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Motivation

Figure: True complicated process, Data, and ‘Right’/‘Fitted’ model.
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Motivation

Data may come from a true complicated process.

Finding a ‘right’/‘fitted’ model to interpret a dataset and to
approximate the true complicated process.

Fitted Model 6= True Process

Discrepancy = Fitted Model	True Process

How do we use statistical tools (or diagnostic measures) to detect
such discrepancies?
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Motivation

Discrepancy exists between isolated observations (e.g., influential
points and outliers) and the rest of the observations

residuals
leverages
case-deletion measures

Any systematic discrepancies between the data and the fitted values
obtained from statistical models

graphical procedures of residuals, such as partial residual and added
variable plots
goodness-of-fit test statistics and test procedures for testing specific
alternatives
sensitivity analysis
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Motivation

Consider y = Xβ + ε, where ε = (ε1, · · · , εn)T ∼ N(0, σ2In).

The quantity H = (hij) = X (XTX )−1XT is called the hat matrix
and hii , called leverages, can be used for assessing each xi .

The raw residuals, ê = (êi ) = y − ŷ = y − Hy = Qy, Q = In − H,
provide important information about the fitted model, such as model
misspecification, outliers, and influential points.

The studentized residual is defined to be ri = êi
σ̂
√

1−hii
, where σ̂ is an

estimate of σ.

Cook’s distance measures the distance between β̂ and the estimate
of β without the i−th observation, denoted by β̂(i).
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Motivation

Most diagnostic measures were originally developed under linear
regression models (Cook, 1977; Cook and Weisberg, 1982;
Chatterjee and Hadi, 1988).

Considerable research has been devoted to developing diagnostic
measures for generalized linear models and models for survival data
(Andersen, 1992, Davison and Tsai, 1992; Wei, 1998; Storer and
Crowley, 1985; Therneau, Grambsch, and Fleming, 1990; Lin, Wei,
and Ying, 1993).

Diagnostic measures have been developed for various models for
clustered data and models for missing data (Christensen et al., 1992;
Preisser and Qaqish, 1996; Banerjee and Frees,1997; Haslett, 1999;
Zhu, et al. 2001; Fung, et.al, 2002).
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Figure: Residual Analysis
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Figure: Case-deletion Perturbation and Measures
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Motivation

We address three important issues related to a rigorous method to assess
discrepancy among Cook’s distance measures:

the development of a quantity to measure the degree of perturbation
introduced by deleting subsets with different numbers of
observations;

the delineation of relationship between the degree of the
perturbation and the magnitude of Cook’s distance;

the development of new case-deletion measures for carrying out
formal influence analysis.
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Cook’s Distance

Consider YT = (Y T
1 , . . . ,Y

T
n ) and p(Y|θ), where θ ∈ Θ ⊂ Rq.

The dimension of Yi = (yi,1, . . . , yi,mi ) may vary significantly across
all i .

Let subscript ‘[I]’ denote the relevant quantity with all observations
in a set I deleted.

Let Y[I ] be a subsample of Y with YI = {Y(i,j) : (i , j) ∈ I} deleted
and p(Y[I ]|θ) be its probability function.

θ̂ = argmaxθ log p(Y|θ) and θ̂[I ] = argmaxθ log p(Y[I ]|θ);

CD(I ) = (θ̂[I ] − θ̂)TGnθ(θ̂[I ] − θ̂).
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Cook’s Distance

CD(I ) = F1(I ,M,Y) = F2(P(I |M),G (I |Y,M)).

Figure: G(I |Y,M) is the goodness of fit of M to Y for I and P(I |M) is the
degree of the perturbation to M introduced by deleting the subset I .
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Degree of Perturbation

Our choice of P(I |M) is motivated by five principles as follows.

(P.a) (non-negativity) For any subset I , P(I |M) is always
non-negative.

(P.b) (uniqueness) P(I |M) = 0 if and only if I is an empty set.

(P.c) (monotonicity) If I2 ⊂ I1, then P(I2|M) ≤ P(I1|M).

(P.d) (additivity) If I2 ⊂ I1, I1·2 = I1 − I2, and
p(YI1·2 |Y[I1],θ) = p(YI1·2 |Y[I1·2],θ) for all θ, then we have
P(I1|M) = P(I2|M) + P(I1·2|M).

(P.e) P(I |M) should naturally arise from the current model M, the
data Y, and the subset I .
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Degree of Perturbation

P(I |M) is defined as follows.

p(Y|θ) = p(Y[I ]|θ)p(YI |Y[I ],θ);

p(Y|θ, I ) = p(Y[I ]|θ)p(YI |Y[I ],θ∗), where θ∗ is the true value of θ
under M;

KL(Y,θ|θ∗, I ) =
∫

p(Y|θ) log
(

p(Y|θ)

p(Y|θ,I )

)
dY;

P(I |M) =
∫

KL(Y,θ|θ∗, I )φ(θ|θ∗,Σ∗)dθ;

We suggest substituting θ∗ by an estimator of θ, denoted by θ̃, and
Σ∗ by the covariance matrix of θ̃.
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Degree of Perturbation

Theorem 1. Suppose that L({Y : p(YI |Y[I ],θ) = p(YI |Y[I ],θ∗)}) > 0
for any θ 6= θ∗, where L(A) is the Lebesgue measure of a set A. Then,
P(I |M) defined above satisfies the five principles (P.a)-(P.e).
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Example

Consider the linear regression model yi = xTi β∗ + εi , where xi is a p × 1
vector and εi (i .i .d) ∼ N(0, σ2

∗).

For the case of fixed covariates, P({i}|M) =

0.5Eθ[log(σ2
∗/σ

2)] + 0.5
xTi Eθ [(β−β∗)(β−β∗)T ]xi

σ2
∗

≈ 1
2 hii + 1

2n .

For the case of random covariates, we assume that the
xi ∼ F (µx ,Σx) and P({i}|M) =
0.5Eθ[log(σ2

∗/σ
2)] + 0.5σ−2

∗ tr{ΣxEθ[(β − β∗)(β − β∗)T ]} ≈ p+1
2n .

P({i1, · · · , in(I )}|M) =
∑n(I )

k=1 P({ik}|M).

For random covariates, we have P(I |M) = n(I )P({1}|M) for any
subset I with n(I ) observations.

An important implication of these calculations in real data analysis is
that we can directly compare CD(I1) and CD(I2) when n(I1) = n(I2).
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Example

Cook’s distance for deleting the subset I with n(I ) is given by
CD(I ) = êT

I (In(I ) − HI )
−1HI (In(I ) − HI )

−1êI/σ̂
2, where êI is an

n(I )× 1 vector containing all êi for i ∈ I and HI = XI (XTX)−1XT
I .

How to compare CD(I1) and CD(I2) for any two subsets with
n(I1) 6= n(I2)?
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Example

Theorem 2. For the standard linear model, where y = Xβ + ε and
ε ∼ N(0, σ2In), we have the following results:
(a) for any I2 ⊂ I1, CD(I1) is stochastically larger than CD(I2) for any X,
that is, P(CD(I1) > t|M) ≥ P(CD(I2) > t|M) holds for any t ≥ 0.
(b) Suppose that the components of XI and XI ′ are identically
distributed for any two subsets I and I ′ with n(I ) = n(I ′). Thus, CD(I )
and CD(I ′) follow the same distribution when n(I ) = n(I ′) and CD(I1) is
stochastically larger than CD(I2) for any two subsets I2 and I1 with
n(I1) > n(I2).
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Theorem

Proposition 1. Under the stochastic larger assumption, for any two
subsets I1 and I2 with P(I1|M) > P(I2|M), Cook’s distance satisfies

E [h(CD(I1))|M] ≥ E [h(CD(I2))|M] (1)

holds for all increasing functions h(·). In particular, we have
E [CD(I1)|M] ≥ E [CD(I2)|M] and QCD(I1)(α|M) is greater than the
α-quantile of QCD(I2)(α|M) for any α ∈ [0, 1], where QCD(I )(α|M)
denotes the α−quantile of the distribution of CD(I ) for any subset I .
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Definition

Definition 1. The scaled Cook’s distances for matching (mean, Std) and
(median, Mstd) are, respectively, defined as

SCD1(I ) =
CD(I )− E [CD(I )|M]

Std[CD(I )|M]
and SCD2(I ) =

CD(I )− QCD(I )(0.5|M)

Mstd[CD(I )|M]
,

where both the expectation and the quantile are taken with respect to
M.
Definition 2. The conditionally scaled Cook’s distances (CSCD) for
matching (mean, Std) and (median, Mstd) while controlling for Z are,
respectively, defined as

CSCD1(I ,Z) =
CD(I )− E [CD(I )|M,Z]

Std[CD(I )|M,Z]
,

CSCD2(I ,Z) =
CD(I )− QCD(I )(0.5|M,Z)

Mstd[CD(I )|M,Z]
,

where Z is the set of some fixed covariates in Y and the expectation and
quantiles are taken with respect to M given Z.
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First-order Approximation

Theorem 3. If Assumptions A2-A5 in the Appendix hold and
n(I )/n→ γ ∈ [0, 1), then we have the following results:
(a) Let Fn(θ) = −∂2

θ log p(Y|θ), fI (θ) = ∂θ log p(YI |Y[I ], θ̂), and
sI (θ) = −∂2

θ log p(YI |Y[I ],θ), CD(I ) can be approximated by

C̃D(I ) = fI (θ̂)T [Fn(θ̂)− sI (θ̂)]−1Fn(θ̂)[Fn(θ̂)− sI (θ̂)]−1fI (θ̂); (2)

(b) E [C̃D(I )|M] ≈ tr({E [Fn(θ̂)|M]− E [sI (θ̂)|M]}−1E [sI (θ̂)|M]);

(c) E [C̃D(I )|M,Z] ≈
tr({E [Fn(θ̂)|M,Z]− E [sI (θ̂)|M,Z]}−1E [sI (θ̂)|M,Z]).

21 / 98
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Algorithm

Step (i). We generate a random sample Ys from p(Y|Z, θ̂) and

calculate C̃D(I ) based on the simulated sample Ys and fixed Z,

denoted by C̃D(I )s .

Step (ii). By repeating Step (i) S times, we can use the empirical

quantities of {C̃D(I )s : s = 1, . . . ,S} to approximate
E [CD(I )|M,Z], Std[CD(I )|M,Z], QCD(I )(0.5|M,Z), and
Mstd[CD(I )|M,Z]. Subsequently, we can approximate CSCD1(I ,Z)

and CSCD2(I ,Z) and determine their magnitude based on C̃D(I )s .

Step (iii). We calculate two probabilities

PA(I ,Z) =
∑S

s=1 1(C̃SCD1(I ,Z)s ≤ C̃SCD1(I ,Z))/S and

PB(I ,Z) =
∑

Ĩ

∑S
s=1

1(C̃SCD1(Ĩ ,Z)s≤C̃SCD1(I ,Z))

S×#(Ĩ )
, where #(Ĩ ) is the

total number of all possible sets and 1(·) is an indicator function of
a set.
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Simulations

We generated 100 datasets from a linear mixed model as follows.

Each dataset contains n = 12 clusters.

For each cluster, bi ∼ N(0, σ2
b) and then, given bi ,

yij (j = 1, · · · ,mi ; i = 1, . . . , n = 12) were independently generated
from N(xTij β + bi , σ

2
y ).

mi were randomly drawn from {1, . . . , 5}.
The covariates xij were set as (1, ui , tij)

T , where tij = log(j) and
ui ∼ N(0, 1).

θ = (βT , σb, σy )T = (1, 1, 1, 1, 1)T .

Consider the detection of influential clusters.

23 / 98
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Simulations

Scenario 1: simulation results from 100 datasets without influential
clusters directly simulated from a linear mixed model.

The x−axis corresponds to the order of the sorted degree of
perturbation for all clusters.

Panels (a), (b), and (c) show the box plots of CD(I ),
E [CD(I )|M,Z], and Std[CD(I )|M,Z] as a function of P(I |M);

panels (d), (e), and (f) show the box plots of CD(I )− C̃D(I ),

E [CD(I )|M,Z]− M̂[C̃D(I )], and Std[CD(I )|M,Z]− Ŝtd[C̃D(I )] as
a function of P(I |M).
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Simulations

Figure: Scenario 1
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Simulations

Scenario 2: Simulation results from 100 datasets with two influential
clusters simulated from a linear mixed model.

We reset (m1, b1) = (1, 4) and (mn, bn) = (5, 3) to generate yi,j for
i = 1, n and all j according to the same linear mixed model.

The x−axis corresponds to the order of the sorted degree of
perturbation for all clusters.

Panels (a), (b), and (c) show the box plots of CD(I ),
E [CD(I )|M,Z], and Std[CD(I )|M,Z] as a function of P(I |M);

panels (d), (e), and (f) show the box plots of CD(I )− C̃D(I ),

E [CD(I )|M,Z]− M̂[C̃D(I )], and Std[CD(I )|M,Z]− Ŝtd[C̃D(I )] as
a function of P(I |M).
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Simulations

Figure: Scenario 2
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Simulations

Simulation results from 100 datasets simulated from a linear mixed
model in the two scenarios.

The first row corresponds to the first scenario, in which m12 = 1 and
b12 varies from 0.6 to 6.0.

The second row corresponds to the second scenario, in which
m12 = 10 and b12 varies from 0.6 to 6.0.

Panels (a) and (e) show the box plots of Cook’s distances as a
function of b12;

panels (b) and (f) show the box plots of CSCD1(I ,Z) as a function
of b12;

panels (c) and (g) show the box plots of PB(I ,Z) as a function of
b12;

panels (d) and (h) show the mean curve of PB(I ,Z) based on
CSCD1(I ,Z) (red line) and the mean curve of PC (I ,Z) based on
CD(I ) (green line) as functions of b12.
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Simulations

Figure: Scenario 3
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Yale Infant Growth Data

Study whether cocaine exposure during pregnancy may lead to the
maltreatment of infants after birth.

A total of 298 children were recruited from cocaine exposed group
and unexposed group.∑n

i=1 mi = 3176, whereas mi varies from 2 to 30.

yi,j = xTi,jβ + εi,j , where yi,j is the weight (in kilograms) of the j-th
visit from the i-th subject, xi,j =
(1, di,j , (di,j − 120)+, (di,j − 200)+, (gi − 28)+, di,j(gi − 28)+, (di,j −
60)+(gi − 28)+, (di,j − 490)+(gi − 28)+, sidi,j , si (di,j − 120)+)T , in
which di,j and gi (days) are the age of visit and gestational age,
respectively, and si is the indicator for gender.

εi = (εi,1, . . . , εi,mi )
T ∼ Nmi (0,Ri (α)).

M1: Ri (α) = α0Imi + α11⊗2
mi

.

M2: V (d) = exp(α0 + α1d + α2d2 + α3d3) and ρ(l) = α4 + α5l ,
where l is the lag between two visits.
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Yale Infant Growth Data

Figure: Panel (a): the line plot of infant weight against age; panel (b): the
cumulative residual curve versus age; and panels (c) and (d): age versus raw
residual and age versus studentized residual for cluster deletion. 31 / 98
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Yale Growth Data

Figure: Panel (a): mi versus P(I |M1); panel (b) shows P(I |M1) versus
CD(I ); panel (c) shows P(I |M1) versus CSCD1(I ,Z); and panels (d), (e), and
(f): P(I |M), CSCD1(I ,Z), and PB(I ,Z) for models M1 and M2. 32 / 98
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Yale Growth Data

Figure: M1: Panel (a): P(I |M) versus mi ; panels (b), (c), (d), and (e): CD(I )
versus P(I |M), CSCD(I |Z) versus P(I |M), CSCD(I |Z) versus CD(I ), and
PB(I |Z) versus CD(I ); panel (f): the histogram of PB(I |Z). 33 / 98
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Yale Growth Data

Figure: M2: Panel (a): P(I |M) versus mi ; panels (b), (c), (d), and (e): CD(I )
versus P(I |M), CSCD(I |Z) versus P(I |M), CSCD(I |Z) versus CD(I ), and
PB(I |Z) versus CD(I ); panel (f): the histogram of PB(I |Z).
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Motivation

Bayesian inference about a parameter θ is typically based on
calculating and summarizing the posterior distribution

p(θ|Dobs) =
p(θ)p(Dobs |θ)∫
p(θ)p(Dobs |θ)dθ

. (3)

It is well known that posterior quantities, such as the Bayes factor,
posterior mean, etc... for a given dataset may be sensitive to any
perturbation to the three key elements of a Bayesian analysis: Dobs ,
p(θ) and p(Dobs |θ).

In the Bayesian literature, various methods for sensitivity analysis
have been developed to perturb each of these three key elements
and to assess the influence of various perturbations on the posterior
distribution and its associated posterior quantities.
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Motivation

There are two major formal sensitivity techniques including the
global and local robustness approaches (Berger, 1994).

The key idea of the global robustness approach is to compute the
range of posterior quantities as the perturbation to each of the three
key elements change in a certain set of distributions and then
determine the “extremal” ones (Berger, 1990).

The conditional predictive ordinate (CPO) and the Kullback-Leibler
divergence are two global influence measures for assessing individual
observations.

The Bayes factor can be regarded as a global sensitivity method.

All these global sensitivity methods are generally computationally
intensive for high-dimensional parameters.
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Motivation

The local robustness approach primarily computes the derivatives of
the posterior quantities with respect to a small perturbation to p(θ)
or p(Dobs |θ).

In the frequentist literature, Cook’s (1986) seminal local influence
approach is particularly useful for perturbing p(Dobs |θ) in order to
detect influential observations and assessing model misspecification.

In the Bayesian literature, an analogue of Cook’s (1986) approach
has been developed (Gustafson, 1996; Gustafson and Wasserman,
1995; McCulloch, 1989; Berger, 1994; Berger, Insua, and Ruggeri,
2000).
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Motivation

Very little has been done on developing a general Bayesian influence
approach for simultaneously perturbing Dobs , p(θ) and p(Dobs |θ),
assessing their effects, and examining their applications in several
settings, such as settings with missing data.

Clarke and Gustafson (1998) is the sole paper on simultaneously
perturbing (Dobs , p(θ), p(Dobs |θ)) in the context of independent and
identically distributed data.
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Motivation

We address three important issues related to the Bayesian influence
approach:

the development of a perturbation model that unifies various
perturbation schemes for individually or simultaneously perturbing
(Dobs , p(θ), p(Dobs |θ));

the development of a Bayesian perturbation manifold to characterize
the intrinsic structure of the perturbation model;

the development of local influence measures for selecting the most
influential perturbation based on various objective functions and
their statistical properties;

the development of global influence measures for carrying out
sensitivity analysis in missing data problem.
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Perturbation Model

Bayesian analysis of models with missing data:

p(θ|Dobs) ∝ p(Dobs ;θ)p(θ) ∝
∫

p(Dcom;θ)p(θ) dΛ(Dmis),

where Λ(·) is an σ−finite measure, Dobs and Dmis are the observed
data and the missing data, respectively, and Dcom = (Dmis ,Dobs)
denotes the complete data.

We develop a perturbation model to characterize various
perturbation schemes to Dcom, p(Dcom;θ) and p(θ).

We embed all perturbed models in P2 and fix the initial model as
the ‘central point’ of P2, where

P2 = {p(s) : Rd0 → [0,∞)|
∫

p(s)dΛ(s) = 1}, (4)

and d0 is the dimension of (Dcom,θ).
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Perturbation Model

We propose a perturbation model to the prior defined by

P(ωP) = {p(θ,ωP(θ))p(Dcom;θ) : θ ∈ Θ,ωP(·) ∈ LP} ⊂ P2, (5)

where ωP(·) is a d1 × 1 vector of real functions and LP is a set of
functions which map from Θ to Rd1 .

The LP may be infinite dimensional and ω0
P(θ) in LP represents no

perturbation to the prior, that is p(θ) = p(θ,ω0
P(θ)).

This perturbation model includes the additive ε−contamination
class, the geometric contamination class, and the parametric family
as special cases (Berger, 1990, 1994; Gustafson and Wasserman,
1995; Moreno, 2000).

42 / 98



Outline
Method I: Perturbation and Scaled Cook’s Distance

Method II: Sensitivity Analysis
Acknowledgement

Motivation
Perturbation Model and Perturbation Manifold
Influence Measures and their Properties
Theoretical and Simulated Examples
References

Perturbation Model

For example, consider

β ∼ N(µ0 + ωP,1, ωP,2Σ0),

where ωP,1 ∈ Rp and ωP,2 ≥ 0 is a positive scalar.

Thus, ωP(θ) = (ω′P,1, ωP,2)′ ∈ Rp × [0,∞) is independent of θ and
d1 = p + 1.

In this case, ω0
P(θ) = (0′p, 1)′ represents no perturbation.

43 / 98



Outline
Method I: Perturbation and Scaled Cook’s Distance

Method II: Sensitivity Analysis
Acknowledgement

Motivation
Perturbation Model and Perturbation Manifold
Influence Measures and their Properties
Theoretical and Simulated Examples
References

Perturbation Model

The additive ε−contamination class is given by

p(θ;ωP(θ)) = p(θ) + ε[g(θ)− p(θ)],

where ε ∈ [0, 1] and g(θ) belongs to a class of contaminating
distributions, denoted by G (Berger, 1994).

We set
ωP(θ) = ε[g(θ)− p(θ)],

where (ε, g(·)) varies in [0, 1]× G. Thus, ω0
P(θ) = 0.

Similarly, the perturbation model (5) includes other perturbation
schemes to the prior, such as the general ε−contamination class and
a general geometric contamination class (Perez, Martin, and Rufo,
2006)
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Data and Sampling Distribution

We propose a perturbation model to the complete-data sampling
distribution

P(ωS ) = {p(θ)p(Dcom,ωS (Dcom,θ);θ) : θ ∈ Θ,ωS (·) ∈ LS} ⊂ P2, (6)

where ωS(Dcom,θ) is a function of Dcom and θ which belongs to the
function space LS , for which ω0

S(·) ∈ LS represents no perturbation.

P(ωS) automatically determines a perturbation model to the
observed-data sampling distribution

Pobs(ωS ) =

{∫
p(Dcom,ωS (Dcom,θ);θ)dΛ(Dmis) : p(Dcom,ωS (Dcom,θ);θ) ∈ P(ωS )

}
.
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Simultaneous Perturbation

We propose a perturbation model to simultaneously perturb the
data, the prior, and the sampling distribution

P(ω) = {p(θ,ωP(θ))p(Dcom,ωS (Dcom,θ);θ) : θ ∈ Θ,ω(·) ∈ L} ⊂ P2, (7)

where

ω = ω(Dcom,θ) = (ωP(θ),ωS(Dcom,θ)) ∈ Ω = LP × LS

and
ω0(Dcom,θ) = (ω0

P(θ),ω0
S(Dcom,θ))

is the ‘central point’ of Ω representing no perturbation.

P(ωP ,ω
0
S) = PP(ωP) and P(ω0

P ,ωS) = PS(ωP) represent the
individual perturbations to the prior and the sampling distribution,
respectively.
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Simultaneous Perturbation

Based on the perturbation model (7), we can measure the amount
of perturbation, the extent to which each component of a
perturbation model contributes to, and the degree of orthogonality
for the components of the perturbation model.

Such a quantification is very useful for rigorously assessing the
relative influence of each component in a Bayesian analysis, which
can reveal any discrepancy among data, the prior, or the sampling
model.

For instance, a data-prior discrepancy can arise when either an
estimate of the parameter is in a low probability region of the prior
or the prior leads to an improper posterior distribution.

Because the components of the perturbation model may not be
orthogonal to each other, special care should be taken when we
interpret local influence measures from such a perturbation.
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Bayesian Perturbation Manifold

We develop a Bayesian perturbation manifold (BPM) to measure
each perturbation ω in the perturbation model and apply this
methodology to a wide variety of statistical models, allowing for
incomplete-data.

The perturbation model M = {p(Dcom,θ;ω) : ω ∈ Ω} has a natural
geometrical structure. Since Ω can be either a finite dimensional set
or an infinite dimensional set, we need to develop a manifold for
infinite dimensional space, which includes the finite dimensional
manifold as a submanifold.

For instance, Ω for the ε−contamination class and the linear
perturbation class are infinite dimensional, whereas Ω for the
parametric family are finite dimensional.
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Bayesian Perturbation Manifold

When Ω is an infinite dimensional set,

M = {pc(ω) = p(Dcom,θ;ω) : ω ∈ Ω} ⊂ P2 (8)

is an infinite dimensional manifold (Lang, 1995; Friedrich, 1991;
Zhang, 2007).

Assume that

C (t) : pc(ω(t)) = p(Dcom,θ;ω(t))

is a differentiable function mapping from t ⊂ I ∈ R to the manifold
M with

pc(ω(0)) = p(Dcom,θ;ω),

where I is an open interval covering 0.
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Bayesian Perturbation Manifold

Let
ṗc(ω(t)) = dpc(ω(t))/dt

and let P(ω) be the probability measure determined by pc(ω) such
that

dP(ω)

dΛ(Dcom,θ)
= pc(ω).
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Bayesian Perturbation Manifold

At each ω, there is a tangent space TωM of M defined by

TωM = {v(ω) = ṗc(ω(0)) :

∫
v(ω)dΛ(Dcom,θ) = 0

and v(ω)/pc(ω) ∈ L2(P(ω)) <∞}, (9)

where L2(P(ω)) = {g :
∫

g 2dP(ω) <∞} is a Hilbert space.

The inner product of v1(ω) and v2(ω) in TωM is defined as

g(v1, v2)(ω) =

∫
v1(ω)

pc(ω)

v2(ω)

pc(ω)
pc(ω)dΛ(Dcom,θ). (10)
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Bayesian Perturbation Manifold

The length of the curve C from t1 to t2 is given by

SC (ω(t1),ω(t2)) =

∫ t2

t1

√
g(ṗc(ω(t)), ṗc(ω(t)))dt. (11)

The tangent manifold TM = ∪ω∈MTωM is the disjoint union of
the tangent spaces for all points on M.

To define the notion of ‘straight line’ on M, we need to introduce
the concepts of Levi-Civita connection and geodesic.

Let u(ω) = u(pc(ω)) and v(ω) = v(pc(ω)) be two smooth vector
fields defined from M to TM.

52 / 98



Outline
Method I: Perturbation and Scaled Cook’s Distance

Method II: Sensitivity Analysis
Acknowledgement

Motivation
Perturbation Model and Perturbation Manifold
Influence Measures and their Properties
Theoretical and Simulated Examples
References

Bayesian Perturbation Manifold

We define the directional derivative du[v] of a vector field u in the
direction of v(ω) ∈ Tω(0)M at ω(0) = ω as

du[v](ω) = lim
t→0

t−1[u(ω(t))− u(ω(0))]. (12)

The covariant derivative for Levi-Civita connection ∇vu is given by

∇vu(ω) = du[v](ω)− 0.5{u(ω)v(ω)[pc(ω)]−1

−
∫

u(ω)v(ω)[pc(ω)]−1dΛ(Dcom,θ)}.
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Bayesian Perturbation Manifold

A geodesic on the manifold (M, g(·, ·)) is a smooth map γ(t) from
(a, b) to M such that ∇γ̇(t)γ̇(t) = 0, where γ̇(t) = dγ(t)/dt.

For every u ∈ TωM, there is a unique geodesic γ(t;ω,u) : I →M
passing through γ(0;ω,u) = ω with initial direction γ̇(0;ω,u) = u,
where

γ̇(t;ω,u) = dγ(t;ω,u)/dt

and I is an open interval containing 0.

The geodesic is a direct extension of the straight line

ω(t) = ω0 + th

in finite dimensional Euclidean space (Amari, 1990; Kass and Vos,
1997).
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Bayesian Perturbation Manifold

Definition 1. A Bayesian perturbation manifold
(M, g(u, v),∇vu) is the manifold M with an inner product g(u, v)
and a covariant derivative for the Levi-Civita connection ∇vu.

When Ω ⊂ Rm, Mm = {pc(ω) = p(Dcom,θ;ω) : ω ∈ Ω} is an
m−dimensional submanifold of the infinite-dimensional manifold M.

The tangent vector field of Mm takes the form u = ∂ωj pc(ω) and
the tangent space TωMm is spanned by the m tangent vectors
∂ωj pc(ω).

gjk(ω) =

∫
[∂ωj `c(ω)][∂ωk

`c(ω)]pc(ω)dΛ(Dcom,θ),

where `c(ω) = log pc(ω).
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Bayesian Perturbation Manifold

Figure: Graphical illustration of geodesic, exponential and logarithm maps. The
map γ(t;ω, u) : I →M is a geodesic passing through γ(0;ω, u) = ω and
γ(1;ω, u) = ω1 with initial direction γ̇(0;ω, u) = u. The exponential and
logarithm maps are, respectively, defined as ω1 = Expω(u) and
u(ω) = Logω(ω1).
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Bayesian Perturbation Manifold

The Levi-Civita connection is defined as

∇∂ωj
pc (ω)∂ωk

pc(ω) = ∂2
ωjωk

pc(ω)− 0.5{[∂ωj pc(ω)∂ωk
pc(ω)]pc(ω)−1

−
∫

[∂ωj pc(ω)∂ωk
pc(ω)]pc(ω)−1dΛ(Dcom,θ)},

and
Γjkl(ω) = g(∇∂ωj

pc (ω)∂ωk
pc(ω), ∂ωl

pc(ω))

is the Christoffel symbol for ∇∂ωj
pc (ω)∂ωk

pc(ω).
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Examples of Bayesian Perturbation Manifolds

BPM for the Prior

For the parametric family perturbation to the prior,

gjk(ωP) =

∫
[∂ωj `(θ;ωP)∂ωk

`(θ;ωP)]p(θ;ωP)dΛ(θ), (13)

where `(θ;ωP) = log p(θ;ωP).

We consider a hierarchical structure for the prior,

p(θ) = p(θ1)p(θ2;θ[1]) · · · p(θp;θ[p−1])

and

p(θ;ωP) = p(θ1;ωP,1)p(θ2; θ[1], ωP,2) · · · p(θp; θ[p−1], ωP,p), (14)

where θ[j] = (θ1, · · · , θj−1).
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Bayesian Perturbation Manifold

Different ωP,j are orthogonal to each other, that is gjk(ω) = 0 for all
j 6= k .

All geometric quantities (e.g., geodesic) of the BPM for the prior are
independent of the sampling distribution.
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Examples of Bayesian Perturbation Manifolds

BPM for the ε−contamination class of priors

This BPM is an infinite dimensional manifold. Recall that

ωP(θ) = ε[g(θ)− p(θ)].

We substitute ε with t in ωP(θ), which yields

ωP(θ) = ωP(t, g(θ)) = t[g(θ)− p(θ)].

Considering

vj(ω
0
P) = ω̇P(t, gj(θ)) = [gj(θ)− p(θ)]p(Dcom;θ)

for j = 1, 2, we get

g(v1, v2)(ω0
P) =

∫
[g1(θ)/p(θ)− 1][g2(θ)/p(θ)− 1]p(θ)dΛ(θ),

which is independent of p(Dcom;θ).
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Examples of Bayesian Perturbation Manifolds

g(v, v)(ω0
P) =

∫
[g(θ)/p(θ)− 1]2p(θ)dΛ(θ)

reduces to the L2 norm considered in Gustafson (1996a).

The BPMs for all perturbations to the prior are independent of the
specification of the sampling distribution.
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Examples of Bayesian Perturbation Manifolds

BPM for the single-case perturbation scheme to the sampling distribution

For the independent-type-incomplete-data model, the complete-data
density for the single-case perturbation may be defined by

p(Dcom;θ,ωS) =
n∏

i=1

p(di,c ;θ, ωS,i ),

This BPM is a finite dimensional manifold with metric tensor

gjk(ωS) =

∫
g̃jk(θ;ωS)p(θ)dΛ(θ)

for j , k = 1, · · · , n, where

g̃jk(θ;ωS) = δjk

∫
[∂ωS,j

log p(dj,c , ωS,j ;θ)]⊗2p(dj,c ;θ)dΛ(Dcom).

If p(θ) concentrates on θ̂mle , then we obtain the metric tensor
gjk(ωS) = g̃jk(θ̂mle ;ωS) defined in Zhu et al. (2007).
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Bayesian Perturbation Manifold

Theorem 1. g(v, v)(ω0) = gS(v, v)(ω0) + gP(v, v)(ω0), in which

gS(v, v)(ω0) =

∫
[dt log p(Dcom;θ,ωS(t))]2pc(ω)dΛ(Dcom,θ),

gP(v, v)(ω0) =

∫
[dt log p(θ;ωP(t))]2p(θ)dΛ(θ). (15)

For simultaneous perturbations to the prior, the data and the
sampling distribution, if the components in ωP and ωS are different,
then Theorem 1 ensures that the BPMs for ωP and ωS are
geometrically orthogonal to each other.
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Global Influence Measures

We develop several global influence measures for quantifying the effects
of perturbing the three key elements of a Bayesian analysis.

Let pc(ω0) and pc(ω) represent the unperturbed and perturbed
complete-data distributions.

Let C (t) = pc(ω(t)) : [−δ, δ]→M be a smooth curve on M
joining pc(ω0) and pc(ω(s)) such that C (0) = pc(ω0) and
C (1) = pc(ω), where δ > 1.

We consider a smooth function of interest

f (ω) = f (pc(ω)) :M→ R

for sensitivity analysis. Thus,

f (ω(t)) : [−δ, δ]→ R

is a real function of t.
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Global Influence Measures

Definition 2. The global influence measure for comparing
p(θ|Dobs ,ω

0) and p(θ|Dobs ,ω) along the smooth curve C (t) is
defined as

GIf ,C(t)(ω
0,ω) =

[f (ω)− f (ω0)]2

SC (ω0,ω)2
. (16)

The GIf ,C (ω0,ω) can be interpreted as the ratio of the change of
the objective function over the length of the curve C (t) on the
manifold M.

Theorem 2. GIf ,C(t)(ω
0,ω) is invariant with respect to any

reparametrizations of the curve C (t).
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Global Influence Measures

GIf ,C(t)(ω
0,ω) depends on the particular path C (t).

Definition 3. The intrinsic global influence measure for comparing
p(θ|Dobs ,ω

0) and p(θ|Dobs ,ω) is defined as

IGIf (ω0,ω) =
[f (ω)− f (ω0)]2

d(ω0,ω)2
. (17)

The proposed IGIf (ω0,ω) can be interpreted as the ratio of the
change of the objective function over the minimal distance between
pc(ω0) and pc(ω) on M.

Theorem 3. If M is a complete Riemannian manifold, then

IGIf (ω0,ω) = max
C(t)∈L(ω0,ω)

GIf ,C(t)(ω
0,ω).
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Global Influence Measures

Definition 4. The global influence measure for comparing
p(θ|Dobs ,ω

0) to all p(θ|Dobs ,ω) for ω ∈ Ω1 along the smooth curve
family {C (t;ω) : ω ∈ Ω1} is defined as

GIf ,C(t)(ω
0,Ω1) = sup

ω∈Ω1

GIf ,C(t;ω)(ω
0,ω). (18)

The intrinsic global influence measure for comparing p(θ|Dobs ,ω
0) to all

p(θ|Dobs ,ω) for ω ∈ Ω1 is defined as

IGIf (ω0,Ω1) = max
ω∈Ω1

IGIf (ω0,ω). (19)
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Local Influence Measures

f (ω(t)) = f (ω(0)) + ḟ (ω(0))t + 0.5f̈ (ω(0))t2 + o(t2).

We need to distinguish two cases: ḟ (ω(0)) 6= 0 for some smooth
curves ω(t) and ḟ (ω(0)) = 0 for all smooth curves ω(t). If
ḟ (ω(0)) = 0 for all smooth curves ω(t), then we have to consider
the second order term f̈ (ω(0)) in order to characterize the local
behavior of f (ω(t)).

Definition 5. The first-order local influence measure is defined as

FIf [v](ω(0)) = lim
t→0

GIf ,C(t)(ω(0),ω(t)) =
[df [v](ω(0))]2

g(v, v)(ω(0))
. (20)

68 / 98



Outline
Method I: Perturbation and Scaled Cook’s Distance

Method II: Sensitivity Analysis
Acknowledgement

Motivation
Perturbation Model and Perturbation Manifold
Influence Measures and their Properties
Theoretical and Simulated Examples
References

Local Influence Measures

FIf [v](ω(0)) is invariant with respect to any reparametrizations of
the curve ω(t).

For any finite-dimensional manifold, we have

FIf [v](ω(0)) =
[vT

h ∂ωf (ω(0))]2

vT
h G (ω(0))vh

, (21)

where vh = (v1, · · · , vp) equals dtω(t) evaluated at t = 0.
Moreover, if φ is a diffeomorphism of ω, then FIf [v](ω(0)) is
invariant with respect to any reparametrization corresponding to φ.
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Local Influence Measures

For a finite-dimensional manifold, we use the direction vector

vmax = [G (ω(0))]−1/2∂ωf (ω(0))

instead of grad(f )(ω(0)) to identify influential directions, since

[G (ω(0))]−1/2∂ωpc(ω(0))

forms an orthonormal basis at ω(0).
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Local Influence Measures

Figure: Graphical illustration of objective function f (ω(t)), intrinsic global
influence measure, IGIf (ω0,ω), and local influence measure FIf [v](ω0):
FIf [v](ω0) quantifies the local behavior of f (ω(t)) near ω0 and IGIf (ω0,ω)
quantifies the relative change of f (ω) relative to the shortest distance between
ω0 and ω.
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Local Influence Measures

We only consider the geodesic pc(ω(t)) = Exppc (ω(0))(tv) that

satisfies pc(ω(0)) = pc(ω0) and dtpc(ω(0)) = v ∈ Tω(0)M.

We obtain a covariant version of Taylor’s theorem as follows:

f (Expω(0)(tv)) = f (ω0) + tdf [v](ω(0)) + 0.5t2Hess(f )(v, v)(ω(0)) + o(t2),

where Hess(f )(v, v)(ω(0)) = f̈ (Expω(0)(tv))|t=0 is a covariant (or
Riemmanian) Hessian.

Geometrically, Hess(f )(u, v)(ω(0)) is a tensor of type (0,2) and
defined as

Hess(f )(u, v)(ω(0)) = d(df [v])[u](ω(0))− df [∇uv](ω(0)). (22)
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Local Influence Measures

The Hessian Hess(f )(v, v)(ω(0)) is invariant with respect to any
functions satisfying ω(0) = ω0 and dtpc(ω(0)) = v ∈ Tω(0)M.

Definition 6. The second-order influence measure (SI) in the
direction v ∈ Tω(0)M is defined as

SIf [v](ω(0)) =
Hess(f )(v, v)(ω(0))

g(v, v)(ω(0))
. (23)

SIf [kv](ω(0)) = SIf [v](ω(0)) for any k 6= 0.
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Local Influence Measures

For a finite dimensional manifold, Hess(f )(v, v)(ω(0)) reduces to
vT
h Hf (ω(0))vh, where the (j , k)th element of Hf (ω) is given by

[Hf (ω)](j,k) = ∂2
ωjωk

f (ω)−
∑
s,r

g sr (ω)Γjks(ω)∂ωr f (ω). (24)

SIf [v](ω(0)) is invariant with respect to any reparametrization
corresponding to φ at ω(0).
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Theoretical Examples

Bayes Factor

f (ω) = B(ω) and ω(t) is a smooth curve on M with ω(0) = ω0

and dtpc(ω(t))|t=0 = v ∈ Tω(0)M.

B(ω) = log p(Dobs ;ω)− log p(Dobs ;ω0)

is a continuous map from M to R.

We consider the simultaneous perturbation to both the prior and the
sampling distribution and, therefore we have

FIB [v](ω(0)) =
E [dt log p(Dcom,θ;ω(t))|Dobs ]2

gP(v, v) + gS(v, v)
. (25)
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Theoretical Examples

For p(θ; t) = p(θ) + t[g(θ)− p(θ)], we have

FIB [v](ω(0))] =
E[g(θ)/p(θ)|Dobs ]2

VarP(g(θ)/p(θ))
=

[pg (Dobs)/p(Dobs)]2

VarP(g(θ)/p(θ))
, (26)

where

p(Dobs) =

∫
p(Dcom;θ)p(θ)dΛ(Dmis ,θ)

and

pg (Dobs) =

∫
p(Dcom;θ)g(θ)dΛ(Dmis ,θ).

FIB [v](ω(0))] is the square of the normalized Bayes factor of g(θ)
against p(θ).
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Theoretical Examples

Bayes Factor

For a perturbation scheme to the sampling distribution,

ḟ (ω(0)) = E [dt`c(θ̂,ω(0))|Dobs ] ≈ dt`o(θ̂,ω(0))

and

FIB [v](ω(0))] =
E [dt`c(θ̂,ω(0))|Dobs ]2

gS(v, v)
≈ [dt`o(θ̂,ω(0))]2

gS(v, v)
,

where
`o(θ̂,ω(t)) = log p(Dobs ; θ̂,ω(t))

and
`c(θ̂,ω(t)) = log p(Dcom; θ̂,ω(t)).
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Theoretical Examples

For the additive ε−contamination class of the ITID, we have

FIB [v](ω(0))] =
E{
∑n

i=1[g(di,c ;θ)/p(di,c ;θ)− 1]|Dobs}2∑n
i=1 VarS(g(di,c ;θ)/p(di,c ;θ))

,

where

VarS (g(di,c ;θ)/p(di,c ;θ)) =

∫
[g(di,c ;θ)/p(di,c ;θ)−1]2p(Dcom,θ;ω0)dΛ(Dcom,θ).
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Theoretical Examples

Cook’s posterior mean distance

CMh(ω) = [Mh(ω)−Mh(ω0)]TCh[Mh(ω)−Mh(ω0)],

where Ch is chosen to be a positive definite matrix.

Mh(ω) =

∫
h(θ)p(Dmis ,θ|Dobs ;ω)dΛ(Dmis ,θ).
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Theoretical Examples

We set f (ω) = CMh(ω) and ω(t) is a smooth curve on M with
ω(0) = ω0 and

dtpc(ω(0)) = v ∈ Tω(0)M.

ḟ (ω(0)) = 0 and

f̈ (ω(0)) = Ṁh(v)TGhṀh(v),

where

Ṁh(v) = Cov{h(θ), dt log p(Dcom,θ;ω(t))|Dobs}|t=0. (27)
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Theoretical Examples

We consider a simultaneous perturbation to both the prior and the
sampling distribution.

SICMh
[v](ω(0)) = Ṁh(v)TGhṀh(v)

gP (v,v)+gS (v,v) .

For the perturbation to the prior,

p(θ; t) = p(θ) + t[g(θ)− p(θ)],

and SICMh
[v](ω(0)) is given by

Cov{g(θ)/p(θ), h(θ)T |Dobs}ChCov{h(θ), g(θ)/p(θ)|Dobs}
VarP(g(θ)/p(θ))

.
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Theoretical Examples

SICMh
[v](ω(0)) is smaller than

tr

{
Cov{h(θ)|Dobs)}−1E

[
{h(θ)− E [h(θ)|Dobs ]}⊗2p(θ|Dobs)

p(θ)

∣∣∣∣Dobs

]}
.
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Simulation Studies

Data are obtained from N individuals nested within J groups, with
group j containing nj individuals, where N =

∑J
j=1 nj .

At level-1, for each group j (j = 1, . . . , J),

yij = xTij βj + εij , i = 1, . . . , nj , (28)

where εij ∼ N(0, σ2
ε).

At level-2, βj = Zjγ + uj , where uj ∼ N(0,Σ).

The missing data mechanism for yij is assumed to be missing at
random (MAR), and defined as follows:

Pr(rij = 1|xij ,ϕ) =
exp(ϕ0 +ϕT

x xij)

1 + exp(ϕ0 +ϕT
x xij)

. (29)
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Simulation Studies

We set J = 100, q = 2, and r = 3.

We varied the values of nj in order to create a scenario with different
cluster sizes. We set n1 = · · · = n10 = 3, n91 = · · · = n100 = 20, and
ni ∈ {5, 7, 8, 10, 12, 13, 15, 17} for i = 11, · · · , 90.

We set ϕ0 = −2.0, ϕ1 = ϕ2 = 0.5, γ = (0.8, 0.8, 0.8)T ,
Σ = 0.5121T

2 + 0.5I2 and σ2
ε = 1.0.

We independently generated all components (except the intercept)
of xij and Zj from a U(0, 1) distribution.

p(γ)
D
= N(γ0,H0ε), p(σ−2

ε )
D
= Γ(α0ε, β0ε), p(Σ)

D
= IWq(ρ0,R

0),
where γ0 = (0.8, 0.8, 0.8)T , R0 = 2I2 + 2121T

2 , αε0 = 10.0,
βε0 = 8.0, ρ0 = 10, and H0ε = diag(0.2, 0.2, 0.2).

84 / 98



Outline
Method I: Perturbation and Scaled Cook’s Distance

Method II: Sensitivity Analysis
Acknowledgement

Motivation
Perturbation Model and Perturbation Manifold
Influence Measures and their Properties
Theoretical and Simulated Examples
References

Simulation Studies

Scenario 1: Outlying Clusters

Generate {yij : j = 1, 99, 100; i = 1, · · · , nj} from a normal
distribution

N(xTij Zjγ + xTij uj , σ
2
ε)

with
uj ∼ Nq(5.612, 1.96I2 + 0.3Σ),

(j = 1, 99, 100).

This can be regarded as a case with a wrong distribution for uj for
j = 1, 99, 100.

We considered a simultaneous perturbation of uj and the prior
distributions of γ, Σ and σ2

ε for the φ-divergence.
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Simulation Studies

Simultaneously perturb the distributions of uj and the prior
distributions of γ, Σ and σ2

ε.

No perturbation is ω0 = (1, 1, . . . , 1, 0)T .

G (ω0) = diag(Gc(ω0),Gγ(ω0),GΣ(ω0),Gσ(ω0)) in which
Gc(ω0) = qIJ/2, Gγ(ω0) = r/2, GΣ(ω0) = VarΣ[tr(R0Σ−1)]/4 and
Gσ(ω0) = Varσ2

ε
[g(σ−2

ε )/p(σ−2
ε )].

We consider a second scenario with the wrong prior distribution for

γ: p(γ)
D
= N2(4γ0,H0ε).
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Simulation Studies

Figure: Group index plots of local influence measures for simultaneous
perturbation: (a) SIDφ

[ej ] can detect the three influential groups (1, 99, and

100); (b) SIDφ
[ej ] can detect both the three influential groups (1, 99, and 100)

and the ’incorrect’ prior distribution p(γ).
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Simulation Studies

Scenario 2: Missing-data Mechanism

Explore the potential deviations of the MAR missing data
mechanism in the direction of nonignorable MAR (NMAR).

We simulated a data set using the same setup as above except that
the following missing data mechanism for yij was assumed,

Pr(rij = 1|xij , yij ,ϕ, ϕy ) =
exp(ϕ0 +ϕ′xxij + ϕyyij)

1 + exp(ϕ0 +ϕ′xxij + ϕyyij)
(30)

with ϕy = 0.5 to make the missing data fraction approximately 25%.

When ϕy 6= 0, the missing mechanism is nonignorable.
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Simulation Studies

Sensitivity Analysis: Fix ϕy at a value ωy to the simulated data set and
then vary ωy in an interval Ω1 = [−2, 2].

Table 1. Posterior means (PMs) and standard errors (SDs) of γ at
different values of ϕy .

True γ0 = (0.8, 0.8, 0.8)
γ1 γ2 γ3

PM SD PM SD PM SD
ϕy = 0.5 0.831 0.174 0.721 0.251 0.809 0.255
ϕy = 0.3 0.777 0.170 0.697 0.249 0.786 0.247
ϕy = 0.15 0.738 0.167 0.661 0.243 0.776 0.249
ϕy = 0.0 0.697 0.177 0.622 0.247 0.749 0.250
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Simulation Studies

Global Influence Measure

Figure: Plots of IGIf (ω0, ω) against ω ∈ Ω1 for (a) Dφ(ω) and (b) Mh(ω), in
which h(θ) = γ.
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HIV Data

A data set from a study of the relationship between acquired
immune deficiency syndrome (AIDS) and the use of condoms
(Morisky et al., 1998).

Nine variables about knowledge of AIDS and attitude towards AIDS,
belief, and self efficiency of condom use (items 33, 32, 31, 43, 72,
74, 27h, 27e, and 27i in the questionnaire) were taken as manifest
variables in y = (y1, · · · , y9)′.

Variables y1, y2, y3, y7, y8 and y9 were measured via a 5-point scale
and hence were treated as continuous; variables y4, y5 and y6 were
continuous.

A continuous item x1 (item 37) and an ordered categorical item x2

(item 21, which was treated as continuous) were taken as covariates,
x2 is completely observed.

1116 random observations in this data set; the manifest variables
and covariates are missing at least once for 361 of them (32.35%).
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HIV Data

yi = µ+ Λ$i + εi , i = 1, · · · , 1116, in which yi = (yi1, · · · , yi9)′

and $i = (ηi , ξi1, ξi2)′ via the following specifications of
µ = (µ1, · · · , µ9)′ and

Λ′ =

(
1.0∗ λ21 λ31 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 1.0∗ λ52 λ62 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 1.0∗ λ83 λ93

)
,

and εi ∼ N(0,Ψ) distribution for i = 1, · · · , 9.

η=‘threat of AIDS’, ξ1 =‘aggressiveness of the sex worker’, and
ξ2=‘worry of contracting AIDS’.

ηi = b1xi1 + b2xi2 + γ1ξi1 + γ2ξi2 + δi , where δi ∼ N(0, ψδ),

logit{Pr(ryij = 1|ϕ)} = ϕ0 + ϕ1yi1 + · · ·+ ϕ9yi9, where
ϕ = (ϕ0, ϕ1, · · · , ϕ9)′.

logit{Pr(rxi1 = 1|ϕx)} = ϕx0 + ωxi1.
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HIV Data

Global influence measures for the Kullback-Leibler divergence and Mh(ω)

Figure: HIV data: IGIf (ω0, ω) against ω ∈ [−2, 2] for (a) the Kullback-Leibler
divergence and (b) Mh(ω), in which h(θ) = Γ = (b1, b2, γ1, γ2)T .
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HIV Data

Sensitivity analysis

Figure: HIV data: the posterior means (red solid lines and dots) and
means±2×SD (blue lines and dots) of b1 (a), b2 (b), γ1 (c), and γ2 (d) against
ω ∈ [−2, 2], where SD denotes standard deviation.
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HIV Data

Simultaneous perturbation scheme includes

variance perturbation for individual observations
perturbation to coefficients in the structural equations model
perturbation to
ηi = b1xi1 + b2xi2 + γ1ξi1 + γ2ξi2 + ωγ,1ξ

2
i1 + ωγ,2ξ

2
i2 + ωγ,3ξi1ξi2 + δi

perturbation to the prior distribution of µ
perturbation to the prior distribution of Γ
perturbation to the prior distribution of ϕ
perturbation to logit{Pr(rxi1 = 1|ϕx)} = ϕx0 + ωxxi1.

We calculated the local influence measures of the Kullback-Leibler
divergence under a simultaneous perturbation scheme.
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HIV Data

Figure: HIV data: (a) index plot of metric tensor gii (ω
0)/(0.5n) for the

perturbation (54); (b) Local influence measures SIDφ
[ej ] for φ-divergence.
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