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Diffusion tensor imaging has been widely used to reconstruct the structure and orientation of fibers in biological tissues, particularly in
the white matter of the brain, because it can track the effective diffusion of water along those fibers. The raw diffusion-weighted images
from which diffusion tensors are estimated, however, inherently contain noise. Noise in the images produces uncertainty in the estimation
of the tensors (which are 3 × 3 positive-definite matrices) and of their derived quantities, including eigenvalues, eigenvectors, and the
fiber pathways that are reconstructed based on those tensor elements. The aim of this article is to provide a comprehensive theoretical
framework of statistical inference for quantifying the effects of noise on diffusion tensors, on their eigenvalues and eigenvectors, and on
their morphological classification. We propose a semiparametric model to account for noise in diffusion-weighted images. We then develop
a one-step, weighted least squares estimate of the tensors and justify use of the one-step estimates based on our theoretical framework and
computational results. We also quantify the effects of noise on the eigenvalues and eigenvectors of the estimated tensors by establishing
their limiting distributions. We construct pseudo-likelihood ratio statistics to classify tensor morphologies. Simulation studies show that our
theoretical results can accurately predict the stochastic behavior of the estimated eigenvalues and eigenvectors, as well as the bias that is
introduced by sorting the eigenvalues by their magnitudes. Implementation of these methods is illustrated in a diffusion-weighted dataset
from seven healthy human subjects.
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1. INTRODUCTION

Diffusion Tensor Imaging (DTI) tracks the effective diffusion
of water in the human brain in vivo. Because water tends to dif-
fuse along the pathways of white-matter fibers, tracking its dif-
fusion with DTI allows investigators to map the microstructure
and organization of those pathways (Basser and Jones 2002;
Le Bihan 2003; Kingsley 2006a–c). DTI geometrically char-
acterizes diffusion within each voxel of an imaging space as
a 3 × 3 diffusion tensor D, with three eigenvalue–eigenvector
pairs {(λi,vi ) : i = 1,2,3} quantifying the direction and degree
of diffusivity, respectively, where λ1 ≥ λ2 ≥ λ3. Many tractog-
raphy algorithms attempt to reconstruct fiber tracts by consec-
utively connecting the principal directions (v1) of the diffusion
tensors (DTs) in adjacent voxels (Conturo et al. 1999; Xu, Mori,
Solaiyappan, van Zijl, and Davatzikos 2002). Statistical analy-
sis of estimated DTI measures (e.g., eigenvalues and eigenvec-
tors) and fiber tracts can provide a quantitative assessment for
the integrity of anatomical connectivity in white matter. In turn,
the results from these statistical analyses can be used to under-
stand better the development and disturbances of white matter
in the central nervous system. DTI has been used to study a
wide array of neurological and neuropsychiatric illnesses (Lim
and Helpern 2002; Brain Development Cooperative Group and
Evans 2006).
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DTs are estimated from the raw data contained in diffusion-
weighted (DW) images. The process of transforming DW im-
ages into estimated DTs that can be used for accurate track-
ing of fiber pathways entails a number of steps. First, DW im-
ages inherently contain varying amounts of noise that must be
modeled appropriately if DTs are to be estimated accurately;
failure to do so may lead to a biased estimate of DTs and to
an incorrect estimate of their covariance matrices. After appro-
priately modeling the noise in DW images and estimating the
tensors, we must then quantify the effects of noise on the es-
timated eigenspace components. Because many algorithms for
fiber tracking reconstruct the directions of fiber pathways based
on the principal directions of diffusion, quantifying the effects
of noise on these eigenspace components in particular is cru-
cially important for the accurate tracking of fibers. However,
because the noise-induced stochastic behavior of the princi-
pal direction of a tensor is primarily determined by the over-
all morphology of the tensor, we must first classify that mor-
phology, which is typically designated as nondegenerate (in
which all eigenvalues differ), oblate (λ1 = λ2 > λ3), prolate
(λ1 > λ2 = λ3), or isotropic (λ1 = λ2 = λ3). When the effects
of noise on the eigenspace components have been assessed and
the morphologies of the DTs have been classified, fiber tracking
can begin.

Three statistical questions emerge from this process of trans-
forming diffusion-weighted images into estimated DTs and
eigenspace components: (1) How can we obtain an accurate es-
timate of the diffusion tensor and its covariance matrix when
the diffusion-weighted magnetic resonance (MR) images con-
tain various noise components, including random and struc-
tured noise (such as noise from bulk motion or cardiac pulsa-
tion)? (2) How can we quantify the effects of noise on the DTs,
including their eigenvalues and eigenvectors? (3) Does the pres-
ence of the noise that is inherent in DW images affect in any
way our morphological classifications of DTs and, if so, how?
In this article, we will address these three questions systemati-
cally and rigorously within a statistical theoretical framework.
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Much effort has been devoted to modeling appropriately the
noise components of DW images so as to improve the accu-
racy of estimating at each voxel a diffusion tensor and its de-
rived quantities, such as its principal direction. In the presence
of random noise only, the signal intensity in DW images follows
a Rician distribution (Henkelman 1985; Gudbjartsson and Patz
1995). In the presence of only a small amount of random noise
within DW images, the log-transformed signal intensity can
be approximated by a weighted Gaussian distribution (Basser,
Mattiello, and Le Bihan 1994; Anderson 2001; Salvador et al.
2005). However, in addition to random noise, DW images al-
ways contain varying amounts of noise from other sources (e.g.,
susceptibility artifacts and rigid-body motion). Although some
postprocessing techniques, including image coregistration, may
be applied to correct for the presence of the noise from other
sources, these techniques can significantly alter the properties
of the noise in DW images, including its distribution and vari-
ance (Rohde, Barnett, Basser, and Pierpaoli 2005). Thus, the
distribution of noise in DW images will likely deviate from both
the Gaussian and Rician distributions (Rohde, Barnett, Basser,
Marenco, and Pierpaoli 2004), and any strategy for modeling of
noise in the postprocessed DW images must extend beyond the
sole application of Gaussian and Rician distributions.

Given that noise in DW images also introduces uncer-
tainty into the eigenvalues and eigenvectors of the DTs (Jones
2003; Lazar and Alexander 2003), numerical simulations have
been used increasingly to quantify uncertainty in the three
eigenvalue–eigenvector pairs of the estimated tensors, as well
as to assess how these estimated eigenspace components ulti-
mately influence the performance of tractography algorithms.
These simulations have shown, for example, that estimates of
the largest eigenvalue in a tensor usually overestimate the true
value of λ1 and that estimates of the smallest eigenvalue usu-
ally underestimate λ3 (Pierpaoli and Basser 1996). These dif-
ferences between the estimated and true eigenvalues, referred
to as “sorting bias,” subsequently bias the estimation of invari-
ant measures that are calculated from the values of these esti-
mated eigenvalues (Pierpaoli and Basser 1996; Basser and Pa-
jevic 2000). Although previous investigators have derived first-
and second-order expansions of the estimated eigenvalues and
eigenvectors for nondegenerate tensors (Anderson 2001), their
results cannot predict the bias observed in degenerate tensors
and their derived quantities, such as eigenvalues (Basser and
Pajevic 2003). A nonparametric bootstrapping method (Efron
1979; Efron and Tibshirani 1993; Basser and Jones 2002,
p. 465; Pajevic and Basser 2003) has also been used to quantify
numerically the effects of noise on the eigenvalues and eigen-
vectors, and fiber tracts. However, because bootstrapping meth-
ods do rely on asymptotic results (Shao and Tu 1995), one can
question whether approximating the uncertainty of eigenvalues
and eigenvectors, and particularly the trajectories of fiber tracts
using the bootstrapping methods, is ultimately valid. Therefore,
mathematically quantifying the effects of noise on the eigenval-
ues and eigenvectors of the diffusion tensors and fiber tracts is
of paramount importance.

Numerous invariant measures of anisotropy have been devel-
oped for the classification of tensor morphologies (Basser 1997;
Skare, Li, Nordell, and Ingvar 2000; Hasan, Basser, Parker, and
Alexander 2001). Examples include Fractional Anisotropy (FA;

Basser 1997), for which small values indicate that the diffusion
tensor is nearly isotropic. Comparing a specific invariant mea-
sure with a predefined fixed value, or “threshold,” is often used
to determine whether a tensor is degenerate within a particular
voxel and, therefore, whether a tractography algorithm should
terminate, signaling the end of that particular fiber pathway
(Mori and van Zijl 2002; Lazar and Alexander 2005). Thresh-
olds are often selected arbitrarily (a common FA threshold, for
example, is .20; Jones 2003), producing either large Type I or
Type II errors in classifying tensor morphologies (Zhu et al.
2006). Therefore, developing sensitive measures of tensor mor-
phology, as well as a rigorous and rational strategy for deter-
mining thresholds of these measures that capture within a single
scalar index one of several of the most salient features of that
morphology, is critially important for the correct morphological
classification of diffusion tensors and, ultimately, for the valid
reconstruction of fiber tracts.

We propose herein a set of three solutions for modeling
noise in DW images. First, we propose use of a semiparamet-
ric model, which allows for a large class of distributions for
the noise component, to fit the log-transformed signal inten-
sities in diffusion-weighted MR data. Second, we propose a
one-step Weighted Least Squares (WLS) estimate of the dif-
fusion tensors in this semiparametric model (Carroll, Wu, and
Ruppert 1988). Calculating the one-step WLS estimate of the
tensors across all voxels in an imaging volume is computation-
ally highly efficient, which is valuable when employing com-
putationally intensive statistical methods such as nonparamet-
ric bootstrapping. Third, under the semiparametric model, we
quantify the effects of noise on the tensor estimation by estab-
lishing a strong convergence rate and by obtaining the covari-
ance matrix of the one-step WLS estimate of the tensor.

We statistically quantify the effects of noise on the eigen-
values and eigenvectors of the estimated tensors. Noise can in-
troduce error into estimation of these components and into the
classification of tensor morphology; therefore, even if a tensor
in reality has equal eigenvalues (i.e., even if it is “degenerate”),
noise makes those estimated tensors distinct in their estimated
values. Thus, degenerate tensors can always be estimated and
classified as nondegenerate, yielding erroneous principal direc-
tions of diffusion. Fiber tracking based on these erroneous prin-
cipal directions will, in turn, produce fiber pathways that are
incorrectly reconstructed. However, because the distinctness of
the three estimated eigenvalues is insufficient for quantifying
the effects of noise on all eigenspace components of the tensors,
we must derive the asymptotic expansions and limiting distribu-
tions of the eigenvalues and eigenvectors of both the degenerate
and nondegenerate diffusion tensors.

We reformulate the morphological classification problem
within a hypothesis testing framework so as to provide a means
of estimating confidence when classifying the morphology of
any given tensor. We develop three sensitive measures of tensor
morphology using pseudo-likelihood ratio statistics, and then
determine rigorous thresholds of those statistics based on their
limiting distributions under the null hypothesis.

Section 2 presents solutions to the statistical issues we have
just outlined. In Section 3 we conduct simulation studies to
evaluate the effects of noise on estimation of eigenvalues and
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eigenvectors, and we assess the finite performance of the one-
step WLS estimate of the tensors and the pseudo-likelihood ra-
tio statistics. Section 4 illustrates an application of the proposed
methods in a real dataset. We present concluding remarks in
Section 5.

2. THEORY

2.1 Heteroscedastic Linear Model

We usually acquire n diffusion-weighted images for each
subject, with each image containing N voxels, and each of those
voxels consisting of n diffusion-weighted measurements. Let
{(Si, ri , bi) : i = 1, . . . , n} be n diffusion-weighted measure-
ments at a single voxel in the human brain, where Si denotes
the signal intensity of the MR image, ri = (ri,1, ri,2, ri,3)

T is the
ith direction of the diffusion gradient such that rT

i ri = 1, and
bi is the corresponding b factor of each ith diffusion-weighted
MR image. The b factor denotes the magnitude of the diffusion
gradients (Stejskal and Tanner 1965; Anderson 2001; Kingsley
2006b).

In magnetic resonance imaging, we often need to character-
ize random noise in the magnitude of the observed signal in-
tensity. The magnitude is generated by the square root of the
sum of two squared numbers. If these two numbers are inde-
pendent normal random variables, then their magnitude follows
a Rician distribution (Henkelman 1985; Gudbjartsson and Patz

1995; Rowe 2005). Specifically, Si =
√

R2
i + I 2

i is the magni-
tude of the complex-data (Ri, Ii) in a given voxel at the ith
acquisition for i = 1, . . . , n. Let φi be the phase data in a given
voxel such that Ri = Si sin(φi) and Ii = Si cos(φi). If the sig-
nal intensities contain only random noise, then Ri and Ii are
independent and follow Gaussian distributions with the same
variance σ 2 and with means μR,i and μI,i , respectively. Thus,
using the Jacobian transformation, the joint density of (Si, φi)

can be written as

p(Si,φi) = Si

2πσ 2
exp

{−.5σ−2(Si sin(φi) − μR,i)
2

− .5σ−2(Si cos(φi) − μI,i)
2}.

Integrating out φi , we obtain a Rician distribution with parame-
ters μi and σ 2, which is given by

p(Si |μi,σ
2) = Si

σ 2
exp{−.5σ−2(S2

i + μ2
i )}B0

(
μiSi

σ 2

)

× 1(Si ≥ 0), (1)

where μi =
√

μ2
R,i + μ2

I,i , 1(·) is an indicator function, and

B0(z) denotes the zeroth-order modified Bessel function of the
first kind. For diffusion-weighted images, a simple model of
diffusion assumes μi = S0 exp(−birT

i Dri ), where D is a 3 × 3
diffusion tensor and S0 is the signal intensity in the absence
of any diffusion-weighted gradient. The distribution of log(Si)

has been shown to be well approximated by a Gaussian distri-
bution with mean logμi and variance σ 2/μ2

i (Salvador et al.
2005) when the value of μi/σ is moderate and relatively large
(e.g., greater than 5), which is the case in most current imaging
studies.

We consider a heteroscedastic linear model to fit the log-
transformed signal intensities logSi as follows:

logSi = logS0 −birT
i Dri +ηi = zT

i θ + exp(−zT
i θ)σεi (2)

for i = 1, . . . , n, where θT = (logS0, β
T ), ηi = exp(−zT

i θ)σεi ,
and the errors εi are independent random variables that have
zero means and finite variances. We define βT = (D11,D12,

D13,D22,D23,D33) and zT
i = (1,−bi(r

2
i,1,2ri,1ri,2,2ri,1ri,3,

r2
i,2,2ri,2ri,3, r

2
i,3)

T )T . We set Var(ε1) at 1 for identifiability
purposes. Model (2) allows a large class of distributions for εi ,
including the Gaussian distribution, and different distributions
and variances for differing εi . If all the εi are standard Gaussian
random variables, then model (2) reduces to a Gaussian model
(Anderson 2001; Salvador et al. 2005).

The WLS algorithm for model (2) can be summarized as fol-
lows:

• In step 1, set k = 0 and select an initial estimate θ̂ (k), such
as the ordinary least squares estimate θ̂LS = (

∑n
i=1 zi ×

zT
i )−1 ∑n

i=1 zi logSi .

• In step 2, calculate ω
(k)
i = exp(2zT

i θ̂ (k)) for i = 1, . . . , n.
• In step 3, update θ̂ (k) to θ̂ (k+1) by using

θ̂ (k+1) =
(

n∑
i=1

ω
(k)
i zizT

i

)−1 n∑
i=1

ω
(k)
i zi logSi. (3)

• In step 4, repeat steps 2 and 3 for k0 iterations and obtain
θ̂ (k0).

• In step 5, estimate σ̂ 2 = ∑n
i=1(logSi − zT

i θ̂ (k0))2ω
(k0)
i /

(n − 7).

The WLS estimates are computationally simple in that they
require simple algebraic manipulations; they also have some
good statistical properties, such as robustness against small mis-
specifications in the variances of the errors (Carroll and Rup-
pert 1982a,b; Carroll et al. 1988). Moreover, for any reason-
able θ̂ (0), the number of iterations k0 in the algorithm can be as
small as k0 = 1, because all WLS estimates θ̂ (k0) for any k0 ≥ 1
are asymptotically equivalent (Carroll and Ruppert 1982a). The
second-order asymptotic expansion of θ̂ (k0) reveals that only
one iteration starting from θ̂LS is needed to obtain an efficient
estimate of θ under certain conditions (Carroll et al. 1988). Nu-
merically, when n = 30, results from a simulation study in Sec-
tion 3.1 reveal that the WLS estimates θ̂ (1) and θ̂ (5) are very
close. Thus, we can use θ̂LS as an initial estimate and take θ̂ (1)

as the final WLS estimate of θ .
We introduce some notation to characterize the properties of

the WLS estimates of diffusion tensors. Let θT∗ = (logS0∗, βT∗ )

be the true value of θ ; let D∗ denote the diffusion tensor cor-
responding to β∗; and let ‖ · ‖ denote the Euclidean norm of a
vector or a matrix. We also define An = ∑n

i=1 zizT
i , Bn(θ) =∑n

i=1 zizT
i exp(2zT

i θ), Gn(θ) = ∑n
i=1 zizT

i exp(4zT
i θ)E(η2

i ),

and Fn(θ) = ∑n
i=1 zizT

i exp(4zT
i θ)ei (θ)2, where ei (θ) =

(logSi − zT
i θ)2.

We quantify the effects of noise on a diffusion tensor by es-
tablishing its strong consistency rate and asymptotic normal-
ity. We obtain the following theorems, whose detailed proofs
can be found in a supplementary technical report available at
http://www.bios.unc.edu/∼hzhu/DTIreport.pdf.
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Theorem 1. (a) If assumptions (C1)–(C3) in the Appendix
are satisfied and ‖θ̂ (0) − θ∗‖ ≤ δ′ for any fixed δ′ > 0, then

θ̂ (k) − θ∗ = o
({[logλmin(An)]1+δ/λmin(An)

}1/2) a.s. (4)

for any δ > 0 and k ≥ 1, where λmin(An) is the minimum eigen-
value of An.

(b) Under assumptions (C1)–(C5), for any k ≥ 2, we have
[
Gn

(
θ̂ (k)

)]−1/2
Bn

(
θ̂ (k)

)(
θ̂ (k) − θ∗

) →L N(0, I7) (5)

as n → ∞, where I7 is the 7 × 7 identity matrix and →L de-
notes convergence in distribution. If θ̂ (0) = θ̂LS, then (5) holds
for any k ≥ 1.

(c) Under assumptions (C1)–(C6), for any k ≥ 2, we have

Gn(θ∗)−1/2Fn

(
θ̂ (k)

)
Gn(θ∗)−1/2 − I7 → 07

in probability (elementwise), (6)

where 07 is a 7 × 7 matrix with all zero entries.

Theorem 1 explicitly gives the strong convergence rate and
the covariance matrix of θ̂ (k). If λmin(An) is O(n), then θ̂ (k)

converges almost surely to θ∗ at the rate of o(n−1/2(logn)1/2+δ)

for any δ > 0. The covariance matrix of θ̂ (k) under model (2)
differs from that of the WLS estimate under the Gaussian model
with homogeneous variance (Anderson 2001; Kingsley 2006c).
However, according to Theorem 1(b) and (c), the covariance
matrix of θ̂ (k) under model (2) can be consistently estimated by
[Bn(θ̂

(k))]−1Fn(θ̂
(k))[Bn(θ̂

(k))]−1. Furthermore, we propose an
empirically better estimator of Cov[θ̂ (k)], denoted by �̂(k), as
follows:

[
Bn

(
θ̂ (k)

)]−1

[
n∑

i=1

zT
i zi exp

(
4zT

i θ̂ (k)
)(

logSi − zT
i θ̂ (k)

)2

× (
1 − t

(k)
i

)−1

]
[
Bn

(
θ̂ (k)

)]−1
, (7)

where t
(k)
i = ω

(k)
i zT

i (
∑n

j=1 ω
(k)
j zj zT

j )−1zi . Compared with

[Bn(θ̂
(k))]−1Fn(θ̂

(k))[Bn(θ̂
(k))]−1, the estimate in (7) is bet-

ter because we have explicitly accounted for the variability in
the estimated residuals ei (θ̂

(k)) (MacKinnon and White 1985).

2.2 Effects of Noise on Eigenvalues and Eigenvectors

We consider a decomposition of D as D = �T , where
� = diag(λ1, λ2, λ3) and  = (v1,v2,v3) is an orthogonal ma-
trix. Geometrically, diffusion tensors can be represented as an
ellipsoid describing three eigenvectors {vi , i = 1,2,3} scaled
with the square root of their corresponding eigenvalues {λi, i =
1,2,3}. An elongated ellipsoid represents high diffusivity in the
principal direction v1 associated with λ1, which may be inter-
preted as the dominant orientation of fibers passing through that
particular voxel. However, in isotropic tensors, the principal dif-
fusion could be any direction in three-dimensional space; in
oblate tensors, any direction on the plane orthogonal to v3 could
be the principal direction. Currently, those oblate and isotropic
tensors pose a significant challenge for existing algorithms for
fiber tracking (Mori and van Zijl 2002; Parker, Haroon, and
Wheeler-Kingshott 2003).

In practice, we can only obtain D̂ and its three eigenvalue–
eigenvector pairs denoted by {(mi, ei ) : i = 1,2,3}, such that

m1 ≥ m2 ≥ m3. Thus, D̂ = EMET , where M = diag(m1,m2,

m3) and E = (e1, e2, e3) is an orthogonal matrix. Because of
the presence of noise that is inherent in diffusion-weighted MR
images, {(mi, ei ) : i = 1,2,3} are generally different from the
true eigenvalue–eigenvector pairs {(λi,vi ) : i = 1,2,3}. For in-
stance, previous simulation studies have shown that the esti-
mated eigenvalues {mi : i = 1,2,3} are always distinct regard-
less of the presence of degenerate and nondegenerate tensors
(Pierpaoli and Basser 1996; Basser and Pajevic 2000). Falsely
attributing distinct directionality to the principal directions of
the tensors that are in reality degenerate will wreak havoc for
the current algorithms for fiber tracking. The distinctness of
{mi : i = 1,2,3} has not yet been investigated theoretically.

In the following, we establish the distinctness of the three
eigenvalues for D̂, which are determined by θ̂ (1) starting from
θ̂LS.

Theorem 2. (a) If assumption (C7) in the Appendix is satis-
fied, then the three eigenvalues of D̂ based on θ̂LS are distinct
with probability 1 when n ≥ 7.

(b) If assumptions (C1)–(C3) and (C7) in the Appendix are
satisfied and θ̂ (0) = θ̂LS satisfies ‖θ̂LS − θ∗‖ ≤ δ′ for a given
δ′ > 0, then the eigenvalues of D̂ based on θ̂ (1) are distinct with
probability 1 when n ≥ 7.

Theorem 2 reveals that the distinctness of the estimated
eigenvalues persists in all regions of an image in vivo, con-
firming the sorting bias (Pierpaoli and Basser 1996; Basser and
Pajevic 2000). Therefore, we always conclude that m1 > m2 >

m3, and we obtain incorrect principal directions of diffusion
within the regions that contain isotropic and oblate tensors.

Because the distinctness of the estimated eigenvalues is
not adequate for understanding the stochastic behavior of
{(mi, ei ) : i = 1,2,3}, we derive the limiting distributions of
the eigenvalues and eigenvectors of D̂ for both degenerate and
nondegenerate tensors.

We introduce the following notation. Recall that D = �T ,
T D = �, and D̂ = EMET . We use Vecs(U) to represent
(U11,U12,U13,U22,U23,U33)

T for any 3 × 3 symmetric ma-
trix U = (Uij ). Thus, using Theorem 1(b), we have

Un = √
n(Tn − �) = √

n(T D̂ − �) →L U, (8)

where Vec(U) is a multivariate normal random vector with
mean 0 and covariance matrix �U. Furthermore, let CT

n =
T E. Then Tn can be written as Tn = T D̂ = CT

n MCn and
CT

n Cn = I3.

Theorem 3. If assumptions (C8) and (C9) in the Appen-
dix are satisfied and if D is an isotropic tensor, then the den-
sity of the limiting distribution of Hn = diag(hn1, hn2, hn3) =√

ndiag(M − λI3) and E, denoted by p(h,C), is proportional
to

(h1 − h2)(h2 − h3)(h1 − h3)

× exp

{
−1

2
Vecs(CT HC)T �−1

U Vecs(CT HC)

}
, (9)

where C = (cij ), a 3 × 3 matrix, satisfies CT C = I3 and cii > 0
for i = 1,2,3 and h1 > h2 > h3, where H = diag(h) and
h = (h1, h2, h3)

T . In addition, E(h1) > E(h2) = 0 > E(h3)

and E(h1 + h2 + h3) = 0, where E denotes the expectation
with respect to p(h,C) given in (9).



Zhu et al.: Statistical Analysis of Diffusion Tensors 1089

For the oblate tensor, we must introduce additional notation,
as follows:

� =
(

λ1I2 0
0T λ3

)
, Un =

(
Un,11 Un,12
Un,21 Un,22

)
,

M =
(

M1 0
0T m3

)
, U =

(
U11 U12
U21 U22

)
,

Hn =
(

Hn,1 0
0T hn,3

)
, Cn =

(
Cn,11 Cn,12
Cn,21 Cn,22

)
,

where M1 = diag(m1,m2), Hn,1 = √
n(M1 −λ1I2), and hn,3 =√

n(m3 −λ3). In addition, we assume Cov[Vecs(U11)] = �U11 ,
Var(U22) = �U22 , and Cov(U12) = �U12 .

Theorem 4. If assumptions (C8) and (C9) in the Appendix
are satisfied and if D is an oblate tensor, then we can conclude
that:

(a) The density of the limiting distribution of diag(Hn,1) and
Cn,11 is proportional to

(h1 − h2) exp

{
−1

2
Vecs(CT

11H1C11)
T �−1

U11
Vecs(CT

11H1C11)

}
,

(10)

where C11 = (c11, c12; c21, c22) is a 2 × 2 matrix satisfying
CT

11C11 = I2, c11 > 0, and c22 > 0, and H1 = diag(h1, h2) such
that h1 > h2. In addition, E(h1 + h2) = 0 and E(h2) < 0 <

E(h1). In general,

CT
n,11Hn,1Cn,11 = Un,11 + n−1/2(λ1 − λ3)

−1Un,12UT
n,12

+ op

(
n−1/2). (11)

(b) As n → ∞, hn,3 →L U22 and

hn,3 = Un,22 − n−1/2(λ1 − λ3)
−1UT

n,12Un,12 + op

(
n−1/2).

(12)

(c)
√

nCT
n,11Cn,12 = −√

nCT
n,21 + Op(n−1) and

Cn,22 = 1 − n−1(λ1 − λ3)
−2Un,21CT

n,11Cn,11Un,12 + op(n−1).

Furthermore, −√
nCT

n,21 can be written as

(λ1 − λ3)
−1[I2 − n−1/2(λ1 − λ3)

−1

× (CT
n,11Hn,1Cn,11 − Un,22I2)

]
Un,12 + op

(
n−1/2). (13)

Thus, both −√
nCn,12 and

√
nCn,11CT

n,21 converge to U12/

(λ1 − λ3) in distribution as n → ∞.
(d) The eigenvectors {ei : i = 1,2,3} satisfy

(e1, e2) = (v1,v2)CT
n,11 + n−1/2v3UT

n,12CT
n,11

λ1 − λ3

+ op

(
n−1/2),

√
n(e3 − v3) = −(λ1 − λ3)

−1(v1,v2)Un,12 + op(1)
(14)

= (v1,v2)n
1/2CT

n,21

− .5n−1/2v3Un,21CT
n,11Cn,11Un,12

λ1 − λ3

2

+ op

(
n−1/2).

For the prolate tensor, we need to modify the corresponding
six matrices introduced for the oblate tensor. In particular, we
modify �, M, and Hn as follows:

� =
(

λ1 0T

0 λ3I2

)
, M =

(
m1 0T

0 M2

)
,

Hn =
(

hn,1 0T

0 Hn,2

)
,

where M2 = diag(m2,m3), hn,1 = √
n(m1 − λ1), and Hn,2 =√

n(M2 − λ3I2). We use the same notation for Un, U, and Cn,
although we have made several necessary modifications.

Corollary 1. If assumptions (C8) and (C9) are satisfied and
if D is a prolate tensor, then we have the following results:

(a) The density of the limiting distribution of diag(Hn,2) and
Cn,22 is proportional to

(h2 − h3) exp

{
−1

2
Vecs(CT

22H2C22)
T �−1

U22
Vecs(CT

22H2C22)

}
,

(15)

where C22 = (c22, c23; c32, c33) is a 2 × 2 matrix satisfying
CT

22C22 = I2, c22 > 0, c33 > 0, and H2 = diag(h2, h3) such that
h2 > h3. In addition, E(h2 + h3) = 0 and E(h3) < 0 < E(h2).
In general,

Cn,22Hn,2CT
n,22 = Un,22 − n−1/2(λ1 − λ2)

−1Un,21UT
n,21

+ op

(
n−1/2). (16)

(b) As n → ∞, hn,1 →L U11 and

hn,1 = Un,11 + n−1/2(λ1 − λ3)
−1Un,12UT

n,12 + op

(
n−1/2).

(17)

(c)
√

nCT
n,21Cn,22 = −√

nCn,12 + Op(n−1) and

Cn,11 = 1 − n−1(λ1 − λ3)
−2Un,12CT

n,22Cn,22Un,21 + op

(
n−1).

Furthermore,
√

nCn,12 can be written as

(λ1 − λ3)
−1Un,12

[
I2 + n−1/2(λ1 − λ3)

−1

× (CT
n,22Hn,2Cn,22 − Un,11I2)

] + op

(
n−1/2). (18)

Thus, both
√

nCn,12 and −√
nCT

n,21Cn,22 converge to U12/

(λ1 − λ3) in distribution as n → ∞.
(d) The eigenvectors {ei : i = 1,2,3} satisfy

√
n(e1 − v1) = (λ1 − λ3)

−1(v2,v3)UT
n,12 + op(1)

= (v2,v3)n
1/2CT

n,12

− .5n−1/2v1Un,12CT
n,22Cn,22Un,21

λ1 − λ3

2

(19)
+ op

(
n−1/2),

(e2, e3) = (v2,v3)CT
n,22 − n−1/2v1UT

n,12CT
n,22

λ1 − λ3

+ op

(
n−1/2).
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For the nondegenerate tensor, we need to modify the six ma-
trices as follows:

� = diag(λ1, λ2, λ3), M = diag(m1,m2,m3),

Hn = diag(hn,1, hn,2, hn,3), U = (Uij ),

Un = (Un,ij ), Cn = (cn,ij ).

In addition, we define cn,ij = n−1/2fn,ij for i �= j . Let λi,j be
λi − λj for all i, j = 1,2,3.

Corollary 2. If assumptions (C8) and (C9) are satisfied and
if D is nondegenerate, then we have the following results:

(a) Let σii = Var(Uii). Then hn,i = Un,ii + op(1) →L

N(0, σii) for i = 1,2,3 and

hn,i = Un,ii + n−1/2
∑
j �=i

λ−1
i,j U2

n,ij + op

(
n−1/2). (20)

(b) cn,ii = 1−n−1 ∑
j �=i f

2
n,ji +op(n−1) and fn,ij +fn,ji +

n−1/2fn,kifn,kj 1(k �= i, k �= j) + op(n−1/2) = 0 for i < j and
i, j, k = 1,2,3. Moreover, for i < j , k �= i, and k �= j ,

fn,ij λi,j = Un,ij + n−1/2Un,kiUn,kj /λi,k

− n−1/2(Un,ii − Un,jj )Un,ij /λi,j

+ op

(
n−1/2). (21)

(c) The eigenvectors {ei : i = 1,2,3} satisfy

√
n(ei − vi ) =

∑
j �=i

λ−1
i,j Un,ij vj + op(1)

=
∑
j �=i

vj fn,ij − 0.5vin
−1/2

∑
j �=i

f 2
n,ij

+ op

(
n−1/2). (22)

Theorems 3 and 4 have several important implications for
the analysis of diffusion tensor images. For instance, Theo-
rem 3 gives the explicit form of the joint limiting distribution
of the estimated eigenvalues and eigenvectors for an isotropic
tensor. Therefore, we can directly sample from (9) to approx-
imate the stochastic behavior of {(mi, ei ) : i = 1,2,3} for an
isotropic tensor. Theorem 3 also confirms that m1 overesti-
mates λ, and m3 underestimates λ for the isotropic tensor (Pier-
paoli and Basser 1996; Basser and Pajevic 2000). Explicitly,
because mi = λ + √

n(mi − λ)n−1/2 can be approximated by
λ + hin

−1/2, E(mi) may be close to λ + E(hi)n
−1/2 for i =

1,2,3. Thus, we have E(m1) > λ, E(m2) ≈ λ, and E(m3) < λ

using Theorem 3. Therefore, compared with m1 and m3, m2

and tr(D̂)/3 are better estimates of λ with smaller bias, be-
cause tr(D̂)/3 ≈ λ + n−1/2(h1 + h2 + h3)/3, E(h2) = 0, and
E(

∑3
i=1 hi) = 0. We can also construct confidence intervals

for the eigenvalues {λi : i = 1,2,3}. For instance, for a nonde-
generate tensor, a 1 − α confidence interval of λi is given by
[mi − zα/2σii,mi + zα/2σii], where zα/2 is an upper α/2 per-
centile of a standard normal distribution. Moreover, we can use
(19) and (22) to quantify the variability of the true principal
directions for the nondegenerate and prolate tensors.

2.3 Classification of Tensor Morphologies

Following the reasoning described in Zhu et al. (2006), we
statistically test three hypotheses to determine the morphology
of a tensor. We specify these hypotheses as follows:

H
(1)
0 : λ1 = λ3 vs. H

(1)
1 : λ1 �= λ3,

H
(2)
0 : λ1 = λ2 vs. H

(2)
1 : λ1 �= λ2, (23)

H
(3)
0 : λ2 = λ3 vs. H

(3)
1 : λ2 �= λ3.

For a given significance level α, we can test these three hypothe-
ses at every voxel of the image. If we do not reject H

(1)
0 , then

we classify the diffusion tensor as isotropic; otherwise, we then
test the second and third hypotheses. If H

(2)
0 is not rejected, but

both H
(1)
0 and H

(3)
0 are rejected, then we classify the diffusion

tensor as oblate because of the lack of evidence that this dif-
fusion tensor is not oblate. If both H

(1)
0 and H

(2)
0 are rejected,

but H
(3)
0 is not rejected, then the diffusion tensor is classified as

prolate. If all H
(i)
0 (i = 1,2,3) are rejected, then the diffusion

tensor is classified as nondegenerate.
For each of the three hypotheses, we develop a pseudo-

likelihood ratio test statistic based on a pseudo-log-likelihood
function defined by

�n(θ |θ̂LS) = −
n∑

i=1

(logSi − zT
i θ)2 exp(2zT

i θ̂LS). (24)

The parameter spaces for the three null hypotheses H
(i)
0 (i =

1,2,3) can be written as follows: �(1) = {θ :λ1 = λ3} ∩ �,
�(2) = {θ :λ1 = λ2} ∩�, and �(3) = {θ :λ2 = λ3} ∩�, where
� = {θ : logS0 > −∞,D ≥ 0}. Let θ̂ (i) be the maximizer of
�n(θ |θ̂LS) as θ varies in �(i). For each i, the pseudo-likelihood
ratio statistic for testing H

(i)
0 against H

(i)
1 is defined as

PLRT(i) = 2
[
�n

(
θ̂ (1)|θ̂LS

) − �n(θ̂(i)|θ̂LS)
]
. (25)

In the following, we derive the limiting distributions of
PLRT(i) for i = 1,2,3. Let X(i) (i = 1,2,3) be three weighted
chi-squared random variables (a weighted chi-squared random
variable is a linear combination of independent χ2

1 random vari-
ables; Schott 2003).

Theorem 5. Under assumptions (C1)–(C6) and (C10), the
following results hold as n → ∞.

(a) If H
(1)
0 is true, then PLRT(1) →L X(1).

(b) For i = 2 and 3, PLRT(i) converges, in distribution, ei-
ther to X(i) for an anisotropic tensor D or to the maximum of
a weighted χ2 process for an isotropic tensor D when H

(i)
0 is

true.
(c) If Var(εi) = σ 2 for i = 1, . . . , n, then X(1) is a σ 2χ2

5
random variable and X(2) and X(3) follow σ 2χ2

2 distributions.

Theorem 5 characterizes the limiting distributions of
PLRT(i) under the null hypotheses. In particular, if the vari-
ances of the εi are homogeneous, then we can estimate σ 2 and
use χ2

5 and χ2
2 as null distributions to test the three hypotheses

in (23). However, if the homogeneous variance assumption on
the εi is invalid, then we need to approximate the weighted χ2

random variables X(i) for i = 1,2,3. The procedures for ap-
proximating X(i) can be found in the supplementary technical
report.
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3. SIMULATIONS

We conducted three Monte Carlo simulations to illustrate and
examine the accuracy of using the asymptotic results under dif-
fering signal-to-noise ratios (SNRs; see Secs. 3.1–3.3). First,
we compared the stochastic behavior (e.g., bias) of the WLS
estimate θ̂ (k0) starting from θ̂ (0) = θ̂LS and evaluated the accu-
racy of using �̂(k0) in (7) as an estimate of Cov[θ̂ (k0)] for k0 = 1
and k0 = 5. Second, we used the results of Theorems 3 and 4 to
predict the stochastic behavior of the estimated eigenvalues and
eigenvectors for both degenerate and nondegenerate tensors at
low to moderate SNRs (e.g., SNR ≥ 5). Finally, we evaluated
the Type I and Type II errors of PLRT(i) (i = 1,2,3) when used
as test statistics for the classification of tensor morphologies.

We generated the simulated diffusion-weighted images as
follows. The value of S0 was fixed at 1,500, but the values
of σ0 were varied to provide differing SNRs (SNR = S0/σ0),
such as 5 and 10. Six differing SNRs {5,10,15,20,25,30}
were selected for all Monte Carlo simulations. We used an
imaging acquisition scheme {(bi, ri ) : i = 1, . . . ,30} that con-
sists of m = 5 baseline images with b = 0 s/mm2 and n −
m = 25 directions of diffusion gradients arranged uniformly in
three-dimensional space at b = 1,000 s/mm2 (Hardin, Sloane,
and Smith 1994). For a given diffusion tensor D, xi and
yi were generated from a Gaussian random generator with
mean 0 and standard deviation σ0. Finally, we calculated Si =√

(S0 exp(−birT
i Dri ) + xi)2 + y2

i as the resulting diffusion-
weighted data at the ith acquisition.

In all simulation studies, we used four diagonal diffusion
tensors D. These four diagonal tensors Di (i = 1,2,3,4),
whose three diagonal elements were, respectively, [.7, .7, .7],
[.8, .8, .5], [1.0, .55, .55], and [.9, .7, .5] (units: 10−3 mm2/s),
were selected to simulate diffusion-weighted data. The four dif-
fusion tensors Di (i = 1,2,3,4) were, respectively, isotropic,
oblate, prolate, and nondegenerate in shape. For each i, the
mean diffusivity λ = tr(Di )/3 was set equal to .7 ×
10−3 mm2/s, a value typical in the human brain (Pierpaoli,
Jezzard, Basser, Barnett, and Chiro 1996; Anderson 2001).

3.1 Weighted Least Squares Estimates

For each diffusion tensor at each SNR, 10,000 diffusion-
weighted datasets were generated. Then, for each simulated
diffusion-weighted dataset, we calculated the WLS estimates
θ̂ (k0) and their corresponding estimates of variance diag(�̂(k0)),
when k0 = 1 and 5. We finally calculated the bias, the mean
of the standard deviation estimates, and the root mean squared
error obtained from the 10,000 estimates based on 10,000 sim-
ulated diffusion-weighted datasets.

The one-step WLS estimate θ̂ (1) is numerically close to the
five-step WLS estimate θ̂ (5) (see Table 1). Compared with
k0 = 1, the larger k0 = 5 leads to less bias in the estimates when
SNR = 5, but comparable bias in the estimates when SNR ≥ 10.
Compared with θ̂ (1), θ̂ (5) has larger root mean squared errors
for all six SNRs. All relative efficiencies (the ratio of the mean
of the standard deviation estimates to the root mean squared er-
ror; RMSE) are close to 1.0, indicating that diag(�̂(k0)) in (7) is
an accurate estimate of diag(Cov[θ̂ (k0)]). As expected, the root
mean squared error decreases as the value of SNR increases.

3.2 Stochastic Behavior of Eigenvalues
and Eigenvectors

We further evaluated the accuracy of the asymptotic re-
sults obtained for the estimated eigenvalues and eigenvec-
tors. For each diffusion tensor at each SNR, 10,000 diffusion-
weighted datasets were simulated, and then we calculated the
WLS estimates θ̂ (1) and their eigenvalue–eigenvector pairs
{(mj , ej ) : j = 1,2,3}. Finally, we estimated the means and
standard deviations of the eigenvalues and the bias E(mi)−λi .
For each diffusion tensor at each SNR, we also generated eigen-
values and eigenvectors from their asymptotic expansions in
Theorems 3 and 4 (see the following paragraphs for a detailed
description of the methods). Finally, we compared the results
based on the asymptotic results in Theorems 3 and 4 to the em-
pirical results based on the 10,000 simulated datasets for each
diffusion tensor at each SNR.

For the isotropic tensor D1, we used the following procedure
to generate eigenvalues and eigenvectors from the density (9).
We first used (7) and (8) to calculate the covariance matrix �U,
where the true diffusion tensor D1 was used. Then, we gener-
ated 10,000 3×3 symmetric matrices U(j) from a Gaussian ran-
dom generator, where Vecs(U(j)) followed a multivariate nor-
mal distribution with mean 0 and covariance matrix �U. We
then calculated a decomposition of U(j) as CT

(j)H(j)C(j) for
each j , where C(j) and H(j) satisfied the conditions specified in
Theorem 3. Thus, we obtained {h(j),i : i = 1,2,3}, the diagonal
elements of H(j), and the three eigenvectors {e(j),i : i = 1,2,3}
associated with each column of C(j). Finally, we obtained
{m(j),i = .7 + n−1/2h(j),i : i = 1,2,3} and {e(j),i : i = 1,2,3}
for all j = 1, . . . , J0, where J0 = 10,000; moreover, for each i,
we approximated E(mi) by the mean value of all m(j),i .

For each of the diffusion tensors Di (i = 2,3,4), we used
the following procedure to generate eigenvalues and eigenvec-
tors according to the asymptotic results in Theorem 4. For sim-
plicity, we only give detailed information for the oblate ten-
sor D2 as follows. We calculated �U for D2 using (7) and (8),
and then we generated Gaussian random matrices {U(j) : j =
1, . . . , J0}. Using (11), we obtained both the first-order and
the second-order approximations of Cn,11 and Hn,1. For the
first-order approximation, we decomposed U(j),11 directly into
CT

(j),11H(j),1C(j),11, whereas, for the second-order approxima-
tion, we decomposed U(j),11 +n−1/2(λ1 −λ3)

−1U(j),12UT
(j),12

into CT
(j),11H(j),1C(j),11, where U(j),kl (k, l = 1,2) are sub-

matrices of U(j). Subsequently, we obtained first- and second-
order approximations of {m(j),i = λ1 + n−1/2h(j),i : i = 1,2}
for j = 1, . . . , J0, and we calculated the mean values of m(j),i

for i = 1,2. We further substituted U(j) into (12) to ob-
tain h(j),3 = U(j),22 − n−1/2(λ1 − λ3)

−1UT
(j),12U(j),12 and cal-

culated m(j),3 = .5 + n−1/2h(j),3 for all j . We substituted
U(j),12 and the second-order approximation of C(j),11 into
(14) to obtain the first- and second-order approximations of
e(j),1 as follows: For the first-order approximation, e(j),1 was
approximated by the normalized vector of (v1,v2)CT

(j),11u,
whereas, for the second-order approximation, e(j),1 was ap-
proximated by the normalized vector of (v1,v2)CT

(j),11u +
n−1/2v3UT

(j),12CT
(j),11u, where uT = (1,0).

Figure 1 summarizes the results for the isotropic tensor D1.
Based on the simulated DW data, the mean value of m1 was
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Table 1. Bias (×10−3), RMSE (×10−2), and SD (×10−2) of two selected components of θ̂ (k0) starting from θ̂ (0) = θ̂LS for k0 = 1 and 5

k0 = 1 k0 = 5 k0 = 1 k0 = 5

SNR Bias RMSE SD Bias RMSE SD Bias RMSE SD Bias RMSE SD

D: [D11,D12,D13,D22,D23,D33] = [.7,0,0, .7,0, .7] (units: ×10−3 mm2/s)

D11 = .7 D13 = 0

5 −13.37 21.51 20.58 −8.74 22.76 20.66 −.50 15.25 14.69 −.52 16.54 14.77
10 −1.06 10.86 10.60 −.79 11.00 10.61 −.25 7.91 7.64 −.26 8.06 7.65
15 −.16 7.14 7.05 −.10 7.18 7.05 −1.32 5.21 5.08 −1.33 5.30 5.08
20 −.14 5.41 5.27 −.13 5.43 5.27 .43 3.91 3.80 .43 3.93 3.80
25 −.05 4.34 4.22 −.05 4.35 4.22 −.38 3.14 3.06 −.38 3.15 3.06
30 .04 3.62 3.52 .04 3.62 3.52 .21 2.50 2.55 .21 2.61 2.55

D: [D11,D12,D13,D22,D23,D33] = [.8,0,0, .8,0, .5] (units: ×10−3 mm2/s)

D11 = .8 D13 = 0

5 −19.67 21.97 21.40 −7.39 23.59 21.60 .03 14.78 14.60 .26 15.91 14.32
10 −2.11 11.37 11.06 .06 11.55 11.08 .30 7.59 7.36 .36 7.71 7.36
15 −1.17 7.57 7.37 −.30 7.68 7.38 −2.18 5.02 4.91 −.39 5.05 4.91
20 −.94 5.65 5.55 −.48 5.67 5.55 .36 3.76 3.67 .33 3.77 3.67
25 −.54 4.49 4.43 −.25 4.50 4.43 .33 2.99 2.95 .33 3.00 2.95
30 .39 3.78 3.68 .59 3.78 3.68 .06 2.53 2.46 .06 2.53 2.46

D: [D11,D12,D13,D22,D23,D33] = [1.0,0,0, .55,0, .55] (units: ×10−3 mm2/s)

D11 = 1.0 D13 = 0

5 −47.43 23.64 22.86 −18.80 25.95 23.29 .10 15.52 15.08 .16 16.91 15.20
10 −5.94 12.41 12.17 1.18 12.73 12.24 −.01 8.08 7.89 −.02 8.25 7.90
15 −3.99 8.30 8.09 −1.05 8.39 8.11 −.55 5.34 5.22 −.54 5.39 5.22
20 −2.05 6.25 6.08 −.43 6.28 6.09 .02 4.02 3.94 .03 4.04 3.94
25 −1.45 4.97 4.86 −.44 4.98 4.87 1.15 3.27 3.14 1.16 3.28 3.14
30 −1.28 4.12 4.05 −.57 4.13 4.05 −.33 2.66 2.62 −.33 2.67 2.62

D: [D11,D12,D13,D22,D23,D33] = [.9,0,0, .7,0, .5] (units: ×10−3 mm2/s)

D11 = .9 D13 = 0

5 −33.75 23.00 22.24 −13.62 24.93 22.55 −2.58 15.20 14.68 −2.79 16.49 14.75
10 −4.29 11.84 11.57 .15 12.09 11.61 .31 7.79 7.53 .34 7.93 7.54
15 −2.11 7.90 7.73 −.31 7.96 7.74 −.48 5.13 5.04 −.47 5.17 5.04
20 −1.84 5.93 5.80 −.83 5.96 5.80 −.19 3.90 3.77 −.18 3.92 3.77
25 −.27 4.68 4.64 .35 4.69 4.64 −.19 3.10 3.01 −.18 3.11 3.01
30 −.58 4.03 3.87 −.14 4.04 3.87 .43 2.56 2.51 .43 2.57 2.51

NOTE: Bias denotes the bias of the mean of the WLS estimates; RMSE denotes the root mean-squared error; SD denotes the mean of the standard deviation estimates. Six different
SNRs {5,10,15,20,25,30} and 10,000 simulated datasets were used for each case. Only diagonal diffusion tensors were considered.

greater than .7, that of m2 was close to 0.7, and that of m3 was
smaller than .7 [Fig. 1(a)]. As expected, we observed that the
bias of mi (the mean value of mi − λ) decreased as the SNR
increased. In contrast, based on the generated eigenvalues using
the asymptotic results in Theorem 3, the bias of the estimated
eigenvalues at all SNRs can be predicted accurately [Fig. 1(a)].
Besides the bias, inspecting the Q–Q plot of mi against m(j),i

[Fig. 1(b)] revealed that the limiting density (9) can accurately
predict the stochastic behavior of m1 at SNR = 20. In terms of
eigenvectors, at SNR = 20, the distribution of e1 estimated from
the simulated DW data was a uniform distribution on the unit
sphere [Figs. 1(c) and 1(d)] and was close to the distribution of
the generated e1 based on Theorem 3 [Figs. 1(e) and 1(f)].

Figure 2 summarizes the results for Di (i = 2,3,4) as fol-
lows. First, for the oblate tensor D2, the second-order approxi-
mation of mi (i = 1,2) performed better than the first-order ap-

proximation of mi (i = 1,2) when SNR ≤ 10, whereas both the
first- and second-order approximations of mi (i = 1,2) were
accurate when SNR > 10 [Fig. 2(a)]. The prediction of bias for
m3 based on (12) was highly accurate at all SNRs [Fig. 2(a)].
Moreover, in terms of e1, the second-order approximation of
e1 led to a better prediction of the simulated distribution of e1
at SNR = 20 than did the first-order approximation of e1, be-
cause the second-order approximation accounted for additional
variation along v3, while the first-order approximation did not
[Figs. 2(b) and 2(c)]. Second, for the prolate tensor D3, the
second-order approximations of mi were accurate at all SNRs
[Fig. 2(d)]. The second-order approximation of e1 led to ac-
curate predictions even at small SNRs and the discrepancies
between the first-order and second-order approximations were
negligible when SNR > 10 [Fig. 2(e)]. Moreover, the first-order
approximation of e1 provided a good prediction of the estimated
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Figure 1. Results from a simulation study of the tensor D1 = .7I3 (units: 10−3 mm2/s). (a) shows E(mi) = λ + n−1/2E(hi) (i = 1,2,3)

and the mean value of the estimated eigenvalues mi (i = 1,2,3) as a function of SNR from 5 to 30 based on 10,000 simulated
DW datasets. (d) shows the Q–Q plot of the estimated eigenvalues m1 based on 10,000 simulated DW datasets against eigenvalues
{m(j),1 = .7 + n−1/2h(j),1 : j = 1, . . . ,10,000} at SNR = 20, where the h(j),1 are simulated from the limiting density (9). (b) and (c) show
the angle histogram plots of θ and φ based on 10,000 simulated DW datasets at SNR = 20, respectively, where θ ∈ [0,2π ] and φ ∈ [0,π ] are
subcomponents of (1, θ,φ), the spherical coordinate of e1. (e) and (f) show the angle histogram plots of θ and φ based on 10,000e1 that are
simulated from the limiting density (9).

principal directions at SNR = 20 [Fig. 2(f)]. Finally, for the
nondegenerate tensor D4, the second-order approximations of
mi (i = 1,2,3) were accurate at all SNRs [Fig. 2(g)]. In addi-
tion, the first-order approximation of e1 was relatively accurate
for SNRs ≥ 15 [Figs. 2(h) and 2(i)].

3.3 Type I and II Error Rates of PLRT(i)

We evaluated the performance of each of the PLRT(i) when
used as the test statistics for the three hypotheses pertaining
to the classifications of tensor morphologies (e.g., isotropic or
not). Different diagonal tensors Di (i = 1,2,3,4), whose three
diagonal elements were, respectively, [.7, .7, .7], [.8, .8, .5],
[1.0, .55, .55], and [.9, .7, .5] (units: 10−3 mm2/s), were cho-
sen for the various test statistics, because each PLRT(i) was
developed for diffusion tensors with different morphologies un-
der the null hypothesis. To evaluate PLRT(1), we chose three
diagonal diffusion tensors whose three diagonal elements were,
respectively, D1, D2, and D4 (units: 10−3 mm2/s). To evaluate
PLRT(2), we chose three other diagonal tensors whose three
diagonal elements were, respectively, given by D2, D4, and D3
(units: 10−3 mm2/s). To evaluate PLRT(3), we chose three
other tensors whose three diagonal elements were D3, D2, and
D4 (units: 10−3 mm2/s), respectively. For each simulation, two
significance levels, 5% and 1%, were considered and 10,000
replications were used to estimate the nominal significance lev-
els (or rejection rates). For a fixed α, if the Type I rejection rate
is smaller than α, then the test is conservative, whereas if the
Type I rejection rate is greater than α, then the test is anticon-
servative, or liberal.

Under the null hypothesis, the estimated significance lev-
els of the PLRT(i) were reasonably close to the nominal sig-

nificance levels for this small sample of 30 DW images (Ta-
ble 2). Overall, although the Type I errors for the three test
statistics were not excessive, these results indicate that the use
of the scaled chi-squared distribution as a simple and reason-
able approximation to the distribution of PLRT(i) under the
null hypothesis requires further improvement for small sam-
ple sizes. Finding a better approximation to the distribution
PLRT(i) under the null hypothesis warrants further research.
Moreover, as expected, statistical power increased with the de-
gree of anisotropy and the SNR values.

4. APPLICATION

We acquired diffusion-weighted MR images of the brains of
seven healthy adult volunteers (four men and three women; all
right handed; mean age 28 ± 4.2 years) on a GE 3.0-T whole-
body magnetic resonance imaging (MRI) scanner (Milwaukee,
WI). The imaging acquisition scheme {(bi, ri ) : i = 1, . . . ,30}
consisted of m = 5 baseline images with b = 0 s/mm2 and
n−m = 25 directions of diffusion gradients that were arranged
uniformly in three-dimensional space at b = 1,000 s/mm2

(Hardin et al. 1994). Each diffusion-weighted image contained
256 × 256 × 34 voxels.

For each subject, we used a heteroscedastic linear model (2)
to construct the diffusion tensors. We subsequently calculated
at each voxel the WLS estimate θ̂ (1), the SNR (S0/σ ), three
eigenvalue–eigenvector pairs {(mi, ei ) : i = 1,2,3}, the invari-
ant measures, including CL = (m1 − m2)/I1, CP = 2(m2 −
m3)/I1, RA =

√
1 − 3I2I

−2
1 , and FA =

√
1 − I2(I

2
1 − 2I2)−1,

and our three test statistics PLRT(i) and their associated p val-
ues, where m1 ≥ m2 ≥ m3, I1 = tr(D̂), I2 = m1m2 + m1m3 +
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Figure 2. Results from a simulation study of three diagonal tensors Di (i = 2,3,4). (a)–(c) summarize results for D2: [.8, .8, .5] (units:
10−3 mm2/s); (d)–(f) are for D3: [1.0, .55, .55] (units: 10−3 mm2/s); and (g)–(i) are for D4: [.9, .7, .5] (units: 10−3 mm2/s). Moreover,
10,000 simulated datasets were used for all cases. (a) shows the first- and second-order approximations of E(mi) (i = 1,2), the second-order
approximation of E(m3), and the mean value of mi (i = 1,2,3) as a function of the SNRs from 5 to 30. At SNR = 20, (b) shows the scatterplots
of e1 (blue points) and e(j),1 (yellow points) simulated from the first-order approximation, whereas (c) shows the scatterplots of e1 (blue points)
and e(j),1 (yellow points) simulated from the second-order approximation. (d) and (g) show the second-order approximations of E(mi) (i = 1,3)

and the mean value of mi (i = 1,2,3) as a function of the SNRs from 5 to 30 for D2 and D3, respectively. (e) and (h) show the mean value and
the standard deviation of arccos(|〈e1,v1〉|) for D2 and D3, respectively: For D2, e1 is based on simulated datasets (blue squares), the first-order
approximation (green triangles), or the second-order approximation (red circles); for D3, e1 is based on either simulated datasets (blue squares)
or the first-order approximation (red circles). (f) and (i) show the scatterplots of the estimated e1 (blue points) and eigenvectors e(j),1 (yellow
points) simulated from the first-order approximation for D2 and D3, respectively, at SNR = 20.

m2m3, and I3 = m1m2m3. We further set the significance level
at 1% and used the p values of PLRT(i) (i = 1,2,3) to classify
the morphology of the DT at each voxel. Furthermore, based on
the tensor morphology at each voxel, we constructed the con-
fidence intervals of the three eigenvalues and the confidence
cones of e1 using the asymptotic results in Theorems 3 and 4.
We tracked fibers in a selected region of interest (ROI) using a
commonly available software package (DTI Track 2005; Fillard
2005).

Using a single representative subject, we presented the maps
of CL, CP, and FA, the − log10(p) maps of PLRT(i) (i =
1,2,3), the map of morphological types, and the map of prin-
cipal directions at a selective slice in Figures 3(a)–3(h). In the
− log10(p) value maps of PLRT(i) (i = 1,2,3), a voxel hav-
ing a p value less than .01, which corresponds to a − log10(p)

value of greater than 2, was regarded as significant, and all

(− log10(p)) values greater than 8 were set equal to 8 to im-
prove the visualization of the − log10(p) values [Figs. 3(b),
3(e), and 3(h)]. In the map of the tensor morphologies, a four-
color scheme was used to represent the four differing morpholo-
gies: blue for isotropic tensors, red for oblate tensors, yellow for
prolate tensors, and white for nondegenerate tensors [Fig. 3(c)].
We also superimposed the oblate voxels (in yellow) on a three-
color map of principal directions (green, inferior–superior; red,
left–right; blue, anterior–posterior) [Fig. 3(f)].

The − log10(p) values of PLRT(i) (i = 1,2,3) were more
sensitive and specific in detecting degenerate and nondegen-
erate tensors [Figs. 3(b), 3(e), and 3(h)]. For instance, in the
map of linear anisotropy measures [Fig. 3(d)], although red and
white voxels had relatively large differences between λ1 and
λ2, whether the diffusion tensors represented in blue are truly
oblate, however, is unclear. The − log10(p) maps of PLRT(2)
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Table 2. Comparisons of the rejection rates for the test statistics PLRT(i) (i = 1,2,3) under the single-tensor models

Statistic: PLRT(1); D: [D11,D22,D33] (units: 10−3 mm2/s)

H
(1)
0 : [.7, .7, .7] H

(1)
1 : [.8, .8, .5] H

(1)
1 : [.9, .7, .5]

SNR α = .01 α = .05 α = .01 α = .05 α = .01 α = .05

5 .028 .084 .072 .177 .077 .189
10 .027 .083 .238 .428 .286 .493
15 .026 .082 .565 .753 .678 .848
20 .025 .079 .867 .951 .933 .979
25 .022 .078 .982 .997 .996 .999
30 .023 .077 .998 1.000 .999 1.000

Statistic: PLRT(2); D: [D11,D22,D33] (units: 10−3 mm2/s)

H
(2)
0 : [.8, .8, .5] H

(2)
1 : [.9, .7, .5] H

(2)
1 : [1.0, .55, .55]

SNR α = .01 α = .05 α = .01 α = .05 α = .01 α = .05

5 .019 .063 .017 .060 .033 .106
10 .017 .062 .055 .151 .274 .495
15 .014 .057 .166 .344 .754 .909
20 .015 .061 .348 .562 .975 .996
25 .013 .056 .565 .771 .999 1.000
30 .014 .057 .761 .905 1.000 1.000

Statistic: PLRT(3); D: [D11,D22,D33] (units: 10−3 mm2/s)

H
(3)
0 : [1.0, .55, .55] H

(3)
1 : [.8, .8, .5] H

(3)
1 : [.9, .7, .5]

SNR α = .01 α = .05 α = .01 α = .05 α = .01 α = .05

5 .021 .069 .016 .062 .015 .060
10 .019 .069 .095 .231 .072 .185
15 .017 .065 .340 .574 .212 .405
20 .018 .070 .699 .873 .442 .662
25 .016 .065 .931 .984 .687 .854
30 .017 .064 .992 .999 .859 .954

NOTE: Six different SNRs {5,10,15,20,25,30} and 10,000 simulated datasets were used for each case. Two significance levels, 5% and 1%, and only diagonal diffusion tensors were
considered.

for the oblate tensors [Fig. 3(e)], in contrast, identified many
voxels that had large − log10(p) values and had relatively small
values of the linear anisotropy measure [Fig. 3(d)]. In the map
of principal directions [Fig. 3(f)], oblate tensors occurred pri-
marily in voxels where fiber tracts cross, as well as along the
boundaries of different tissue types.

Tensor morphologies in a region of interest were exam-
ined to illustrate the proposed methods for tensor classification.
The ROI [Figs. 4(a) and 4(b)] contained 900 (30 × 30) vox-
els representing diffusion tensors with differing morphologies.
The percentage of the total that falls into each tensor group is
as follows: 68.78% were nondegenerate, 13.78% were oblate,
11.67% were prolate, and 5.77% were isotropic. We observed
from a three-color map of principal directions [Fig. 4(c)] that
three fibers oriented from left to right (red), two fibers oriented
from inferior to superior (green), and oblate tensors (yellow
points) were located primarily in voxels where fiber tracts cross.
The tracking algorithm confirmed those three red fibers, two
green fibers, and one blue fiber [Fig. 4(e)]. We further applied
asymptotic results from Theorems 3 and 4 to a diffusion ten-
sor in a selected voxel of the ROI [the fourth ellipsoid from
the right in the last row of Fig. 4(d)]. The three eigenvalues of

the estimated diffusion tensor were calculated as .9631, .6722,
and .5619 (units: 10−3 mm2/s), respectively. The p value of
PLRT(1) is smaller than 10−8, the p value of PLRT(2) is
10−7.27, and the p value of PLRT(3) is 10−1.349. Thus, at the
1% significance level, this tensor was classified as prolate in
shape. Furthermore, the principal direction e1 of the estimated
diffusion tensor was calculated as either (.926, .229, .300) or
−(.926, .229, .300). We also used (19) to construct a cone that
approximated the distribution of the principal direction e1 of
this tensor [Fig. 4(f)], and we used (17) to construct a 1−α con-
fidence interval of λ1 as [.9631 − .041 × zα/2, .9631 + .041 ×
zα/2].

After classifying the morphology of the DT at each voxel, we
examined the histogram of m1, the plots of m1 versus m2 and
m2 versus m3, and the histogram of FA for each morphologi-
cal class of tensors [Figs. 5(a)–5(p)]. For isotropic tensors, the
histogram of m1 was skewed to the right and m1 was widely
spread from .5 to 4.0 (units: 10−3 mm2/s) [Fig. 5(a)], whereas,
for the other three classes of tensors, the histogram of m1 was
bell shaped and m1 was mainly distributed from .5 to 2.0 (units:
10−3 mm2/s) [Figs. 5(e), 5(i), and 5(m); Pierpaoli et al. 1996].
As expected, for degenerate tensors, the difference between two
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Figure 3. Maps of invariant measures: (a) FA, (d) CL, and (g) CP; the − log10(p) value maps: (b) PLRT(1), (e) PLRT(2), and (h) PLRT(3);
(c) map of tensor morphologies; and (f) map of principal directions at a selective slice from a single subject. Tensor morphologies in panel (c):
white, nondegenerate; red, oblate; yellow, prolate; and blue, isotropic. Principal direction maps in panel (f): yellow, overlay indicates tensors
having an oblate shape. The color scale in (b), (e), and (h) reflects the size of the values of − log10(p) with black to blue representing smaller
values (0–1) and red to white representing larger values (1.88–8).

consecutive eigenvalues was close to 0, even in the presence of
the sorting bias [Figs. 5(b), 5(c), 5(f), and 5(g)]. For instance,
the values of m1 − m2 were small for oblate tensors [Fig. 5(f)].
For all classes of tensors, the differences between m2 and m3
were relatively small, because all points (m2,m3) were posi-
tioned near the red line m2 = m3 [Figs. 5(c), 5(g), 5(k), and
5(o)]. For many prolate and nondegenerate tensors, the val-
ues of m1 were much larger than those of m2 [Figs. 5(j) and
5(n)]. The histograms of the FA for all four classes of tensors
were skewed to the right, and the median of the FA values in-
creased with the degree of anisotropy (nondegenerate > pro-
late > oblate > isotropic) [Figs. 5(d), 5(h), 5(l), and 5(p)].

We also constructed 95% confidence intervals of the three
eigenvalues, the true FA for nonisotropic tensors, and the true
CL for prolate and nondegenerate tensors, and presented them
at a selective slice of a representative subject in Figures 6(a)–
6(o). The three eigenvalues in each of the voxels containing
cerebrospinal fluid were greater than 2.5 (10−3 mm2/s). Except
for the voxels containing cerebrospinal fluid, m1 in most vox-
els ranged from .5 (10−3 mm2/s) to 1.5 (10−3 mm2/s) across
the slice, whereas the second eigenvalue and the smallest eigen-
value in most of the voxels were smaller than 1.2 (10−3 mm2/s)

[Figs. 6(a)–6(i)]. Because of the inherent sorting bias, the esti-
mated CL value was always larger than 0 for the oblate and
isotropic tensors in probability (Thm. 2). Thus, we could not
use the estimated CL value as a statistic to construct 95% con-
fidence intervals for the true CL (= 0). However, in prolate and
isotropic tensors, we applied the asymptotic results in Theorem
4 to construct the 95% confidence intervals for the true CL. For
FA in nonisotropic tensors, the delta method was used to con-
struct the 95% confidence intervals for true FA based on the
asymptotic normality in Theorem 1(b) and a Taylor’s series ex-
pansion (van der Vaart 1998; Zhu et al. 2006).

We studied the prevalence of the four standard morphological
classes of tensors (isotropic, oblate, prolate, and nondegenerate)
in vivo in the seven adult brains using our statistical framework
for the classification of tensor morphology. We determined the
standard types of DTs using the test statistics PLRT(i) and their
associated p values at the 1% significance level for each of the
three hypothesis tests. These percentages, shown in Table 3,
were close to those obtained previously in Zhu et al. (2006).

We calculated the means and standard deviations of eight
quantities, including mi (i = 1,2,3), tr(D̂), CL, CP, RA, and
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Figure 4. Maps of classified DT morphologies. (a) Within the ROI highlighted inside a black square; (b) the morphological map in the
ROI; (c) the principal direction map within the ROI; (d) the ellipsoid map in the ROI; (e) the fiber tracts passing through the ROI; (f) the
scatterplot of principal directions (yellow points) simulated from the first-order asymptotic expansion of e1 and the estimated principal directions
e1 = ±(.926, .229, .300) (blue lines) for a selective tensor, whose ellipsoid is the fourth one from the right in the last row of (d).

FA, within each morphological class for each subject and their
means and standard deviations across the seven subjects. The
cross-subject variations of these eight quantities were relatively
small. The mi (i = 1,2,3) and tr(D̂) in isotropic tensors were
much larger than those in nonisotropic tensors. Because RA
and FA were invariant measures for quantifying the difference
among mi (i = 1,2,3), the means of RA and FA increased with
the degree of anisotropy, as expected. However, because CL
only measured the difference between m1 and m2, the means
of CL in prolate and nondegenerate tensors were much larger
than those in isotropic and oblate tensors. Similarly, because CP
only measured the difference between m2 and m3, the means of
CP in oblate and nondegenerate tensors were much larger than
those in isotropic and prolate tensors.

5. DISCUSSION

We have presented a set of answers for three interrelated
questions that are central to the statistical analysis of DTI data.
First, we have proposed a heteroscedastic linear model to an-
alyze noise-laden diffusion-weighted MR images. To estimate
the unknown parameter θ , we have used both theoretical re-
sults and numerical simulations to justify and support the use
of the WLS estimate θ̂ (1) starting from θ̂LS. We have also de-
rived an explicit form for estimating Cov(θ̂ (1)). For quantify-
ing the effects of noise on the eigenspace components of the
DTs, we have established the asymptotic expansions and lim-
iting distributions of the estimated eigenvalues and eigenvec-
tors for both degenerate and nondegenerate tensors. Our asymp-



1098 Journal of the American Statistical Association, December 2007

Figure 5. Maps of the histogram of m1, the plot of m1 versus m2, the plot of m2 versus m3, and the histogram of FA for four morphological
types from a single subject. Columns from left to right show the histogram of m1, the plot of m1 versus m2, the plot of m2 versus m3, and the
histogram of FA. Rows from top to bottom show isotropic [(a)–(d)], oblate [(e)–(h)], prolate [(i)–(l)], and nondegenerate tensors [(m)–(o)].

totic results for estimated eigenvalues and eigenvectors agree
with the results obtained using various Monte Carlo simula-
tions at relatively low to high SNRs. Finally, we have developed
PLRT(i) to classify the morphology of DTs at each voxel as
one of four standard types—nondegenerate, oblate, prolate, or
isotropic. The null limiting distributions of PLRT(i) were used
to determine rigorous statistical thresholds for the classification
of tensor morphologies. In addition, we have demonstrated the
effectiveness of our theoretical procedure by applying it to a
real dataset to characterize the degree of uncertainty in the esti-
mated eigenvalues and eigenvectors at each voxel of the human
brain in vivo.

Our results differ substantially from those using a previous
method (Behrens et al. 2003) and in several aspects. First, the
previous method is a fully parametric approach that assumes
a Gaussian distribution with homogeneous variance for the er-
ror components [see eq. (9) in Behrens et al. 2003], whereas
ours is a semiparametric approach that allows a large class of
distributions for the error components. The previous method is
Bayesian and conducts statistical inference based on the pos-
terior distribution of parameters of interest, such as the largest
eigenvalue, whereas ours is a frequentist approach that conducts
statistical inference based on the asymptotic results (e.g., the as-
ymptotic distribution) of the estimate and test statistic. Finally,

the previous method estimates the probability of the existence
of fiber tracts between any two points, whereas ours quantifies
the effects of noise on the estimation of diffusion tensors, their
eigenvalues and eigenvectors, and classification of tensor mor-
phologies.

Our methods are useful for addressing other important issues
in the field of diffusion tensor imaging. We discuss several of
those here.

Invariant Measures. Our results can be used to study the
statistical properties (e.g., small-sample properties and limit-
ing distributions) of invariant measures derived from estimated
eigenvalues and eigenvectors, including fractional anisotropy
(Skare et al. 2000; Mori and van Zijl 2002). For instance, we
can apply Theorems 3 and 4 to the derivation of the limit-
ing distribution of linear and planar anisotropy measures for
both degenerate and nondegenerate tensors (Hasan et al. 2001).
These statistical properties are useful for undertaking further
statistical inference on the quantities derived from DTs, such as
the calculation of their means, standard errors, and confidence
intervals, as well as for determining rational and nonarbitrary
thresholds for classifying the presence of anisotropy, which are
required in tractography algorithms (Mori and van Zijl 2002;
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Figure 6. Maps of (a)–(c) m1 and the 95% lower and upper confidence bounds of confidence intervals of λ1; (d)–(f) m2 and the 95% lower
and upper confidence bounds of confidence intervals of λ2; (g)–(i) m3 and the 95% lower and upper confidence bounds of confidence intervals
of λ3; (j)–(l) FA and the 95% lower and upper confidence bounds of confidence intervals of true FA for nonisotropic tensors; and (m)–(o) CL
and the 95% lower and upper confidence bounds of confidence intervals of true CL for prolate and nondegenerate tensors at a selective slice
from a single subject. The color scale in the first three rows reflects the size of the values of mi (i = 1,2,3) with black to blue representing
smaller values (0–1.2) (units: 10−3 mm2/s) and red to white representing larger values (1.8–4) (units: 10−3 mm2/s), whereas the color scale in
the last two rows reflects the size of the values of CL and FA with black to blue representing smaller values (0–.2) and red to white representing
larger values (.4–1).

Jones 2003). These statistical properties are also useful for de-
termining the minimum signal-to-noise ratio and number of
acquisitions to discriminate accurately differences in invariant
measures, such as FA, across fibers (e.g., in the corpus callosum
and internal capsule).

Acquisition Schemes. Our results can be used to study and
select an optimal acquisition scheme, which minimizes cer-
tain design criteria (Jones, Horsfield, and Simmons 1999).

For instance, to accurately estimate D accurately, we can use
tr{Cov[θ̂ (1)]}, the trace of the covariance matrix of θ̂ (1), to con-
struct a design criterion, and then we can numerically mini-
mize tr{Cov[θ̂ (1)]} by varying the number of acquisitions, b

factors, and diffusion gradients. Furthermore, to estimate the
principal direction of prolate and nondegenerate tensors accu-
rately, we can apply the results of (19) and (22) in Theorem 4
to construct a design criterion, such as the trace of the covari-
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Table 3. The proportion, mean of eigenvalues, and mean of invariant measures of the DTs classified into four morphologies in seven adults
subjects

Per
(%)

m1 m2 m3

Tensor Statistics units: 10−3 mm2/s tr(D) RA FA CL CP

ISO 34.74 M.M. 1.424 1.287 1.159 3.859 .067 .115 .038 .073
s.d. .100 .098 .095 .285 .005 .008 .003 .005

3.45 M.sd. .716 .658 .614 1.960 .043 .070 .030 .056
s.d. .051 .049 .047 .140 .004 .006 .003 .004

OB 11.22 M.M. .993 .902 .662 2.557 .128 .215 .039 .206
s.d. .048 .049 .053 .145 .010 .015 .003 .015

1.21 M.sd. .383 .367 .356 1.086 .064 .102 .024 .111
s.d. .065 .065 .062 .193 .004 .005 .002 .006

PRO 27.88 M.M. 1.164 .750 .650 2.562 .201 .315 .174 .084
s.d. .034 .029 .030 .088 .009 .014 .007 .006

.48 M.sd. .476 .384 .373 1.139 .145 .193 .140 .051
s.d. .032 .046 .045 .123 .001 .002 .001 .004

ND 26.15 M.M. 1.074 .685 .439 2.198 .265 .415 .182 .232
s.d. .013 .018 .022 .046 .014 .019 .011 .011

2.93 M.sd. .234 .182 .188 .490 .118 .154 .113 .099
s.d. .012 .021 .022 .068 .006 .004 .007 .005

NOTE: ISO, isotropic; OB, oblate; PRO, prolate; ND, nondegenerate; M.M., mean of means; s.d., standard deviation; M.sd. mean of standard deviations; RA, rational anisotropy; FA,
fractional anisotropy; CL, linear shape; CP, planar shape.

ance matrix of e1, and then we can optimize the acquisition
scheme.

Nonparametric Bootstrapping. Although nonparametric
bootstrapping methods have been proposed for the analysis of
eigenvalues, eigenvectors, and their associated invariant scalar
indices, as well as for use even in tractography algorithms, no
asymptotic results until now have been provided to support the
appropriate statistical use of bootstrapping methods in this con-
text (Jones 2003; Pajevic and Basser 2003; Jones and Pierpaoli
2005; Lazar and Alexander 2005). Our results in Theorems 1–4
may help in establishing the validity of nonparametric boot-
strapping methods in the analysis of diffusion tensor images
(Shao and Tu 1995; sec. 1.6). We will present the asymptotic
properties of nonparametric bootstrapping methods used for
DTI in a separate article.

Relevance for Fiber-Tracking Algorithms. The uncertainty
of the principal direction within each voxel has been developed
into a general method for making probabilistically based maps
of fiber tracts (Parker et al. 2003), even though a valid method
for approximating the uncertainty of the principal direction has
not been proposed in such a framework. We have, therefore, de-
veloped a method to statistically quantify the degree of uncer-
tainty in estimating the principal direction e1 within each voxel
when the diffusion tensor is either degenerate or nondegener-
ate. Therefore, we can produce more meaningful probabilistic
maps for fiber tracts by combining the uncertainty of the prin-
cipal direction e1 with the proposed method for constructing
probabilistic maps of fiber tracts (Parker et al. 2003).

Spatial Normalization. Our results are also useful for
coregistering DTI datasets across individuals. Methods for spa-
tial normalization of diffusion tensor fields have been proposed
based on the distribution of the principal direction within each
voxel (Xu, Mori, Shen, van Zijl, and Davatzikos 2003). These

methods, however, use the principal directions from neighbor-
ing voxels to approximate the distribution of the principal di-
rection in a given voxel. Our results show that the distribu-
tion of the principal directions can be approximated using only
diffusion-weighted data within the voxel itself.

Multiple-Tensor Models. Because our findings are limited
to a model in which only a single tensor is present within each
voxel, future investigations should consider developing models
that account for the presence of multiple tensors within a single
voxel (Alexander, Barker, and Arridge 2002; Frank 2002; Tuch
et al. 2002; Wedeen, Hagmann, Tseng, Reese, and Weisskoff
2005). The limited spatial resolution of DW images will always
include multiple tensors within the same voxel, and this reality
will, therefore, always be a challenge for developing statistical
models for tensor estimation and fiber tracking in DTI datasets.
How to appropriately estimate the number of tensors within
each voxel, and how to quantify the effects of noise on those
multiple tensors and their associated eigenvalues and eigenvec-
tors, remain daunting problems.

We hope that statistical methods will play an important role
in addressing these and other challenges in the field of diffusion
tensor imaging.

APPENDIX: ASSUMPTIONS

The following assumptions are needed to facilitate development of
our methods, although they are not the weakest possible conditions.

(C1) The errors ηi are independent and supi Eη2
i

< ∞.
(C2) λmin(An) → ∞.
(C3) θ∗ is an interior point of � and supi bi < ∞.
(C4) limC→∞ supi E[η2

i
1{|ηi | > C}] = 0 and infi E[η2

i
] > 0,

where 1(·) denotes the indicator function.
(C5) max1≤i≤n zT

i
(An)−1zi → 0 as n → ∞.

(C6) supi E[η4
i
] < ∞.
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(C7)
∑n

i=1 zizT
i

is always positive definite for n ≥ 7, and the dis-
tribution of (logS1, . . . , logSn) is absolutely continuous with respect
to n-dimensional Lebesgue measure.

(C8) The three eigenvalues of D̂ are distinct with probability 1.
(C9)

√
nVec(D̂ − D) converges to a multivariate normal distribu-

tion with mean 0 and covariance matrix �D .
(C10) Qn converges to a matrix Q, which satisfies 0 < λmin(Q) ≤

λmax(Q) < ∞, where Qn = G
1/2
n,∗B−1

n,∗G
1/2
n,∗ and λmax(Q) denotes the

maximum eigenvalue of Q.

Comments. Conditions (C1) and (C2) are sufficient and necessary
conditions for θ̂LS to be strongly consistent (Lai, Robbins, and Wei
1979; Chen, Hu, and Ying 1999). Condition (C3) is a natural condition
to assume for diffusion tensor imaging, because the diffusion tensor is
associated with the covariance matrix of a diffusion process and bi , the
b factor, usually ranges from 0 to 3,000 s/mm2 (Kingsley 2006a–c).
Conditions (C4)–(C6) are standard conditions to establish the asymp-
totic normality of θ̂LS for a linear heteroscedastic model (Eicker 1963;
White 1980). Condition (C7) is similar to the condition that was used
for the sample covariance matrix in Okamoto (1973; Anderson 2003).
Conditions (C1)–(C7) are sufficient conditions for conditions (C8) and
(C9). Condition (C10) is required to ensure the existence of the asymp-
totic distributions of PLRT(i).

[Received June 2006. Revised January 2007.]
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Comment
Armin SCHWARTZMAN

1. INITIAL REMARKS

This interesting and timely article attempts an important
goal: to formalize the inference about diffusion tensors from
diffusion weighted images in a single subject in the presence
of measurement and artifact noise. The article’s main contribu-
tions are:

• A heteroscedastic linear model to account for noise in
diffusion-weighted MRI data along with theoretical sup-
port for the use of a (one-step) weighted least squares al-
gorithm to solve it.

• Asymptotic distributions of the estimated eigenstructure
of the diffusion tensor under degenerate and nondegener-
ate cases, in addition to pseudolikelihood ratio tests for
classifying each tensor into one of those cases.

As the authors explain, inferences about the diffusion ten-
sor in a single subject are usually based on quantities derived
from the tensor, the most common being scalar functions of the
eigenvalues such as fractional anysotropy (FA) and trace, and
the principal diffusion direction (PDD), the eigenvector corre-
sponding to the largest eigenvalue. Whereas standard statistics
are often used to analyze the scalar quantities, formal modeling
of the PDD is not usually seen. Perhaps this is because statis-
tical methods for unit vectors in three-dimensional space are
not as widely known in the general scientific community, even
though they have been studied extensively in the field of direc-
tional statistics (Mardia and Jupp 2005).

Especially because tractography algorithms are based on the
PDD, it is important to have a characterization of the uncer-
tainty in that vector as a result of noise. The authors provide
this in an asymptotic sense as the number of measurements
gets large. When the true tensor is oblate (i.e., the two largest
eigenvalues are equal) or isotropic (i.e., all three eigenvalues are
equal), the PDD is not defined, making the uncertainty infinite.

Armin Schwartzman is Assistant Professor, Department of Biostatistics,
Harvard School of Public Health and Dana-Farber Cancer Institute, Boston,
MA 02115 (E-mail: armins@hsph.harvard.edu).

Algorithms often deal with this problem by thresholding a func-
tion of the eigenvalues such as FA or CL (Westin et al. 2002),
the idea being that if the tensor is not sufficiently anisotropic,
then the PDD is not to be trusted. Instead of numerically try-
ing appropriate thresholds, the authors mathematically derive
the uncertainty and provide formal tests to classify whether the
tensor is isotropic, oblate, prolate, or fully anisotropic.

A difficulty with the article is that the mathematical results
obscure how the obtained quantities actually can be computed
and used in practice. More specifically, theorem 1 proves the
asymptotic normality of θ̂ and provides a way to estimate the
asymptotic covariance, whereas the results of section 2.2 give
the asymptotic distribution of the eigenstructure of the tensor as
a function of the asymptotic covariances �U , �U11 , and �U22 .
However, the results do not explain how these parameters de-
pend on the underlying true diffusion and noise parameters.
Clearly, the asymptotic covariances depend on the acquisition
scheme z1, . . . , zn. The authors have preferred to give general
results and to not commit themselves to particular acquisitions.

Admittedly, general analytical expressions are difficult to ob-
tain, so a solution offered by the authors is to compute the as-
ymptotic covariances by simulation, which is what they imple-
ment in section 3. The particular acquisition used by the authors
in their simulation consists of m = 5 baseline images with b = 0
and n − m = 25 directions of diffusion gradients arranged uni-
formly in three-dimensional space with b �= 0. In this comment,
I hope to provide some insight into the asymptotic covariance
parameters, based on an asymptotic version of this acquisition
scheme. Specifically, I derive analytic forms of the asymptotic
covariances of θ̂ and U, U11, and U22. It turns out that these
provide a surprising answer to the question of what is the opti-
mal ratio between the number of measurements at b = 0 versus
the number of measurements at b �= 0.
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