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UNC Biostatistics and Imaging Analysis Lab

THE UNIVERSITY

UNC Gillings School of Global Public Health @ of NORTH CAROLINA

e CHAPEL HILL
C BIOSTATISTICS AND IMAGI IS LAB (BIA)
CE

We have diverse interest in solving methodological issues in statistics. Our past and present
statistical projects include diagnostic measures, stochastic approximation algorithm, structural
equation models, mixed effect models, spline regression, missing data problems, variable
selections, empirical likelihood, mixture models and regression tree.

“GROUP MEETING . We have developed methods and software for the analysis of the data from a state-of-the art
magnetic resonance imaging (MRI) technique including MRI, functional MRI, and diffusion tensor

image. We have developed and enhanced tools in data mining, Monte Carlo method, statistical

- modeling, and applied them to scientific problems to understand the function and structure of the
CONTACT brain. Our collaborators and we work closely to study healthy and neurologically disordered children

and adults.

PEOPLE
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Outline

Evaluating Imaging Sequence Accuracy

Imaging Sequence Optimization

Reconstructing Diffusion Tensor Images
Smoothing Diffusion Tensor Field

Analyzing Tract-based Diffusion Tensor Statistics
Multiscale Adaptive Regression Models

Brain Connectivity Analysis
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Evaluating Imaging Sequence Accuracy

Statistical Methods in Diagnostic Medicine

ARFI Beam Sequence Performance as Evaluated
by Trained Readers: Plaque Detection
PI. Caterina M. Gallippi
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Methods of Acoustic Radiation
N!// Force Impulse (ARFI) Ultrasound
(1) (2) (3)

Transducer Transducer| |Transducer| |Transducer Peak
Displacement

displacement

b - ——— - - - - -

time

' Recovery
TN Time

(1) ARFI Excitation Pulse (~70pus) induces axial displacment
(2) Conventional B-Mode pulses track induced displacement

(3) Displacements are calculated to create a displacement
profile for every pixel witin the image.




@ Methods of Shear Wave
\AY/ Elasticity Imaging (SWEI)
(1) (2) (3)

Transducer Transducer| |Transducer| |Transducer

Peak
Displacement

displacement

/i
Time to Peak
Displacement

(1) ARFI Excitation Pulse (~70us) induces axial displacment

(2) Tracking Away From Region of Excitation Tracks
ARFl-induced Shear Waves

(3) Displacement Profiles Are Created




Hypothesis

Select ARFI/'SWEI beam sequences will yield higher
sensitivity and specificity for atherosclerotic plaque
detection in peripheral arteries.
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General Methods: Beam Sequences

« 3 Types of Excitation

| : g

Single F/1.5 Single F/3 Double F/1.5
(SP1.5) (SP3) (DP)

« 3 Types of Tracking

/ﬂfﬁ : l ; l

Single A-line RX 4:1 Parallel RX SWEI
(SRx) (ParRx)
« Combine for 9 Total Sequences
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Reader Study

« Automatically Generated Images
¢ Lumen masking & Color scaling
12 Trained Readers
¢ Various levels of experience with ARFI
¢ Only 6 evaluated each Image Set
- Validation
¢ Phantom results compared with known truth

¢ Ex vivo results compared with pathologist rating of
spatially matched histology

« Statistics
¢+ Latent Variable Models to compare ordinal responses
¢ Generated receiver operating characteristic (ROC) curves
¢ Calculated mean area under the curve (AUC)
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Peak Displacement

Reader GUI

Entire Image Set Metrics

Recovery Time @ 5-Very Good -

Image for Meas v

_ | Measure "Plaque” Resat

Subsection Metrics

V1 w2 3 4

Plague DEFINITELY Present -
WSecti...I Next Section ’
Previous Imag..| Next Image Set ‘

Image Set 27 of 125
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Custom Phantom Structure

~4mm Layer

Hard or Soft Inclusions
¢ ~110 kPa & ~190 kPa

2.5 or Smm Width

Imaging in 3 Locations

¢ Centered (0mm Offset)

¢ -3mm Lateral Offset
¢ -6mm Lateral Offset
2 Acquisitions

250 Total Image Sets

Depth (mm)

Depth (mm)
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Results: Phantom, All Locations

AUC

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Area Under ROC Curve vs. Beam Sequence

b *% **
_
- I ' e
- '
R — |
1
- —_ —

—_

i o o
O
0.942 0.910 0.906 0.903 0.887 0.879 i
- O
_ 0.660 0.604 0.598
- T T T T T T T T T ** p<0.02
DP SP15 SP3 SPS3 DP SP1.5 SP3 DP SP1.5 *kk p<0005

ParRx ParRx SRx ParRx SRx SRx SWEI SWEI SWEI

Beam Seﬁuence
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Y, Results: Phantom, -6 mm Lateral Offset

Area Under ROC Curve vs. Beam Sequence
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Conclusions

A
 Robust Method for Statistically Comparing Beam Sequences
* Plaque Detection was better when tracking in ROE
¢ Both in Phantoms and Ex Vivo

¢ Even when accounting for optimal positioning

« Ranking of sequence performance remained consistent
between phantom and ex vivo studies

¢ SP1.5-SRx
¢ SP3-SRx

¢ SP3-ParRx
¢ DP-SRx

¢ DP-ParRx
¢+ SP3-SWEI
¢+ SP1.5-SWEI
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Imaging Sequence Optimization

Experimental Design

How to design an optimal imaging
acquisition scheme to achieve
the best signal-to-noise ratio
for a given scan time?
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Acquisition Scheme F p—_— wF:w = T I
(Imaging Parameters) = ‘f' o = Ry

TE

—~a -

TE2

Puled-gradient spin-echo (PGSE

Noisy Images

Images Reconstruction
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STATISTICAL MODEL

Gradient Orientations &
b factors

Design Criterion

Global Optimization

S =8, = f(x,6)
p(Sabag | SoaD)

Gradient directions (Hasan & Narayana, 2005,
MedicaMundi)
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Hasan & Narayana (2005), MedicaMundi. Gao, Zhu, Lin. (2008). Neuroimage.
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OPT_30

Conventional gradient schemes (a) and optimized schemes (b)
based on LS and WLS estimation for uniform fiber case.

Gao, Zhu, Lin. (2008). Neuroimage.
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Reconstructing Diffusion Tensor Images

Estimation Theory

How to obtain accurate estimates of
diffusion tensor and its derived quantities?
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Data {(S.(v),b.,g):i=1,...nyEV}

Rician Regression or _ T .
Log-linear Model 5,(v) = §,(v)exp(-b;g; D(v)g;) + noise

Estimated Diffusion D(v)
Tensor

Estimated Eigenvalues or {(A P )1k =
Eigenvectors ok
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>

Sorting Bias True Diffusion Tensor

D(v) )HélélT 2é222T + A35353T D(v) = )LlelelT + )Lzezeg + )L3e3e§

P(A > A >A) =1 hzhyz

D=diag(0.7, 0.7, 0.7)
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Quantifying Uncertainty by
Coentnal Boostap Wild Botstrap using bootstrap methods
4

The goal of hootstrap ( DW images )
method

DW images

Data-generating
process DT model

Bootstrapped samples Resampled
DW images

Residuals )

Fitted DT @( et
model residuals
N

Wild bootstrap samples/
Artificial DW images
D

Estimation procedure

A pool of DT
parameters
Repetition wild (a)

Bootstrap
Yuan, Zhu, Ibrahim, Lin, Peterson. (2008). IEEE TMI

(b){epetition (c)
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Gold Standard

Isotropic tensor
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Smoothing Diffusion Tensor Field

Nonparametric Regression

How to smooth diffusion tensor
along fiber tracts or in 3D volume?
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+
M = Sym(m) Inner product << YD,ZD >>

Geodesic

Riemannian exponential/logarithm maps

» Affine invariant metric
-1 —1
<<Y,,Z,>>,,=tt(Y,D"Z,D")

» Log-Euclidean metric

<< YD ,ZD >>pL = tI'(IQD (YD)RD (ZD))
R, :T,M —T, M
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Local polynomial kernel regression to nonparametrically
estimate an intrinsic mean of S given x.

Local linear regression performs better than local
constant regression.

Statistical inferences depend on a specific inner product
defined on the tangent space.
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Local Polynomial Kernel Regression

LOgD(xo (D(x)) € TD(xo )S)’m+ (m)
Opiey () T, Sym™ (m) =T, Sym™(m)
Y(x) = ¢p(, (LOGp, (D(X)))

Log ., (D(X))) = @ty (Y (X)) = ity (Y (x0) + X, YO (x,)(x = x,)")

D(x) = EXP (.. ($rt0 (YOO = EXP i (@5t (Y O 0)(x = 50)))
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Simulation Studies

Data model S, =C(x,)exp(E,)C(x,), E. ~ MN(0,2)
5 x, ~ N(0,0.25)
D(x)=C(x)

-0.Ix 02x sin(x)
Cx)=|102x 06x -04x
sin(x) -04x 0.5x

03 0049 0052
Correlation =, =|0049 02 004242, =22, X,=4%, X, =82
0052 00424 0.1

Data {(x,8):i=1:---,n} for n=50 or 100
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Fig. 1. Ellipsoidal representations of the true (the first row) and simulated SPD matrix data along
the design points under the four different noise distributions (the second to the fifth rows: ¥:-34)
colored with FA values.
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Log-Euctidean . |

Local Linear

Riemannian
Local Linear

Fig. 2. Ellipsoidal representations of the true (the first row) and estimated SPD matrix data along
the design points under the four different noise levels colored with FA values. The second to the fifth
rows (Log-Euclidean metric): X,-X4, the sixth to the ninth rows (the Riemannian metric): X;-%,.
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Simulation 1.
» Compare the performance of the local linear with the local constant

* Assess the performance using the Average Geodesic Distance (AGD)

for each replication j=1, ... , N with N as the number of replications,
denoted by N n.
AGD = (nN)"' Y ¥ d(D,(x,).D(x)))
. j=1i=1
where Di(x) and  D(x) are, respectively, the estimated and true

diffusion tensors at Xi
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Fig. 3. Boxplots of the AGD using the intrinsic local constant and linear estimators under the log-
Euclidean (the first row) and Riemannian (the second row) metrics based on 100 replications under
the three covariance matrices (a)-(b) X1, (c)-(d) X2, and (e)-(f) 3. C50 and C100 represent the
intrinsic local constant estimators at sample sizes 50 and 100, respectively. L50 and L100 represent
the intrinsic local linear estimators at sample sizes 50 and 100, respectively.
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Riemannian
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Local constant (solid) —~ ., E T e
Local linear (dashed

Fig. 4. e LAGD curves at each sample point using the intrinsic local constant (solid line) and
linear (dash-dotted line) estimators under the three covariance matrices (a)-(d) =.:. (e)-(h) ==, (i)-
{1 =; for sample sizes 50 (the top two rows) and 100 (the bottom two rows). The first and third
rows correspond to the log-Euclidean metric while the second and fourth rows correspond to the
Riemannian metric.

LAGD
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Simulation 2. High noisy level
Compare the performance of the local linear under two metrics

1.7 — 1.8 1.8
1.5 t+ 1.6 1.6
131 —+ + N 1.4 1.4
8 1.1 \ o112 0 1.2
0.9 EI - L+ {8 @
< g g
07 H 2 - 08 0.8
051 L n T 0.6 T X 0.6 S
"~ LL50 LR50 LL100 LR100 025 0 0.5 1 02— %5 o0 o5 1
X X

(a) (b) (c)
Riemannian (dashed) Log-Euclidean (solid)

Fig. 5. (a) Boxplots of the AGD’s using the linear regressions based on 100 replications under
the covariance matrix 34, under the Log-Euclidean and Riemannian metrics, respectively. (b) and
(c) LAGD curves at each sample point using the local linear regressions under the affine invari-
ant (dash-dotted line) and Log-Euclidean (solid line) metrics under the the covariance matrix 3, at
sample size 50 (b) and 100 (c), respectively. LL50 (LR50) and LL100 (LR100), respectively, rep-
resent the local linear regressions under Log-Euclidean (Riemannian) metrics at sample sizes 50
and 100.
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Simulation 3.
* Value of developing the LPK smoothing method
» Two different methods for smoothing FA values

M1. Calculate FA values from "noisy’ SPDs and then use the local linear
method to smooth the FA values

M2. Use the local linear method to smooth SPDs and then calculate FA
values from the smoothed SPDs

* Calculate the Mean Absolute Deviation Error (MADE):

MADE = (nN)-lgile ((x) —FA;(x,)|

j=1i=1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Fig. 6. Boxplot of the MADE’s using the two smoothing methods based on 100 replications under
the covariance matrices (a) 3., (b) X2, and (c)X3 at sample size 50. Smoothed FA curves for the
realizations with median MADE under the covariance matrices: (d) i, (e) X2, and (f) 3. The
true FA curve (the solid line), the estimated FA curve using the first method (the dash-dotted line)
and the estimated FA curve using the second method (the dashed line). This shows that the more
intrinsic approach is much better.
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Fig. 7. (a)The splenium of the corpus callosum in the analysis of HIV DTl data. (b)The ellipsoidal
representation of full tensors on the fiber tract from a selected subject.
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Fig. 8. (a) Ellipsoidal representations of the diffusion tensor data and estimated tensors using the
intrinsic local linear regression under the (b)log-Euclidean and (c) Riemannian metrics along the
fiber tract f1 colored with FA values. The estimated tensors in the middle right part (highlighted in
the red line) are more anisotropic using the method under the Log-Euclidean metric.
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\, Local Polynomial Kernel Regression for SPD
2

0.8 T v v T 1

0.7t : it { o9
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Fig. 9. (a) FA's, (b) MD’s and (c) PE’s derived from the raw tensor data (dot line) and estimated
tensors using the intrinsic local linear regression under the Riemannian (dash-dot line) and log-
Euclidean (dash line) metrics as the function of arc-length along the tract f1. Estimated FA function
along the fiber tract f1 by using the standard local linear regression for scalars (solid line).
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Smoothing Covariance matrices along age

16 subjects resting state fcMRI

32 ROIs
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Analyzing Tract-based Diffusion Tensor Statistics

Multivariate Varying Coefficient Model

How to compare diffusion tensors or tensor
quantities along fiber tracts?
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Pl: John H. Gilmore

Www.gooqgle.com
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Right internal capsule: a collection of axons
connecting the cerebral cortex and the brain stem

diffusion properties or diffusion tensors
Yi(s,) = (0 (5;)5 5y (5))
grids 18], "»8

covariates
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r\llultivariate varyin
c

Varying Coefficient Model

oefficient modelg1 ‘

Weighted least
square estimation

=) Functional principal
component analysis
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Sujects:

125 healthy infants
(75:53 M:F)
Gestational age
(298+/-17.6 days)

Aims:
Gender Effects
Age Effects

Splenium
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Global and Local p-values for Gender and Age Effects

Right Internal Capsule Splenium
FA MD Lambda1 | Lambda2 | Lambda3 | FA MD Lambda1 | Lambda2 | Lambda3
Gender | .169 354 241 314 376 .683 .063 .048 .057 302
Age <.001 <.001 <.001 <.001 <.001 103 .008 .003 .007 .010
14 ~ + ~ + T r 10
() || ——Gender (b) ,l| —Gender
12 —— Age 1 —— Age
sH
7+
- - 8‘
- = 4+ \ -
3l \ /f\ \ ;
2 . h! \.»J"
1+ \P\j
e R N R R R

arc-length
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Functional Prinicipal Components
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Multiscale Adaptive Regression Models

Regression Analysis and Nonparametric
Smoothing Methods

How to spatially and adaptively compare
imaging measures across subjects
in 3D volume or 2D surface?

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Univariate Statistics

Preprocessed
data: single
voxel

Design matrix RFT/

permutation

Parameter
estimates

G.eneral _’ SPMS
linear

model

Multiple Comparisons
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All voxels are treated as independent units.

Initial smoothing step before the voxel-wise approach often
blurs the image data near the edges of activated regions.

(a) (b) (c) (d)
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Multiscale Adaptive Regression Model

Learning Voxel Feature

Local Feature Adaptation

Adaptive Estimation and Testing

Automatic Stop

Nice Asymptotic Results

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Drawing a sphere with radius r0 at each voxel

Calculating the similarities between the current
voxel and its neighboring voxels.

/ Wi
1

Wil W3l /W,

Ws Wy

Ws| Wo| Wy

\ Wig
el
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Being Hierarchical

Drawing nested spheres with increasing
radiuses at each voxel

ho =0< hy < - < hg =g

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Model y (d) = x” B(d) +,(d) Simulation Studies
64x64 phantom image

Error ¢(d)~N©O,))  g(d)~x(3)-3
n=60 or n=80

. T
Covariates Xx; = (1,X,-2,X,-3) @

x,, ~ Bernoulli(0.5) ‘

X.; ~ Uniform[l,2]

Coefficients f(d) = (5(d).5,(d).5,(d))" -
B(d) = p,(d) =0
ROIs ROI black blue red  yellow white
B, (d) 0.0 0.2 0.4 0.6 0.8
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x?(3) — 3 N(0,1)
= 60 e = 80 = 60 n = 80

Bz(d) ho hs Baio o hs hio o s hio ho hs fio
0.0 BIAS 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RNMS 0.48 0.35 0.26 0.41 0.31 0.22 0.20 0.15 0.11 0.17 0.13 0.09

SD 0.47 0.34 0.24 0.41 0.30 0.21 0.19 0.14 0.10 0.17 0.12 0.09

RE 1.03 1.05 1.06 1.02 1.03 1.04 1.03 1.05 1.06 1.02 1.03 1.04

0.2 BIAS 0.00 -0.03 -0.07 0.01 -0.02 -0.06 0.00 -0.03 -0.05 0.00 -0.02 -0.05
RMS 0.46 0.34 0.24 0.39 0.29 0.21 0.19 0.14 0.11 0.16 0.12 0.09

SD 0.46 0.33 0.24 0.40 0.29 0.21 0.19 0.14 0.10 0.16 0.12 0.09

RE 1.01 1.01 1.01 0.99 1.00 1.01 1.02 1.04 1.06 1.02 1.02 1.03

0.4 BIAS -0.01 -0.05 -0.09 0.01 -0.02 -0.06 0.00 0.00 -0.01 0.00 0.00 0.00
RMS 0.46 0.34 0.25 0.40 0.30 0.22 0.19 0.15 0.12 0.16 0.13 0.10

SD 0.46 0.33 0.24 0.40 0.29 0.21 0.19 0.14 0.11 0.16 0.12 0.09

RE 1.01 1.02 1.03 1.01 1.02 1.03 1.03 1.05 1.07 1.00 1.01 1.02

0.6 BIAS 0.00 -0.05 -0.09 0.00 -0.04 -0.07 0.00 0.01 0.02 0.00 0.00 0.01
RMS 0.46 0.35 0.26 0.40 0.30 0.23 0.19 0.15 0.12 0.16 0.13 0.10

SD 0.46 0.34 0.25 0.40 0.30 0.22 0.19 0.14 0.11 0.16 0.13 0.10

RE 1.01 1.03 1.04 1.01 1.02 1.03 1.02 1.04 1.06 1.01 1.03 1.04

0.8 BIAS 0.00 -0.04 -0.06 0.00 -0.02 -0.05 0.00 -0.01 -0.02 0.00 0.00 -0.01
RMS 0.47 0.35 0.26 0.40 0.30 0.23 0.19 0.15 0.11 0.17 0.13 0.10

SD 0.46 0.34 0.25 0.40 0.30 0.22 0.19 0.14 0.11 0.16 0.12 0.09

RE 1.02 1.03 1.04 1.01 1.02 1.03 1.02 1.04 1.05 1.03 1.05 1.06
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- 2000
-0.90 1.19-0.38 0.23 0.19 0.45 0.22 0.38 0.88 1.34
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Simulation Studies

Table 2. Simulation study for W,.(d, k): estimates (ES) and standard errors
(SE) of rejection rates for pixels inside the five ROls were reported at 2 different
scales (ho, h1o), 2 different distributions (N (0, 1) and x*(3) — 3), and 2 different
sample sizes (n = 60,80) at « = 5%. For each case, 1,000 simulated data

sets were used.

N(0,1) x*(3) -3
n = 60 n = 80 n = 60 n = 80
B2 (d) s ES SE ES SE ES SE ES SE

0.2 ho 0.20 0.066 0.24 0.070 0.08 0.038 0.08 0.037
hio 030 0.126 0.38 0.121 0.10 0.069 0.18 0.081
0.4 ho 0.56 0.090 0.67 0.079 0.15 0.065 0.18 0.070
hio 093 0.051 0.98 0.030 0.26 0.129 0.35 0.159
0.6 ho 0.88 0.039 0.95 0.024 0.27 0.057 0.33 0.050
hio 1.00 0.004 1.00 0.004 0.51 0.091 0.63 0.083
0.8 ho 0.99 0.015 1.00 0.005 0.43 0.080 0.52 0.080
hio 099 0.010 0.99 0.011 0.78 0.099 0.90 0.006
0.0 ho 0.07 0.006 0.07 0.006 0.06 0.007 0.07 0.006
hio 0.08 0.011 0.07 0.011 0.07 0.012 0.08 0.012
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WY

Infant Brain Development Data

« Objective: We want to assess the brain structure
change in the early brain development.

« Subject: 38 infants.

- Image: Diffusion-weighted images and T1 weighted
images were acquired for each subject at 2 weeks, 1 and
2 years old.

« Method: Voxel-wise imaging analysis and MARM.
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Sple
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Adaptive Neighhoods

Adaptive Weights

Cross-sectional, longitudinal,
twin and family studies

Robust Procedure

Parametric and Nonparametric
Components
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Brain Connectivity Analysis

Penalized Methods, Multivariate Analysis,
and Time Series Analysis

How to spatially and temporally quantify
the dynamic association among
different functional regions?
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Functional connectivity is the
mechanism for the coordination

of activity between different neural
assemblies in order to achieve a
complex cognitive task or perceptual
process. (Fingelkurts, Fingelkurts,
Seppo Kahkonen, Fingelkurts, 2005)

Resting-State Network: MR fcMRI

fMRI for finger tapping task;

fcMRI: contralateral motor cortex showed
activation and low frequency (<0.1 Hz)
fluctuations in the signal of the resting
brain, revealing a high degree of
temporal correlation.

Biswal et al, JCBFM, 17:301-308, 1997
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Global efficiency
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A multivariate network-level approach

’.“J; ‘.‘L
Network-level Significance A
¢ | cortlation using — |detectionby |[—— 3&\
CCA resampling I -
< L
Network-level A i Network-level correlation
\ L '\.‘ : I ,‘ ,4"" y\.
mediation through —y - *T-&\ pattern
multiple regression A"

Network Definition L' Network-level mediation pattern

(i) network-level correlation using CCA;

(if) network-level mediation analysis;

(iii) significance detection by resampling methods;
(iv) Network-level correlation pattern.
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Interaction Value

Mediation effect

(b) Finger Tapping

(c) Movie Watching

1 Resting 1 Finger Tapping 1 Movie Watching
- - -
-
- - ’f - - -
0.5 - - - 0.5 - % o°*° 05 "o = 4 ® ® o
N - - - - - -
-~ e * - - - Ced, he
e .- - -eg
-
-
o o (o]
Before After Before After Before After
(a) k.3
e
0.35 0.35 I 0.35 e I
0.3 I 0.3 T e e 0.3 *7
0.25 — 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
o1 | I 0.1 N 01 |
0.05 R —— I — 005 | — S 0.05 - ——— —
o o 1 o T T
FPC Ms FPC v Ms FPC v Ms
(b) s Significant differences at p<0.05
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Selective regulation of the two opposing
networks during different tasks

Correlation

Resting
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Flow Cytometry Data
11 proteins
7466 cells

Fig. 5: Networks for 11 proteins from Sachs et al. (2003).
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90 ROIs
30 subjects
2-rd fcMRI

Fig. 6: Image plots of the partial correlation matrices for 90 regions of 2-year old children’s brains

using the different methods
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