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Cook’s (Cook, 1977) distance is one of the most important di-
agnostic tools for detecting influential individual or subsets of ob-
servations in linear regression for cross-sectional data. However, for
many complex data structures (e.g., longitudinal data), no rigorous
approach has been developed to address a fundamental size issue:
deleting subsets with different numbers of observations introduces
different degrees of perturbation to the current model fitted to the
data and the size of Cook’s distance is associated with the degree
of the perturbation. The aim of this paper is to address this “size
issue” in general parametric models with complex data structures.
We propose a new quantity for measuring the degree of the pertur-
bation introduced by deleting a subset. We use stochastic ordering
to quantify the stochastic relationship between the degree of the per-
turbation and the size of Cook’s distance. We develop several scaled
Cook’s distances to resolve the size issue of Cook’s distance. Theo-
retical and numerical examples are examined to highlight the broad
spectrum of applications of these scaled Cook’s distances in a formal
influence analysis.

1. Introduction. Influence analysis assesses whether a modification of
a statistical analysis, called a perturbation, seriously affects specific key in-
ferences, such as parameter estimates. Such perturbation schemes include
the deletion of individual or a subset of observations, case weight perturba-
tion, and covariate perturbation among many others [9, 10, 30]. If a small
perturbation has a small effect on the analysis, our analysis is relatively
stable, while if a large perturbation has a small effect on the analysis, we
learn that our analysis is robust [12, 18]. If a small perturbation seriously
influences key results of the analysis, we want to know the cause [10, 12].
For instance, in influence analysis, a set of observations is flagged as ‘in-
fluential’ if its removal from the dataset produces a significant difference
in the parameter estimates or equivalently a large value of Cook’s distance
for the current statistical model [9, 6]. Sometimes, these influential observa-
tions are also outliers, which are defined as a discordant individual or a set
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of discordant observations that is not a realization from the current model
[6].

Since the seminal work of Cook [9] on Cook’s distance in linear regression
for cross-sectional data, considerable research has been devoted to devel-
oping Cook’s distance for detecting influential observations (or clusters) in
more complex data structures under various statistical models [9, 11, 7, 2,
13, 24, 16, 29, 15]. For example, for longitudinal data, Preisser and Qaqish
[20] developed Cook’s distance for generalized estimating equations, while
Christensen, Pearson and Johnson [8], Banerjee and Frees [5], and Banerjee
[4] considered case deletion and subject deletion diagnostics for linear mixed
models. Furthermore, in the presence of missing data, Zhu et al. [29] devel-
oped deletion diagnostics for a large class of statistical models with missing
data. Cook’s distance has been widely used in statistical practice and can
be calculated in popular statistical software, such as SAS and R.

A critical size issue with Cook’s distance has been largely neglected in the
existing literature on developing Cook’s distance for general statistical mod-
els with more complex data structures. The size issue is that the magnitude
of Cook’s distance is positively associated with the amount of perturbation
to the current model introduced by deleting a subset of observations. Specif-
ically, a large value of Cook’s distance can be caused by deleting a subset
with a larger number of observations and/or other causes such as the pres-
ence of outlier(s) in the deleted subset. To delineate the cause of a large
Cook’s distance for a specific subset, it is more useful to compute Cook’s
distance relative to the degree of the perturbation introduced by deleting
the subset [12, 30].

The aim of this paper is to address the size issue of Cook’s distance for
complex data structures in general parametric models. The main contribu-
tions of this paper are summarized as follows.

(a.1) We propose a quantity to measure the degree of perturbation in-
troduced by deleting a subset in general parametric models. This quantity
satisfies several attractive properties including uniqueness, non-negativity,
monotonicity, and additivity.

(a.2) We use stochastic ordering to quantify the relationship between the
degree of the perturbation and the size of Cook’s distance. Particularly,
in linear regression for cross-sectional data, we first show the stochastic
relationship between the Cook’s distances for any two subsets with possibly
different numbers of observations.

(a.3) We develop several scaled Cook’s distances and their first-order ap-
proximations to address the size issue while fixing some covariates of interest.

(a.4) We illustrate our development with various parametric models.
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The rest of the paper is organized as follows. In Section 2, we quantify
the degree of the perturbation for set deletion and delineate the stochastic
relationship between Cook’s distance and the degree of perturbation. We
develop several scaled Cook’s distances and derive their first-order approx-
imations to address the size issue. In Section 3, we analyze simulated data
and a real dataset using the proposed scaled Cook’s distances. We give some
final remarks in Section 4.

2. Scaled Cook’s Distance.

2.1. Cook’s distance. Consider the probability function of a random
vector YT = (Y T

1 , . . . , Y
T
n ), denoted by p(Y|θ), where θ = (θ1, . . . , θq)

T is
a q × 1 vector in an open subset Θ of Rq and Yi = (yi,1, . . . , yi,mi), in which
the dimension of Yi, denoted by mi, may vary across all i. For instance, in
longitudinal studies, if our interest focuses on detecting influential clusters,
then Yi includes all responses and covariates of interest in the ith cluster.
Thus, the number of observations in the ith cluster may vary significantly
across clusters.

Cook’s distance and many other deletion diagnostics measure the distance
between the maximum likelihood estimators of θ with and without Yi [11, 9].
A subscript ‘[I]’ denotes the relevant quantity with all observations in I
deleted. Let Y[I] be a subsample of Y with YI = {Y(i,j) : (i, j) ∈ I} deleted
and p(Y[I]|θ) be its probability function. We define the maximum likelihood
estimators of θ for the full sample Y and a subsample Y[I] as

(2.1) θ̂ = argmaxθ log p(Y|θ) and θ̂[I] = argmaxθ log p(Y[I]|θ),

respectively. Cook’s distance for I, denoted by CD(I), can be defined as
follows:

(2.2) CD(I) = (θ̂[I] − θ̂)TGnθ(θ̂[I] − θ̂),

where Gnθ is chosen to be a positive definite matrix. Throughout the paper,
Gnθ is set as −∂2θ log p(Y|θ̂) or its expectation, where ∂2θ represents the
second-order derivative with respect to θ. More generally, suppose that one
is interested in a subset of θ or q1 linearly independent combinations of θ,
say LTθ, where L is a q × q1 matrix with rank(L) = q1 [5, 11]. The partial
influence of the subset I on LT θ̂, denoted by CD(I|L), can be defined as

(2.3) CD(I|L) = (θ̂[I] − θ̂)TL{LTG−1nθL}−1LT (θ̂[I] − θ̂).

For notational simplicity, even though we may focus on a subset of θ, we do
not distinguish CD(I|L) from CD(I) throughout the paper.
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Based on (2.2), we know that Cook’s distance CD(I) is explicitly deter-
mined by three components including the current model fitted to the data,
denoted by M, the dataset Y, and the subset I itself. Cook’s distance is
also implicitly determined by M, Y and the degree of the perturbation to
M introduced by deleting the subset I, denoted by P(I|M). Thus, we may
represent CD(I) as follows:

(2.4) CD(I) = F1(I,M,Y) = F2(P(I|M),M,Y),

where F1(·, ·, ·) and F2(·, ·, ·) represent nonlinear functions.
We may use the values of CD(I) to assess the influential level of the subset

I. We may regard a subset I as influential if either the value of CD(I) is
relatively large compared with other Cook’s distances or the magnitude of
CD(I) is greater than the critical points of the χ2 distribution [11]. However,
for complex data structures, we will show that it is useful to compare Cook’s
distance relative to its associated degree of perturbation.

2.2. Degree of perturbation. Consider the subset I and the current model
M. We are interested in answering the following questions below.

(c.1) How do we measure the degree of the perturbation toM introduced
by deleting the subset I?
Abstractly, P(I|M) should be defined as a mapping from a subset I andM
to a nonnegative number. However, according to the best of our knowledge,
no quantities have ever been developed to define a workable P(I|M) for an
arbitrary subset I in general parametric models due to many conceptual dif-
ficulties [12]. Although [12] placed the Euclidean geometry on perturbation
space for one-sample problems, such geometrical structure cannot be easily
generalizable to general parametric models, since it does not account for the
inherent data structure (e.g., correlation among observations) and M itself
[1].

Our choice of P(I|M) is motivated by four principles as follows.

• (P.a) (non-negativity) For any subset I, P(I|M) is always non-negative.
• (P.b) (uniqueness) P(I|M) = 0 if and only if I is an empty set.
• (P.c) (monotonicity) If I2 ⊂ I1, then P(I2|M) ≤ P(I1|M).
• (P.d) (additivity) If I2 ⊂ I1, I1·2 = I1 − I2, and p(YI1·2 |Y[I1],θ) =
p(YI1·2 |Y[I1·2],θ) for all θ, then we have P(I1|M) = P(I2|M)+P(I1·2|M).

Principles (P.a) and (P.b) indicates that deleting any nonempty subset al-
ways introduces a positive degree of perturbation. Principle (P.c) indicates
that deleting a larger subset always introduces a larger degree of pertur-
bation. Principle (P.d) presents the condition for ensuring the additivity
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property of the perturbation. Since Y[I1·2] is the union of Y[I1] and YI2 ,
p(YI1·2 |Y[I1],θ) = p(YI1·2 |Y[I1·2],θ) is equivalent to that of YI1·2 being in-
dependent of YI2 given Y[I1]. The additivity property has important im-
plications in cross-sectional, longitudinal, and family data. For instance, in
longitudinal data, the degree of perturbation introduced by simultaneously
deleting two independent clusters equals the sum of their degrees of indi-
vidual cluster perturbations. Besides these principles, P(I|M) should natu-
rally arise fromM. We propose P(I|M) based on the well-known Kullback-
Leibler divergence below.

We consider a model for characterizing the deletion of YI given by

(2.5) p(Y|θ, I) = p(Y[I]|θ)p0(YI |Y[I]),

where p0(YI |Y[I]) is a fixed conditional density of YI given Y[I] independent

of θ. In (2.5), YI does not provide any information on θ, and thus θ̂[I] is the
maximum likelihood estimate of θ under p(Y|θ, I). To avoid any arbitrary
specification of p0(YI |Y[I]), we suggest setting p0(YI |Y[I]) = p(YI |Y[I],θ∗),
where θ∗ is the true value of θ underM. Moreover, ifM is correctly speci-
fied, then p(YI |Y[I],θ∗) is the true data generator for YI given Y[I].

Note that p(Y|θ) = p(Y[I]|θ)p(YI |Y[I],θ), where p(YI |Y[I],θ) is the
conditional density of YI given Y[I]. We then consider the Kullback-Leibler
distance between p(Y|θ) and p(Y|θ, I), denoted by KL(Y,θ|I), as follows:

(2.6)

∫
p(Y|θ) log

(
p(Y|θ)

p(Y|θ, I)

)
dY =

∫
p(Y|θ) log

(
p(YI |Y[I],θ)

p(YI |Y[I],θ∗)

)
dY.

We use KL(Y,θ|I) to measure the effect of deleting YI on θ. If YI is inde-
pendent of Y[I], then KL(Y,θ|I) reduces to

∫
p(YI |θ) log (p(YI |θ)/p(YI |θ∗)) dYI ,

which is independent of Y[I]. Since θ is unknown and
√
n(θ̂−θ∗) is asymp-

totically normal, we focus on these θ in a neighborhood of θ∗ by assuming
a Gaussian prior for θ with mean θ∗ and positive definite covariance matrix
Σ∗ (e.g., the Fisher information matrix), denoted by p(θ|θ∗,Σ∗). Finally, we
define P(I|M) as the weighted Kullback-Leibler distance between p(Y|θ)
and p(Y|θ, I) as follows:

(2.7) P(I|M) =

∫
KL(Y,θ|I)p(θ|θ∗,Σ∗)dθ.

Furthermore, if we are interested in a particular set of components of θ and
treat others as nuisance parameters, we may fix these nuisance parameters
in their true value.

It is easy to compute P(I|M) in real data analysis. Specifically, we only
need to specify M and (θ∗,Σ∗) and then use some numerical integration
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methods to compute P(I|M). Although (θ∗,Σ∗) is unknown, we suggest
substituting θ∗ by an estimator of θ, denoted by θ̃, and Σ∗ by the covariance
matrix of θ̃. For instance, we may set θ̃ = θ̂, since θ̂ is a consistent estimator
of θ∗ even though M may be mis-specified [25, 26].

We can obtain the following theorem.
Theorem 1. Suppose that L({Y : p(YI |Y[I],θ) = p(YI |Y[I],θ∗)}) > 0 for
any θ 6= θ∗, where L(A) is the Lebesgue measure of a set A. Then, P(I|M)
defined in (2.7) satisfies the four principles (P.a)-(P.d).
Proof of Theorem 1. (P.a) directly follows from the Jensen inequality, (2.6)
and (2.7).

For (P.b), if I is an empty set, then KL(Y,θ|I) ≡ 0 and thus P(I|M) = 0.
On the other hand, if P(I|M) = 0, then KL(Y,θ|I) ≡ 0 for almost every θ.
Thus, by using the Jensen inequality, we have p(YI |Y[I],θ) ≡ p(YI |Y[I],θ∗)
for all θ ∈ Θ. Based on the identifiability condition, we know that I must
be an empty set.

Let I1·2 = I1 − I2. It is easy to show that

p(YI1 |Y[I1],θ) = p(YI2 ,YI1·2 |Y[I1],θ) =
p(YI2 ,YI1·2 ,Y[I1]|θ)

p(Y[I1]|θ)

= p(YI2 |Y[I2],θ)p(Y[I2]|Y[I1],θ).

Thus, by substituting the above equation into (2.6), we have
(2.8)

P(I1|M) = P(I2|M)+

∫
p(θ|θ∗,Σn∗)p(Y|θ) log

(
p(Y[I2]|Y[I1],θ)

p(Y[I2]|Y[I1],θ∗)

)
dθdY,

in which the second term on the right hand side can be written as∫
p(θ|θ∗,Σn∗)p(YI2 |Y[I2],θ)

{∫
p(Y[I2]|θ) log

(
p(Y[I2]|Y[I1],θ)

p(Y[I2]|Y[I1],θ∗)

)
dY[I2]

}
dθdYI2 ≥ 0,

which yield (P.c).
Based on the assumption of (P.d), we know that

p(Y[I2]|Y[I1],θ) = p(YI1·2 |Y[I1],θ) = p(YI1·2 |Y[I1·2],θ)

for all θ. Thus, the second term on the right hand side of (2.8) reduces to
P(I1·2|M), which finishes the proof of (P.d).

As an illustration, we show how to calculate P(I|M) under the standard
linear regression model for cross-sectional data as follows.
Example 1. Consider the linear regression model yi = xTi β∗+εi, where xi is
a p×1 vector and the εi are independently and identically distributed (i.i.d)
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as N(0, σ2∗). Let y = (y1, . . . , yn)T and X be an n× p matrix of rank p with
i-th row xTi . In this case, θ = (βT , σ2)T . Recall that β̂ = (XTX)−1XTy,
σ̂2 = yT (In −Hx)y/n, Cov(β̂) = σ2∗(X

TX)−1, and var(σ̂2) = 2σ4∗/n, where
In is an n × n identity matrix and Hx = (hij) = X(XTX)−1XT . We first
compute the degree of the perturbation for deleting each (yi,xi). We consider
two scenarios: fixed and random covariates. For the case of fixed covariates,
M assumes yi ∼ N(xTi β, σ

2). After some algebraic calculations, it can be
shown that P({i}|M) equals

(2.9) 0.5Eθ[log(σ2∗/σ
2)] + 0.5

xTi Eθ[(β − β∗)(β − β∗)
T ]xi

σ2∗
≈ 1

2
hii +

1

2n
,

where Eθ is taken with respect to p(θ|θ∗, G−1nθ ). If we are only interested
in β and treat σ2 as a nuisance parameter, the term 0.5Eθ[log(σ2∗/σ

2)] and
1/(2n) can be dropped from P({i}|M) in (2.9).

Furthermore, for the case of random covariates, we assume that the xi’s
are identically distributed with mean µx and covariance matrix Σx. It can
be shown that P({i}|M) equals

(2.10) 0.5Eθ[log(σ2∗/σ
2)] + 0.5σ−2∗ tr{ΣxEθ[(β − β∗)(β − β∗)

T ]} ≈ p+ 1

2n
.

If σ2 is a nuisance parameter, then P({i}|M) reduces to p/(2n). Further-
more, consider deleting a subset of observations {(yik ,xik) : k = 1, · · · , n(I)}
and I = {i1, . . . , in(I)}. It follows from Theorem 1 that P({i1, · · · , in(I)}|M) =∑n(I)
k=1 P({ik}|M). Furthermore, for the case of random covariates, we have
P(I|M) = n(I)P({1}|M) for any subset I with n(I) observations. Thus,
in this case, deleting any two subsets I1 and I2 with the same number of
observations, that is n(I1) = n(I2), has the same degree of perturbation. An
important implication of these calculations in real data analysis is that we
can directly compare CD(I1) and CD(I2) when n(I1) = n(I2).

2.3. Size issue. Given P(I|M) and CD(I), we are interested in solving
the second question below.

(c.2) Is there any relationship between P(I|M) and CD(I)? If any, how
do we quantify such a relationship?
To have a better understanding of Cook’s distance, we consider the standard
linear regression model for cross-sectional data as follows.
Example 1 (continued). We are interested in β and treat σ2 as a nui-
sance parameter. We first consider deleting individual observations in linear
regression. Cook’s distance [9] for case i, (yi,xi), is given by

(2.11) CD({i}) =
(β̂ − β̂[i])

TXTX(β̂ − β̂[i])

σ̂2
=
σ2

σ̂2
t2i

hii
1− hii

,
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where β̂ is the least squares estimate of β, σ̂2 is a consistent estimator of
σ2, ti = êi/(σ

√
1− hii) and β̂[i] = β̂ − (XTX)−1xiêi/(1 − hii), in which

êi = yi − xTi β̂. It should be noted that except for a constant p, CD({i}) is
almost the same as the original Cook’s distance (Cook, 1977). As shown in
(2.9) and (2.10), regardless of the exact value of (yi,xi), deleting any (yi,xi)
has the approximately same degree of perturbation to M. Moreover, the
CD({i}) are comparable regardless of i. Specifically, if εi ∼ N(0, σ2), then t2i
follows the χ2(1) distribution for all i. For the case of random covariates, if
xi are identically distributed, then all CD({i}) are truly comparable, since
they follow the same distribution.

We consider deleting multiple observations in the linear model. Cook’s
distance for deleting the subset I with n(I) is given by
(2.12)

(β̂ − β̂[I])
TXTX(β̂ − β̂[I])

σ̂2
=

1

σ̂2
êTI (In(I) −HI)

−1HI(In(I) −HI)
−1êI ,

where êI is an n(I) × 1 vector containing all êi for i ∈ I and HI =
XI(X

TX)−1XT
I , in which XI is an n(I) × p matrix whose rows are xTi

for all i ∈ I. Similar to the deletion of a single case, deleting any subset
with the same number of observations introduces approximately the same
degree of perturbation toM, and the CD(I) are comparable among all sub-
sets with the same n(I). We will make this statement precise in Theorem 2
given below.

Generally, we want to compare CD(I1) and CD(I2) for any two subsets
with n(I1) 6= n(I2). As shown in Example 1, when n(I1) > n(I2), deleting
I1 introduces larger degree of perturbation to model M compared to delet-
ing I2. To compare Cook’s distances among arbitrary subsets, we need to
understand the relationship between P(I|M) and CD(I) for any subset I.
Surprisingly, in linear regression for cross-sectional data, we can show the
stochastic relationship between P(I|M) and CD(I) as follows.
Theorem 2. For the standard linear model, where y = Xβ + ε and ε ∼
N(0, σ2In), we have the following results:

(a) for any I2 ⊂ I1, CD(I1) is stochastically larger than CD(I2) for any
X, that is, P(CD(I1) > t|M) ≥ P(CD(I2) > t|M) holds for any t ≥ 0.

(b) Suppose that the components of XI and XI′ are identically distributed
for any two subsets I and I ′ with n(I) = n(I ′). Thus, CD(I) and CD(I ′)
follow the same distribution when n(I) = n(I ′) and CD(I1) is stochastically
larger than CD(I2) for any two subsets I2 and I1 with n(I1) > n(I2).
Proof of Theorem 2. (a) Let I3 = I1 \ I2, I1 is a union of two disjoint sets I3
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and I2. Without loss of generality, HI1 can be decomposed as

HI1 = XI1(XTX)−1XT
I1 =

(
XI2(XTX)−1XT

I2
XI2(XTX)−1XT

I3
XI3(XTX)−1XT

I2
XI3(XTX)−1XT

I3

)
.

Let λ1,1 ≥ . . . ≥ λ1,n(I1) ≥ 0 and λ2,1 ≥ . . . ≥ λ2,n(I2) ≥ 0 be ordered
eigenvalues of HI1 and HI2 , respectively, where n(Ik) denotes the number
of observations in Ik for k = 1, 2. It follows from Wielandt’s eigenvalue
inequality [14] that λ1,l ≥ λ2,l for all l = 1, . . . , n(I2). For k = 1, 2, we
define ΓkΛkΓ

T
k as the spectral decomposition of HIk and hk = (In(Ik) −

Λk)
−1/2ΓTk êIk = (hk,1, . . . , hk,n(Ik))

T , where Γk is an orthnormal matrix and
Λk = diag(λk,1, . . . , λk,n(Ik)). It can be shown that for k = 1, 2,

hk ∼ N(0, σ2In(Ik)) and CD(Ik) =
1

σ̂2

n(Ik)∑
j=1

λk,j
1− λk,j

h2k,j .

Since f(x) = x/(1−x) is an increasing function of x ∈ (0, 1), this completes
the proof of Theorem 2 (a).

Note that CD(I) = (σ̂2)−1
∑n(I)
j=1 λj(1− λj)

−1h2j , where λj are the eigen-

values of HI and h = (h1, . . . , hn(I))
T ∼ N(0, σ2In(I)). Moreover, the dis-

tribution of λ is uniquely determined by HI . Combining h ∼ N(0, σ2In(I))
with the assumptions of Theorem 2 (b) yields that CD(I) and CD(I ′) fol-
low the same distribution when n(I) = n(I ′). Furthermore, we can always
choose an I ′2 such that n(I ′2) = n(I2) and I1 ⊂ I ′2. Following arguments in
Theorem 2 (a), we can then complete the proof of Theorem 2 (b).

Theorem 2 (a) shows that the Cook’s distances for two nested subsets
satisfy the stochastic ordering property. Theorem 2 (b) indicates that for
random covariates, the Cook’s distances for any two subsets also satisfy the
stochastic ordering property under some mild conditions.

According to Theorem 2, for more complex data structures and models,
it may be natural to use the stochastic order to stochastically quantify the
positive association between the degree of the perturbation and the size of
Cook’s distance. Specifically, we consider two possibly overlapping subsets
I1 and I2 with P(I1|M) > P(I2|M). Although CD(I1) may not be greater
than CD(I2) for a fixed dataset D, CD(I1), as a random variable, should
be stochastically larger than CD(I2) if M is the true model. We make the
following assumption:
Assumption A1. For any two subsets I1 and I2 with P(I1|M) > P(I2|M),

(2.13) P(CD(I1) > t|M) ≥ P(CD(I2) > t|M)
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holds for any t > 0, where the probability is taken with respect to M.
Assumption A1 is essentially saying that if M is the true data gener-

ator, then CD(I1) stochastically dominates CD(I2) whenever P(I1|M) >
P(I2|M). According to the definition of stochastic ordering [21], we can
now obtain the following proposition.
Proposition 1. Under Assumption A1, for any two subsets I1 and I2 with
P(I1|M) > P(I2|M), Cook’s distance satisfies

(2.14) E[h(CD(I1))|M] ≥ E[h(CD(I2))|M]

holds for all increasing functions h(·). In particular, we have E[CD(I1)|M] ≥
E[CD(I2)|M] and QCD(I1)(α|M) is greater than the α-quantile of QCD(I2)(α|M)
for any α ∈ [0, 1], where QCD(I)(α|M) denotes the α−quantile of the distri-
bution of CD(I) for any subset I.

Proposition 1 formally characterizes the size issue for Cook’s distance.
Specifically, for any two subsets I1 and I2 with P(I1|M) > P(I2|M), CD(I1)
has a high probability of being greater than CD(I2). Thus, Cook’s distance
for subsets with different degrees of perturbation are not directly compara-
ble. More importantly, it indicates that CD(I) cannot be simply expressed
as a linear function of P(I|M) even for linear regression for cross-sectional
data. Thus, the standard solution, which standardizes CD(I) by calculating
the ratio of CD(I) over P(I|M), is not desirable.

2.4. Scaled Cook’s distances. After characterizing the stochastic rela-
tionship between P(I|M) and CD(I), we are interested in answering a third
question as follows.

(c.3) How do we compare Cook’s distance relative to P(I|M) for different
subsets I?

We focus on developing several scaled Cook’s distance for a subset I,
denoted by SCD(I), to detect relatively influential subsets. From here on,
we call a subset I as relatively influential, if its CD(I) is large relative to
P(I|M). We consider matching several features (e.g., mean, median, or
quantiles) of SCD(I), when the current model M is the true data gener-
ator. Specifically, we consider two pairs of features including (mean, Std)
and (median, Mstd), where Std and Mstd, respectively, denote the standard
deviation and the median standard deviation. By matching any of the two
pairs, we can at least ensure that the centers and scales of the scaled Cook’s
distances for different subsets are the same. Therefore, for any two subsets
I1 and I2, the probability of observing the event SCD(I1) > SCD(I2) and
that of the event SCD(I1) < SCD(I2) should be reasonably close to each
other. Thus, the SCD(I) are roughly comparable.
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We introduce two scaled Cook’s distance measures, called scaled Cook’s
distances, as follows.
Definition 1. The scaled Cook’s distances for matching (mean, Std) and
(median, Mstd) are, respectively, defined as
(2.15)

SCD1(I) =
CD(I)− E[CD(I)|M]

Std[CD(I)|M]
and SCD2(I) =

CD(I)−QCD(I)(0.5|M)

Mstd[CD(I)|M]
,

where both the expectation and the quantile are taken with respect to M.
We can use SCD1(I) and SCD2(I) to evaluate the relatively influential

level for different subsets I. A large value of SCD1(I) (or SCD2(I)) indicates
that the subset I is relatively influential. Note that the scaled Cook’s dis-
tances do not provide a “per unit” effect of removing one observation within
the set I, whereas they measure the standardized influential level of the set
I when M is true.

The next task is how to compute E[CD(I)|M], Std[CD(I)|M], Mstd[CD(I)|M],
and QCD(I)(0.5|M) for each subset I under the assumption that M is the

true data generator. Computationally, based on p(Y|θ̂), we suggest using
the parametric bootstrap to approximate the four quantities of CD(I) as
follows.

Step 1. We use M̂ = {p(Y|θ̂)} to approximate the modelM = {p(Y|θ∗)},
generate a random sample Ys from p(Y|θ̂) and then calculate CD(I)(s) =
F1(I,M̂,Ys) for each s and each subset I.

Step 2. By repeating this process S times, we can obtain a sample {CD(I)(s) :
s = 1, · · · , S} and then we use its empirical mean CD(I) =

∑S
s=1 CD(I)(s)/S

to approximate E[CD(I)|M].
Step 3. We approximate Std[CD(I)|M],QCD(I)(0.5|M), and Mstd[CD(I)|M]

by using their corresponding empirical quantities of {CD(I)(s) : s = 1, · · · , S}.
In this process, we have used M̂ to approximate M [25] and simulated

data Ys from M̂ in the standard parametric bootstrap method. If Y truly
comes from M, then the simulated data Ys should resemble Y. Since θ̂
is a consistent estimate of θ∗, E[F1(I,M̂,Y)|M̂] ≈ E[F1(I,M,Y)|M] and
thus CD(I) is a consistent estimate of E[F1(I,M,Y)|M]. Similar arguments
hold for the other three quantities of CD(I). In Steps 2 and 3, we can use
relatively large S, say S = 1, 000, in order to accurately approximate all
four quantities of CD(I). According to our experience, such approximation
is very accurate even for moderate S and small n. See simulation studies in
Section 3.1 for details. However, for most statistical models with complex
data structures, it can be computationally intensive to compute θ̂

s
for each

Ys. We will address this issue in Section 2.6.
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In the following, we will derive the scaled Cook’s distances for generalized
linear models.
Example 2. We consider Cook’s distance in generalized linear models [19]
as follows. Suppose that the components of y = (y1, . . . , yn)T given X =
(x1, · · · ,xn)T are mutually independent, and the conditional density of yi
given xi is given by

(2.16) p(yi|xi,β, τ) = exp
{
a(τ)−1[yiηi − b(ηi)] + c(yi, τ)

}
,

where a(·), b(·) and c(·, ·) are known functions, ηi = η(µi) and µi = µi(β) =
g(xTi β), in which g(·) is a known monotonic function and twice continuously
differentiable and β = (β1, . . . , βp)

T . Throughout this example, the parame-
ter of interest is β and τ is a nuisance parameter and is fixed at τ̂ . Let V (β) =
diag(b̈(η(µ1(β))), . . . , b̈(η(µn(β)))) and D(β)T = (∂βµ1(β), . . . , ∂βµn(β)),
where ∂β denotes differentiation with respect to β and b̈(η) denotes the sec-
ond derivative of b(η) with respect to η. Using a first-order approximation,
we can show that Cook’s distance for deleting subset I with size(I) = n(I)
can be approximated by

(2.17) C̃D(I) =
1

a(τ̂)
êT V̂ −1/2UI(In(I)− ĤI)

−1ĤI(In(I)− ĤI)
−1UTI V̂

−1/2ê,

where D̂ = D(β̂), V̂ = V (β̂), ê is an n × 1 vector containing all êi =
yi − µi(β̂), and ĤI = X̃I(X̃

T X̃)−1X̃T
I . In addition, X̃ = V̂ −1/2D̂ and X̃I

is an n(I) × p matrix containing the i−th row of X̃ for all i ∈ I, and
UI = (ui1 , . . . ,uin(I)

), in which ik ∈ I and uik is an n× 1 vector with ik−th
element equal to 1 and zero otherwise.

For generalized linear models, we can calculate the scaled Cook’s distance
and thus obtain the following theorem.
Theorem 3. Suppose that Assumptions A2-A5 in the appendix hold for the
generalized linear model (2.16). We have the following results:

(a) C̃D(I) = CD∗(I)[1 + op(1)], and CD∗(I) = eT∗W∗e∗/[a(τ∗)], where
W∗ = (wij∗) is an n× n matrix and given by
(2.18)

W∗ = V
−1/2
∗ (In−H∗)UI(In(I)−H∗,I)−1H∗,I(In(I)−H∗,I)−1UTI (In−H∗)V −1/2∗ ,

in which e∗ = (e1∗, . . . , en∗)
T and ei∗ = yi − µi(β∗), D∗ = D(β∗), V∗ =

V (β∗), H∗ = X∗(X
T
∗X∗)

−1XT
∗ , X∗ = V

−1/2
∗ D∗, H∗,I = UTI H∗UI and β∗ is

the true value of β.
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(b) Let λI,1 ≥ . . . λI,n(I) ≥ 0 be the ordered eigenvalues of H∗,I . We have

E[CD∗(I)|M] = E{tr[(In(I) −H∗,I)−1]|M} − n(I) =

n(I)∑
j=1

E[(1− λI,j)−1|M]− n(I),

Var[CD∗(I)|M] = a(τ∗)
n∑
i=1

wii∗b
(4)(ηi∗) + Var{tr[(In(I) −H∗I)−1]|M}

+ 2E{tr[(In(I) −H∗,I)−2]|M} − 4E{tr[(In(I) −H∗,I)−1]|M}+ 2n(I),

where ηi∗ = η(µi(β∗)) and b(4)(ηi∗) denotes the fourth derivative of b(η)

with respect to η. If n(I) ≥ p, then
∑n(I)
j=1 E[(1− λI,j)−1|M] − n(I) =∑p

j=1E[(1− λI,j)−1|M]− p.
(c) If the xi are independently and identically distributed and

0 < E[||b̈(η(g(xTβ)))−1/2∂βg(xTβ)||1+s2 ] < ∞ for an arbitrary s > 0, then
λI,j − n(I)/n = o(1) for j ≤ p as n(I)→∞ and n(I)/n→ γ ∈ [0, 1).
Proof of Theorem 3. (a). Let µ(β) = (µ1(β), . . . , µn(β))T . If the model M
is true, then (β̂ − β∗) = (DT

∗ V
−1
∗ D∗)

−1DT
∗ V
−1
∗ e∗ + op(n

−1/2). Thus, under
Assumptions A2-A5, we have

UTI V
−1/2
∗ ê = UTI V

−1/2
∗ [y − µ(β∗) + µ(β∗)− µ(β̂)]

= UTI V
−1/2
∗ [e∗ −D∗(β̂ − β∗)] = UTI (In −H∗)V −1/2∗ e∗[1 + op(1)],

where e∗ = y − µ(β∗). This yields Theorem 3 (a).
(b). We consider two scenarios including both random and fixed covari-

ates. For the case of random covariate, the current model M includes the
specifications of the distribution on X and the conditional distribution of
y given X, which are, respectively, represented as MX and My|X. Since
E[e⊗2∗ |M] = a(τ∗)E[V∗|MX], it can be shown that E[CD∗(I)|M] equals

p−1E{tr[H∗,I(In(I)−H∗,I)−1]|M} = p−1E{tr[(In(I)−H∗,I)−1]|M}−p−1n(I),

where E[·|MX] denotes the expectation taken with respect to the distribu-
tion of X. Recall that E[ei∗|M] = 0, E[e2i∗|M] = a(τ∗)E[b̈(ηi∗)|MX], and

E[e4i∗|M] = 3a(τ∗)
2E[b̈(ηi∗)

2|MX] + a(τ∗)
3E[b(4)(ηi∗)|MX].
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With some algebraic calculation, it can be shown that

E[
n∑

i,j=1

wij∗ei∗ej∗|M] = a(τ∗)
n∑
i=1

E[wii∗b̈(ηi∗)|MX],

E{[
n∑

i,j=1

wij∗ei∗ej∗]
2|M} = a(τ∗)

3
n∑
i=1

E[w2
ii∗b

(4)(ηi∗)|MX]

+ a(τ∗)
2E({[

n∑
i=1

wii∗b̈(ηi∗)]
2 + 2

n∑
i,j=1

w2
ij∗b̈(ηi∗)b̈(ηj∗)}|MX),

Var{[
n∑

i,j=1

wij∗ei∗ej∗]
2|M} = a(τ∗)

3
n∑
i=1

E[w2
ii∗b

(4)(ηi∗)|MX]

+ a(τ∗)
2Var[

n∑
i=1

wii∗b̈(ηi∗)|MX] + 2a(τ∗)
2E[

n∑
i,j=1

w2
ij∗b̈(ηi∗)b̈(ηj∗)|MX].

Furthermore, we have

n∑
i,j=1

w2
ij∗b̈(ηi∗)b̈(ηj∗) = tr[(In(I) −H∗I)−1H∗I(In(I) −H∗I)−1H∗I ]

= tr[(In(I) −H∗I)−2]− 2tr[(In(I) −H∗I)−1] + n(I),
n∑
i=1

wii∗b̈(ηi∗) = tr[(In(I) −H∗I)−1H∗I ] = tr[(In(I) −H∗I)−1]− n(I).

In addition, since H∗ only has p non-zero eigenvalues and H∗,I is a submatrix
of H∗, it follows from Wielandt’s eigenvalue inequality that λI,1 ≥ . . . ≥
λI,p ≥ 0 = λI,p+1 = . . . = λI,n(I) for n(I) ≥ p. This yields Theorem 3 (b).

(c). Note that the matrices H∗,I and (XT
∗X∗)

−1XT
∗,IX∗,I have the same

set of nonzero eigenvalues. Since n−1XT
∗X∗ and n(I)−1XT

∗,IX∗,I converge to

the same matrix almost surely, n(I)n−1[(n−1XT
∗X∗)

−1n(I)−1XT
∗,IX∗,I − Ip]

converges to 0 almost surely as n, n(I) → ∞. This completes the proof of
Theorem 3 (c).

Theorem 3 (a) characterizes the stochastic behavior of C̃D(I), which de-
pends on both the responses and the covariates in the set I. To ensure that
E[CD(I)|M] and QCD(I)(0.5|M) depend only on the size of the perturba-
tion, not the set I itself, we need to bootstrap the randomness in both the
responses and the covariates. Specifically, we can generate a new set of re-
sponses from the fitted model and draw an Is at random from the original
covariate data without (or with) replacement, where size(Is)=size(I). Then,
we calculate the CD(Is) based on the bootstrapped data for s = 1, . . . , S
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and use their sample median to approximate QCD(I)(0.5|M). Theorem 3 (b)

gives an approximation of E[C̃D(I)|M] and Var[C̃D(I)|M]. We can draw
a sample of sets {Is : s = 1, . . . , S} of size(I) at random from the original
covariate data without (or with) replacement and approximate them. More-

over, it should be noted that
∑n(I)
j=1 E[(1− λI,j)−1|M]− n(I) increases with

the size of I even for n(I) ≥ p. Theorem 3 (c) shows the asymptotic consis-
tency of λI,j for j ≤ p. As n(I)/n→ γ ∈ [0, 1),

∑p
j=1E[(1− λI,j)−1|M]− p

converges to pγ/(1− γ).
We consider the general linear model with correlated errors (LMCE).

Example 3. Consider the LMCE given by Y = Xβ+ε, where ε ∼ N(0, σ2R).
By choosing various R’s, LMCE includes the linear model with independent
data, the multivariate linear model, time series models, geostatistical models,
and mixed effects models as special cases [16, 17]. Similar to Haslett [16], we
fix R at an appropriate estimate R̂ throughout the example. We can calcu-
late the generalized least squares estimator β̂ = (XTR−1X)−1XTR−1Y =
BY, var(β̂) = σ2(XTR−1X)−1, and σ̂2 = YTQY/(n− p) = êTR−1ê/(n−
p), where Q = R−1 −H, ê = RQY, and H = R−1X(XTR−1X)−1XTR−1.
It has been shown in Haslett [16] that Cook’s distance for deleting the subset
I is given by

(2.19) CD(I) =
1

σ̂2
εTQUIQ

−1
II (RII −QII)Q

−1
II U

T
I Qε,

where QII is the (I, I) subset of Q and RII is the (I, I) subset of R−1. After
some algebraic calculations, it can be shown that

E[CD(I)|M] ≈ E[tr(Q−1II RII)|M]− n(I) =

n(I)∑
j=1

E[(1− λI,j)−1|M]− n(I),

Var[CD(I)|M] ≈ 2E(tr{[Q−1II RII − In(I)]
2}|M) + Var[tr(Q−1II RII)|MX ],

where MX represents the distribution of X and λI,1 ≥ . . . ≥ λI,n(I) are the

ordered eigenvalues of (RII)−1/2HII(R
II)−1/2, in which HII is the (I, I)

subset of H. Similar to Theorem 3 (b), when n(I) ≥ p, E[CD(I)|M] re-
duces to

∑p
j=1E[(1 − λI,j)−1|M] − p. In many scenarios such as the mul-

tivariate linear model, we can follow the strategies in Example 3 to ap-
proximate E[CD(I)|M] and Var[CD(I)|M]. However, for time series data,
since the elements in X are responses in an autoregressive model, such as
the AR(1) model, we can use the parametric bootstrap to generate ran-
dom samples from the fitted model and then approximate E[CD(I)|M] and
Var[CD(I)|M].
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2.5. Conditionally scaled Cook’s distances. In certain research settings
(e.g., regression), it may be better to perform influence analysis while fix-
ing some covariates of interest, such as measurement time. For instance, in
longitudinal data, if different subjects can have different numbers of mea-
surements and measurement times, which are not covariates of interest in
an influence analysis, it may be better to eliminate their effect in calculating
Cook’s distance. We are interested in answering a fourth question as follows.

(c.4) How do we compare Cook’s distance relative to P(I|M) while fixing
some covariates?

To eliminate the effect of some fixed covariates, we introduce two other
scaled Cook’s distances, called conditionally scaled Cook’s distance, as fol-
lows.
Definition 2. The conditionally scaled Cook’s distances (CSCD) for match-
ing (mean, Std) and (median, Mstd) while controlling for Z are, respectively,
defined as
(2.20)

CSCD1(I,Z) = {CD(I)− E[CD(I)|M,Z]}/{Std[CD(I)|M,Z]}
CSCD2(I,Z) = {CD(I)−QCD(I)(0.5|M,Z)}/{Mstd[CD(I)|M,Z]},

where Z is the set of some fixed covariates in Y and the expectation and
quantiles are taken with respect to M given Z.

According to Definition 2, these conditionally scaled Cook’s distances
can be used to evaluate the relative influential level of different subsets I
given Z. Similar to SCD1(I) and SCD2(I), a large value of CSCD1(I,Z) (or
CSCD2(I,Z)) indicates a large influence of the subset I after controlling for
Z. It should be noted that because Z is fixed, the CSCDk(I,Z) do not reflect
the influential level of Z and the CSCDk(I,Z) may vary across different
Z. The conditionally scaled Cook’s distances measure the difference of the
observed influence level of the set I given Z to the expected influence level
of a set with the same size when the current modelM is true and Z is fixed.

The next problem is how to compute E[CD(I)|M,Z], Std[CD(I)|M,Z],
QCD(I)(0.5|M,Z), and Mstd[CD(I)|M,Z] for each subset I when M is
the true data generator and Z is fixed. Similar to the computation of the
scaled Cook’s distances, we can essentially use almost the same approach to
approximate the four quantities for CSCD1(I,Z) and CSCD2(I,Z). How-
ever, a slight difference occurs in the way that we simulate the data. Specif-
ically, let YZ be the data Y with Z deleted. We need to simulate ran-
dom samples Ys

Z from M̂Z = {p(YZ |Z, θ̂)} and then calculate CD(I)(s) =
F1(I,M̂Z , (Y

s
Z ,Z)) for each subset I.

As an illustration, we consider how to calculate the conditionally scaled
Cook’s distances in generalized linear models as follows.
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Example 2 (continued). For generalized linear models, we fix all covari-
ates, that is Z = X, and then calculate the CSCDs as follows. First, we can
show that

E[C̃D(I)|M,Z] ≈ tr[(In(I) −H∗,I)−1]− n(I),

Var[C̃D(I)|M,Z] ≈ a(τ∗)
n∑
i=1

wii∗b
(4)(ηi∗) + tr[(In(I) −H∗I)−1H∗I(In(I) −H∗I)−1H∗I ].

Then, similar to the derivations of Theorem 3 (a) and (b), we can show that
the conditionally scaled Cook’s distance CSCD1(I,X) can be approximated
by

êT V̂ −1/2UI(In(I) − ĤI)
−1ĤI(In(I) − ĤI)

−1UTI V̂
−1/2ê− [

∑n(I)
j=1 (1− λI,j)−1 − n(I)]

{a(τ∗)
∑n
i=1wii∗b

(4)(ηi∗) + tr[(In(I) −H∗I)−1H∗I(In(I) −H∗I)−1H∗I ]}1/2
.

To approximate CSCD2(I,X), we can generate responses from the model
fitted to the data and then substitute them into Theorem 3 (a) to obtain
a sample of simulated CD(I)’s given the covariates. Finally, we can use the
empirical median and median standard deviation of the simulated CD(I)’s
to approximate CSCD2(I,Z).

2.6. First-order approximations. We have focused on developing the
scaled Cook’s distances and their approximations for several parametric
models, such as generalized linear models. More generally, we are interested
in answering a fifth question as follows.

(c.5) How do we approximate the scaled Cook’s distances for a large class
of parametric models for both independent and dependent data?

We obtain the following theorem.
Theorem 4. If Assumptions A2-A5 in the Appendix hold and n(I)/n→ γ ∈
[0, 1), where n(I) denotes the size of I, then we have the following results:
(a) Let Fn(θ) = −∂2θ log p(Y|θ), fI(θ) = ∂θ log p(YI |Y[I], θ̂), and sI(θ) =
−∂2θ log p(YI |Y[I],θ), CD(I) can be approximated by

(2.21) C̃D(I) = fI(θ̂)T [Fn(θ̂)− sI(θ̂)]−1Fn(θ̂)[Fn(θ̂)− sI(θ̂)]−1fI(θ̂);

(b) E[C̃D(I)|M] ≈ tr({E[Fn(θ̂)|M]− E[sI(θ̂)|M]}−1E[sI(θ̂)|M]);
(c) E[C̃D(I)|M,Z] ≈ tr({E[Fn(θ̂)|M,Z]−E[sI(θ̂)|M,Z]}−1E[sI(θ̂)|M,Z]).
Proof of Theorem 4. (a) It follows from a Taylor’s series expansion and
assumption A3 that

∂θ log p(Y[I]|θ̂[I]) = 0 = ∂θ log p(Y[I]|θ̂) + ∂2θ log p(Y[I]|θ̃)(θ̂[I] − θ̂),
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where θ̃ = tθ̂[I] + (1− t)θ̂ for t ∈ [0, 1]. Combining this with Assumption A4

and the fact that ∂θ log p(Y|θ̂) = ∂θ log p(Y[I]|θ̂) + ∂θ log p(YI |Y[I], θ̂) = 0,
we get

θ̂[I] − θ̂ = [−∂2θ log p(Y[I]|θ̂)]−1∂θ log p(Y[I]|θ̂)[1 + op(1)]

= −[−∂2θ log p(Y[I]|θ̂)]−1∂θ log p(YI |Y[I], θ̂)[1 + op(1)].(2.22)

Substituting (2.22) into CD(I) = (θ̂[I] − θ̂)TFn(θ̂)(θ̂[I] − θ̂) completes the
proof of Theorem 4 (a).

(b) It follows from Assumptions A2-A4 that

θ̂ − θ∗ = Fn(θ∗)
−1∂θ log p(Y|θ∗)[1 + op(1)]

= Fn(θ∗)
−1[∂θ log p(Y[I]|θ∗) + ∂θ log p(YI |Y[I],θ∗)][1 + op(1)].

Let JI(θ) = ∂θ log p(YI |Y[I],θ). Using a Taylor’s series expansion along
with Assumptions A4 and A5, we get

JI(θ̂) = JI(θ∗)− sI(θ∗)(θ̂ − θ∗)[1 + op(1)](2.23)

= JI(θ∗)− E[sI(θ∗)|M](θ̂ − θ∗)[1 + op(1)]

= ({Ip − E[sI(θ)|M]Fn(θ∗)
−1}JI(θ∗)−

E[sI(θ)|M]Fn(θ∗)
−1∂θ log p(Y[I]|θ∗))[1 + op(1)].

Since E[JI(θ∗)∂θ log p(Y[I]|θ∗)|M] = 0,

E[JI(θ̂)JI(θ̂)T |M] = E[sI(θ∗)|M]Fn(θ∗)
−1{Fn(θ∗)−E[sI(θ∗)|M]}[1+op(1)].

It follows from Assumption A4 that for θ in a neighborhood of θ∗, Fn(θ) and
Fn(θ∗) − fI(θ) can be replaced by E[Fn(θ)|M] and E[Fn(θ∗) − fI(θ)|M],
respectively, which completes the proof of Theorem 4 (b).

(c) Similar to Theorem 4 (b), we can prove Theorem 4 (c).
Theorem 4 (a) establishes the first order approximation of Cook’s distance

for a large class of parametric models for both dependent and independent
data. This leads to a substantial savings in computational time, since it
is computationally easier to calculate fI(θ̂), Fn(θ̂), and sI(θ̂) compared to
CD(I). Theorem 4 (b) and (c) give an approximation of E[CD(I)|M] and
E[CD(I)|M,Z], respectively. Generally, it is difficult to give a simple ap-
proximation to Var[CD(I)|M] and Var[CD(I)|M,Z], since it involves the
fourth moment of fI(θ̂), which does not have a simple form.

Based on Theorem 4, we can approximate the scaled Cook’s distance
measures as follows.
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Step 1. We generate a random sample Ys from p(Y|Z, θ̂) and calculate
C̃D(I) based on the simulated sample Ys and fixed Z, denoted by C̃D(I)s.
Explicitly, to calculate C̃D(I)s, we replace Y in fI(θ̂), Fn(θ̂), and sI(θ̂) by
Ys. The computational burden involved in computing C̃D(I)s is very minor.

Compared to the exact computation of the scaled Cook’s distances, we
have avoided computing the maximum likelihood estimate of θ based on Ys,
which leads to great computational savings in computing C̃D(I)s even for
large S. Theoretically, since θ̂ is a consistent estimate of θ∗, E[C̃D(I)|M]
is a consistent estimate of E[CD(I)|M]. Compared with reestimating θ̂

s
for

each Ys, a drawback of using θ̂ in calculating C̃D(I)s is that C̃D(I)s does
not account for the variability in θ̂. Similar arguments hold for the other
three quantities of CD(I).

Step 2. By repeating Step 1 S times, we can use the empirical quantities of
{C̃D(I)s : s = 1, . . . , S} to approximate E[CD(I)|M,Z], Std[CD(I)|M,Z],
QCD(I)(0.5|M,Z), and Mstd[CD(I)|M,Z]. Subsequently, we can approxi-
mate CSCD1(I,Z) and CSCD2(I,Z) and determine their magnitude based
on C̃D(I)s.

For instance, let M̂ [C̃D(I)] and Ŝtd[C̃D(I)] be, respectively, the sample
mean and standard deviation of {C̃D(I)s : s = 1, . . . , S}. We calculate

˜CSCD1(I,Z) =
{C̃D(I)− M̂ [C̃D(I)]}

Ŝtd[C̃D(I)]
and ˜CSCD1(I,Z)s =

{C̃D(I)s − M̂ [C̃D(I)]}
Ŝtd[C̃D(I)]

.

We use ˜CSCD1(I,Z) to approximate CSCD1(I,Z) and then compare ˜CSCD1(I,Z)
across different I in order to determine whether a specific subset I is rel-
atively influential or not. Moreover, since ˜CSCD1(Ĩ ,Z)s can be regarded
as the ‘true’ scaled Cook distance when p(Y|Z, θ̂) is true, we can either
compare ˜CSCD1(I,Z) with ˜CSCD1(Ĩ ,Z)s for all subsets Ĩ and s or com-
pare ˜CSCD1(I,Z) with ˜CSCD1(I,Z)s for all s. Specifically, we calculate
two probabilities as follows:

PA(I,Z) =
S∑
s=1

1( ˜CSCD1(I,Z)s ≤ ˜CSCD1(I,Z))/S,(2.24)

PB(I,Z) =
∑
Ĩ

S∑
s=1

1( ˜CSCD1(Ĩ ,Z)s ≤ ˜CSCD1(I,Z))

S ×#(Ĩ)
,(2.25)

where #(Ĩ) is the total number of all possible sets and 1(·) is an indicator
function of a set. We regard a subset I as influential if the value of PA(I,Z)
(or PB(I,Z)) is relatively large. Similarly, we can use the same strategy to
quantify the size of CSCD2(I,Z), SCD1(I), and SCD2(I).
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Another issue is the accuracy of the first order approximation C̃D(I) to
the exact CD(I). For relatively influential subsets, even though the accuracy
of the first-order approximation may be relatively low, C̃D(I) can easily
pick out these influential points. Thus, for diagnostic purposes, the first-
order approximation may be more effective at identifying influential subsets
compared to the true Cook’s distance. We conduct simulation studies to
investigate the performance of the first-order approximation C̃D(I) relative
to the exact CD(I). Numerical comparisons are given in Section 3.

We consider cluster deletion in generalized linear mixed models (GLMM).
Example 4. Consider a dataset that is composed of a response yij , covariate
vectors xij(p × 1) and cij(p1 × 1), for observations j = 1, . . . ,mi within
clusters i = 1, . . . , n. The GLMM assumes that conditional on a p1 × 1
random variable bi, yij follows an exponential family distribution of the
form [19]

(2.26) p(yij |bi) = exp{a(τ)−1[yijηij − b(ηij)] + c(yij , τ)},

where ηij = k(xTijβ + cTijbi) in which β = (β1, . . . ,βp)
T and k(·) is a known

continuously differentiable function. The distribution of bi is assumed to be
N(0,Σ), where Σ = Σ(γ) depends on a p2×1 vector γ of unknown variance
components. In this case, we fix all covariates xij and cij and all mi and
include them in Z. For simplicity, we fix (γ, τ) at an appropriate estimate
(γ̂, τ̂) throughout the example.

We focus here on cluster deletion in GLMMs. After some calculations, the
first order approximation of Cook’s distance for deleting the i-th cluster is
given by

(2.27) C̃D(Ii) = ∂β`i(β̂)T [Fn(β̂)− fi(β̂)]−1Fn(β̂)[Fn(β̂)− fi(β̂)]−1∂β`i(β̂),

where Ii = {(i, 1), . . . , (i,mi)}, `i(β) is the log-likelihood function for the
i−th cluster, fi(β) = −∂2β`i(β) and Fn(β) =

∑n
i=1 fi(β). Note that

∂β`i(β̂) ≈ {Ip − fi(β̂)[Fn(β∗)]
−1}∂β`i(β∗) + fi(β̂)[Fn(β∗)]

−1∑
j 6=i

∂β`j(β∗).

Then, conditional on all the covariates and {m1, . . . ,mn} in Z, we can
show that E[C̃D(Ii)|M,Z] can be approximated by tr{(E[Fn(β̂)|M,Z] −
E[fi(β̂)|M,Z])−1E[fi(β̂)|M,Z]} when the fitted model M is true. More-
over, we may approximate Var[C̃D(Ii)|M,Z] by using the fourth moment
of ∂β`i(β∗). It is not straightforward to approximate QCD(Ii)(0.5|M,Z) and
Mstd[CD(Ii)|M,Z]. Computationally, we employ the parametric bootstrap
method described above to approximate the conditionally scaled Cook’s dis-
tances CSCD1(Ii,Z) and CSCD2(Ii,Z).
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3. Simulation Studies and A Real Data Example. In this section,
we illustrate our methodology with simulated data and a real data example.

3.1. Simulated Studies. The goals of our simulations were to evaluate
the accuracy of the first-order approximations to Cook’s distance and its
associated quantities (e.g., mean) and to examine the finite sample perfor-
mance of Cook’s distance and the scaled Cook’s distances for detecting influ-
ential clusters in longitudinal data. We generated 100 datasets from a linear
mixed model. Specifically, each dataset contains n clusters. For each cluster,
the random effect bi was first independently generated from a N(0, σ2b ) distri-
bution and then, given bi, the observations yij (j = 1, · · · ,mi; i = 1, . . . , n)
were independently generated from a normal random generator such that
yij ∼ N(xTijβ + bi, σ

2
y) and the mi were randomly drawn from {1, . . . , 10}.

The covariates xij were set as (1, ui, tij)
T , among which tij represents time

and ui denotes a baseline covariate. Moreover, tij = log(j) and the ui’s were
independently generated from a N(0, 1) distribution. For all 100 datasets,
both the responses and covariates were repeatedly generated, while the true
value of (βT , σb, σy) was fixed at (1, 1, 1, 1, 1). The sample size n was set at
30 to represent a relatively small sample size. We also explored other sample
sizes and different degrees of correlation and obtained similar findings, and
thus we did not report them here for the sake of space.

We carried out three experiments as follows. We treated (σb, σy) as nui-
sance parameters and β as the parameter vector of interest. The first exper-
iment was to evaluate the accuracy of C̃D(I) to CD(I). We considered two
scenarios. In the first scenario, we directly used the simulated 100 datasets
as the above linear mixed model. In the second scenario, for each simu-
lated dataset, we deleted all the observations in clusters n − 1 and n and
then reset (mn−1, bn−1) = (1, 4) and (mn, bn) = (10, 3) to generate yi,j for
i = n−1, n and all j according to the above random effects model. Thus, the
new (n − 1)th and nth clusters can be regarded as influential clusters due
to the extreme values of bn−1 and bn. Moreover, the number of observations
in these two clusters is extremely unbalanced.

For each dataset, we deleted each cluster one at a time and then calculated
CD(I) and its first order approximation C̃D(I) for each cluster. Moreover,
we computed the average CD(I), and the biases and standard errors of the
differences CD(I)−C̃D(I) for each I. Table 1 shows some selected results for
each scenario. The average CD(I), is positively proportional to the cluster
size n(I). For the true ‘good’ clusters, the first-order approximation is very
accurate and leads to small average biases and standard errors. Even for the
influential clusters, C̃D(I) is relatively close to CD(I).
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In the second experiment, we considered the same two scenarios as the first
experiment in order to examine the finite sample performance of E[CD(I)|M,Z]
and Std[CD(I)|M,Z] and their first-order approximations. Specifically, for
each dataset, we set S = 100 and simulated S = 100 random samples from
the fitted linear mixed model. Then, we approximated E[CD(I)|M,Z] and
Std[CD(I)|M,Z] by using their empirical ones, and calculated their first
approximations M̂ [C̃D(I)] and Ŝtd[C̃D(I)].

Across all 100 data sets, for each cluster I, we computed the averages
of E[CD(I)|M,Z] and Std[CD(I)|M,Z], and the biases and standard er-
rors of the differences E[CD(I)|M,Z]− M̂ [C̃D(I)] and Std[CD(I)|M,Z]−
Ŝtd[C̃D(I)]. Table 1 shows some selected results for each scenario. The aver-
ages of E[CD(I)|M,Z] and Std[CD(I)|M,Z] are positively proportional to
the cluster size n(I). For the true ‘good’ clusters, the first-order approxima-
tions of E[CD(I)|M,Z] and Std[CD(I)|M,Z] are very accurate and lead to
small average biases and standard errors, while for the influential clusters,
their first-order approximations are relatively accurate.

The third experiment was to examine the finite sample performance of
Cook’s distance and the scaled Cook’s distances for detecting influential
cluster in longitudinal data. We considered two scenarios. In the first sce-
nario, for each of the 100 simulated datasets, we deleted all the observations
in cluster n and then reset mn = 1 and varied bn from 0.4 to 8.0 to generate
yn,1 according to the above random effects model. The second scenario is
almost the same as the first scenario except that we reset mn = 10.

For each dataset, we deleted each cluster one at a time and calculated
CD(I). Then, we computed PC(I,Z) =

∑
I 6={n} 1(CD(I) ≤ CD({n}))/(n −

1), which characterizes the probability that CD({n}) is greater than all the
other CD(I). We set S = 100 and then we approximated CSCD1(I,Z),
CSCD2(I,Z), ˜CSCD1(I,Z), and ˜CSCD2(I,Z). Subsequently, we calculated
PA(I,Z) and PB(I,Z) in (2.24) based on ˜CSCD1(I,Z) and ˜CSCD2(I,Z).

Finally, across all 100 datasets, we calculated the averages and standard
errors of all diagnostic measures for the nth cluster for each scenario. Figures
1 and 2 present some selected results. Comparing the two scenarios, we
observed that deleting the n-th cluster with 10 observations causes larger
effect than that with 1 observation (Fig 1 (a) and Fig 2 (a)). For the first
scenario, CD({n}) is relatively smaller than the other CD(I) (Fig. 1 (d)),
whereas for the second scenario, CD({n}) is relatively larger than other
CD(I) (Fig. 2 (d)). This confirms the size issue discussed in Section 2.3.
Furthermore, in the two scenarios, PA({n},Z) and PB({n},Z) for the scaled
Cook’s distances increase with bn as expected, while they are quite close to
each other across all values of bn (Fig. 1 (d) and Fig. 2 (d)). It may indicate
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Table 1
Selected results from simulation studies for n = 30 and the two scenarios: n(I), M, SD,
Mdif (×10−2), and SDif (×10−1) of the three quantities CD(I), E[CD(I)|M,Z], and
Std[CD(I)|M,Z]. n(I) denotes the cluster size of subset I; M denotes the mean; SD
denotes the standard deviation; Mdif and SDdif, respectively, denote the mean and

standard deviation of the differences between each quantity and its first-order
approximation. In the first scenario, all observations were generated from the linear

mixed model, while in the second scenario, clusters 29 and 30 were influential clusters.
For each case, 100 simulated datasets were used.

CD(I)
Scenario I Scenario II

I n(I) M SD Mdif SDdif n(I) M SD Mdif SDdif
1 4 0.133 0.237 0.345 0.186 4 0.087 0.142 0.055 0.054
5 9 0.162 0.163 0.001 0.125 9 0.140 0.139 0.019 0.074
10 8 0.159 0.220 0.124 0.107 8 0.138 0.186 -0.0003 0.106
15 1 0.036 0.048 0.022 0.010 1 0.033 0.041 0.018 0.010
20 8 0.156 0.213 0.271 0.019 8 0.120 0.130 0.085 0.069
25 9 0.164 0.166 -0.027 0.102 9 0.143 0.149 -0.111 0.084
29 1 0.041 0.081 0.020 0.010 1 0.343 0.309 0.555 0.181
30 10 0.159 0.203 0.151 0.082 10 0.508 0.505 3.245 0.571

E[CD(I)|M,Z]
Scenario I Scenario II

I n(I) M SD Mdif SDdif n(I) M SD Mdif SDdif
1 4 0.083 0.057 0.016 0.010 4 0.070 0.048 0.030 0.008
5 9 0.165 0.066 0.211 0.031 9 0.159 0.068 0.170 0.022
10 8 0.137 0.056 0.106 0.018 8 0.140 0.078 0.113 0.019
15 1 0.050 0.059 -0.144 0.030 1 0.055 0.051 -0.116 0.026
20 8 0.141 0.056 0.118 0.022 8 0.130 0.062 0.089 0.015
25 9 0.174 0.086 0.194 0.027 9 0.177 0.081 0.170 0.025
29 3 0.067 0.055 0.003 0.010 1 0.056 0.045 -0.129 0.048
30 7 0.119 0.055 0.117 0.016 10 0.197 0.065 0.192 0.028

Std[CD(I)|M,Z]
Scenario I Scenario II

I n(I) M SD Mdif SDdif n(I) M SD Mdif SDdif
1 4 0.107 0.084 0.114 0.036 4 0.088 0.063 0.096 0.034
5 9 0.174 0.076 0.218 0.068 9 0.163 0.072 0.017 0.063
10 8 0.142 0.066 0.036 0.052 8 0.149 0.099 0.114 0.059
15 1 0.075 0.103 0.147 0.063 1 0.080 0.075 0.211 0.061
20 8 0.145 0.069 0.076 0.073 8 0.135 0.081 0.010 0.047
25 9 0.177 0.099 0.046 0.069 9 0.185 0.097 0.039 0.060
29 3 0.090 0.085 0.174 0.077 1 0.082 0.065 0.251 0.089
30 7 0.128 0.070 0.132 0.062 10 0.205 0.068 0.077 0.063
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that all scaled Cook’s distances are consistent with each other.

3.2. Yale Infant Growth Data. The Yale infant growth data were col-
lected to study whether cocaine exposure during pregnancy may lead to the
maltreatment of infants after birth, such as physical and sexual abuse. A
total of 298 children were recruited from two subject groups (cocaine ex-
posed group and unexposed group). The key feature of this dataset is that
different children had different numbers and patterns of visits during the
study period [23, 22]. The total number of data points is

∑n
i=1mi = 3176,

whereas mi varies from 2 to 30.
Following Zhang [27] and Zhu et al. [30], we consider a linear mixed model

with a compound symmetry covariance structure as follows: yi,j = xTi,jβ +
εi,j , where yi,j is the weight (in kilograms) of the j-th visit from the i-th
subject, xi,j = (1, d, (d − 120)+, (d − 200)+, (ga − 28)+, d(ga − 28)+, (d −
60)+(ga − 28)+, (d− 490)+(ga − 28)+, sd, s(d − 120)+)T , in which d and ga
(days) are the age of visit and gestational age, respectively, and s is the
indicator for gender, with one for a girl and zero for a boy. In addition, we
assume εi ∼ Nmi(0, σ

2Ri) and consider a compound symmetry covariance
structure for Ri.

By using PROC MIXED (SAS 9.1, Cary, NC), we calculated the restricted
maximum likelihood estimates. We treated β as parameters of interest and
all other parameters as nuisance parameters. We calculated CD(I) for each
child, which relates more to the detection of influential clusters [5]. We com-
puted the degree of the perturbation for deleting each subject and then we
calculated the scaled Cook’s distances and associated quantities. We then
used 100 bootstrap samples to approximate CSCD1(I,Z), CSCD2(I,Z),˜CSCD1(I,Z), and ˜CSCD2(I,Z). Subsequently, we calculated PA(I,Z) and
PB(I,Z) in (2.24) based on ˜CSCD1(I,Z) and ˜CSCD2(I,Z).

We obtained a strong Pearson correlation of 0.363 between Cook’s dis-
tance and the cluster size. This indicates that the bigger the cluster size,
the larger the Cook’s distance measure. Figure 3 (a) presents nine influen-
tial subjects 269, 217, 294, 289, 274, 90, 38, 285, and 280, whose (CD(i),mi)
are, respectively, given by (2.416, 21), (1.465, 19), (1.252, 13), (1.188, 18),
(1.163, 22), (0.858, 17), (0.823, 24), (0.738, 8), and (0.695, 9) (Table 2 and
Figure 3). There are several difficulties in using Cook’s distance for this
model [20, 8, 5, 4]. First, cluster sizes vary significantly across all clus-
ters and deleting a larger cluster may have a higher probability of hav-
ing a larger influence as discussed in Section 2.3. For instance, compar-
ing subjects 274 and 285, we observe (m285,CD({285})) = (8, 0.738) and
(m274,CD({274})) = (22, 1.163). A larger influence measure CD({274}) can
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be caused by a larger perturbation m274 = 22 and/or a larger discrepancy
between the deleted observations in subject 274 and the model fitted to the
data. Since m274 is much larger than m285, it is difficult to claim that sub-
ject 274 is more influential than subject 285. Secondly, there is no rule for
determining whether a specific subject is influential relative to M̂. Although
we have selected the first nine subjects as influential, it is unclear whether
they are truly influential or not.

We computed the degree of the perturbation for deleting each cluster as
follows. Since M assumes yi = (yi,1, . . . , yi,mi)

T ∼ N(xiβ, σ
2Ri), where xi

is an mi × 10 matrix with the j−th row being xTi,j . After some algebraic
calculations, it can be shown that for the case of fixed covariates, we have

(3.1) P({i}|M) = 0.5tr{xTi σ−2R−1i xiEβ[(β − β∗)(β − β∗)
T ]},

where Eβ is taken with respect to p(β|β∗, G−1nβ ). LetG−1nβ = [
∑n
i=1 xTi σ

−2R−1i xi]
−1

be the covariance matrix of β̂. We observed a strong positive correlation be-
tween P({i}|M) and CD(I) (Fig. 3 (b)). Particularly, Figure 3 (b) shows
that subject 269 has the largest Cook’s distance and the largest degree of per-
turbation. We also observed a strong positive correlation between P({i}|M)
and the cluster size (Fig. 3 (c)). That is, the bigger cluster size usually cor-
responds to the larger degree of perturbation. Figure 3 (c) presents nine
subjects 269, 223, 58, 270, 165, 103, 288, and 279 with large degree of per-
turbation, which may be caused by both large leverage value and moderate
cluster size. Finally, we observed the positive correlation between Cook’s
distance and the conditionally scaled Cook’s distance (Figure 3 (d)), but
there are some discrepancies between them. For instance, the magnitude of
CSCD1({269},Z) is only moderate, whereas CD1({269},Z) is the highest
one.

Furthermore, all CSCD1(I,Z)s calculated from the bootstrapped samples
give a range of ‘good’ values of CSCD1(I,Z) across all subjects (Fig. 4 (a)).
Thus, we can calculate PB(I,Z) for all subjects, which gives the magnitude
of each subject I (Fig. 4 (b)). Specifically, subjects 269, 217, 294, 289, 274,
90, 38, 285, 280, 149, 109, and 224 are identified as the top 12 most influ-
ential observations by CD, whereas compared to CD(I), CSCD1(I,Z) and
PB(I,Z) identify a set of 31 influential observations with PB(I,Z) = 1. This
indicates that if the fitted linear mixed model is true, it is almost impossible
to observe such 31 subjects (Fig. 4). For instance, since CD({246}) = 0.253,
it is unclear whether subject 246 is influential or not according to CD (Ta-
ble 2), whereas we have CSCD1({246},Z) = 21.443 and PB({246},Z) = 1.0.
Thus, subject 246 is really influential after eliminating the effect of the clus-
ter size (Table 2). Moreover, it is difficult to compare the influential levels
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Table 2
Yale infant growth data. Top 12 influential subjects for single case deletion with the

compound symmetry model.

ID mi CD ID mi CSCD1 PB(I,Z) ID mi CSCD2 PB(I,Z)

269 12 2.416 274 22 43.593 1.000 217 19 62.639 1.000
217 19 1.465 217 19 27.359 1.000 274 22 60.809 1.000
294 13 1.252 90 17 27.273 1.000 90 17 51.969 1.000
289 18 1.188 109 12 25.520 1.000 109 12 48.173 1.000
274 22 1.163 289 18 24.610 1.000 294 13 45.117 1.000
90 17 0.858 294 13 23.950 1.000 149 17 43.843 1.000
38 24 0.823 149 17 22.217 1.000 38 24 40.753 1.000
285 8 0.738 246 5 21.443 1.000 289 18 36.529 1.000
280 9 0.695 38 24 16.508 1.000 246 5 35.626 1.000
149 17 0.668 62 13 16.455 1.000 269 12 33.447 1.000
109 12 0.625 269 12 16.172 1.000 280 9 25.034 1.000
224 22 0.591 280 9 15.098 1.000 62 13 24.483 1.000

Note that mi represents cluster size and PB(I,Z) is computed by equation (2.24) .

of subjects 274 and 285 using CD. All of the scaled Cook’s distances and as-
sociated quantities suggest that subject 274 is more influential than subject
285 after eliminating their size difference. Finally, given the large number of
influential observations identified by PB(I,Z), it strongly indicates that fur-
ther research may be needed to explore other statistical models and improve
the model fitting for the Yale infant growth data.

4. Discussion. We have introduced a new quantity to quantify the de-
gree of perturbation and examined its properties. We have used stochastic
ordering to quantify the relationship between the degree of the perturbation
and the size of Cook’s distance. We have developed several scaled Cook’s
distances to address the size issue for deletion diagnostics in general para-
metric models. We have shown that the scaled Cook’s distances provide
important information about the relatively influential level of each subset.
We have illustrated our development with linear regression, generalized lin-
ear models, general linear models with correlated errors, and generalized
linear mixed models. We have analyzed simulated data and a real dataset
using the scaled and conditionally scaled Cook’s distance measure. Future
work includes developing Bayesian analogs to the scaled Cook’s distance
measure and developing such a methodology for other types of models, such
as survival models and models with missing covariate data.
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Appendix. The following assumptions are needed to facilitate the tech-
nical details, although they are not the weakest possible conditions. Because
we develop all results for general parametric models, we only assume several
high-level assumptions as follows.
Assumption A2. θ̂[I] for any I is a consistent estimate of θ∗, an interior point
of Θ.
Assumption A3. All p(Y[I]|θ) are three times continuously differentiable on
Θ and satisfy

log p(Y[I]|θ) = log p(Y[I]|θ∗)+∆(θ)TJn,[I](θ∗)−0.5∆(θ)TFn,[I](θ∗)∆(θ)+R[I](θ),

in which |R[I](θ)| = op(1) uniformly for all θ ∈ B(θ∗, δ0n
−1/2) = {θ :√

n||θ − θ∗|| ≤ δ0}, where ∆(θ) = θ − θ∗, Jn,[I](θ) = ∂θ log p(Y[I]|θ) and
Fn,[I](θ∗) = ∂2θ log p(Y[I]|θ).

Assumption A4. For any set I and Z, supθ∈B(θ∗,n−1/2δ0)
n−1/2Jn,[I](θ) =

Op(1),

sup
θ∈B(θ∗,n−1/2δ0)

||Fn,[I](θ)− E[FI(θ)|M,Z]|| = Op(
√
n),

sup
θ,θ′∈B(θ∗,n−1/2δ0)

n−1||Fn,[I](θ)− Fn,[I](θ
′)|| = op(1),

and 0 < infθ∈B(θ∗,δ0n−1/2) λmin(n−1Fn,[I](θ)) ≤ supθ∈B(θ∗,δ0n−1/2) λmax(n−1Fn,[I](θ)) <
∞.
Assumption A5. For any set I and Z,

sup
θ∈B(θ∗,n−1/2δ0)

JI(θ) = Op(
√
n(I)), sup

θ∈B(θ∗,n−1/2δ0)

||fI(θ)|| = Op(n(I)),

sup
θ∈B(θ∗,n−1/2δ0)

||fI(θ)− E[fI(θ)|M,Z]|| = Op(
√
n(I)).

Remarks: Assumptions A2-A5 are very general conditions and are general-
izations of some higher level conditions for the extremum estimator, such
as the maximum likelihood estimate, given in Andrews [3]. Assumption A2
assumes that the parameter estimators with and without deleting the ob-
servations in the subset I are consistent. Assumption A3 assumes that the
log-likelihood functions for any I and Y[I] admit a second-order Taylor’s
series expansion in a small neighborhood of θ∗. Assumptions A4 and A5 are
standard assumptions to ensure that the first- and second-order derivatives
of p(Y[I]|θ) and p(YI |Y[I],θ) have appropriate rates of n and nI [3, 28].
Sufficient conditions of Assumptions A2-A5 have been extensively discussed
in the literature [3, 28]. Moreover, for simplicity, we use the rates of n and
n(I) in Assumptions A3-A5, which can be modified to accommodate more
intricate examples in Andrews [3] and Zhu and Zhang [28].
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Fig 1. Results from 100 datasets simulated from a linear mixed model, in which m30 =
1 and b30 varies from 0.4 to 8.0. Panel (a) shows the box plots of Cook’s distances as
a function of b30; panel (b) shows the box plots of CSCD1(I,Z) as a function of b30;
panel (c) shows the box plots of PA(I,Z) as a function of b30; panel (d) shows the mean
curves of PA(I,Z) based on the four scaled Cook’s distances, in which the green line is for

CSCD1(I,Z), the dark green line is for CSCD2(I,Z), the blue line is for C̃SCD1(I,Z),

and the dark line is for C̃SCD1(I,Z), and the mean curve of PC(I,Z) based on CD(I)
(red line) as functions of b30.
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Fig 2. Results from 100 datasets simulated from a linear mixed model, in which m30 =
1 and b30 varies from 0.4 to 8.0. Panel (a) shows the box plots of Cook’s distances as
a function of b30; panel (b) shows the box plots of CSCD1(I,Z) as a function of b30;
panel (c) shows the box plots of PB(I,Z) as a function of b30; panel (d) shows the mean
curves of PB(I,Z) based on the four scaled Cook’s distances, in which the green line is for

CSCD1(I,Z), the dark green line is for CSCD2(I,Z), the blue line is for C̃SCD1(I,Z),

and the dark line is for C̃SCD1(I,Z), and the mean curve of PC(I,Z) based on CD(I)
(red line) as functions of b30.
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Fig 3. Yale infant growth data. Panels (a) and (b) present cluster size versus CD(I) and
P (I|M) versus CD(I) for cluster deletion, respectively; panels (c) and (d), respectively,
present cluster size versus P (I|M) and CD(I) versus CSCD1(I,Z) for cluster deletion.
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(a) (b)

Fig 4. Yale infant growth data. Panel (a) shows the histogram of CSCD1(I,Z)s for all
subjects and s; panel (b) shows CSCD1(I,Z) versus PB(I,Z).
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