that

(5.3) max
l
hj ||n−1/2T̃ε,j(hj , s̃l)||2 = Op(

√
Mhj | log hj |).

In Step 3, we show that
(5.4)

max
l

sup
s∈[s̃l−1,s̃l]

n−1/2hj ||T̃ε,j(hj , s̃l−1)− T̃ε,j(hj , s)||2 = Op(
√
Mhj | log hj |).

It is easy to see that the proof of Lemma 1 is completed by combing (5.2)-
(5.4).

We first show (5.2). It follows from Assumptions C1 and C4 and sm, s ∈
[0, L0] that

n−1/2hj ||Tε,j(hj , s)− T̃ε,j(hj , s)||2 ≤ C1

M∑
m=1

||Fn(sm)||21(||Fn(sm)||2 ≥ γM )

+C1

M∑
m=1

E[||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S],

for a positive constant C1. Let γM = δ(M/| log hj |)1/q1 , where δ is a positive
scalar. It follows from Assumption C6 that (| log hj |/M)1−2/q1 ≤ hj → 0 and
1− 2/q1 > 0, which yields that | log hj |/M → 0 and γM →∞. As γM →∞,
we can show that

(5.5) max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S] = o(1).

For notational simplicity, we only consider the case p = 1, (i.e., xi is scalar).
For any c > 0 with q1 + c < 4, equation (5.5) is followed from Assumptions
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C1, C5 and C6 and the partial sum moment inequality [5] as follows:

max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S]

≤ max
m

E[|n−1/2
n∑

i=1

xiεik(sm)|q1+c|X,S]/γc
M

≤ max
m

n−(q1+c)/2C(q1)n(q1+c)/2−1
n∑

i=1

|xi|q1+cE[|εik(sm)|q1+c|]/γc
M = o(1),

where C(q1) is a universal constant independent of n. It follows from As-
sumption C6 and (5.5) that

M∑
m=1

E[||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S](5.6)

≤ o(1)M1/q1 | log hj |1−1/q1 ≤ o(
√
Mhj | log hj |).

Furthermore, we show in Zhu et al. [46] that

Var(
M∑

m=1

||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S)(5.7)

≤ max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S]Mhj = o(Mhj | log hj |).

Therefore, combing equations (5.6) and (5.7), we have

M∑
m=1

||Fn(sm)||21(||Fn(sm)||2 ≥ γM ) = op(
√
Mhj | log hj |),

which yields (5.2).
We next prove (5.3). It follows from Assumption C4 that

hj ||Khj
(sm − s){Fn(sm)1(||Fn(sm)||2 ≤ γM )−

E[Fn(sm)1(||Fn(sm)||2 ≤ γM )|X,S]} ⊗ zhj
(sm − s)||2

≤ C2(M/| log hj |)1/q1 ≤ C2

√
Mhj/| log hj |,

where C2 = 4δ supt∈[−1,1] |K(t)|. Furthermore, let ES denote the expectation
to sm. As shown in Zhu et al. [46], we have

Var(
M∑

m=1

hjKhj
(sm−s)Fn(sm)1(||Fn(sm)||2 ≤ γM )⊗zhj

(sm−s)|X) = Op(Mhj).
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Therefore, by applying Bernstein’s inequality to each component of hjn
−1/2T̃ε,j(hj , s̃l)

[38], we can prove (5.3). For instance, let e1 be a dim(T̃ε,j(hj , s̃l))× 1 vector
with the first element 1 and zero otherwise; we have

P (max
l
|e1hjn

−1/2T̃ε,j(hj , s̃l)| > t|X)(5.8)

≤ C3(L0h
−1
j + 1)E[exp(−1

2
t2

v(X) + tC3

√
Mhj/| log hj |/3

)|X],

where C3 = O(1), t is a positive scalar, and v(X) ≥ Var(e1hjn
−1/2T̃ε,j(hj , s̃l)|X)

for all l. By setting t = C4

√
Mhj | log hj | for large C4 > 0, we can show that

the right hand side of (5.8) is of order hC5
j , where C5 is a positive scalar.

Thus, for sufficiently large C4 > 0, we have

P (max
l
|e1hjn

−1/2T̃ε,j(hj , s̃l)| > C4

√
Mhj | log hj |) → 0 as hj → 0.

In Step 3, we focus on the first component of zhj
(sm−s). We first consider

the following function class:

El = {wl(S; s) = hj [Khj
(S−s̃l)−Khj

(S−s)]Fn(S)1(||Fn(S)||2 ≤ γM ) : s ∈ [s̃l−1, s̃l]}.

It follows from Assumption C4 and γM that El is a pointwise measurable
class of functions and sups∈[0,L0] |wl(S; s)| ≤ C6γM ≤ C7

√
Mhj/| log hj |.

Let ||φ||D = supz∈D |φ(z)| for any real valued function φ defined on a set D
and τ1, . . . , τM be a sequence of independent Rademacher random variables
independent of observed data. It follows from an inequality of Talagrand
[36, 6] that conditioning on X, we have for suitable finite constants A1, A2 >
0

P{||
M∑

m=1

[wl(sm; s)− E[wl(sm; s)|X]||El
≥ A1(E[||

M∑
m=1

τjwl(sm; s)||El
|X] + t)|X}

≤ 2[exp(−A2t
2/(MVEl

(X))) + exp(−A2t/(C7

√
Mhj/| log hj |))],

where VEl
(X) = sups∈[s̃l−1,s̃l]

Var(wl(S; s)|X). It can be shown that

VEl
(X) ≤ sup

s∈[s̃l−1,s̃l]
ES{h2

j [Khj
(S − s̃l)−Khj

(S − s)]2E[Fn(S)2|X]}

≤ C8hjn
−1

n∑
i=1

x⊗2
i ,
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where C8 is a positive scalar. By setting t = C9

√
Mhj | log hj | for a large C9 >

0, we can show thatA2t
2/(MVEl

(X)) = C10| log hj | andA2t/(C7

√
Mhj/| log hj |) =

C11| log hj |. Moreover, it follows from Assumption C4 that El is a pointwise
measurable Vapnik and Cervonenkis (VC) class [38]. By using Proposition
A.1 of [6], we can show that maxlE[||

∑M
m=1 τjwl(sm; s)||El

|X] ≤ O(
√
Mhj | log hj |).

This yields (5.4).
Lemma 2. Under Assumption C1-C6, we have that for any r ≥ 0 and j,

sup
s∈[0,L0]

∣∣∣∣∣
∫
Khj

(u− s)
(u− s)r

hr
j

d[ΠM (u)−Π(u)]

∣∣∣∣∣ = Op(M−1/2h−1
j ),(5.9)

sup
s∈[0,L0]

∣∣∣∣∣
∫
Khj

(u− s)
(u− s)r

hr
j

εi,j(u)dΠM (u)

∣∣∣∣∣ = Op(

√
| log(hj)|
Mhj

),(5.10)

where ΠM (·) is the sampling distribution function based on S = {s1, . . . , sM},
and Π(·) is the distribution function of sm.
Proof. Equation (5.9) follows from the integration by parts, while (5.10) can
be proved by using similar arguments of Lemma 1.

Define

∆j(s;ηi, hj) = M−1
M∑

m=1

Khj
(sm − s)zhj

(sm − s)ηi,j(sm)

−
∫
Khj

(u− s)zhj
(u− s)ηi,j(u)π(u)du.

Lemma 3. Suppose that Assumptions (C1)-(C6) hold. Then we have

(5.11) sup
s∈[0,L0]

|n−1/2
n∑

i=1

xi⊗∆j(s;ηi, hj)| = Op(h
−1/2
j M−1/2+h−1

j M−1/2).

Proof. Let τ1, . . . , τn be a sequence of independent Rademacher random vari-
ables independent of observed data. It follows from the symmetrization in-
equality [38] that

E||n−1/2
n∑

i=1

xi⊗∆j(s;ηi, hj)||[0,L0] ≤ 2E{Eτ [||n−1/2
n∑

i=1

τixi⊗∆j(s;ηi, hj)||[0,L0]]}.

Thus, it is sufficient to show that E[||n−1/2∑n
i=1 τixi⊗∆j(s;ηi, hj)||[0,L0]] =

o(1). We consider the following function class:

Eη = {f(x,η; s) = x⊗∆j(s;η, hj) : s ∈ [0, L0]}.
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Let N(ε, Eη, dQ) be the minimal number of dQ-balls with radius ε needed to
cover Eη. We define

D2
n = sup

s∈[0,L0]
|n−1

n∑
i=1

tr{[xi ⊗∆j(s;ηi, hj)]⊗2}|,(5.12)

d2;x,η(s1, s2)2 =
n∑

i=1

tr{x⊗2
i }||∆j(s1;ηi, hj)−∆j(s2;ηi, hj)||22.

It follows from Corollary 2.2.8 of van der Vaar and Wellner [38] that for any
fixed {(x1,η1), . . . , (xn,ηn)}, we have

Eτ ||n−1/2
n∑

i=1

τixi ⊗∆j(s;ηi, hj)||[0,L0](5.13)

≤ Eτ ||n−1/2
n∑

i=1

τixi ⊗∆j(s0;ηi, hj)||2 + C1

∫ Dn

0

√
logN(ε, Eη, d2;x,η)dε,

where s0 is any point in [0, L0] and C1 is a positive universal constant.
We investigate the two terms on the right hand side of (5.13). First, we

note that
(5.14)

[Eτ ||n−1/2
n∑

i=1

τixi∆j(s0;ηi, hj)||2]2 ≤ n−1
n∑

i=1

xT
i xi||∆j(s0;ηi, hj)||22.

With some calculations, we show in [46] that

E[||∆j(s0;ηi, hj)||22] = O(M−1 +M−1h−1
j ).

Thus, we have [Eτ ||n−1/2∑n
i=1 τixi∆j(s0; ηi, hj)||2]2 = Op(M−1 +M−1h−1

j ).
Second, with some calculations, we have

∆j(s;ηi, hj) =
∫
Khj

(u− s)zhj
(u− s)ηi,j(u)d[ΠM (u)−Π(u)].

It follows from an integration by parts that ||∆j(s;ηi, hj)||2 is bounded from
above by

C2h
−1
j sup

s∈[0,L0]
|ΠM (s)−Π(s)| sup

s∈[0,L0]
[|ηi,j(s)|+ |η̇i,j(s)|],(5.15)

where C2 is a positive constant. Therefore, we have

Dn ≤ C2h
−1
j sup

s∈[0,L0]
|ΠM (s)−Π(s)|

√√√√n−1
n∑

i=1

{xT
i xi sup

s∈[0,L0]
[|ηi,j(s)|+ |η̇i,j(s)|]2}.
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Let Hhj
(u − s) = Khj

(u − s)zhj
(u − s). It follows from the integration by

parts that there is a positive scalar C3 such that

∆M (s1;ηi, hj)−∆M (s2;ηi, hj)(5.16)
≤ |s1 − s2|C3h

−1
j sup

s∈[0,L0]
|ΠM (s)−Π(s)| sup

s∈[0,L0]
[|ηi,j(s)|+ |η̇i,j(s)|].

For any given s1, s2 ∈ [0, L0], it follows (5.16) and sups∈[0,L0] |ΠM (s) −
Π(s)| = Op(M−1/2) that

d2;x,y(s1, s2) ≤ C4|s1 − s2|h−1
j sup

s∈[0,L0]
|ΠM (s)−Π(s)|,

where c̃ is positive scalar. Therefore, let An = h−1
j sups∈[0,L0] |ΠM (s)−Π(s)|;

we have
N(εAn, Eη, d2;x,η) = O(ε−1) and∫ Dn

0

√
logN(ε, Eη, d2;x,η)dε ≤

∫ 1

0

√
logN(tAn, Eη, d2;x,η)dtAn = Op(h−1

j M−1/2),

in which we have used a change of variable t = ε/An. This completes the
proof of Lemma 3.
Lemma 4 . If Assumptions C1-C6 hold, then for any s ∈ (0, L0), we have

E[B̂j(s)|S]−Bj(s)(5.17)

= 0.5h2
ju2(K)B̈j(s)[1 +Op(n−1/2 + hj + (Mhj)−1/2)]

= 0.5h2
ju2(K)B̈j(s)[1 + op(1)],

and

Var[B̂j(s)|S] = (nMhj)−1π(s)−1v0(K)[Ση,jj(s, s) + Σε,jj(s, s)]Ω−1
X [1 +Op(hj)]

+n−1{Ση,jj(s, s) + h2
ju2(K)[Σ(2,0)

η,jj (s, s)π(s) + 2Σ(1,0)
η,jj (s, s)π̇(s) + Ση,jj(s, s)π̈(s)]π(s)−1

+en(s) + op(h2
j )}Ω−1

X ,

where

en(s) = 2π(s)−2
M∑

m=1

[Pη,11(sm)− θ11(s)]/M + Ẽn,11(s) = Op((Mhj)−1/2).

Thus, en(s) = Op((Mhj)−1/2) with E[en(s)] = 0.
The proof of Lemma is given in the supplementary material Zhu et al. [46].
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Lemma 5. If Assumptions C1-C6 hold, then for s = 0 or L0, we have

E[B̂j(s)|S]−Bj(s) = 0.5h2
jru(K; s, hj)B̈j(s)[1 + op(1)],(5.18)

Var[B̂j(s)|S] = n−1Ση,jj(s, s)Ω−1
X [1 + op(1)];

where ru(K; s, h) = [u2(K; s, h)2−u1(K; s, h)u3(K; s, h)]/[u0(K; s, h)u2(K; s, h)−
u1(K; s, h)2], in which ur(K; s, h) =

∫ L0
0 h−r(u− s)rKh(u− s)du for r ≥ 0.

The proof of Lemma is given in the supplementary material Zhu et al. [46].
We define some notation as follows:

TB,k(hj , s) =
n∑

i=1

M∑
m=1

Khj
(sm − s)[xi ⊗ zhj

(sm − s)]xT
i Bj(sm),

Tη,k(hj , s) =
n∑

i=1

M∑
m=1

Khj
(sm − s)[xi ⊗ zhj

(sm − s)]ηi,j(sm),

Ω2,k(hj , s) = hj

∫ L0

0
Σε,jj(u, u)

(
1 h−1

j (u− s)
h−1

j (u− s) h−2
j (u− s)2

)
[Khj

(u− s)]2π(u)du.

Proof of Theorem 1. Define

U2(K; s,H) = diag(ru(K; s, h1), . . . , ru(K; s, hJ)),
Xn(s) =

√
n{vec(B̂(s)−B(s)− 0.5B̈(s)U2(K; s,H)H2) + op(||H2||2)},

Xn,j(s) =
√
n{B̂j(s)−Bj(s)− 0.5ru(K; s, hj)h2

j B̈j(s) + op(h2
j )}.

The proof of Theorem 1 (i) consists of two steps. The first step is to show
the finite convergence of {Xn(s) : s ∈ [0, L0]}. The second step is to check
the asymptotic continuity of Xn(s) as s varies in [0, L0]. Moreover, Theorem
1 (ii) is a consequence of Theorem 1 (i) and Lemma 4.

In the first step, we only show that at a single point s, Xn(s) converges
weakly toN(0,Ση(s, s)⊗Ω−1

X ). The finite convergence can be directly verified
by generalizing the asymptotic distribution of Xn(s) at one point to any
finite number of points using the Cramer-Wold theorem [5].

We show that Xn,j(s) converges weakly to N(0,Ση,jj(s, s)Ω−1
X ) as n→∞.

It follows from Lemma 4 and the standard central limit theorem that
(5.19)√
n[Ip ⊗ (1, 0)]Σ(hj , s)−1[Tε,j(hj , s) + Tη,k(hj , s)] →L N(0,Ση,jj(s, s)Ω−1

X ),

where →L denotes convergence in distribution. This yields that Xn,k(s) con-
verges weakly to N(0,Ση,jj(s, s)Ω−1

X ). We can use the Cramer-Wald theorem
to show that as n→∞,

Xn(s) →L N(0,Ση(s, s)⊗ Ω−1
X ) for each s ∈ [0, L0].
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In the second step, we will show the stochastic continuity of Xn(s), which
is equivalent to the stochastic continuity ofXn,j(s) for j = 1, . . . , J . It follows
from Lemmas 1 and 2 that

(nM)−1Σ(hj , s) = L−1
0 ΩX ⊗ Ω1(hj , s) +Op(| log(hj)|(Mhj)−1),

n−1/2
n∑

i=1

xi ⊗ {M−1
M∑

m=1

Khj
(sm − s)zhj

(s)εi,j(sm)} = Op(| log(hj)|(Mhj)−1)

hold uniformly for all s ∈ [0, L0]. It follows from the change of variable that

Ω−1
X xi ⊗ Ω1(hj , s)−1

∫ L0

0
Hhj

(u− s)ηi,j(u)π(u)du

= Ω−1
X xi ⊗ Ω1(hj , s)−1ηi,j(s)π(s)

∫ min((L0−s)h−1
j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)Tdu

+Ω−1
X xi ⊗ Ω1(hj , s)−1

∫ min((L0−s)h−1
j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)T [ηi,j(s+ hu)π(s+ hu)− ηi,j(s)π(s)]du.

It follows from Assumptions C1 and C3 that

(5.20)

||
∫ min((L0−s)h−1

j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)T [ηi,j(s+ hu)π(s+ hu)− ηi,j(s)π(s)]du||2

≤ h sup
s∈[0,L0]

|η̇i,j(s)π(s) + ηi,j(s)π̇(s)| × ||
∫ min((L0−s)h−1

j ,1)

max(−sh−1
j ,−1)

K(u)(|u|, u2)du||2

≤ h sup
s∈[0,L0]

|η̇i,j(s)π(s) + ηi,j(s)π̇(s)| × ||
∫ 1

−1
K(u)(|u|, u2)du||2.

Thus, we define

(5.21)

n−1/2
n∑

i=1

Ω−1
X xi ⊗ [Ω1(hj , s)−1M−1

M∑
m=1

Hhj
(sm − s)ηi,j(sm)]

= n−1/2
n∑

i=1

Ω−1
X xi ⊗ Ω1(hj , s)−1{∆j(s;ηi, hj)

+
∫ min((L0−s)h−1

j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)T [ηi,j(s+ hu)π(s+ hu)− ηi,j(s)π(s)]du

+ηi,j(s)π(s)
∫ min((L0−s)h−1

j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)Tdu}.
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It follows from Lemma 3 and Assumption C6 that the first term on the right
hand side of (5.21) converges to zero uniformly. It follows from Assumptions
C1 and C6 and (5.20) that the second term on the right hand side of (5.21)
also converges to zero uniformly. Define

X̂n,j(s) = n−1/2
n∑

i=1

Ω−1
X xi⊗(1, 0)Ω1(hj , s)−1ηi,j(s)π(s)

∫ min((L0−s)h−1
j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)Tdu.

Thus, we need to prove the asymptotic tightness of X̂n,j(s).
It follows from the change of variable that all elements of Ω1(h, s) can be

written as

(5.22)
∫ L0

0
h−r(u− s)rKh(u− s)π(u)du = π(s)ur(K; s, h) +O(h)

for r = 0, 1, and 2.
The asymptotic tightness of X̂n,j(s) can be proved using the empirical

process techniques [38]. It follows from (5.22) that

(1, 0)Ω1(hj , s)−1π(s)
∫ min((L0−s)h−1

j ,1)

max(−sh−1
j ,−1)

K(u)(1, u)Tdu

=
u2(K; s, hj)u0(K; s, hj)− u1(K; s, hj)2 + o(hj)
u2(K; s, hj)u0(K; s, hj)− u1(K; s, hj)2 + o(hj)

= 1 + o(hj).

Thus, X̂n,j(s) can be simplified as

X̂n,j(s) = [1 + o(hj)]n−1/2
n∑

i=1

ηi,j(s)Ω−1
X xi.

We consider a function class Eη = {f(s;x, η·,j) = Ω−1
X xη·,j(s) : s ∈ [0, L0]}

with F (x, η·,j) = ||x||2λmax(Ω−1
X )||η·,j ||[0,L0] as an envelope function. Due to

the differentiability of η·,j(s) in Assumption C1, it follows from Theorem
2.7.11 of [38] that Eη is a P−Donsker class. Therefore, the proof of Theorem
1 is completed.
Proof of Theorem 2. Let K̃M,h(s) = K̃M (s/h)/h, where K̃M (s) is the empir-
ical equivalent kernels for the first-order local polynomial kernel [7]. Thus,
we have

η̂i,j(s)− ηi,j(s)(5.23)

=
M∑

m=1

K̃
M,h

(2)
j

(sm − s)xT
i [Bj(sm)− B̂j(sm)]

+
M∑

m=1

K̃
M,h

(2)
j

(sm − s)[ηi,j(sm) + εi,j(sm)− ηi,j(s)].
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It follows from a Taylor’s expansion that

M∑
m=1

K̃
M,h

(2)
j

(sm − s)[ηi,j(sm)− ηi,j(s)] = 0.5u2(K)η̈i,j(s)h
(2)2
j [1 + op(1)],

and

M∑
m=1

K̃
M,h

(2)
j

(sm − s)xT
i {Bj(sm)− E[B̂j(sm)|S,η,X]}

= [0.5h2
ju2(K)xT

i B̈j(s) +Op(n−1/2)]

×[1 +Op(hj + h
(2)
j + n−1/2) +Op((Mh

(2)
j )−1/2 + (Mhj)−1/2)],

which leads to Bias[η̂i,j(s)|S,η,X]. See Zhu et al. [46] for detailed arguments.
Furthermore, it can be shown that

η̂i,j(s)− E[η̂i,j(s)|S,η,X]

=
M∑

m=1

K̃
M,h

(2)
j

(sm − s){εi,j(sm)− xT
i [Ip ⊗ (1, 0)]Σ(hj , sm)−1Tε,j(hj , sm)}

=
M∑

m=1

K̃
M,h

(2)
j

(sm − s){εi,j(sm)− xT
i [Ip ⊗ (1, 0)]Σ(hj , sm)−1

n∑
i′=1

xi′

⊗
M∑

m′=1

Hhj
(sm′ − sm)εi′,j(sm′)}.

With tedious calculations, we have

Cov(η̂i,j(s)− ηi,j(s), η̂i,j(t)− ηi,j(t)|S,η,X)

= K∗((s− t)/h(2)
j )Σε,jj(s, s)π(t)−1(Mh

(2)
j )−1[1 + op(1)]− xT

i Ω−1
X xi(nMhj)−1π(s)−1π(t)−1

×{π(t)Σε,jj(t, t)
∫
K(u)K(v)K([t− s+ h

(2)
j (u− v)]/hj)dudv

+π(s)Σε,jj(s, s)
∫
K(u)K(v)K([s− t+ h

(2)
j (u− v)]/hj)dudv

−π(s)Σε,jj(s, s)
∫
K(u)K(v)K(w)K(w + [s− t+ h

(2)
j (u− v)]/hj)dudvdw}[1 + op(1)].

Furthermore, for i = 1, . . . , n, after dropping some higher order terms, we
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have

E{[η̂i,j(s)− ηi,j(s)]2|S,η,X}
= {E[η̂i,j(s)− ηi,j(s)|S,η,X]}2 + Var[η̂i,j(s)− ηi,j(s)|S,η,X]

= [0.5h2
ju2(K)xT

i B̈j(sm) + 0.5u2(K)η̈i,j(s)h
(2)2
j + xT

i Ω−1
X n−1

n∑
i′=1

xi′ηi′,j(sm)]2[1 + op(1)]

+v0(K)Σε,jj(s, s)π(s)−1(Mh
(2)
j )−1[1 + op(1)]− xT

i Ω−1
X xi(nMhj)−1π(s)−1Σε,jj(s, s)

×{2
∫
K(u)K(v)K(h(2)

j (u− v)/hj)dudv

−
∫
K(u)K(v)K(w)K(w + h

(2)
j (u− v)/hj)dudvdw}[1 + op(1)].

This completes the proof of Theorem 2 (a).
It follows from (5.17) that

M∑
m=1

K̃
M,h

(2)
j

(sm − s)xT
i {Bj(sm)− E[B̂j(sm)|S,X]}

=
M∑

m=1

K̃
M,h

(2)
j

(sm − s)0.5h2
ju2(K)xT

i B̈j(sm)[1 +Op(hj + n−1/2 + (Mhj)−1/2)].

Furthermore, it can be shown that

η̂i,j(s)− ηi,j(s)− E[η̂i,j(s)|S,X]

=
M∑

m=1

K̃
M,h

(2)
j

(sm − s)[ηi,j(sm) + εi,j(sm)− ηi,j(s)]

−
M∑

m=1

K̃
M,h

(2)
j

(sm − s){xT
i [Ip ⊗ (1, 0)]Σ(hj , sm)−1[Tη,j(hj , sm) + Tε,j(hj , sm)]}.

With tedious calculations, we have

Cov(η̂i,j(s)− ηi,j(s), η̂i,j(t)− ηi,j(t)|S,X)

= K∗((s− t)/h(2)
j )Σε,jj(s, s)π(t)−1(Mh

(2)
j )−1[1 + op(1)]

−xT
i Ω−1

X xi(nMhj)−1π(s)−1π(t)−1Op(1)

+[1 + op(1)]{0.25u2(K)2h(2)4
j Σ(2,2)

η,jj (s, t) + n−1xT
i Ω−1

X xiΣη,jj(s, t)

−0.5n−1u2(K)h(2)2
j xT

i Ω−1
X xi[Σ

(2,0)
η,jj (s, t)π(s)−1 + Σ(0,2)

η,jj (s, t)π(t)−1]}.
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It follows from (5.17) that

E{[η̂i,j(s)− ηi,j(s)]2|S,X]
= {E[η̂i,j(s)− ηi,j(s)|S,X]}2 + Var[η̂i,j(s)− ηi,j(s)|S,X]

= {0.25h4
ju2(K)2[xT

i B̈j(s)]2 + 0.25u2(K)2h(2)4
j Σ(2,2)

η,jj (s, t)

+n−1xT
i Ω−1

X xiΣη,jj(s, t) + v0(K)Σε,jj(s, s)π(s)−1(Mh
(2)
j )−1}[1 + op(1)],

which leads to Theorem 2 (b). Furthermore, by noting that E{[η̂i,j(s) −
ηi,j(s)]2|S] = E(E{[η̂i,j(s)− ηi,j(s)]2|S,X]|S), we can easily get Theorem 2
(c) and (d).

We define

εi,j(s) =
M∑

m=1

K̃
M,h

(2)
j

(sm − s)εi,j(sm),

∆ηi,j(s) =
M∑

m=1

K̃
M,h

(2)
j

(sm − s)[ηi,j(sm)− ηi,j(s)],

∆Bj(s) =
M∑

m=1

K̃
M,h

(2)
j

(sm − s)[Bj(sm)− B̂j(sm)],

∆i,j(s) = εi,j(s) + ∆ηi,j(s) + xT
i ∆Bj(s).

Recall from (5.23) that

(5.24) η̂i,j(s)− ηi,j(s) = ∆i,j(s) = εi,j(s) + ∆ηi,j(s) + xT
i ∆Bj(s).

It follows from Lemma 2 and a Taylor’s expansion that

sup
s∈[0,L0]

|εi,j(s)| = Op(

√√√√√ | log(h(2)
j )|

Mh
(2)
j

) and sup
s∈[0,L0]

|∆ηi,j(s)| = Op(1) sup
s∈[0,L0]

|η̈i,j(s)|h(2)2
j .

Since
√
n{B̂j(·)−Bj(·)−0.5u2(K)2h2

j B̈j(·)[1+op(1)]} weakly converges to a
Gaussian process in `∞([0, L0]) as n→∞,

√
n{B̂j(·)−Bj(·)−0.5u2(K)2h2

j B̈j(·)[1+
op(1)]} is asymptotically tight. Thus, we have

∆Bi,j(s) = −
M∑

m=1

K̃
M,h

(2)
j

(sj − s)0.5u2(K)2h2
j B̈j(sm)[1 + op(1)]

+
M∑

m=1

K̃
M,h

(2)
j

(sj − s)[0.5u2(K)2h2
j B̈j(sm)[1 + op(1)] +Bj(sm)− B̂j(sm)],

sup
s∈[0,L0]

||∆Bj(s)|| = Op(n−1/2) +Op(h2
j ).
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Combining these results, we have

sup
s∈[0,L0]

|η̂i,j(s)−ηi,j(s)| = Op(| log(h(2)
j )|

1/2
(Mh

(2)
j )−1/2 +h

(2)2
j +h2

j +n−1/2).

Lemma 6. Under Assumptions (C1), (C3), (C4) and (C7), we have

(5.25) sup
(s,t)

n−1|
n∑

i=1

εi,j(s)ηi,j(t)| = Op(n−1/2(log n)1/2).

The proof of Lemma 6 is the supplementary material Zhu et al. [46].

Lemma 7. Under Assumptions (C1), (C3), (C4) and (C7), we have

(5.26) sup
(s,t)

n−1|
n∑

i=1

εi,j(s)εi,j(t)| = O((Mh
(2)
j )−1 + (log n/n)1/2) = op(1).

The proof of Lemma 6 is the supplementary material Zhu et al. [46].

Proof of Theorem 3. Recall that η̂i,j(s) = ηi,j(s) + ∆i,j(s), we have

n−1
n∑

i=1

η̂i,j(s)η̂i,j(t)(5.27)

= n−1
n∑

i=1

∆i,j(s)∆i,j(t) + n−1
n∑

i=1

ηi,j(s)∆i,j(t)

+n−1
n∑

i=1

∆i,j(s)ηi,j(t) + n−1
n∑

i=1

ηi,j(s)ηi,j(t).

This proof consists of two steps. The first step is to show that the first
three terms on the right hand side of (5.27) converge to zero uniformly for
all (s, t) ∈ [0, L0]2 in probability. The second step is to show the uniform
convergence of n−1∑n

i=1 ηi,j(s)ηi,j(t) to Ση(s, t) over (s, t) ∈ [0, L0]2 in prob-
ability.

We first show that

(5.28) sup
(s,t)

n−1|
n∑

i=1

∆i,j(s)ηi,j(t)| = Op(n−1/2 + h2
j + h

(2)2
j + (log n/n)1/2).

Since
n∑

i=1

∆i,j(s)ηi,j(t)(5.29)

≤ n−1{|
n∑

i=1

εi,j(s)ηi,j(t)|+ |
n∑

i=1

∆ηi,j(s)ηi,j(t)|+ |
n∑

i=1

xT
i ∆Bj(s)ηi,j(t)|},
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it is sufficient to focus on the three terms on the right-hand side of (5.29).
Since

|xT
i ∆Bj(s)ηi,j(t)| ≤ ||xi||2 sup

s∈[0,L0]
||∆Bk(s)||2 sup

t∈[0,L0]
|ηi,j(t)|,

we have

n−1|
n∑

i=1

xT
i ∆Bj(s)ηi,j(t)| ≤ sup

s∈[0,L0]
||∆Bk(s)||2n−1

n∑
i=1

||xi||2|ηi,j(t)| = Op(n−1/2+h2
j ).

Similarly, we have

n−1|
n∑

i=1

∆ηi,j(s)ηi,j(t)| ≤ n−1
n∑

i=1

sup
s,t∈[0,L0]

|∆ηi,j(s)ηi,j(t)| = Op(h
(2)2
j ) = op(1).

It follows from Lemma 6 that sup(s,t) n
−1{|

∑n
i=1 εi,j(s)ηi,j(t)| = O((log n/n)1/2).

Similarly, we can show that sup(s,t) n
−1|

∑n
i=1 ∆i,j(t)ηi,j(s)| = Op(n−1/2 +

h2
j + h

(2)2
j + (log n/n)1/2).

We can show that

(5.30) sup
(s,t)

|n−1
n∑

i=1

[ηi,j(s)ηi,j(t)− Ση,jj(s, t)]| = Op(n−1/2).

Note that

|ηi,j(s1)ηi,j(t1)− ηi,j(s2)ηi,j(t2)|
≤ 2(|s1 − s2|+ |t1 − t2|) sup

s∈[0,L0]
|η̇i,j(s)| sup

s∈[0,L0]
|ηi,j(s)|

holds for any (s1, t1) and (s2, t2), the functional class {ηj(u)ηj(v) : (u, v) ∈
[0, L0]2} is a Vapnik and Cervonenkis (VC) class [38, 26]. Thus, it yields
that (5.30) is true.

Finally, we can show that
(5.31)

sup
(s,t)

n−1|
n∑

i=1

∆i,j(s)∆i,j(t)| = Op((Mh
(2)
j )−1 + (log n/n)1/2 + h4

j + h
(2)4
j ).

It follows from the Cauchy-Schwartz inequality that

|
n∑

i=1

∆i,j(s)∆i,j(t)|

≤ C1 sup
(s,t)

[|
n∑

i=1

εi,j(s)εi,j(t)|+ |
n∑

i=1

∆ηi,j(s)∆ηi,j(t)|+ |
n∑

i=1

xT
i ∆Bj(s)∆Bj(t)xi|],
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for a positive constant C1.
It follows from Lemma 7 that

sup
(s,t)

n−1|
n∑

i=1

εi,j(s)εi,j(t)| = Op((Mh
(2)
j )−1 + (log n/n)1/2).

Since
sup

s∈[0,L0]
|∆ηi,j(s)| = C2 sup

s∈[0,L0]
|η̈i,j(s)|h(2)2

j ,

we have sup(s,t) n
−1|

∑n
i=1 ∆ηi,j(s)∆ηi,j(t)| = O(h(2)4

j ). Furthermore, since
sups∈[0,L0] ||∆B(s)|| = Op(n−1/2 + h2

j ), we have

|
n∑

i=1

xT
i ∆Bj(s)∆Bj(t)xi| = Op(n−1 + h4

j ).

Note that the arguments for (5.28)-(5.31) hold for Σ̂η,jj′(·, ·) for any j 6= j′.
Thus, combining (5.28)-(5.31) leads to Theorem 3 (i).

To prove Theorem 3 (ii), we follow the same arguments in Lemma 6 of
Li and Hsing [27]. For completion, we highlight several key steps below. We
define

(5.32) (∆ψj,j)(s) =
∫ L0

0
[Σ̂η,jj(s, t)− Ση,jj(s, t)]ψj,j(t)dt.

Following Hall and Hosseini-Nasab [15] and the Cauchy-Schwarz inequality,
we have

{
∫ L0

0
[ψ̂j,j(s)− ψj,j(s)]2ds}1/2 ≤ C2 sup

(s,t)∈[0,L0]2
|Σ̂η,jj(s, t)− Ση,jj(s, t)|

for some constant C2. This yields Theorem 3 (ii.a). See Zhu et al. [46] for
more details.

Using (4.9) in Hall et al. [16], we have

|λ̂j,j − λj,j |

≤ |
∫ L0

0

∫ L0

0
[Σ̂η,jj − Ση,jj ](s, t)ψj,j(s)ψj,j(t)dsdt+O(

∫ L0

0
(∆ψj,j)(s)2ds)

≤ C3 sup
(s,t)∈[0,L0]2

|Σ̂η,jj(s, t)− Ση,jj(s, t)|

for some constant C3. This yields Theorem 3 (ii.b). This complete the proof.



MULTIVARIATE VARYING COEFFICIENT MODEL 37

Since the proof of Corollary 1 is similar to the proof of Theorem 3 (i) and
Theorem 4 follows from the continuous mapping theorem, we omit them for
the sake of space.

We need to introduce some notation to establish the weak convergence of a
sequence of stochastic processes indexed by s ∈ [0, L0] [38]. The uniform met-
ric is used here to define the weak convergence. Let `∞([0, L0]) be the space
of all uniformly bounded, real functions on [0, L0], and endow `∞([0, L0])
with the uniform metric. We consider BL1(`∞([0, L0]) to be the space of real-
valued functions on `∞([0, L0]) with Lipschitz norm bounded by 1; that is, for
any k(·) ∈ BL1(`∞([0, L0]), supx(s)∈`∞([0,L0]) |k(x)| ≤ 1 and |k(x) − k(y)| ≤
||x−y||[0,L0]. As n→∞, a stochastic process Gj(·) weakly converges to X(·)
on `∞([0, L0]) if and only if supk∈BL1(`∞([0,L0]) |Ek(Gj)− Ek(X)| → 0.
Proof of Theorem 5. We define ri,j(s) = yi,j(s)− xT

i Bj(s) and
(5.33)

G̃j(s)(g) =
√
n[Ip⊗(1, 0)]vec(Σ(hj , s)−1

n∑
i=1

τ
(g)
i

M∑
m=1

xi⊗Hhj
(sm−s)ri,j(sm)).

Following the arguments in Kosorok [25] and Zhu and Zhang [47], we will
prove Theorem 5 in three steps. In Step 1, we will prove the unconditional
weak convergence of G̃j(s)(g). In Step 2, we will prove the weak convergence
of G̃j(s)(g) conditional on the data. In Step 3, we will prove the weak con-
vergence of Gj(s)(g) conditional on the data by showing that G̃j(s)(g) and
Gj(s)(g) are asymptotically equivalent as n→∞.

In Step 1, we note that ri,j(sm) = ηi,j(sm) + εi,j(sm) and

G̃j(s)(g) =
√
n[Ip⊗(1, 0)]vec(Σ(hj , s)−1

n∑
i=1

τ
(g)
i xi⊗

M∑
m=1

Hhj
(sm−s)[ηi,j(sm)+εi,j(sm)].

Therefore, by treating τ (g)
i xi as the new ‘covariate’ vector, we can apply the

same arguments in the proof of Theorem 1 to prove that G̃(g)
j converges to

Gj in distribution; that is, G̃(g)
j is asymptotically measurable.

In Step 2, we define

Sj(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hhj
(sm − s)Hhj

(sm′ − t)ri,j(sm)ri,j(sm′),

Sj,ηη(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hhj
(sm − s)Hhj

(sm′ − t)ηi,j(sm)ηi,j(sm′),
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Sj,ηε(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hhj
(sm − s)Hhj

(sm′ − t)ηi,j(sm)εi,j(sm′),

Sj,εε(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hhj
(sm − s)Hhj

(sm′ − t)εi,j(sm)εi,j(sm′).

Thus, conditioning on the data, G̃j(s)(g) is a normal random vector with zero
mean and covariance given by (nM)−2[Ip⊗(1, 0)]Σ(hj , s)−1Sj(s, t)Σ(hj , s)−1[Ip⊗
(1, 0)T ]. It is easy to see that

(5.34) Sj(s, t) = Sj,ηη(s, t) + Sj,ηε(s, t) + Sj,ηε(t, s) + Sj,εε(s, t).

Following the arguments of Lemmas 6 and 7, we can show that Sj,ηε(s, t) +
Sj,ηε(t, s)+Sj,εε(s, t) = o(1). Furthermore, it can be shown that E[Sj,ηη(s, t)] =
ΩX ⊗ diag(1, 0)Ση,jj(s, t) +O(hj) and Cov[Sj,ηη(s, t)] = O(n−1). Therefore,
Covτ [G̃j(s)(g), G̃j(t)(g)] converges to Ση,jj(s, t)Ω−1

X in probability, where the
expectation is taken with respect to τ (g)

i conditioning on the data. We can
obtain the marginal convergence of G̃j(s)(g) in the conditional central limit
theorem by using the Cramer-Wald method.

For each δ > 0, let S̃δ = {lδ : l = 0, . . . , L0δ
−1} be an equally δ−spaced

grid and [0, L0]δ(s) assign to each s ∈ [0, L0] a closest element of S̃δ. The
finite convergence results yield

sup
k(·)∈BL1(`∞([0,L0])

|Eτk(G̃
(g)
j ([0, L0]δ))− Ek(Gj([0, L0]δ))| → 0

in probability, as n→∞. Due to the continuity ofGj(s), we haveGj([0, L0]δ(s)) →
Gj(s) almost surely as δ → 0; that is limδ→0 supk(·)∈BL1(`∞([0,L0]) |Eτk(G̃j([0, L0]δ)−
Eτk(Gj([0, L0]))| = 0. Finally, we have

sup
k(·)∈BL1(`∞([0,L0])

|Eτk(G̃
(g)
j ([0, L0]δ(·)))− Eτk(G̃

(g)
j ([0, L0](·)))|

≤ Eτ ( sup
|s−s′|2≤δ

|G̃(g)
j (s)− G̃

(g)
j (s′)|).

Thus, the expectation on the left side of the above equation is smaller than
E(sup|s−s′|2≤δ |G̃

(g)
j (s) − G̃

(g)
j (s′)|), which was established by the uncondi-

tional weak convergence of G̃(g)
j (·) in Step 1. This finishes the proof of Step

2.
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In Step 3, following the arguments in Theorem 3 of Kosorok [25], we only
need to prove that ∆n,B = op(1), where

∆n,B = sup
s∈[0,L0]

n−1
n∑

i=1

tr{x⊗2
i ⊗{M−1

M∑
m=1

Hhj
(sm−s)xT

i [B̂j(sm)−Bj(sm)]}⊗2}.

It follows from the proof of Theorem 3 that ∆n,B = Op(n−1 + ĥ4
j ), which

converges to zero in probability. This finishes the proof of Theorem 5.
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