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1. Proofs of Theorems. We introduce some notation. We define

S

Tos(hs) =3 32 Kilsm — 5)[xi ® zn(sm — )T Bj(sm).

i=1m=1
M

(1) Tpj(hys) => > Kn(sm — 5)[xi @ zn(sm — 8)]mij (sm),

i=1 m=1

Te,j(h, s) Z > Kn(sm — 8)[xi @ zp(sm — 5)]€ij(5m),

ua(K;5,h)% —uy(K; s, h)us(K; s, h)

u( K ,h = )
ru(Ki s, h) uo(K; s, h)ug(K;s,h) —ui(K;s, h)?

where u,(Kj;s, h) fo (u—s)"Kp(u — s)du for r > 0. Throughout the proofs, Cys stand for a
generic constant, and it may vary from line to line.

Without special saying, we consider the random grid points throughout the paper, but we also
discuss several key equations for the fixed grid points. We discuss the key steps in the proof of
Theorem 1 and then present on the proof of these key steps as lemmas.

Proof of Theorem 1. Define

Uq(K;s,H) = diag(ry(K; s, h11), ..., (K 8, h1g)),

Xn(s) = \/ﬁ{EES) - E[B(f)!S]} = \/ﬁ{veC(AB(S) —B(s) — 0.5B(s)U2(K; 5, H)"HQ) + op(|[H?[]2)},
Xnj(s) = Vn{Bj(s) = B[B;j(s)IS]} = vn{B)(s) — Bj(s) — 0.5ru(K; 5, haj)hi;B;(s) + op(hi;)}-

According to the definition of vec(A;(s)), it is easy to see that

(2) V'GC(/1 (s)) = (s, hay) ' TBj(haj, s) + Tej(hay, s) + Ty j(haj, 5)],
(3) ng(8) =Vl @ (1,0)]5(s, huy) " [T j(hay, s) + Ty (hay, 5)].

Since Theorem 1 (ii) is a direct consequence of Theorem 1 (i) and Lemma 4, we focus on Theorem
1 (i). The proof of Theorem 1 (i) consists of two parts.

e Part 1 is to show that \/nX(s, h1j) 1T, j(h1;,s) = 0,(1) holds uniformly for all s € [0, 1] and
j=1,...,J.

e Part 2 is to show that v/nX(s, h1;) T, j(h1j,s) converges weakly to a Gaussian process G(-)
with mean zero and covariance matrix 3, j;(s, s')Q" for each j.

In part 1, we show that

(4) VAL, ® (1,0)](s, haj) ' Te j(hay, 8) = Op(|log(haj)|V/?(Mha;)~"/?) = 0,(1).
1
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It follows from Lemma 1 that
n M
V2N % @ M TN Ky (5m — 8)2, (5m — 8)€qj(5m)} = Op(|log(hay)[Y2(Mhy;)~Y2) = 0,(1)

hold uniformly for all s € [0,1]. It follows from Lemma 2 that

(5) (nM)~'5(s, hy;) = 1Zx®2®M ZK;M §)2n, ; (m — 5)%°]

= Qx® Ql(hlj, s) + Op( PR 4+ 0T 2) = Qx @ Qu(hay, s) + 0p(1)

hold uniformly for all s € [0, 1]. Based on these results, we can finish the proof of (4).

In part 2, we show the weak convergence of v/n[I, ® (1,0)]%(s, h1;) T, j(hij, s) for j =1,..., J.
The part 2 consists of two steps. In Step 1, it follows from the standard central limit theorem that
for each s € [0, 1],

(6) VL, @ (1,0)]5(s, hay) "' Ty 5 (hay, ) =% N(0,5,5;(s, )2,

where —1 denotes convergence in distribution.
Step 2 is to the asymptotic tightness of \/n[I, ® (1,0)]2(s, h1;) 1T, j(hij, s). We define

Hp(sm — 8) = Kn(Sm — 8)2n(Sm — S),

M 1
) A5 1) = M iy (om = 90y om) = [ H, 0= s )
m=1
By using (5) and (7), we can show that /nX(s, h1;) 1T}, ;(h1j, s)[1 + 0p(1)] can be approximated
by three terms as follows:

(8) V/nX(s,h1y) Ty (h1j, s)[1 + 0p(1)] = (1) + (II) + (IIT)

= 2N 0% @ Q(hy,s) 7 A (s5my, T g)

i=1
g & . ) min((1—s)hy',1) T
+ Y ZQ)_( x; @ Q(hyj,8)” nij(s)/ ) K(u)(1,u)" m(s+ hiju)du
i—1 max(—sh_j ,—1)
19 n ., . min((1— s)hljl,l) 1
+ n Z Qv x; @ Qi(hyy, 9) / ot K (u)( " Vi (s + hiju) — nij(s)]m(s + hiju)du
i— max(—shy,—

We investigate the three terms on the right hand side of (8) as follows. It follows from Lemma 3
that the first term on the right hand side of (8) converges to zero uniformly.
We prove the asymptotic tightness of (II) as follows. Define

. min((l—s)hl_jl,l)

% _nfwzsz xi @ (L0 (g, s) mgls) [ K @)L (s + g
max(—sh;;,—1)

Thus, we only need to prove the asymptotic tightness of an(s) The asymptotic tightness of
Xy,j(s) can be proved using the empirical process techniques [13]. It follows from (40) that

. min((l—s)hl_jl,l) T
(1007 [ K (w)(1,0) (s + hyju)du

max(—sh;jl,—l)
- UQ(K; S, hlj)uo(K; S, hlj) — ul(K; S, hlj)2 + O(hlj)
UQ(K; S, hlj)uo(K; S, hlj) — ul(K; S, hlj)2 + O(hlj)

=1+ o(hy ).
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Thus, X, (s) can be simplified as
XTLJ( ) [ +0 hl —1/2 an Q Xz

We consider a function class &, = {f(s;%,7.;) = Qx'xn.;(s) : s € [0,1]}. Due to Assumption (C2),
&y is a P—Donsker class.

Finally, we consider the third term (III) on the right hand side of (8). It is easy to see that (IIT)
can be written as

min((1—s)h71,1) n 1
O @ Q(hyy,s) ™ / Y K (u)n 2 > xi{nij(s + haju) — nij(s)} @ ( ,, )78+ hju)du

-1
max(fshlj ,—1) =1

Using the same argument of proving the second term (II), we can show the asymptotic tightness of
n~1/2 5" | x;nii(s). Therefore, for any hy; — 0,

9) sup  [n Y23 xi{mij (s + haju) — mii(s)}H = op(1).
SE[O,].}J’LL‘S]. =1

It follows from Assumptions (C5) and (C7) and (9) that (III) converges to zero uniformly. Therefore,
we can finish the proof of Theorem 1.

Lemma 1. Under Assumptions (C1), (C3)-(C5), and (C7), we have that for each j,

(10) sup Y 2hyj|Te j(hyj, s)| = Op(y/ Mhaj|log haj|) = op(Mhaj).

s€[0,1]

Proof. Let Fy,(s,,) = n~ 2" 1 x;€55(sm). Then it follows by the definition of T, ;(hy;, s) that
nol/2 hi;Te j(haj, s) = haj Z Kh1 $)Fn(sm) ®Zh1j(3m —3).

Let X = {x1,...,x,} and T, j(h1;,5) = {T¢ j(haj, 8) — E[TY ;(haj, 5)|X, S}, where

i(hjy 5) Z Ky, (sm — 8)Fu(3) 1| Fu(sm)ll2 < Yar) @ 2y, (8 — 5),

in which v, is a positive number to be specified below. The proof of Lemma 1 consists of three
steps. In Step 1, we show that

(11) sup n Y 2hy;|| T j(hj, s) — Tej(haj, 8)||2 = op(y/ Mhij|log hyj).

s€[0,1]

In Step 2, we define an equally-spaced grid S = {3 = lhi; :1=0,...,1h] 1} and then show that

(12) max hajlln 2T j(haj, 8)ll2 = Op(y/Mbaj|log haj).

In Step 3, we show that

(13) max ~ sup n Y 2h [T g (hag, Sim1) — Tej(hag, 8)l|2 = Op(y/ Mhaj| log haj)).

s€[81-1,81]
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It is easy to see that the proof of Lemma 1 is completed by combing (11)-(13).
We first show (11). It follows from Assumption (C5) and s, s € [0, 1] that

n 2R || Te (R, s) — Te (i, )2

M M
< O Y Fa(sm)l2L(1Fn(sm)ll2 = ya) + C1 Y Ell[Fa(sm)| 21| Fn(sm)ll2 > var)|X, S,
m=1 m=1

for a positive constant Cy. Let yas = d(M/|loghy;|)1/9, where ¢ is a positive scalar. Tt follows
from Assumption (C7) that (|loghy;|/M)'=%/9 < hy; — 0 and 1 —2/q; > 0, which yields that
|log hyj|/M — 0 and yp — 00. As vy — 00, we can show that

(14) max E[|[Fu(sm)[13" 1(|[Fu(sm)ll2 = ya0) X, S] = o(1).

For notational simplicity, we only consider the case p = 1, (i.e., x; is scalar). For any ¢ > 0 with
q1 + ¢ < 4, equation (14) is followed from Assumptions (C1), (C3) and (C7) and the partial sum
moment inequality [2] as follows:

max E[|| Fu (sm)|13 1| Fa(sm)ll2 = a0) X, S] < max Blln ™2 xiei(sm)| “ X, 81/75
i=1

< max ™ 020 (g )n @IS 8B e (5,0) | /5 = o(1),
i=1

where C(q;) is a universal constant independent of n. It follows from Assumptions (C1) and (C7)
and (14) that

M
(15) Y ElllFu(sm)l 21| En(sm)ll2 = )X, ]
m=1
M 1
< > ElFsn)lI3 1| Falsm)ll2 = v [X, S/
m=1
< o(1)MY%|log hy;|*~Y % < o(y/Mhyj|log hyjl).

Furthermore, we have

M
(16) Var( S (| Fu(sm)l22(][Fu(sm)ll2 > 1)1 X, S)
m=1
M
=3 Var(||Eu(sm)ll21(| Fu(sm)ll2 = 7a0) X, S)
m=1

< E{[Z [ Fn (sm)IBLAE (sm)l 2 = 1), S}

m=1
M

Z E (sm) |3 1| Fn(8m)l|2 = vam) | X, S1/E —2

m=1

< max E[||Fy (si)|13 1( | Fu(sm) |2 = yar) [ X, S|M /5
< max E[||Fy (sm)[3" 1(|1Fn(sm)ll2 = 7a0)|X, S|Mhyj = o(Mhaj|log hajl).
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Therefore, combing equations (15) and (16), we have

M
> Fa(sm)ll21(I1Fu(sm)ll2 = var) = 0p(y/ Mhaj|log huj),

m=1

which yields (11).
We next prove (12). It follows from Assumption (C5) that

hleKhlj (Sm - 3){Fn(5m)1(||Fn(5m)||2 < ’YM) -
By (sm) (|| Fn(sm)ll2 < var)| X, ST} © 2y (5m — 5)l]2

< Co(M/[log hyj|)/ " < Co\/ Mhyj/|log hyjl,

where Cz = 46 sup;¢|_1 1] [ K (t)|. Furthermore, let Es denote the expectation to s,,. We have
Var( ) 7Ky, (sm = 8)Fn(sm) LI Fu(sm)ll2 < 7a1) ® 21y, (53— 5)1X)
M
= S Vax(hi Ky, (5m — 5)Fu(5m) 1 Ea(sm)l |2 < 7a1) © 2y, (5 — 5)|X)
M
< Z ES{h%thU (8m — 3)2E[Fn(5m)®21(|‘Fn(sm)HQ <m)® Zhy; (8m — S)®2’X7S]}

M n
< Z h%ng[Khlj(sm — )2t Zx;@ze(sm, Sm) @ Zpy; (Sm — $)®?] = Op(Mhy;).

m=1 i=1

Therefore, by applying Bernstein’s inequality to each component of hljn_l/ 2T, cj(hij, 81) [13], we
can prove (12). For instance, let e; be a dim(7T j(h1j,35;)) x 1 vector with the first element 1 and
zero otherwise; we have

(17) P(mlax|e1h1jn*1/2T€,j(h1j,§l)| > t’X)

1 t?

< Cs(1hy) +1)Efexp(—; )IX],

ZU(X) —f—th\/Mhlj/“Oghle?)

where C3 = O(1), t is a positive scalar, and v(X) > Var(eihyjn~ /2T, j(hi;,5)|X) for all I. By

setting t = Cy\/Mhyj|log hy;| for large Cy > 0, we can show that the right hand side of (17) is of

order h$?

1;» where C5 is a positive scalar. Thus, for sufficiently large C's > 0, we have

P(mlax|e1h1jn71/2ﬂ,j(h1j,§l)| > C4\/Mh1j| log hlj’) — 0 as hlj — 0.

In Step 3, we focus on the first component of z, ; (sm —35). We first consider the following function
class:

€1 = {wi(S:8) = huy[Kny, (S — 1) = Knyy (S — ) Eu(S)L(IFu(S)]2 < 7ar) 5 € [0, 8]}

It follows from Assumption (C5) and s that & is a pointwise measurable class of functions and

supgeqo] lwi(S;8)| < Covm < Cry/Mhyj/|loghijl. Let [[¢]|p = sup.ep [¢(2)] for any real valued



6

function ¢ defined on a set D and 7i,...,7a be a sequence of independent Rademacher random
variables independent of observed data. It follows from an inequality of Talagrand [12, 3] that
conditioning on X, we have for suitable finite constants A1, Ay > 0

M M
P{|| > [wi(sms s) — Elwi(sm; $)|X]lle, = A(El Y 7jwilsm; s)lle 1X] + )X}
m=1 m=1

< 2[exp(—Azt? /(M Vg, (X))) + exp(—Aat/(Cr\/ Mhaj/|log hyj)))],
where Vg, (X) = sup,c[s, , 5,1 Var(wi(S; s)|X). It can be shown that

Ve, (X) < sup  Eg{hi;[Kn,, (S — &) — Kn,; (S — 8)*E[Fn(S)*X]} < Cshyjn ™' xF2,

7
86[5171,51] i=1

where Cg is a positive scalar. By setting ¢ = Cg\/Mhq;|loghq;| for a large Cy > 0, we can show
that Ast?/(MVg,(X)) = Cio|loghy;| and Ast/(Cry/Mhyj/|loghy;|) = Cii|loghyj|. Moreover, it

follows from Assumption (C5) that & is a pointwise measurable Vapnik and Cervonenkis (VC)
class [13]. By using Proposition A.1 of [3], we can show that max; E[|| SM_; 7w (smm; 8)]|g |X] <

O(y/Mhq;|loghyj]). This yields (13).

Lemma 2 . Under Assumptions (C1), (C4), (C5) and (C7), we have that for any » > 0 and j,

(18) sup /Khlj (u—s) (u}; S)Td[HM(u) —TI(u)]| = Op((Mhlj)_l/Q)’
s€[0,1] 15

(19) sup | [ Ky, (u 9 wydtlas )| = Op(M 1)~ o ),
86[0,1] 15

where IIp/(+) is the sampling distribution function based on & = {s1,...,san}, and II(-) is the
distribution function of s,,.

Proof. Equations (18) can be proved by using the empirical process techniques [13]. Specifically, it
follows from Assumptions (C4) and (C5) that

{K ( ;s) ( ;TS) “s € [07 1]} is a P — Donsker class.

Equation (19) can be proved by using the same arguments of Lemma 1, so we omit the details.
Lemma 3 . Under Assumptions (C2)-(C5), we have

(20) Sl[t)pu V23" xi @ Aj(simg, hay)| = op(1).
se|0, i=1

Proof. It follows from the Donsker Theorem [13] that

(21) Apy(s) = n~1/?2 Xn:xmij(s) = G1(s), and Ml/Q[HM(s) —1II(s)] = Ga(s),
i=1
(22) sup ||n_1/2 innij(S)H =0p(1) and sup | (s) —II(s)| = 027(]\4—1/2)7

86[071] i=1 SE[O,”



MULTIVARIATE VARYING COEFFICIENT MODEL 7

where G1(-) and G(-) are two centered Gaussian processes. Furthermore, we have

23) 2 @ Ag(sime hg) = (DI 4(IID)

i=1
M n n
=M1 Z Ky (8m — 8)Zn,; (8m — 8) _1/2 in ® Nij(sm) — n~1/? in ® nij ()]
m=1 i=1
M n
+ [M~ ! Z Khlj Zhl] / Khu Zhl (u— s)dn(u)]n_l/z in ® n45(s)
i=1
b [ Koy sy o= 2 zx@ i3 (5) — i ()] T o).
We examine the three terms on the righthand side of (23) as follows:
n < M Z Ky (sm = 8)l|2ny; (sm = 8)||2[ Any(5m) = Ann(s)]
< s [Ang(s) = Any(s)[sup M7 Z Koy (5m = 8)[[20y; (5m = 8)[2 = 0p(1),
ls—s'|<hi; m=1
(I) < sup [Any(s)| sup H/ K, (u — 8)zp,; (u — s)d[a (u) — H(w)]||2 = Op((Mhaj)~1/?),
s€[0,1] s€[0,1]
(M0 < [ Koy 5)llans, (0= 9] 2lAng (1) — Any ()] dTI(0)
S () = Ang (o)l [ Koy = 5)llan,, (= )] 2dTl(w) = 0,(1).
s—s'|<hy; 8

This finishes the proof of Lemma 3.
Lemma 4 . If Assumptions (C1) and (C3)-(C6) hold, then for any s € (0,1), we have

(24) E[B;(s)|S] — Bj(s) = 0.5h3;us(K) Bj(s)[1 + Op(n ™"/ 4 hyj + (Mhz)~'/?)]
= 0. 5h us(K)B; ( )1+ op(1)],
Var[B;(s)[S] —”_lzvm(s )y [1+ 0p(1)],
where e,,(s) = O,((Mhy;)~'/?) is defined in (37) with E[e,(s)] = 0.

Proof. First, we calculate E[B;(s)|S]. The vec(A;(s)) can be written as follows:

A~

vec(Aj(s)) = B(s, hag) H[Tr,j(haj, 8) + Tej(haj, 8) + Ty (hay, 8)).

Because the components of Bj(s) are differentiable in the neighborhood of |s,;, —s| < hyj, it follows
from a Taylor’s expansion and Assumption (C6) that

(8m — 3)2

(25) X Bj(sm) = x{ Aj(s)an, (sm — ) + 0.5hi;x] By(s) =5
J

For r > 0, it follows from Assumptions (C4) and (C5) that

haj M~ ' Z $)" Ky, (sm — 5) — /(U —8)" Ky, (u — s)m(u)du| = Op((Mhy;)~12).
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Thus, by substituting (25) into Bj(s), we have

Bj(s) — Bj(s) = [I, ® (1, 0)] (s,h13) " x {Te j(haj, 8) + Ty i (haj, s) +
05m2 ZX@B Z K om — 9, om0 op1),

It follows from Assumptions (C4)-(C6) that

S(s.hny) = (M) X @ M 1ZKh1J Ve, (s — 9%

(26) = (nM)[Qx @ Qi (h1j,s) + Op(n 1/2 + M~ 1/2h1j )]
= (nM)[r(s)Qx ® diag(1,uz(K)) + Op(n™2 + M2hi ! + hyj)).

Thus, with some calculation, we have

(27)  E[Bj(5)IS] = Bj(s) = 0.5h3;us(K)Bj(s)[1 + Op(n™"/2 4 hyj + (Mhiz)~'/?)].
Secondly, we calculate Var[B;(s)|S]. We note that

(28) Var[B)(s)|S] = E{Var[B;(s)|S, XS} + Var{ E[B;(s)|S, X]|S}.

Define Oyt = Y01y %72, Pi(s) = [L,® (1,0)](s, haj) ™", Pa(s) = M~ 3001 Ky (83— 8) 2y, (sm
5)®2 and Py(s) = M1 M_, Khy;(8m — 8)Bj(sm) ® 2z, ;(Sm — s). With some calculation, we have

(29) E[Bj(s)18,X] = Pi(s)) {xi® Zthj )x} Bj(sm)]}
i=1
A C s (LOR) 1A
(30) Var[Bj(s)|8,X] = Pl(S)VaT[TEJ(hlj,S)+Tn7j(h1j,5)’S,X]P1(S)T.

Thus, because P»(s) and Ps(s) solely depend on S, we have
(31) Var{E[B;(s)|S, X]|S} = 0.

We calculate E{Var[B;(s)|S, X]|S}. Define A;(s) = SM_, Hp, ($m—5)Hp,, (5m—5)" Se jj(Sm, Sm)
and A,;(s) = Z%m/zl Hi,, (8m — 8)Hpy, (S — 8)T 84,55 (Sm, $m)- It is easy to see that

Var[T, j(haj, 8) + Tyj(haj, )IS, X] = n(Qx — Qx + Qx) @ [Agi(s) + Ayi(s)]-

With some calculation, we have

E(S, hlj) = nM[n_l Z(Xz®2 — Qx)Q)_(l ® Iy + Ip X IQHQX X PQ(S)],

n

S(s, b))t = (nM) 7Y @ Pa(s) Iy —n Y (xP2 - Qx)Q @ I
=1

Y — Q)05 @ L 4+ Op(n )},
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Based on the expansion of (s, h1;)~1, we have

(32)  Var[B;(s)|S,X]
= [, (LO)][2' ® Po(s) 7' x {n "M 2(2x — Qx + Qx) @ [Agi() + Ays(s)]

— 2(nh) 23 6 — ) @ [Ags(5) + Ay ()] + Oyl + (1M h) 1)}

(2" ® Pa(s) [T, @ (1,0)7],
(33) E{Var[ i(s)]S, X][S}
= 0p(n 2+ (M®Mhy;)™ ) +n "M 20" ® {(1,0)Pa(s) A (s) + Ayi()]Pa(s)"1(1,0)TF.

We approximate A¢;(s) and A,;(s) as follows. It follows from Assumption (C1) that

M
(34) (1,0)A(s)(1,0)" < sup Yeji(SmsSm) Z Ky, (5m — 5)? = O(thjl).
m=1
¢9) 2 MWy — M _ AV S
Moreover, A,;(s) = A, '(s)+A4,/ (s), where A, /(s) = >_5—1 Hpy; (Sm—8)Hpy; (Sm—5)" X jj (Sm, Sm)

and Af?j)( )= Z%‘;m, thj ($m — 8)Hpy, (mr — $)7 50,55 (Sms Smr). Particularly, Ag)(s)/[(M —1)M]
is a U-statistic [2]. Similar to A¢;(s), it can be shown that

(35) (1,0)Ay5(s) M (1,0)T = My [r(5)Sy55(s, 8)o0(K) + Op((Mhay) ™2 + hyj)].

For A,(72)(3), we define three 2 x 2 matrices Uy (s) = (Uyu(s)) = [M(M —1)]~ 1A( )( ), 0(s) =
(Our(5)) = E[Uy(s)], and Py(v) = (Pyo(0)) = f iy, (0 5)Hin, (u— 5)7 S350, (o). By sin
the Hajek projection, we have

2 ¥ _
(36) Unar(s) = O (s Z it (8m) — O ()] + B (s) for 1I'=1,2,

m:l

in which 2 M_ | n”/(sm) 0 (s)]/M is the projection of Uy ;r(s) — 6ur(s) onto the set of all
statistics of the form Zm_l fm(8m). Thus, with some calculation, we have

E

Var(E,u(s)) = Var(Uyu(s) — 0y (s)) — Var(— 2 Z i (sm) — O (s)]) = O((Mha;)~2).

m:l

As hij — 0, it follows from Taylor’s expansion that
9”/(8) + O(hlj) = ﬂ(s)Qul,l(K)ul/_l(K)Zn’jj(s, S).

Define
M ~

(87) =2 [Py11(sm) — 011(s)]/M + En11(s) = Op((Mhy;)~'?).
m=1

Then, we have
(38) (1,0)A455(5) P (1,0 = M?e,(s) + M>m(5)* Sy 5(s, 5)[1 + 0p(1)].

Substituting (30)-(38) into (28), we can obtain E{Var[Bj(sﬂS, X]|S} and Var[f?j(s)|8].
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Lemma 5. If Assumptions (C1) and (C3)-(C6) hold, then for s =0 or 1, we have

(39) E[B;(s)[S] — Bj(s) = 0.5h3 (K s, ha;) Bj(s)[1 + op(1)],
Var[B;(s)|S] = n™ "5y 4, (s, 5)25 1 + 0p(1)].

Proof. Since Lemma 5 follows directly from the proof of Lemma 4, we just highlight how to compute
the bias of Bj(s) given S. If follows from the change of variable that all elements of Q;(h,s) can
be written as

1
(40) / h™"(u—s)" Kp(u — s)m(u)du = w(s)u,(K;s,h) + O(h)
0
for = 0,1, and 2. Thus, it follows from the arguments in (26) and (40) that

uo (K58, hiy)  ui (K s, hij)

E(S,hlj) = (nM)[r(s)2x ® ( ul(K;s,hlj) U2(K§S>h1j)

) + Op(n™Y2 4 (Mhyy) ™2 + hyy)).

Using arguments similar to (27), we get

p UalBia )" — (K s ghuaBs o hng) gy 1y 4 )
ol

41)E[B; — Bi(s) = 0.5h2,
(41)E[B;(s)IS] i(5) 05h1‘7’u0(K;S,hlj)UQ(K;S,hlj)_ul(K;S,hlj)Q /

Proof of Theorem 2. Let Kyrp(s) = Kar(s/h)/h, where Kjs(s) is the empirical equivalent kernels
for the first-order local polynomial kernel [4]. Thus, we have

M
(42) i (8) = mij(s) = D Kntny, (Sm — )% [Bj(sm) — Bj(sm)]
m=1

M
+ D Ko, (Sm — 8) g (sm) + €ij(sm) — i (5)]-
m=1

It follows from a Taylor’s expansion that

M
> Kty (sm — ) [mij(sm) — i (8)] = 0.5ua(K )i (s)h3;[1 + 0p(1)],
m=1

and
M ~ ~
M ho; (Sm — S)X?{Bj(sm) — E[Bj(sm)|S,n, X[}
m=1
M =, .o n
= Z K hy (8m — s)[0.5h%qu(K)x?Bj(sm) +x] Qtn! Z X i j(Sm)]
m=1 i'=1

X[L+ Op(haj + 0~ 4 (Mhy)7?)]

= (0513 ua(K)x! Bj(s) + x Qx'n ™'Y xomy (s)]

=1
x[1 4 Op(h1j + haj + 7Y 2) + Op((Mhaj) ™% + (Mhaj)~/?)]
= [0.5h3,us(K)xT Bj(s) + Op(n~'/?)]
X [1+ Op(h1j + hoj +n7H2) + Op(Mhay) ™2 + (Mhyy) /)],
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which leads to Bias[7;;(s)|S, n, X].
Furthermore, it can be shown that

7ij(s) — E[15(s)|S,n, X Z Kt o, (5m — 8){€ij(sm) — %] [Ip ® (1,0)]2(8m, h1y) "' Tej(haj, sm)}
M ~
Z Ky h2] S){Eij(sm) - XzT[Ip ® (17 0) Sma hl] Z X & Z Hh1 )ei’,j(sm/)}'
m=1 =1 m/=1

With tedious calculations, we have

Cov(7ij(s) — nij(s), 77@]( ) —nij(1)|S,m,X)
= K (s — )/ hay)n() T Op(Mbay) ™) — X7 QR (nMhag) " () 7() 7 O, (1),

Furthermore, for ¢ = 1,...,n, after dropping some higher order terms, we have

E{[9i(s) — nij(s))%[S, m, X}
= {E[ﬁl](s) - 771](5)‘87 n, X]}Q + Va‘r[ﬁij(s) - 771](5)’8» n, X]
= [0.5h7F jug(K)x] Bj(sm) + 0.5u2(K)ijij(s)h3; + x] Q'n™ > xirmirj(sm)*[1 + 0p(1)]
=1

+uo(K)m(s) " Op((Mhay) 1) = x{ Q5 xi(nMhaj)~'w(s) "1 Op(1).
This completes the proof of Theorem 2 (a).
It follows from (27) that

Kbt oy (8m = 8)%] {Bj(5m) — E[Bj(sm)[S, X]}

h2J 3)0'5h%ju2(K)XzTBj(3m)[l + Op(hlj + n_1/2 + (Mhlj)_1/2)].

||M§ ||M

Furthermore, it can be shown that
1ij (8) = mij (s) — Elfi;(s)|S, X]

M
= Z f(M,th(Sm = 8)[1ij(sm) + €ij(sm) — 1ij(s)]
m=1

M
=Y Kt hg, (sm — $){x] [Ip @ (1,0)]S(8m; b))~ [T5(hjy ) + Tej (g, sm)]}-

With tedious calculations, we have

COV(%(S) 1ij (8), 75 (t) — 1ij ()|, X)
= K*((s = )/hoj)m(t) " Op((Mhaj)™") = x] Q' xi(nMhz) ~'(s) " m(8) "1 Op(1)

H[1+ 0, (1)]{0.25us (K )RS P2 (5, 1) + 0 'xT Qx84 (5, 1)
—0.5n " uz (K )h3,xF Q[ S0 (s, t)m(s) ™ + 202 (s, 0)m (1) 711
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It follows from (27) that
E{[%i(s) — mij (s)]%[S, X]
= {E[Mij(s) — mij(s)|S, X} + Var[ii; (s) — 1i;(s)|S, X]
= {0250 ;ua (K [T By (5)]? + 0.25ua(K)*h D52 (s, 1)
+n T x] QX8 (s, 1) + vo(K)w(s) " Op((Mhagj) ™) HI + 0, (1)],

which leads to Theorem 2 (b). Furthermore, by noting that E{[f;;(s) — 7:;(s)]?|S] = E(E{[f;;(s) —
1i5(8)]?|S, X]|S), we can easily get Theorem 2 (c) and (d).

We define
M ~
€ij(s) = Y Ky, (5m — 8)eij(sm),
m=1
M ~
Anij(s) = Z M, haj (8m — 8)[Mis(8m) — miz ()],
m=1
M A
ABy(s) = 3" Kasng,(sm — 5)[By(sm) = Bi(sm)]
m=1
Agls) = () + Any(s) +xTABy(s).

Recall from (42) that
(43) Nij(s) = mij(s) = Aij(s) = & (s) + Anig(s) + x] ABj(s).
It follows from Lemma 2 and a Taylor’s expansion that

= | log(ha;)]|
sup [€;(s)| = and
se[(],l]’ i (s)] b Mho; )

sup [Aij(s)| = Op(1) sup [iis(s)|h13”

s€[0,1] s€[0,1]

Since f{B (:) — Bj(-) — 0.5u2(K)? h B;(-)[1 + 0,(1)]} weakly converges to a Gaussian process
in £2°([0,1]) as n — oo, f{B (-) — B, ( ) — 0.5u2(K) h%]Bj(')[l + 0p(1)]} is asymptotically tight.
Thus, we have

M
Z My (85 = 8)0.5us(K)*hE; Bj(sm)[1 + 0p(1)]

M

+ D Ko (55 — ){0.5u2(K)?h3; Bj(sm)[1 + 0p(1)] + Bj(sm) — Bj(sm)},
m=1

sup ||AB;(s)|| = Op(n~?) + Op(h3;).

s€[0,1]

Combining these results, we have

sup [y (5) =i (5)| = O log(hay)| /2 (Mhaj) ™2 4+ b 4 12, +n71/2).
se|0,
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Lemma 6. Under Assumptions (C1)-(C9), we have

?ugn |Zew s)nij(t Op(n_l/g(logn)lp),

?u[))n |ZeZJ s)An;;(t) Op(n_1/2(logn)1/2),
s,t

sgpn Zew (8)xi| = Op(n 71/2(1()%”)1/2)7

supn 1’ZA771] XZ]:Op(nfl/Q(logn)l/Q).
=1

Proof. For simplicity, we only prove the first result. We define ¢ = c¢1(c > 0) and ¢~ = c1(c < 0)
for any scalar ¢, Ay ¢ (s,t) = D1 €5 (5)ni5(1),

&
=
(oW

1

B

Gnen(s,s +v,t) = €ij(sm)Nij(t)1(s < sy < s+ 0),

SR
=
2
s

s
Il
—_
i
—

Gl (s,s+v,t)=

n,€N

[€ij (sm)mij ()] T1(s < s < s 4 0),

S|
M:
=
i)—l
&
NE

@
I
-
3
I
=

1
M (s)

:\r—‘
INgE
M:

Gren(s, s +0,t) = [€ij (sm)mij (1)) 1(s < sm < s 4 0).

1 1

%

3
I

It follows from Lemma 2 that for large enough n, there exists a constant Cy > 1 such that

1 & 1
-1
sup n o |Ape(s,t)]| <Cy sup |- Ky, ( 8)€ij(Sm)mij(t)
(s,t)€[0,1]2 ! (s,1)€[0,1]2 ”;MW z,: N ’ ’
h(2> n M
=Co sw [ o7 Z MW 5 32 il (O < sm = 5 < hay) i, ()

<Cp sup sSup |Gn,577<57 5+, t)’/th'
(S,t)e[O,I]Q |’U|§2h2j

Let 6, = h%j + hoj /M. By combining Lemma 1 with Lemma 2 of Li and Hsing [11], we can show
that

(44) sup sup |Grpen(s,s+v,t)| = Op(nfl/Q{ﬁn log n}1/2).
(s’t)€[071]2 ‘u|§2h2j

Since E[Gpen(s,v,t)] = 0, we have
|Gen(s, s+, )| < |Gy (s, 5+0,8) = E[Gy (5, 5+ 0, )] | +]G o (5,5 +0, 1) = E[G, 0 (5,5 +0, 1))

From now on, we focus on V,, (s, s +v,t) = |G} E77(3, s +v,t) = E[G} (5,5 +v,1)]|. We define an
equally-spaced grid S = {3 = lhy;: 1 =0,..., 1h1J } and 3;(s) to be a grid point that is within hy;
of both s and s+v. Since V;, ¢, (s, s+ v, t) is upper bounded by V, ¢, (51(s), s+v,t) + Vi en (51(5), 5, 1),
we have

(45) sup sup Vien(s,s+v,t) <2sup sup sup Vj (5,8 +0,1).
(s,t)€[0,1]2 |v]<2hy; 5,€8 |v|<2ha; te[0,1]
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Let aﬁl/z{ﬂn log n}1/2 and @, = B, /a,. We define

me(s,s%-v,t) |Gn6n(s s~|—v,t) E[G nen(s s+ v, t)]l,

n

D7

b3 1 m:l
1

7T

E

Gt (s,s+v,t)=

n,€N

]+1(3 < Sm <s +’U)1(’6ij(5m)| < Qn)a

S\H

S|
M:
E

G o(s,s+u,t) =

n,€n

M
Z €ij(sm)nig ()] T 1(s < s < s 4+ 0)1(|€i(5m)] > Qn).-
m:l

i=1

Then, we have
(46) sup sup  Vien(s,s +v,t)
(s,t)€[0,1]2 |v|<2hg;
< 2 Sup  sup sup {Vn 6"7(8 st t) + ’Gn 577(3 stv t)’ + ’E[ nen(37 s+ ’U,t)”}.
§ZES ‘U|S2h2] tG[O 1]

We consider the three terms on the right side of (46). It is obvious to see that

(47) a, EIG] (5,5 +0,1)] < GEIQL_QQ ZEtin] I35 ()17 Z Elleij(sm)|*]

- 1
= a,'Qy 2E[sup |nx(t)

M
Z E |61k Sm |q2]7
t€[0,1] m:l

which is independent of (s,v,t) and converges almost surely to zero. Similarly, by using Markov’s
inequality, we have

1G;te77(375+07t) < a_lQl 9= Z s1[1p |73 (t) Z l€ij(sm)|®2,

which converges almost surely to zero.

We consider a further partition of [0, 1] in order to bound supj,|<ap,; SUPse(o,1] Vien(s, s +v,t) for
each fixed s € [0, 1]. Following Li and Hsing (2010), let c, be any positive sequence tending to 0.
We define w,, = [@Qnen/an+1] and u, = e, Jwy, for r = —wy,, —w, +1, ..., wy,. Since Gf{m(s, s+u,t)
is monotone in |v|, we have that for v € [u,, ur41],

|Gt en(5,5 +0,1) = BIG} (s, 5 + 0, 0)]| < max(&ur (1), €nrr1(8)) + BIGH (5 + ur, s + urgr, 1)),

where &, (t) = |G} (s + Uy s + Up i1, ) — [G:{m(s + Uy, 8 + Up11,1)]]. Thus,

sup  sup Voey(s,s +v,t) < max  sup &,(t) + max  sup E[sz(s + U, S + Ups1,1)].
[u|<2hs; t€[0,1] —WnST<wn ¢e0,1] —Wn<T<wn ¢e[0,1]

For all r, we have

M
Z E Sm [S+UT78+UT+1)] < Cla’ru

m=1

1
[G:Lrgn(3+ur73+ur+lat)] < Qn [ sSup ’nlk M
t€[0,1]

where (] is a given scalar.
For any B > 0, we have

P{ sup sup Ve (s,s +v,t) > Ba,} < P{ max sup &, (t) > (B — C1)an}.
|v] <2ha; te[0,1] —WnST<wn 40,1
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For each fixed s, we consider the following function class:

M
X = Agylemt) = g D (O] Lsur < s < )1 (s)| < Qu) 1 € 0.1])
m=1

It follows from Assumption (C9a) that X} is a pointwise measurable class of functions and ||g;|[jp,1) <
C2Qy, where Cy > 0 is a given scalar. It follows from Talagrand’s inequality [12, 3] that for suitable
finite constants Aq, As >0

P{[|>_lgj(e.n.t) — Elgj(e,n )l = AE[] D migi(e,m,t)l|x;] + 1)}
=1

i=1
(48) < 2[exp(—Aat?/(n0},)) + exp(—Azt/(C2Qq))],
where 71, ..., 7, is a sequence of independent Rademacher random variables and

0% = sup Var(gj(e,n,t)) < Csfn,
te(0,1]

in which Cj is a positive scalar. It follows from Assumption (C4) that X; is a pointwise measurable
Vapnik and Cervonenkis (VC) class [13]. By using Proposition A.1 of Einmahl and Mason [3], we
can show that for a scalar As > 0,

E|] ZTigj(evnvt)HXj] < AS\/ nBn|log Bnl = A3an\/| log Bn|/ log(n).

i=1

By substituting ¢t = Ayna, into (48), we have

P{II> lg(e.n.1) — Elgj(e.n.)]lljo.y > A1(Asn~"y/|log Bal/ log(n) + As)nan}
i=1

< 2lexp(—AA%na2 /By) + exp(— Ay Ayna /8,)] = on~A24% | op A2
Therefore, by using Bool’s inequality, for relatively large B > 0, we have

P{ max sup &, (t) > (B—Ca,} <n P,
—wn<r<wn ¢e0,1]

in which B* can be chosen to be sufficiently large if we choose a large B, and

P{ sup sup Vie(s,s+v,t) > Ba,} < A5%n*B* = Asn BT /logn.
|v|<2ha; t€[0,1] 0

Therefore,

(49) sup  sup Vien(s,s +0,6) = Oplay).
[v|<2hg; t€[0,1]

Hence, (39) follows from combining (44)-(49).

Lemma 7. Under Assumptions (C1)-(C9a), we have

?uI; n Z?ij(s)aj(tﬂ = O((thj)_l + (logn/n)l/Q) = o0p(1).
s,t i=1
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Proof. We define A, cc(s,t) = > i €j(s)€;(t),

1 & 1 M
Anl,le(syt) = Z m Z Ky (8m — 8) Kpy, (8m — t)€ij(3m)2
i=1 —
1 n
ARl(s,t) =~ o ( Z Ky, (5m — 5Ky, (5 — D) (5m)ei; (57
i=1 m#m
Vn,es(s V1, t, 1)2)
1& M
= | ZMQ Z 61] Sm €Zj Sm/ )1($§Sm§8+’01)1(t§8m, §t+7]2)‘
m’m

It follows from Lemma 2 that for large enough n, there exists a constant C; > 1 such that
sup 1 HAp (s, 1) <
(s,t)€[0,1]?
1 1 M

C]_ s t?él[}g 2 n Z W Z Kth (Sm — S)Kth (Sm/ — S)Eij(sm)ei]’(sm/)

< Ci{ sup
(s,t)€[0,1]2

s, t) +  sup
(s,t)€[0,1]2

Similar to the arguments in Lemmas 3 and 4 of Li and Hsing [11], we have
An%ze(s,t)’ = O(y/logn/n) as

7(11,26(3, t)‘ It follows from assumption C4 and by some calcu-

sup
(s,t)€[0,1]2

We need to consider SUD(s,¢)e[0,1]2
lations that

sup
(s,t)€[0,1]2

AL (5:1)| = Op((Mhaj)~* + (logn/n)"2).
This completes the proof.

Proof of Theorem 3. Recall that 7;;(s) = 1;;(s) + A4 j(s), we have

(50) *12% Niglt) = n*imﬁsmm(t)+n*im~j<smz 0
=1 3

+n712A ( 771] an 772]

i=1

This proof consists of two steps. The first step is to show that the first three terms on the right hand

side of (50) converge to zero uniformly for all (s,t) € [0,1]? in probability. The second step is to

show the uniform convergence of n™* 31" | ;i (s)1;() to £, (s,t) over (s,t) € [0,1]% in probability.
We first show that

n

(51) ?ug T Agi()mi (1)) = Op(n™Y % + B3 + h3; + (logn/n) /).
S, =1
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Since

n

(52) ZA [(s)mij(t) <n~ {’ Zew )i (t )]+ | ZAHU $)nij (1] + ‘ ZX?ABJ‘(S)UU(W};

i=1 =1

it is sufficient to focus on the three terms on the right-hand side of (52). Since

[xi AB;(s)n35(1)] < [1xill2 sup [|ABy(s)ll2 sup_|n;;(1)],

s€[0,1] t€[0,1]
we have
nl\ixiTABj(S)mg( )| <S§[Bp1}HAB’“ $)[[an~ 1ZszHz\mg t)| = Op(n~ ">+ hi)).
Similarly, we have
07 A O] <0 S s [ ()] = Oy04E) = (1),

It follows from Lemma 6 that sup 7~ {| 37 €5(s)ni; ()] = O((log n/n)'/?). Similarly, we can
show that sup, ;) nTH SR A (t)mii(s)] = Op(n_l/2 + h%j + h%j + (logn/n)'/?).
We can show that

n

(53) ?ug S i ()i (8) — i (s, 0] = Op(n™12).
i i=1

Note that

155 (51)mi5(t1) — M (52)m35(t2)]
< 2(|sy — s2| 4 [t1 — t2]) sup [9i(s)| sup [ni;(s)|

s€l0,1 s€[0,1]

holds for any (s1,¢1) and (sg,t2), the functional class {n;(u)n;(v) : (u,v) € [0,1]?} is a Vapnik and
Cervonenkis (VC) class [13, 9]. Thus, it yields that (53) is true.
Finally, we can show that

(54) sup - Z Aij () A (1) = Op((Mhaj) ™t + (log n/n) /2 + hd + n{P*).

With some calculations, we have

(55) 1D Au(s)Ai(t)] < Cy ?U}O [ D@ ()i ()] + | Z € (5) A ()] + | D_ A ()% AB;(s)|
=1 S i=1 i=1
+ | Zzij(S)X?AB )|+ Z Anij(s)An; ()] + | ZX?ABj(S)ABj(t)Xi’L
i=1 i=1

for a positive constant Cf.
It follows from Lemma 7 that

?ulgn |Zew s)€;j(t Op((thj)_l—|—(logn/n)1/2),
s,t

?utr;n Zem 8)Ami; ()] + [ Amij(t)xi AB(s |+|Z€w )x! AB;(1)]] = Op((logn/n)'/?).
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Since

sup |An;j(s)| = Cy sup [iji;(s)|h3;,
s€l0,1] s€[0,1]
we have sup(,yn Y S0y Anyi(s)Ang ()] = O

Op(n=1/% 4 hjz), we have

). Furthermore, since sup,cp ) ||[AB(s)|| =

n Y xI AB;(s)AB;(t)xi| = Op(n™" + h).
=1

Note that the arguments for (51)-(54) hold for fln,jj/(-, -) for any j # j'. Thus, combining (51)-(54)
leads to Theorem 3 (i).

To prove Theorem 3 (ii), we follow the same arguments in Lemma 6 of Li and Hsing [11]. For
completion, we highlight several key steps below. We define

(50) (A633)(6) = [ Bl 0) ~ Bl Ol 01

Following Hall and Hosseini-Nasab [5] and the Cauchy-Schwarz inequality, we have
{/ole,j(S) — ()] ds}/?

Call [ (i) )2 [ [ 5iy55(5,8) = By, st
02{/01 /Ol[imjj(s,t) — Envjj(svt)}Qdet}l/2{/01[wj7j(t)]2dt}l/2

1,1l
+ / / (S35 (5, 1) — Sy g (s, 1)) *dsdt
0 0

< Gy osup [Ny5(st) = Spi(s b,
(s,t)€[0,1]2

IA

IN

which yields Theorem 3 (ii.a).
Using (4.9) in Hall, Miiller and Wang [6], we have

. 1 1 1 )
A = gl < |/ / (30,55 — Bl (s, 0)j,5(8)abs 5 (t)dsdt + 0(/ (At 5)(s)"ds)
. 0 0 0

< Cy sup [¥;(s,1) — By 55(s, 1),
(s,t)€[0,1]2

which yields Theorem 3 (ii.b). This completes the proof.

We need to introduce some notation to establish the weak convergence of a sequence of stochas-
tic processes indexed by s € [0,1] [13]. The uniform metric is used here to define the weak con-
vergence. Let ¢°°([0,1]) be the space of all uniformly bounded, real functions on [0,1], and en-
dow ¢>°(]0,1]) with the uniform metric. We consider BL;(¢>°([0, 1]) to be the space of real-valued
functions on ¢°°([0, 1]) with Lipschitz norm bounded by 1; that is, for any k(-) € BL1(¢>°(]0,1]),
SUPg(s)ee=((o,1)) |k (2)] < 1 and |k(x) — k(y)| < ||z — yl[jo,1- As n — o0, a stochastic process G;(-)
weakly converges to X () on £°°([0,1]) if and only if supyegy,, (¢ (j0,17) [ Ek(G) — EE(X)| — 0.
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Proof of Theorem 5. We define r;;(s) = y;;(s) — x! B;(s) and

n M
(57 Gi()9 = Vall,® (1,0)]vec(S(s, hiy) P37 S % @ Hyy, (8 — 8)ri5(5m))-

i=1 m=1

Following the arguments in Kosorok [8] and Zhu and Zhang [16], we will prove Theorem 5 in
three steps. In Step 1, we will prove the unconditional weak convergence of é'j(s)(g). In Step 2, we
will prove the weak convergence of Gj(s)(g) conditional on the data. In Step 3, we will prove the
weak convergence of G;(s)\9) conditional on the data by showing that G;(s)(9) and G;(s)\9) are
asymptotically equivalent as n — oo.

In Step 1, we note that r;;(sm) = 1ij(sm) + €j(sm) and

n M
Gi(9)9) = Vnll, ® (1,0)vec(S(s, ) ™ 31”5 © 3 Hy, (sm = 5)ij (sm) + €5 (sm)])-
i=1 m=1
Therefore, by treating Ti(g)Xi as the new ‘covariate’ vector, we can apply the same arguments in the

proof of Theorem 1 to prove that égg ) converges to G; in distribution; that is, G’g-g ) is asymptotically
measurable.

In Step 2, we define

n M
Si(s,t) = ntng? ZXZ@Q ® Z Hp,; (Sm — 8)Hpy; (S — )15 (8m)Tij (Smr )
=1 m,m/=1

n M
Sjv’)ﬁ(svt) = n_lnéZ ZX?Q ® Z thj (Sm - S)thj (Sm/ - t)nij(sm)nij(sm’)a

=1 m,m/=1

n M
Sjm€($7t) = n_ln&Z ZX?Q ® Z thj (Sm - S)thj (Sm/ - t)nij(sm)eij(sm’)a

=1 m,m/=1

n M
Sjec(s,t) = n_1n52 sz@ ® Z Hp,, (8m — 8)Hpy; (Smr — t)€ij (8m) €5 (8mr)-

=1 m,m/=1

Thus, conditioning on the data, Gj(s)(g) is a normal random vector with zero mean and covariance
given by (nM)~2[I, ® (1,0)]%(s, h1;) 19 (s,t)%(s, h1;) "I, ® (1,0)T]. Tt is easy to see that

(58) Sj(sv t) = Sjﬂm(sv t) + Sj,ne(sv t) + Sj,ne(tv S) + Sj,ee(sv t)'

Following the arguments of Lemmas 6 and 7, we can show that S (s, t) + S e(t, s) + Sjee(s,t) =
o(1). Furthermore, it can be shown that E[S;,(s,t)] = Qx ® diag(1,0)%,, ;;(s,t) + O(hy;) and
Cov[S;un(s,t)] = O(n~1). Therefore, Cov,[G;(s)9), G;(t)9)] converges to %, j;(s,t)Q%" in proba-
bility, where the expectation is taken with respect to Tz-(g ) conditioning on the data. We can obtain
the marginal convergence of éj(s)(g) in the conditional central limit theorem by using the Cramer-
Wald method.

For each § > 0, let S5 = {l6: 1 =10,...,6"'} be an equally 6—spaced grid and [0, 1]5(s) assign
to each s € [0, 1] a closest element of Ss. The finite convergence results yield

sup |E-k(GY([0,1]5)) — BR(G;([0,1]5))] — 0
k(-)eBL1 (£ ([0,1]))



20

in probability, as n — oo. Due to the continuity of G;(s), we have G ([O7 1]5(s)) — G;(s) almost
surely as 0 — 0; that is lims .o Supg(yenL, (e=(j0,1])) | Er k‘( G,([0,1]5) — E-k(G;([0,1]))| = 0. Finally,
we have

sup |ER(GY([0,1]5()) — E-(GY(0,1]()))] < E-( sup |G

D (s)— GO(s)).
k(-)eBL1 (£ ([0,1])) |s—s'|2<6

(9
j
Thus, the expectation on the left side of the above equation is smaller than E(supj,_g,<s |C~¥§-g ) (s)—

(N}g-g )(s’ )|), which was established by the unconditional weak convergence of égg)(-) in Step 1. This
finishes the proof of Step 2.
In Step 3, following the arguments in Theorem 3 of Kosorok [8], we only need to prove that

n M
A, p = sup nt Ztr{X?Q @ {M! Z Hp,;(8m — s)x?[ﬁj(sm) — Bj(sm)]}®2} = 0p(1).
s€[0,1] i=1 m=1

It follows from the proof of Theorem 3 that A, g = O,(n~! + h?.), which converges to zero in
probability. This finishes the proof of Theorem 5.

We prove several key results for ensuring that Theorems 1 and 2 are valid for the case with fixed
grid points.
Lemma 8 . Under Assumptions (C1), (C3), (C4b), (C5), and (C7b), we have the following results:

(59) UQZX @{M~ Z Khnyy (sm — 8)zny; (sm = 8)€ij(sm)} = 0p(1),
sy _ N
(60) £ [ K w=s) m AT (u) = ()] | = Op((Mhy;) ™),
(61) sup [Tas(s) — I(s)| = Op(M ).
s€[0,1]

Proof of Lemma 8. To prove (59), we focus on the first component of z, (s, — s) for the sake of
space. We introduce some notation as follows:

n M
h) = ZXi Z M_IK;“]. (Sm - s)eij(sm),
= m=1

NE

F*(eij,5,h) = (Mhi;) ™" D €ij(sm)1(|sm — | < ) 1(Jeij(sm)] < 7m),

Il
—

m

M=

Fy (i s,h) = (Mhag) ™ Y7 eij(sm)1(Jsm — s < h)1(Jeij(sm)] > ),

m=1

M
F (€)= M~ 1 Z l€ij(sm)] )‘, GA’" (s,h) ZXZF% €ij, S, h),

m=1 =1

Elj(sma'Yn) = €5 5m)1 (|€Zj(8m)| < Yn), Nje(sma%l) = E{eij(sm)lﬂez‘j(smﬂ < )l

E[GZZ(S?h)] = nux(Mhlj)il Z 1(’3m - S’ < h)ﬂj6(5m77n)7

m=1
where €;; = (€;;(s1),- - , €(sm))T. It follows from Lemma 2 of Li and Hsing [11] that

(62) sup |De;(s,h)] < C1 sup |GZ5(s, h)|.
1]

s€[0,1] s€l0,
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We will prove that n~1/2 SUPsefo] |GG (8, hij)| = op(1) by using two steps. In Step 1, for a certain
sequence of 7, — oo, we will ShOW that

(63) =1/ sup Geg(s, huj) — G(s, haj) + E[G5(s, hg)]| = op(1).
s€l0,1

In Step 2, we will show that

(64) n-1/2 Sl[gpﬂ |G (s, hij) — E[Gej(s hi;)]| = op(1).
se€

We first prove (63). It follows from the definition of Gz”}(s, h) and Assumption (C7b) that

n~Y% sup 1G5 (s, hag) — GU%(s, hag)| = [n™ 1/2ZXZFU (€ij, 8, h1j)]

SG[O 1] i=1
n M
<Pyt | xal o (M) sup > le(sm)*L(|sim = 5| < haj)1(leij(sm)] > m)
i=1 s€l0,lm=1

n
< a2 e Yl P ) = 0P i 0p(1) = 0p(1).
i=1
Similarly, we can prove that n—1/2 sup,eo,1) | E[G (8, hij)]l = 0p(1).

We prove (64) as follows. It is easy to show that n*1/2{G “(s,h1j) — E[GY%(s, hyj)]} can be
written as the sum of two terms given by

L(s) = {n_1/22( — 1) Y (Mhyj)~ Z tje(Sms Yn) 1(|sm — 5| < h)},

i=1
n M
IQ(S) = n_1/2 ZXi(Mhlj)_l Z [Eij(sm)1(|€ij(3m)| S 'Yn) - ,Uje(smy%z)]lﬂsm - 8| S h)
i=1 m=1

We prove that supsc(g 1) [1(s) = 0p(1) as follows. Since Efe;j(sm)] = 0 and n2N (% — pg) =
O,(1), it follows from Assumption (C1) that

max |fje(sms )| = max |E{es(sm) (€55 (sm) > )}

< max Bl (sm)[1(]€ij(sm)] > )} < S max E{leij(sm )|} = o(1),

which yields sup¢jo 17 11(s) = 0p(1).
We prove that sup,jo 1) f2(s) = 0p(1) as follows. We note that

M
[Ixi(Mhaj) ™1 Y [eij(sm)1(leij(sm)] < An) = mje(sms ¥)]L(5m = 8| < 7)o < 29nl[%i|oo,
m=1

Var(ZX Mhlj Z {Ew SmYn) Mje(sma’Yn)}lﬂsm —s| < h))

= Zvar(xi (Mhaj)~ Z E{e€ij(sm,vm) — uje(sm,”yn)}zlﬂsm —s| <h))
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Since s1 < ... < s, are fixed grid points, the interval (s — h, s + h) covers a consecutive grid point
block {8, Si,+1,- -+, 84 +1(i;)} such that

Sip—1<S8—Nh,siy 28 —Nh,s; 4 p4) <s+h, and s p6)41 > s+ I

Therefore, there are about O(M) number of such consecutive grid point blocks, and thus, F(€;;, s, h)
has the same number of values as s varies in [0, 1]. Without loss of generality, we assume that there
are M consecutive grid point blocks. Therefore, it follows from Bernstein’s inequality that
2

(65) P(sup |Ix(s)| > ) < M exp(— )-

s€l0,1] C1(Mhyj)= + Coynz//n
Thus, a sufficient condition of P(supycjoqy[{2(s)| > ) = o(1) is that for sufficiently large C, we
obtain a quadratic equation given by z? = Clog(M){C1(Mhy;)~ + Coynz/+/n}, whose positive
solution is given by

log(M)

66 « = 0.5
(66) . i

+4CCq

CCyynlog(M) \/02022%3 log(M)2
n

It follows from Assumption (C7b) that 2. = o(1). By substituting z, into (65), we have

(67) P(sup [Iy(s)| > z.) < M exp(—Clog(M)) = exp(—(C — 1) log(M)) = o(1),
s€[0,1]
which yields sup,¢jg 17 f2(s) = 0p(1). Thus, we finish the proof of (59).
We prove (60) as follows. Let sop = 0. It follows from Taylor’s expansion and Assumption (C5)
that

/Km] ui;s)rd[HM(u) — TI(u)]
1y
= (Sm 5) sm &l m (U - S)r
— Z Ky, (sm - /Sm1 m(u)du — mZ:1 - Ky, (u—s) W (u)du
= Z . Kh]_] 5)(8777,h§_5)r —Khlj(u—s)(uh_?{s)r]ﬂ-(u)du:O((Mhlj)—l)

By using the same arguments, we can prove (61) and thus we omit the details.

2. Additional Simulation Results. Example 2 (continue). This example is used to eval-
uate the coverage probabilities of SCB of the accuracy of the estimators of the eigenvalues and
eigenfunctions of ¥, (-,-) and the estimators of (0%,03). The data were generated from the model
used in Example 1 under the same parameter values. We set n = 500 and M = 25, 50, and 75 and
generated 200 datasets for each combination.

We estimated the eigenvalues A11, A2, Ao1, and Ao and the variances a% and a% for each simulated
data set for M = 25, 50 and 75. The accuracy of estimators improves with M. The performance
of the estimators for M = 50 is almost as good as their performance for M = 75. Fig. 1 shows
the boxplots of values of 5\3‘1 and c“r?- for j = 1,2 and [ = 1,2. The estimated eigenvalues and
variances should be compared with the true ones, which are (1.2,0.6,1,0.5,0.2,0.1). When M is
large, the estimated eigenvalues and variances are very close to their true values. We summarized
the estimated results on 9 (s) for j = 1,2 and I = 1,2 in Fig. 2, in which we plotted the mean and

the pointwise 15 and 99th percentiles of the estimated eigenfunctions with the true eigenfunctions.
The performance of the estimated eigenfunctions improves with M increasing as expected.
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Fic 1. Bozxplot for the eigenvalues 5\11, 5\12, 5\21, and A2 and the variances &% and 62, when M = 25, 50 and 75.

3. Additional Real Data Example. Attention deficit hyperactivity disorder (ADHD) is
one of the most common childhood disorders and can continue through adolescence and adulthood.
Symptoms include difficulty staying focused and paying attention, difficulty controlling behav-
ior, and hyperactivity (over-activity). ADHD has three common subtypes including predominantly
hyperactive-impulsive, predominantly inattentive, and combined hyperactive-impulsive and inat-
tentive. The resting-state fMRI (rs-fMRI) data set that we used here is part of ADHD-200 Global
Competition data sets and was collected from the New York University (NYU) site. The data
set consists of 170 subjects (98 normal controls and 72 combined hyperactive-impulsive subjects).
Among them, there are 108 males whose mean age is 11.4 years with standard deviation 5.7 years
and 62 females whose mean age is 11.9 years with standard deviation 6.0 years. Rs-fMRIs and
T1-weighted images were acquired for each subject. For the rs-fMRI, a T2*-weighted EPI sequence
was used to acquire images. The imaging parameters were as follows: TR=2sec, TE=32 ms; 33
slices; and voxel size =4x4x4 mm?. This sequence was repeated 150 times so as to providing time
series images. The rs-fMRI data were preprocessed by standard steps including time shifting, mo-
tion correction, spatial smoothing (6-mm full width at half maximum Gaussian kernel), linear trend
removal, and band-pass filtered with frequency range of 0.009-0.08 Hz. Subsequently, rs-fMRI data
from each subject was co-registered to the automated anatomical labeling (AAL) atlas with 116
regions of interest (ROI).

For each individual subject, the average time series were calculated from each ROI and correlated
with each other to define a 116 x116 correlation matrix. To analyze the efficiency properties of brain
functional network, each correlation matrix was thresholded to create an adjacency matrix G with
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Fic 2. Plot of eigenfunctions and their pointwise confidence intervals. The red solid line is the true eigenfunction,
the middle green dashed line is the pointwise mean of estimated eigenfunctions and other two blue dashed lines are
the pointwise 1% and 99% percentiles of the estimated eigenfunctions in 200 runs.

elements of either 1 or 0 depending on whether the corresponding correlation value exceeds the
threshold or not. Clearly the choice of threshold have major effects on the topology of the resulting
network: conservative thresholds will produce sparsely connected graphs, which might eliminates
true connections while more lenient thresholds will generate densely connected graph, which on the
other hand might includes spurious connections. As a result, the adoption of any single threshold
will inevitably raise the concern of possible bias associated with this unique value. Therefore, each
correlation matrix was repeatedly thresholded over a range of significance levels from 0.01 to 1 to
avoid such bias. Two connectivity and network complexity measures including local efficiency (LE)
(Fig. 3 (c) and (e)) and characteristic path length (CPL) (Fig. 3 (d) and (f)) were calculated for
each adjacency matrix G [10, 14, 7, 15, 1]. Finally, for each subject, we obtained two LE and CPL
values at 100 evenly spaced grid points between [0, 1].

The aim of this analysis is to characterize the association between (LE, CPL) and covariates of
interest including age and diagnosis status. We fitted model (1) to the LE and CPL values from all
170 subjects, in which x; = (1, G, Age, D, G x Age, G x D, Age x D)7, where G and D, respectively,
represent gender and diagnostic status. We then applied the estimation and inference procedures to
estimate B(s) and calculate S,, for each hypothesis test. We approximated the p-value of S, using
the resampling method with G' = 1,000 replications. Finally, we constructed the 95% simultaneous
confidence bands for the functional coefficients of B;(s) for j =1, 2.

Fig. 4 presents the estimated coefficient functions corresponding to Age, D, and AgexD associ-
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Fic 3. ADHD data at NYU site: (a) the brain network using correlation matriz of time courses data, (b) the brain
network using Fisher’s z-transformed correlation matriz of time courses data, (c) local efficiency from 170 children,
(d) characteristic path length from 170 children, (e) and (f) the 3D plots with age of local efficiency and characteristic
path length from 170 children.

ated with LE and CPL (blue solid lines in all panels of Fig. 4). The three effects for the two brain
network properties are close to zero when the significance levels are either small or large, whereas
they are significantly different from zero when the significance levels are moderate. We observe
different change patterns in the coefficient functions of Age, D, and AgexD for LE and CPL. For
moderate significance levels, the coefficient functions of Age, D, and AgexD for LE are almost
consistently either positive or negative, while they swing between positive and negative for CPL.
For example, for LE, the coefficient functions of diagnostic group (panel (b) of Fig. 4) are negative
at most of the middle grid points, which may indicate that the local efficiency values of children
without ADHD are greater than those of children with ADHD. The p-values of the global test for
the interaction of age and diagnostic group are smaller than 0.001, indicating that the topologi-
cal structure of brain network varies significantly across age and diagnostic groups. Furthermore,
inspecting the SCBs of the AgexD interaction localizes correlation values around 0.3, where the
LE of brain network differs significantly across age and diagnostic groups (Fig. 4 (c)), whereas we
obtain important correlation values around 0.55 for the CPL of brain network (Fig. 4 (f)).

Fig. 5 presents the first 10 eigenvalues and 3 eigenfunctions of flmj(s,t) for j = 1,2. For the
two network measures, the relative eigenvalues of flm-j defined as the ratios of the eigenvalues of
f]n,jj(s, t) over their sum have similar distributional patterns (panel (a) of Fig. 5). We observe that
the first three eigenvalues account for more than 90% of the total and the others quickly vanish
to zero. The eigenfunctions of LE corresponding to the largest three eigenvalues (Fig. 5 (b)) are
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Fi1G 5. Plot of the first 10 eigenvalues and the first 3 eigenfunctions.

different from those of CPL (Fig. 5 (c)). For instance, for LE, the first eigenfunction is an weighted
average at around the 50-th grid point; the second one is a weighted contrast between the 30-th
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grid point and the 60-th grid point; the third eigenfunction is a contrast between the 50-th grid
point and the 30-th grid point together with the 60-th grid point. Here our interpretation of Fig. 5
is largely exploratory. How to statistically compare eigenvalues and eigenfunctions is an interesting
topic for future research.
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