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Diffusion tensor imaging provides important information on tis-
sue structure and orientation of fiber tracts in brain white matter in
vivo. It results in diffusion tensors, which are 3×3 symmetric positive
definite (SPD) matrices, along fiber bundles. This paper develops a
functional data analysis framework to model diffusion tensors along
fiber tracts as functional data in a Riemannian manifold with a set of
covariates of interest, such as age and gender. We propose a statistical
model with varying coefficient functions to characterize the dynamic
association between functional SPD matrix-valued responses and co-
variates. We calculate weighted least squares estimators of the vary-
ing coefficient functions for the Log-Euclidean metric in the space
of SPD matrices. We also develop a global test statistic to test spe-
cific hypotheses about these coefficient functions and construct their
simultaneous confidence bands. Simulated data are further used to
examine the finite sample performance of the estimated varying co-
efficient functions. We apply our model to study potential gender
differences and find a statistically significant aspect of the develop-
ment of diffusion tensors along the right internal capsule tract in a
clinical study of neurodevelopment.

1. Introduction. Diffusion Tensor Imaging (DTI), which measures the
effective diffusion of water molecules, can provide important information on
the microstructure of fiber tracts and the major neural connections in white
matter (Basser, Mattiello and LeBihan, 1994a,b). It has been widely used to
assess the integrity of anatomical connectivity in white matter. In DTI, a 3×
3 symmetric positive definite (SPD) matrix, called a diffusion tensor (DT),
and its three eigenvalue-eigenvector pairs {(λk,vk) : k = 1, 2, 3} with λ1 ≥
λ2 ≥ λ3 are estimated to quantify the degree of diffusivity and the directional
dependence of water diffusion in each voxel (volume pixel). Multiple fiber
tracts in white matter can be constructed by consecutively connecting the
estimated principal directions (v1) of the estimated DTs in adjacent voxels
(Basser et al., 2000). Subsequently, some tensor-derived scalar quantities,
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2 YING YUAN ET AL.

such as fractional anisotropy (FA) and mean diffusivity (MD), are commonly
estimated along these white matter fiber tracts for each subject. Specifically,
MD=(λ1+λ2+λ3)/3 describes the amount of diffusion, whereas FA describes
the relative degree of anisotropy and is given by

(1.1) FA =

√
3{(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2}

2(λ21 + λ22 + λ23)
.

In the recent DTI literature, there is an extensive interest in developing
fiber-tract based analysis for comparing DTIs in population studies (Gold-
smith et al., 2011; Goodlett et al., 2009; O’Donnell, Westin and Golby, 2009;
Smith et al., 2006; Yushkevich et al., 2008; Zhu et al., 2010, 2011). The rea-
son is that the region-of-interest (ROI) method primarily computes averages
diffusion properties in some manually drawn ROIs, generates various sum-
mary statistics per ROI, and then carries out statistical analysis on these
summary statistics. This method suffers from identifying meaningful ROIs,
particularly the long curved structures common in fiber tracts, the instabil-
ity of statistical results obtained from ROI analysis, and the partial volume
effect in relative large ROIs (Zhu et al., 2011). The fiber-tract based analysis
usually consists of two major components, including DTI atlas building and
a follow-up statistical analysis (Goodlett et al., 2009; Smith et al., 2006; Zhu
et al., 2010). The DTI atlas building is primarily to extract DTI fibers and
to establish DTI fiber correspondence across all DTI datasets from different
subjects. The key steps of the DTI atlas building include DTI registration,
atlas fiber tractography, and fiber parametrization. Finally, we get a set of
individual tracts with the same corresponding geometry but varying DTs
and diffusion properties. Some statistical approaches have been developed
for the analysis of scalar tensor-derived quantities along fiber tracts (Gold-
smith et al., 2011; Goodlett et al., 2009; Smith et al., 2006; Yushkevich et al.,
2008; Zhu, Li and Kong, 2010; Zhu et al., 2010, 2011), but little has been
done on the analysis of whole DTs along fiber tracts, which is the focus of
this paper.

There is a growing interest in the DTI literature in developing statistical
methods for the direct analysis of DTs in the space of SPD matrices (Dry-
den, Koloydenko and Zhou, 2009). Schwartzman, Mascarenhas and Taylor
(2008) proposed parametric models for analyzing SPD matrices and de-
rived the distributions of several test statistics for comparing differences
between the means of the two (or multiple) groups of SPD matrices. Kim
and Richards (2010) developed a nonparametric estimator of the density
function of a random sample of SPD matrices. Zhu et al. (2009) developed
a semi-parametric regression model with SPD matrices as responses and
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covariates in a Euclidean space. Barmpoutis et al. (2007) and Davis et al.
(2007) developed nonparametric methods, including tensor spline methods
and local constant regression, to interpolate diffusion tensor fields. However,
no one has ever developed statistical methods for functional analysis of DTs
along fiber tracts.

In this paper, we propose a varying coefficient model for DT-valued func-
tions (VCDF). We use varying coefficient functions to characterize the vary-
ing association between diffusion tensors along fiber tracts and a set of co-
variates. Here, the varying coefficients are the parameters in the model which
vary with location. Since the impacts of the covariates of interest may vary
spatially, it would be more sensible to treat the covariates as functions of lo-
cation instead of constants, which leads to varying coefficients. In addition,
we explicitly model the within-subject correlation among multiple DTs mea-
sured along a fiber tract for each subject. To account for the curved nature of
the SPD space, we employ the Log-Euclidean framework in Arsigny (2006)
and then use a weighted least squares estimation method to estimate the
varying coefficient functions. We also develop a global test statistic to test
hypotheses on the varying coefficient functions and use a resampling method
to approximate the p−value. Finally, we construct a simultaneous confidence
band to quantify the uncertainty of each estimated coefficient function and
propose a resampling method to approximate its critical points. To the best
of our knowledge, this is the first paper for developing a statistical frame-
work for modeling functional manifold-valued responses with covariates in
Euclidean space.

There are several advantages of the analysis of DTs over the analysis of
scalar diffusion properties along fiber tracts. The first one is that it can avoid
the statistical artifacts including biased parameter estimates and incorrect
test statistics and p-values for hypotheses of interest, created by compar-
ing the biased diffusion properties along fiber bundles. This is because the
real DT data estimated from the diffusion weighted images (DWI’s) using
weighted least squared methods are almost unbiased (Zhu et al., 2007b),
whereas the diffusion properties, which are nonlinear and linear functions
of three eigenvalues of DT data, may be substantially different from the
true diffusion properties (Anderson, 2001; Pierpaoli and Basser, 1996; Zhu
et al., 2007b). In addition, as shown in Yuan et al. (2012), directly modeling
DTs along fiber bundles as a smooth SPD process allows us to incorporate
a smoothness constraint to further reduce noise in the estimated DTs along
the fiber bundles. This leads to the further reduction of noise in estimated
scalar diffusion properties along the fiber bundles and less biased estimators
of diffusion properties as shown in Figure 4 in Section 3. Moreover, the sole
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use of diffusion properties, which ignores the directional information of DT,
can decrease the statistical power in detecting the difference in DTs oriented
in different directions.

The rest of the paper is organized as follows. Section 2 presents VCDF
and related statistical inference. Section 3 examines the finite sample perfor-
mance of VCDF via a simulation study. Section 4 illustrates an application
of VCDF in a clinical study of neurodevelopment. Section 5 presents con-
cluding remarks.

2. Data and Methods.

2.1. Early Brain Development Study of White Matter Tracts. We con-
sider 96 healthy infants (36 males and 60 females) from the neonatal project
on early brain development led by Dr. Gilmore at the University of North
Carolina at Chapel Hill. The mean gestational age of these infants is 245.6
days with SD: 18.5 days (range: 192-270 days). A 3T Allegra head only MR
system was used to acquire all the images. The system was equipped with
a maximal gradient strength of 40 mT/m and a maximal slew rate of 400
mT/(m·msec). The DTIs were obtained by using a single shot EPI DTI se-
quence (TR/TE=5400/73 msec) with eddy current compensation. The six
non-collinear directions at the b-value of 1000 s/mm2 with a reference scan
(b=0) were applied. The voxel resolution was isotropic 2 mm, and the in-
plane field of view was set to 256 mm in both directions. To improve the
signal-to-noise ratio of the DTIs, a total of five repetitions were acquired
and averaged.

We processed the DTI dataset as follows. We used a weighted least squares
estimation method (Basser, Mattiello and LeBihan, 1994a; Yuan et al., 2008;
Zhu et al., 2007b) to construct the diffusion tensors. We used a DTI atlas
building pipeline (Goodlett et al., 2009; Zhu et al., 2010) to register DTIs
from multiple subjects to create a study specific unbiased DTI atlas, to
track fiber tracts in the atlas space, and to propagate them back into each
subject’s native space by using registration information. Then, we calcu-
lated DTs and their scalar diffusion properties at each location along each
individual fiber tract by using DTs in neighboring voxels close to the fiber
tract. Since the description of the DTI atlas building has been described in
detail (Goodlett et al., 2009; Zhu et al., 2010), we do not include these image
processing steps here for the sake of simplicity. Fig. 1 (a) displays the fiber
bundle of the right internal capsule fiber tract (RICFT), which is an area
of white matter in the brain. The internal capsule, which lies between the
lenticular and caudate nuclei, consists of a group of myelinated fiber tracts
including axons of pyramidal and extrapyramidal upper motor neurons that

imsart-aoas ver. 2011/01/24 file: MVCM05222012.tex date: December 1, 2011



VARYING COEFFICIENT MODEL 5

connect the cortex to the cell bodies of lower motor neurons. Although the
internal capsule ends within the cerebrum, the axons that pass through it
continue down through brain stem and spinal cord. It was found that neona-
tal microstructural development of the internal capsule tract correlates with
severity of gait and motor deficits (Rose et al., 2007). Fig. 1 (b) presents
DTs along a representative RICFT obtained from each of 10 subjects, in
which each DT is geometrically represented by an ellipsoid. In this ellip-
soidal representation, the lengths of the semiaxes of the ellipsoid equal the
square root of the three eigenvalues of a DT, while the three eigenvectors
define the direction of the three axes.

Fig 1. (a) The fiber bundle of the right internal capsule fiber tracts in the atlas space. (b)
The ellipsoidal representations of full tensors along a representative right internal capsule
fiber tract obtained from each of 10 selected subjects, colored with fractional anisotropy
(FA) values. The rainbow color scheme is used with red corresponding to low FA value and
purple corresponding to high FA value.

Our final data set includes DTs and diffusion properties sampled along
the RICFT and a set of covariates of interest from all n = 96 subjects.
Specifically, let Sym+(3) be the set of 3 × 3 SPD matrices and xj ∈ [0, L0]
be the arc length of the j-th point on the RICFT relative to a fixed end
point for j = 1, · · · , nG , where L0 is the longest arc length and nG is the
number of points on the RICFT. For the i-th subject, there is a diffusion
tensor at the j-th point on the RICFT, denoted by Si(xj) ∈ Sym+(3), for
i = 1, · · · , n. Let zi be an r × 1 vector of covariates of interest. In this
study, we have two specific aims. The first one is to compare DTs along the
RICFT between the male and female groups. The second one is to delineate
the development of fiber DTs across time, which is addressed by including
the gestational age at MRI scanning as a covariate. Finally, our real data set
can be represented as {(zi; (x1, Si(x1)), · · · , (xnG , Si(xnG))) : i = 1, . . . , n}.
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2.2. Varying Coefficient Model for SPD Matrix-valued Functional Data.
In this section, we present our VCDF. The code for VCDF written in Mat-
lab along with its documentation and a sample data set will be freely acces-
sible from http://www.bios.unc.edu/research/bias/software.html. To make
the code easily accessible, we developed a Graphical User Interface (GUI),
also freely downloadable from the same website.

To proceed, we need to introduce some notation. Let Sym(3) be the set
of 3× 3 symmetric matrices with real entries. For any A = (akl) ∈ Sym(3),
we define vecs(A) = (a11, a21, a22, a31, a32, a33)

T to be a 6× 1 vector and

vec(A) = (a11, a12, a13, a21, a22, a23, a31, a32, a33)
T

to be a 9× 1 vector. Let Ivecs(·) be the inverse operator of vecs(·) such that
Ivecs(vecs(A)) = A for any A ∈ Sym(3). The matrix exponential of A ∈
Sym(3) is given by exp(A) =

∑∞
m=0A

m/m! ∈ Sym+(3). For any 3× 3 SPD
matrix S, there is a logarithmic map of S, denoted as log(S) = A ∈ Sym(3),
such that exp(A) = S. Let a⊗2 = aaT for any vector or matrix a.

Since the space of SPD matrices is a curved space, we use the Log-
Euclidean metric (Arsigny, 2006) to account for the curved nature of the
SPD space. Specifically, we take the logarithmic map of the DTs Si(x) ∈
Sym+(3) to get log(Si(x)) ∈ Sym(3), which has the same effective dimen-
sionality as a six-dimensional Euclidean space. Thus, we only model the
lower triangular portion of log(Si(x)) as follows:

vecs(log(Si(x))) = B(x)zi + ui(x) + εi(x),(2.1)

where B(x) is a 6 × r matrix of varying coefficient functions for character-
izing the dynamic associations between Si(x) and zi, ui(x) is a 6× 1 vector
characterizing the within-subject correlation between the log-transformed
DTs, and εi(x) is a 6 × 1 vector of measurement errors. It is also assumed
that εi(x) and ui(x) are independent and identical copies of SP(0,Σε) and
SP(0,Σu), respectively, where SP(0,Σ) denotes a stochastic process with
mean 0 and covariance matrix function Σ(x, x′) for any x, x′ ∈ [0, L0]. Let
1(·) be an indicator function. Assume that εi(x) and εi(x

′) for x 6= x′ are
independent and thus Σε(x, x

′) = Σε(x, x)1(x = x′). It follows that the co-
variance structure of vecs(log(Si(xj))), denoted by ΣS(x, x′), is given by

ΣS(x, x′) = Σu(x, x′) + Σε(x, x)1(x = x′).(2.2)

Model (2.1) is a multivariate varying coefficient model with a 6 × 1 vector
response, and thus it can be regarded as a generalization of univariate vary-
ing coefficient models, which have been widely studied and developed for
longitudinal, time series, and functional data (Fan, Yao and Cai, 2003; Fan
and Zhang, 1999, 2008; Wang, Li and Huang, 2008; Wu and Chiang, 2000).
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2.3. Weighted Least Squares Estimation. Before estimating the varying
coefficient functions in B(x), we need to introduce a few facts about the
Log-Euclidean metric for the space of SPDs (Arsigny, 2006). The use of
the Log-Euclidean metric results in classical Euclidean computations in the
domain of matrix logarithms. Particularly, under the Log-Euclidean metric,
the geodesic distance between S1 and S2 in Sym+(3) is uniquely given by

(2.3) d(S1, S2) =
√

tr[{log(S1)− log(S2)}⊗2],

which equals the Euclidean distance between log(S1) and log(S2) in Eu-
clidean space Sym(3). However, there is a subtle, but important, difference
between regarding S(x) as a single point in Sym+(3) and treating log(S(x))
as a vector in Euclidean space. By regarding S(x) as a point in Sym+(3),
we treat all elements of S(x) as a single unit and use a single bandwidth
to smooth DTs. In contrast, by treating log(S(x)) as a vector in Euclidean
space, traditional smoothing methods smooth each element of log(S(x)) in-
dependently (Fan and Gijbels, 1996; Wand and Jones, 1995; Wu and Zhang,
2006).

We use the local linear regression method and the weighted least squares
estimation to estimate B(x) (Fan and Gijbels, 1996; Ramsay and Silverman,
2005; Wand and Jones, 1995; Welsh and Yee, 2006; Wu and Zhang, 2006;
Zhang and Chen, 2007). Since the local linear regression method adapts
automatically at the boundary points (Fan and Gijbels, 1992), it is ideal for
dealing with DTs and scalar diffusion properties along fiber tracts with two
ends (see Fig. 1). Let h(1) be a given bandwidth, Ḃ(x) = dB(x)/dx be a
6× r matrix, and Ir be the r× r identity matrix. Using Taylor’s expansion,
we can expand B(xj) at x to obtain

(2.4) B(xj) ≈ B(x) + Ḃ(x)(xj − x) = Bh(1)(x){Ir ⊗ yh(1)(xj − x)},

where yh(xj − x) = (1, (xj − x)/h)T and Bh(1)(x) = [B(x), h(1)Ḃ(x)]
is a 6 × 2r matrix. Based on (2.1) and (2.4), B(xj)zi can be approxi-
mated by Bh(1)(x){Ir ⊗ yh(1)(xj − x)}zi. For a fixed bandwidth h(1), we
can calculate a weighted least squares estimate of Bh(1)(x), denoted by
B̂h(1)(x) = [B̂(x;h(1)), h(1)Ḃ(x;h(1))], by minimizing an objective function
given by
(2.5)
n∑
i=1

nG∑
j=1

Kh(1)(xj − x)d(log(Si(xj)), Ivecs(Bh(1)(x){Ir ⊗ yh(1)(xj − x)}zi))2,

where Kh(1)(·) = K(·/h(1))/h(1) is rescaling of the kernel function K(·), such
as the Gaussian or uniform kernel (Fan and Gijbels, 1996; Wand and Jones,
1995). The explicit form of B̂(x;h(1)) can be found in the Appendix C.
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We pool the data from all n subjects and develop a cross-validation

method to select an estimated bandwidth h(1), denoted by ĥ
(1)
e . Let B̂(x;h(1))(−i)

be the weighted least squares estimator of B(x) for the bandwidth h(1)

based on the observations with the i-th subject excluded. We define a cross-
validation score, denoted by CV1(h

(1)), as follows:

(2.6) CV1(h
(1)) = (nnG)−1

n∑
i=1

nG∑
j=1

d(log(Si(xj)), Ivecs(B̂(x;h(1))(−i)zi))
2.

We select ĥ
(1)
e by minimizing CV1(h

(1)). In practice, within a given range of

h(1), the value of ĥ
(1)
e can be approximated by computing CV1(h

(1)) through
a series of h(1). Finally, we can calculate a weighted least squares estimate

of B(x), denoted by B̂e(x) = B̂(x; ĥ
(1)
e ).

2.4. Smoothing Individual Functions and Estimating Covariance Matri-
ces. To simultaneously construct the individual function ui(x), we also em-
ploy the local linear regression method. Let u̇i(x) = dui(x)/dx. Taylor’s
expansion of ui(xj) at x gives

(2.7) ui(xj) ≈ ui(x) + u̇i(x)(xj − x) = Ui(x)yh(2)(xj − x),

where Ui(x) = [ui(x), h(2)u̇i(x)] is a 6× 2 matrix. For each fixed x and each
bandwidth h(2), the weighted least square estimator of Ui(x), denoted by
Ûi(x;h(2)) = [ui(x;h(2)), h(2)u̇i(x;h(2))], can be calculated by minimizing an
objective function given by

nG∑
j=1

Kh(2)(xj − x)d(log(Si(xj)), Ivecs(B̂e(xj)zi + Ui(x)yh(2)(xj − x)))2.

Let Ri be an nG × 6 matrix with the j-th row vecs(log(Si(xj)))− B̂e(xj)zi
and S be an nG×nG smoothing matrix with the (i, j)-th element K̃0

h(2)
(xj−

xi, xi), where K̃0
h(2)

(·, ·) is the empirical equivalent kernel (Fan and Gijbels,
1996). It can be shown that

(2.8) (ûi(x1), · · · , ûi(xnG))T = SRi.

We pool the data from all n subjects and select an estimated bandwidth of

h(2), denoted as ĥ
(2)
e . We define a generalized cross-validation score, denoted

by GCV(h(2)), as follows:

(2.9) GCV(h(2)) = n−1
∑n
i=1 tr{(Ri − SRi)⊗2}
{1− n−1tr(S)}2

.
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We select ĥ
(2)
e by minimizing GCV(h(2)). Like the bandwidth selection in

Section 2.3, the value of ĥ
(2)
e can be approximated by computing GCV(h(2))

through a series of h(2). Finally, by substituting ĥ
(2)
e into (2.8), we can cal-

culate a weighted least squares estimate of ui(x), denoted by ûi,e(x).
After obtaining ûi,e(x), we can estimate the mean function u(x) and the

covariance function Σu(x, x′). Specifically, we estimate u(x) and Σu(x, x′) by
using their empirical counterparts based on the estimated ûi,e(x) as follows:

ûe(x) = n−1
n∑
i=1

ûi,e(x) and Σ̂u(x, x′) = (n− 6)−1
n∑
i=1

ûi,e(x)ûi,e(x
′)T .

We construct a nonparametric estimator of the covariance matrix Σε(x, x)
as follows. Let ε̂i(xj) = vecs(log(Si(xj))) − B̂e(xj)zi − ûi,e(xj) be the esti-
mated residuals for i = 1, · · · , n and j = 1, · · · , nG. We consider the kernel
estimate of Σε(x, x) given by

(2.10) Σ̂ε(x, x;h(3)) = (n− 6)−1
n∑
i=1

nG∑
j=1

Kh(3)(xj − x)ε̂i(xj)
⊗2∑nG

j=1Kh(3)(xj − x)
.

We pool the data from all n subjects and select an estimated bandwidth

of h(3), denoted as ĥ
(3)
e . Let Σ̃ε(xj , xj) = (n−6)−1

∑n
i=1 ε̂i(xj)ε̂i(xj)

T be an
estimate of Σε(xj , xj) and Σ̂ε(x, x;h(3))(−i) be the leave-one-out weighted
least squares estimator of Σ̂ε(x, x). We define a cross-validation score, de-
noted by CV2(h

(3)), as follows:

(nnG)−1
n∑
i=1

nG∑
j=1

tr{[ε̂i(xj)⊗2 − Σ̂ε(xj , xj ;h
(3))(−i)]⊗2Σ̃ε(xj , xj)

−1}.

We select h(3) by minimizing CV2(h
(3)). In practice, within a given range of

h(3), the value of ĥ
(3)
e can be approximated by computing CV2(h

(3)) through

a series of h(3). Finally, by substituting ĥ
(3)
e into (2.10), we can calculate a

weighted least squares estimate of Σε(x, x), denoted by Σ̂ε,e(x, x).

2.5. Asymptotic Properties. We will use the following theorems to make
statistical inference on varying coefficient functions. The detailed assump-
tions of these theorems can be found in the Appendix A and their proofs are
similar to those in Zhu, Li and Kong (2010). Thus, we omit them for the sake
of space. We need some notation. Let B̈(x) = d2B(x)/dx2 and G(0,Σ) be
a Gaussian process with zero mean and covariance matrix function Σ(x, x′)
for any x, x′ ∈ [0, L0].
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Theorem 1. If the assumptions (C1)-(C6) in the Appendix hold, then

√
n{vec(B̂(x;h(1))−B(x)−0.5u2B̈(x)h(1)2[1+op(1)]) : x ∈ [0, L0]} ⇒ XB(x),

where ⇒ denote weak convergence of a sequence of stochastic processes,
XB(·) follows a Gaussian process G(0,Σu ⊗ Ω−1z ), and Ωz is the limit of
n−1

∑n
i=1 z

⊗2
i as n→∞.

Theorem 1 establishes weak convergence of B̂(x;h(1)) as a stochastic pro-
cess indexed by x ∈ [0, L0] and forms the foundation for constructing a global
test statistic and simultaneous confidence bands for {B(x) : x ∈ [0, L0]}.
Theorem 2. If the assumptions (C1)-(C7) in the Appendix hold, then

sup
(x,x′)∈[0,L0]2

|Σ̂u(x, x′;h(3))− Σu(x, x′)| = op(1).

Theorem 2 shows the uniform convergence of Σ̂u(x, x′;h(3)). This is use-
ful for constructing global and local test statistics for testing the covariate
effects.

2.6. Hypothesis Tests. In neuroimaging studies, many scientific ques-
tions of interest require the comparison of fiber bundle diffusion tensors
along fiber bundles across two (or more) diagnostic groups and the assess-
ment of the development of fiber bundle diffusion tensors along time. Such
questions can often be formulated as linear hypotheses of B(x) as follows:

(2.11) H0 : Cvec(B(x)) = b0(x) for all x vs. H1 : Cvec(B(x)) 6= b0(x),

where C is a c× 6r matrix of full row rank and b0(x) is a given c× 1 vector
of functions.

We propose both local and global test statistics. The local test statistic
can identify the exact location of significant location on a specific tract. At
a given point xj on a specific tract, we test the local null hypothesis

H0(xj) : Cvec(B(xj)) = b0(xj) v.s. H1(xj) : Cvec(B(xj)) 6= b0(xj).

We use a local test statistic Tn(xj) defined by

(2.12) Tn(xj) = nd(xj)
T {C(Σ̂u(xj , xj)⊗ Ω̂−1z )CT }−1d(xj),

where Ω̂z = n−1
∑n
i=1 z

⊗2
i and d(x) = Cvec(B̂e(x) − bias(B̂e(x))) − b0(x).

Following Fan and Zhang (2000), a smaller bandwidth leads to a smaller
value of bias(B̂e(x)). Moreover, according to our simulation studies below,
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we have found that the effect of dropping bias(B̂e(x)) is negligible and there-
fore, we drop it from now on.

To test the null hypothesis H0 : Cvecs(B(x)) = b0(x) for all x, we propose
a global test statistic Tn defined by

(2.13) Tn =

∫ L0

0
Tn(x)dx.

Let GC(·) be a Gaussian process with zero mean and covariance matrix
function ΣC(x, x′), which is the limit of

{C(Σ̂u(x, x)⊗Ω̂−1z )CT }−1/2{C(Σ̂u(x, x′)⊗Ω̂−1z )CT }{C(Σ̂u(x′, x′)⊗Ω̂−1z )CT }−1/2.

It follows from Theorem 1 that
√
n{C(Σ̂u(x, x) ⊗ Ω̂−1z )CT }−1/2d(x) con-

verges weakly to GC(x). Therefore, it follows from the continuous mapping
theorem that as both n and nG converge to infinity, we have

(2.14) Tn ⇒
∫ L0

0
GC(x)TGC(x)dx.

Based on the result (2.14), we develop a wild bootstrap method to approx-
imate the p-value of Tn. The detailed steps of the wild bootstrap method
are given in Appendix B.

2.7. Confidence Band. Based on model (2.16), we construct a confidence
band for S(B(x), z) = exp(Ivecs(B(x)z)) ∈ Sym+(3) over x ∈ [0, L0] for a
fixed z. Specifically, at a given significance level α, we construct a simulta-
neous confidence region in the space of SPD matrices for each z based on
the critical value Cz(α) such that

(2.15) P (d(S(B(x), z), S(B̂(x), z)) ≤ Cz(α) for all x ∈ [0, L0]) = 1− α.

Note that d(S(B(x), z), S(B̂(x), z)) =
√

tr([Ivecs({B̂e(x)−B(x)}z)]⊗2). By
using Theorem 1, we have that as n→∞,

√
nd(S(B(x), z), S(B̂(x), z))⇒

√
tr[{Ivecs(XB(x)z)}⊗2].

We develop an efficient resampling method (Kosorok, 2003; Zhu et al., 2007a)
to approximately draw random samples from {XB(x) : x ∈ [0, L0]}, denoted
by {XB(x)(g) : x ∈ [0, L0]} for g = 1, . . . , G. The detailed steps of such
a resampling method can be found in Appendix C. Subsequently, we can

calculate
√

tr[{Ivecs(XB(x)(g)z)}⊗2] for all g and use them to approximate
Cz(α) for any given α.
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12 YING YUAN ET AL.

Moreover, for B(x) = (βkl(x)), we can construct confidence bands for
its individual varying coefficient function βkl(x) for all (k, l), k = 1, · · · , 6
and l = 1, · · · , r. Specifically, at a given significance level α, we construct a
confidence band for each βkl(x) such that

(2.16) P (β̂L,αkl (x) < βkl(x) < β̂U,αkl (x) for all x ∈ [0, L0]) = 1− α,

where β̂L,αkl (x) and β̂U,αkl (x) are the lower and upper limits of the confidence
band. Let ekl be a 6r × 1 vector with the (l − 1)r + k-th element equal to
1 and all others equal to 0. It follows from Theorem 1 and the continuous
mapping theorem that

sup
x∈[0,L0]

|
√
n{β̂kl,e(x)− βkl(x)}| ⇒ sup

x∈[0,L0]
|eTklXB(x)|.

We define the critical point Ckl(α) to satisfy P (supx∈[0,L0] |e
T
klXB(x)| ≤

Ckl(α)) = 1 − α. Thus, a 1 − α simultaneous confidence band for βkl(x) is
given by

(2.17)

(
β̂kl,e(x)− Ckl(α)√

n
, β̂kl,e(x) +

Ckl(α)√
n

)
.

Similar to Cz(α), the critical point Ckl(α) can be approximated as the 1−α
empirical percentile of supx∈[0,L0] |e

T
klXB(x)(g)| for all g = 1, . . . , G.

3. Simulation Study. We conducted a Monte Carlo simulation study
to examine the finite sample performance of VCDF. At each point xj along
the RICFT, the noisy diffusion tensors are simulated according to the fol-
lowing model,

Si(xj) = exp(Ivecs(B(xj)zi + τiûi(xj) + τi(xj)ε̂i(xj))),(3.1)

where τi and τi(xj) were independently generated from a N(0, 1) random
generator for i = 1, · · · , n and j = 1, · · · , nG. Specifically, we set n = 96,
nG = 112 and zi = (1,Gi,Gagei) for i = 1, . . . , 96, where Gi and Gagei,
respectively, denote gender and gestational age. To mimic real imaging data,
we applied our proposed VCDF method to DTs along the RICFT from all
96 infants in our clinical data to estimate B(x) by B̂e(x), ui(x) by ûi,e(x)
via (2.8), and εi(x) by ε̂i(x) = vecs(log(Si(x)) − B̂e(x)zi − ûi,e(x)). The
curves of the varying coefficient functions of B̂e(x) are presented in Figure
5. According to our real data analysis in Section 4, the gestational age effect
is significant for our clinical data. So we fixed all functions in B(x) at their
corresponding functions in B̂e(x) except that the third column of B(x),
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VARYING COEFFICIENT MODEL 13

denoted by (β13(x), . . . , β63(x))T , was set as c times the third column of
B̂e(x) where c is set at different values in order to study the Type I and II
error rates of our global test statistic in testing the gestational age effect.
Fig. 2 (a) displays the simulated diffusion tensors along the RICFT at c=1.

We have five aims in this simulation study. The first aim is to investi-
gate the consequence of missing an important covariate. According to our
real data analysis in Section 4, the Gage effect is significant, whereas the
gender effect is not significant. We fitted two VCDF models including three-
covariate (intercept, gender and gestational age) and two-covariate (inter-
cept and gender) models to smooth the DTs along the RICFT and compare
their performance in reconstructing the true DTs along the RICFT. Note
that the two-covariate model does not include Gagei as a covariate. Fig.
2 presents the estimated diffusion tensors using the three-covariate model
(Fig. 2 (c)) and the two-covariate model (Fig. 2 (d)). Inspecting Fig. 2 (e)
reveals that the three-covariate model leads a smaller mean geodesic dis-
tance between the true and estimated DTs compared with the two-covariate
model. Thus, the three-covariate model outperforms the two-covariate one
in recovering the true DTs along the RICFT.

The second aim is to investigate the finite sample performance of the
global test statistic Tn based on the whole DT. In neuroimaging studies,
some scientific questions require the assessment of the development of diffu-
sion tensors along fiber tracts across time. We formulated the questions as
testing the null hypothesis H0 : β13(x) = . . . = β63(x) = 0 for all x along
the RICFT. We first fixed c = 0 to assess the Type I error rates for Tn, and
then we set c = .2, .4, .6, .8, and 1.0 to examine the Type II error rates for
Tn at different effect sizes.

We applied the estimation procedure of VCDF to the noisy DTs along
the RICFT. We approximated the p-value of Tn by using the wild bootstrap
method with G = 1000 described in Appendix B. For each c, we set the
significance level α at both 0.05 and 0.01 and used 3000 replications to
estimate the rejection rate of Tn. At a fixed α, if the Type I rejection rate is
smaller than α, then the test is conservative, whereas if the Type I rejection
rate is greater than α, then the test is anticonservative, or liberal. Fig. 3
presents the rejection rates of Tn across all effect sizes at the two significance
levels (α = .05 or .01) by using full diffusion tensors. It is observed that Type
I error rates are well maintained at the two significance levels. In addition,
the statistical power for rejecting the null hypothesis increases with the effect
size and the significance level, which is consistent with our expectation.

The third aim is to demonstrate the power gain in using DTs compared
with the sole use of diffusion properties. For each simulated diffusion tensor
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14 YING YUAN ET AL.

Fig 2. Ellipsoidal representations of the true (a), simulated (b) and estimated (c) (based
on three covariates) and (d) (based on two covariates) diffusion tensors along the RICFT,
colored with their FA values. The rainbow color scheme is used with red corresponding to
low FA value and purple corresponding to high FA value. Each set of 3 rows in (a)-(d)
represents one tract of 112 DTs and the three rows are read from left to right in the top
row, right to left in the middle row and then left to right in the bottom row. (e) Mean
geodesic distances between the estimated and true diffusion tensors (green solid line based
on three covariates and blue dash-dotted line based on two covariates) along the RICFT.
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Fig 3. Simulation study: Type I and Type II error rates as functions of c. Rejection rates
of Tn based on the wild bootstrap method are calculated at six different values of the effect
size c for sample size 96 at the (a) .05 and (b) .01 significance levels using DTs; FA values;
MD values; and joint values of FA and MD.

atc = .2, .4, .6, .8, and 1.0, we calculated its three eigenvalues λ1, λ2 and
λ3 and two well-known scalar diffusion properties MD and FA. To compare
the power of our method based on DTs with other methods based on scalar
diffusion properties, we applied an existing method for the analysis of diffu-
sion properties in Zhu et al. (2011) to three different scenarios: (i) FA, (ii)
MD, and (iii) (FA, MD). Then we tested the gestational age effect in each
scenario. Inspecting Fig. 3 reveals that the statistical power for rejecting the
null hypothesis increases with the effect size and the significance level in all
scenarios. Moreover, compared with the sole use of diffusion properties, the
use of DT dramatically increases the statistical power for rejecting the null
hypothesis.

The fourth aim is to demonstrate the accuracy gain in estimating scalar
diffusion properties along fiber tracts by directly modeling the DTs using
VCDF. We compared two different methods for estimating FA’s and MD’s,
here referred to as method A and method B, respectively. The method A
first applies VCDF to estimate DT’s and then calculates the FA or MD
curve based on the estimated DT’s. The method B first calculates the FA’s
or MD’s from all SPD matrices and then uses varying coefficient methods
in Euclidean space to estimate the FA’s or MD’s. We examined the finite
sample performance of methods A and B by using the Mean Absolute Biases
(MAB) across all 112 locations, which is defined by

(3.2) MABY,j = 96−1
96∑
i=1

|3000−1
3000∑
s=1

Ŷsij − Yij |,
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Fig 4. Plot of the MAB’s of the estimated FA’s (a) and MD’s (b) using two methods A and
B based on 3000 replications. The method A, which uses VCDF by directly modeling DT’s
outperforms the method B in terms of smaller biases in estimating FA and MD values.

where Ŷsij is the estimator of Yij , which can be the estimated FA or MD
value at the j-th location for the i-th subject and the s-th simulation. Figure
4 reveals that the method A has the smaller biases in estimating FA and
MD values and the biases are negligible compared with those obtained using
method B. This indicates the potential large improvement gained by directly
modeling DT data over method B.

The fifth aim is to examine the coverage probabilities of the simultaneous
confidence bands for all varying coefficient functions βkl(x) in B(x) and
S(B(x), z). We only considered the generated diffusion tensor data at c = 1.
We constructed the 95% and 99% simultaneous confidence bands for all
βkl(x). Following Fan and Zhang (2000), we used a smaller bandwidth with
a shrinkage factor 6 to improve the accuracy of the confidence bands.

Table 1 summarizes the empirical coverage probabilities based on 3000
replications for α = .01 and .05. The coverage probabilities are quite close
to the prespecified confidence levels. Fig. 5 presents typical critical values
of 95% simultaneous confidence regions for vectors of coefficient functions
βk.(x) = (βk1, · · · , βkr)T , k = 1, · · · , 6. Fig. 6 summarizes the empirical
coverage probabilities for S(B(x), z) based on 3000 replications at α = .01
and .05. The coverage probabilities are quite close to the expected confidence
levels.

4. Analysis of the Right Internal Capsule Fiber Tract. We have
two specific aims for the analysis of the right internal capsule fiber tracts.
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Fig 5. Typical 95% simultaneous confidence bands for varying coefficient functions βkl(x).
The solid, dotted, and dash-dotted curves are, respectively, the true curves, the estimated
varying coefficient functions and their 95% confidence bands.
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Table 1
Simulated coverage probabilities for varying coefficient functions in B(x) = (βkl(x)) based

on 3000 replications at the significance levels α = 0.01 and 0.05.

α = .05 α = .01
intercept gender Gage intercept gender Gage
l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

β1l(x) .9497 .9420 .9387 .9867 .9837 .9810
β2l(x) .9440 .9443 .9383 .9843 .9907 .9857
β3l(x) .9457 .9383 .9400 .9870 .9833 .9807
β4l(x) .9480 .9457 .9400 .9880 .9870 .9850
β5l(x) .9437 .9350 .9350 .9870 .9873 .9823
β6l(x) .9473 .9400 .9403 .9860 .9827 .9797
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Fig 6. Simulated coverage probabilities for D(z, β(x)) based on 3000 simulations for α =
.05 (solid lines with diamond markers) and α = .01 (solid lines with circle markers), (a)
for female (b) for male at different gestational ages, respectively.
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The first one is to compare DTs along the RICFT between the male and
female groups. The second one is to delineate the development of fiber DTs
across time. To achieve these two aims, we fitted VCDF to DTs along the
RICFT with gestational age at MRI scanning and gender as covariates. We
applied the estimation procedure in Section 2 to estimate B(x), Σu(·, ·), and
Σε(·, ·). Then, we constructed the global test statistics Tn and the local test
statistics Tn(xj) to test the gender effect and the gestational age effect based
on DTs along the RICFT. The p value of Tn was approximated by using
the resampling method with G = 5, 000 replications. Finally, we constructed
the 95% simultaneous confidence bands for the varying coefficient functions
βkl(x).

To test the gender and gestational age effects, we calculated the local test
statistics Tn(xj) and their corresponding p values across all points on the
RICFT. It is shown in Fig. 7 (a) that most points do not have − log10(p)
values greater than 1.3 for testing the gender effect. Then, we also computed
the global test statistic Tn = 797.65 and its associated p-value p = 0.3934
indicating no gender effect. Inspecting Fig. 7 (b) reveals that the − log10(p)
values of Tn(xj) for testing the gestational age effect are extremely significant
in the middle part of the RICFT. The global gestational age effect was also
found to be highly significant with Tn = 5271.7 and its p−value p < 10−6.
It indicates that DTs along the RICFT are significantly associated with the
gestational age, even though there is no gender difference among DTs along
the RICFT. In order to investigate the development of DTs across the ges-
tational age, we chose a location at arclength= 61.02 and observed that the
diffusion tensors become anisotropic and their sizes become smaller as ges-
tational age increases (Fig. 7 (b) and (c)). Recall that the three eigenvalues
of a DT reflect the magnitude of the diffusion of water molecules along three
directions parallel to its three eigenvectors and that MD reflects the total
magnitude of the diffusion of water molecules. To show the decreasing trend
of DT, we also plotted the curves of all three eigenvalues and MD values
in Fig. 7 (e) and (g), respectively, both of which explicitly show that the
first eigenvalue does not change much whereas the second, third eigenvalues
and MD values decrease with the gestational age. In addition, it is observed
from 7 (f) that FA increases with gestational age, which indicates that DTs
become more anisotropic as gestational age increases.

Fig. 8 presents the estimated varying coefficient functions along with their
95% simultaneous confidence bands. In Fig. 8, all simultaneous confidence
bands contain the horizontal line crossing (0, 0) for the gender effect whereas
the horizontal line is out of the 95% simultaneous confidence band for β43(x),
which indicates the significant gestational age effect. This agrees with our
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Fig 7. (a) The − log10(p) values of test statistics Tn(xj) for testing gender or gestational
age effect of diffusion tensors on the right internal capsule tract, which shows no significant
gender effect and significant gestational age effect.The ellipsoidal representations of (b) raw
and (c) smoothed diffusion tensors changing with the gestational age at one location (at
arclength=61.02) on the right internal capsule tract with significant gestational age effect,
colored with FA values. The rainbow color scheme is used with red corresponding to low
FA value and purple corresponding to high FA value. The plots of three eigenvalues(d), FA
(e) and MD (f) values at that location.
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previous analysis results based on the global and local test statistics for the
gender and gestational age effects.

Finally, Fig. 9 presents the 95% critical values for S(B(x), z) and the
estimated S(B(x), z) along the RICFT across gestational age for female
and male groups, respectively. Inspecting Fig. 9 reveals that the variation
of S(B(x), z) is larger on the two boundary points (especially on the right
side) and smaller in the middle. In addition, the apparent trend of DT’s
changing with gestational age is shown at arc-length= 61.02 for both female
and male groups.

5. Discussion. In this paper, we have developed a functional data anal-
ysis framework, VCDF, for modeling diffusion tensors along fibber bundles
in the Riemannian manifold of SPD matrices under the Log-Euclidean met-
ric with a set of covariates of interest. The most important characteristic
of our method is that it is formulated based on the whole diffusion tensors
instead of the DT derived scalar quantities and thus it can directly handle
diffusion tensors. In addition, VCDF can characterize the dynamic associa-
tion between functional DT-valued responses and covariates by using a set
of varying coefficient functions. Compared with the methods based on DT
derived quantities, such as FA and MD, our method shows the apparent
superiority in estimating DT derived quantities compared with those based
on DT derived quantities (Figure 4). One reason is that the DT data which
is estimated from DWI’s is almost biased whereas the DT derived quantities
are linear and nonlinear function of eigenvalues of DT data, which are very
different from the ground truth. The other reason is that directly modeling
DTs along fiber bundles as a smooth SPD process allows us to incorporate
a smoothness constraint to further reduce noise in the estimated DTs along
the fiber bundles. This leads to the further reduction of noise in estimated
scalar diffusion properties along the fiber bundles. In addition, our method
has the greater statistical power in detecting the effect of covariates of in-
terest as is shown in Figure 3. One reason is that VCDF is less biased in
parameter estimation. The other one is that our method accounts for all
information contained in the DTs along the fiber bundles.

Several major issues remain to be addressed in future research. All fiber-
tract based methods including VCDF are only applicable to these prominent
white matter tracts and do not account for the uncertainties of tracking
these fiber tracts. It is important to develop new statistical methods to
appropriately account for such uncertainties in fiber-tract analysis especially
for inconspicuous fiber tracts. VCDF is based on the second-order diffusion
tensor. It may be interesting to extend VCDF to the analysis of high angular

imsart-aoas ver. 2011/01/24 file: MVCM05222012.tex date: December 1, 2011



22 YING YUAN ET AL.

−7.41

−6.77

−6.44
intercept

β 1(x
)

−0.12

0.09

0.21

gender

−0.46

−0.22

0.23
Gage

−0.05

0.02

0.15

β 2(x
)

−0.03
−0.01

0.03

−0.04

0

0.04

−7.23

−6.78

−6.37

β 3(x
)

−0.14

0.08

0.2

−0.45

−0.22

0.23

−0.11

0.02

0.17

β 4(x
)

−0.06

0

0.05

−0.09

0

0.06

−0.11

0.01

0.16

β 5(x
)

−0.07

0

0.05

−0.04
0

0.07

0 20 40 60 80 100
−7.02

−6.72

−6.36

arclength

β 6(x
)

0 20 40 60 80 100
−0.14

0.09

0.2

arclength
0 20 40 60 80 100

−0.47

−0.23

0.23

arclength
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Fig 9. The 95% critical values for S(B(x), z) across gestational ages for female (a) and
male (b) groups, respectively. The ellipsoidal representation of the estimated S(B(x), z)
along the right internal capsule tract across gestational ages for female (c) and male (d)
groups, respectively, colored with FA values.The rainbow color scheme is used with red
corresponding to low FA value and purple corresponding to high FA value. The displayed
four rows from the top to the bottom correspond to DTs at arclength 0, 31.22, 61.02, 80.92
and 116.47. Specifically, the third row shows the apparent trend of DT’s changing with
gestational age for both female and male groups.
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resolution diffusion imaging (HARDI), which is important for resolving the
issue of fiber crossing (Assemlal et al., 2011). Furthermore, it would be of
great interest to extend VCDF to longitudinal studies and family studies.
Finally, we have treated DTs along fiber tracts as functional responses, it
would be interesting to treat DTs along fiber tracts as varying covariate
functions to predict a scalar outcome (e.g., diagnostic group) (Goldsmith
et al., 2011).

APPENDIX A: ASSUMPTIONS

Assumption C1. εi(x) and ui(x) are identical and independent copies of
SP(0,Σε) and SP(0,Σu), respectively. εi(x) and εi(x

′) are independent for
any x 6= x′ ∈ [0, L0]. εi(x) and ui(x

′) are independent for any x, x′ ∈ [0, L0].
Moreover, with probability one, the sample path of ui(x) has continuous
second-order derivative on [0, L0] and E[supx∈[0,L0] ||ui(x)||r12 ] < ∞ and
E{supx∈[0,L0][||u̇i(x)||2 + ||üi(x)||2]r2} < ∞ for all r1, r2 ∈ (2,∞), where
|| · ||2 is the Euclidean norm.
Assumption C2. All components of B(x) and Σε(x, x) have continuous
second-order derivatives on [0, L0]. The fourth moments of εi(x) are contin-
uous on [0, L0]. All components of Σu(x, x′) have continuous second-order
partial derivatives with respect to (x, x′) ∈ [0, L0]

2. Moreover, Σε(x, x) and
Σu(x, x) are positive for all x ∈ [0, L0].
Assumption C3. The points X = {xj , j = 1, · · · , nG} are independently and
identically distributed with density function π(x), which has the bounded
support [0, L0]. For some constants πL and πU ∈ (0,∞) and any x ∈ [0, L0],
πL ≤ π(x) ≤ πU and π(x) has continuous second-order derivative.
Assumption C4. The kernel function K(t) is a symmetric density function
with a compact support [-1, 1] and is Lipschitz continuous.
Assumption C5. The covariate vectors zi are independently and identically
distributed with Ezi = µz and E[||zi||42] < ∞ and that E[z⊗2i ] = ΩZ is
invertible.
Assumption C6. Both n and nG converge to ∞, h(1) = o(1), nGh

(1) → ∞,

and h(1)−1| log h(1)|1−2/q1 ≤ n1−2/q1G , where q1 ∈ (2, 4).
Assumption C7. E[||εi(xj)||q22 ] < ∞ for some q2 ∈ (4,∞), max(h(2), h(3)) =
o(1), nG(h(2) + h(3))→∞, (h(2))−4(log n/n)1−2/q2 = o(1), and
(h(3))−2(log n/n)1−2/q2 = o(1).

APPENDIX B: WILD BOOTSTRAP METHOD

We develop the four key steps of the wild bootstrap method for approxi-
mating the p-value of Tn as follows.
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Step (i): Use the weighted least squares estimation to fit model (2.1) under
the linear constraint specified in H0, which yields B̂∗e (xj). Calculate û∗i,e(xj)

according to (2.8) and ε̂∗i,e(xj) = vecs(log(Si(xj)))− B̂e(xj)∗zi− û∗i,e(xj) for
i = 1, · · · , n and j = 1, · · · , nG.

Step (ii): Generate a random sample τ
(g)
i and τi(xj)

(g) from a N(0, 1)
random generator for i = 1, · · · , n and j = 1, · · · , nG and then construct

Ŝi(xj)
(g) = exp(Ivecs(B̂∗e (xj)zi + τ

(g)
i û∗i,e(xj) + τi(xj)

(g)ε̂∗i,e(xj))).

Then, based on Ŝi(xj)
(g), we recalculate B̂e(x)(g), and d(x)(g) = CB̂e(x)(g)−

b0(x). We compute

T(g)
n =

∫ L0

0
Tn(x)(g)dx,

Tn(xj)
(g) = nd(xj)

(g)T {C(Σ̂u(xj , xj)⊗ Ω̂−1z )CT }−1d(xj)
(g)

for j = 1, · · · , nG.
Step (iii): Aggregate the results of Step (ii) over g = 1, · · · , G to ob-

tain {T (g)
n,max = max1≤j≤nG Tn(xj)

(g) : g = 1, · · · , G} and calculate p(xj) =

G−1
G∑
g=1

1(T
(g)
n,max ≥ Tn(xj)) for each xj . The p(xj) is the corrected p-value

at the location xj .
Step (iv): Aggregate the results of Step (ii) over g = 1, · · · , G to obtain

{T(g)
n : g = 1, · · · , G} and calculate p = G−1

G∑
g=1

1(T
(g)
n ≥ Tn). If p is

smaller than a pre-specified significance level α, say 0.05, then we reject the
null hypothesis H0.

APPENDIX C: RESAMPLING METHOD FOR APPROXIMATING
GAUSSIAN PROCESS

Recall that Bh(1)(x) = [B(x), h(1)Ḃ(x)] in (2.4) is a 6× 2r matrix. It can
be shown that B̂h(1)(x)T is given by

(C.1) Σ(h(1), x)−1
n∑
i=1

nG∑
j=1

Kh(1)(xj−x)[zi⊗yh(1)(xj−x)]vecs(log(Si(xj)))
T ,

where Σ(h(1), x) =
∑n
i=1

∑nG
j=1Kh(1)(xj−x)[z⊗2i ⊗yh(1)(xj−x)⊗2]. Thus, we

can obtain B̂(x;h(1)) as follows:

(C.2) B̂(x;h(1)) = [Ir ⊗ (1, 0)]B̂h(1)(x).

To approximately simulate from the Gaussian process XB(·), we develop
a resampling method as follows.
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• Based on B̂(xj ;h
(1)), we calculate r̂i(xj) = vecs(log(Si(xj)))−B̂(xj ;h

(1))zi
for i = 1, . . . , n and j = 1, . . . , nG.

• For g = 1, · · · , G, we independently simulate {τ (g)i : i = 1, · · · , n} from
N(0, 1).
• For g = 1, · · · , G, we calculate a stochastic process XB(x)(g) given by

√
n[Ir⊗(1, 0)]Σ(h(1), x)−1

n∑
i=1

τ
(g)
i

nG∑
j=1

Kh(1)(xj−x)Ci(xj−x;h(1))r̂i,l(xj)
T ,

where Ci(xj − x;h(1)) = [zi ⊗ yh(1)(xj − x)] is a 2r × 1 vector.
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