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1. Proofs of Theorems. We introduce some notation. We define

TB,j(h, s) =
n∑

i=1

M∑
m=1

Kh(sm − s)[xi ⊗ zh(sm − s)]xT
i Bj(sm),

Tη,j(h, s) =
n∑

i=1

M∑
m=1

Kh(sm − s)[xi ⊗ zh(sm − s)]ηij(sm),(1)

Tε,j(h, s) =
n∑

i=1

M∑
m=1

Kh(sm − s)[xi ⊗ zh(sm − s)]εij(sm),

ru(K; s, h) =
u2(K; s, h)2 − u1(K; s, h)u3(K; s, h)
u0(K; s, h)u2(K; s, h)− u1(K; s, h)2

,

where ur(K; s, h) =
∫ 1
0 h

−r(u− s)rKh(u− s)du for r ≥ 0. Throughout the proofs, Cks stand for a
generic constant, and it may vary from line to line.

Without special saying, we consider the random grid points throughout the paper, but we also
discuss several key equations for the fixed grid points. We discuss the key steps in the proof of
Theorem 1 and then present on the proof of these key steps as lemmas.
Proof of Theorem 1. Define

U2(K; s,H) = diag(ru(K; s, h11), . . . , ru(K; s, h1J)),
Xn(s) =

√
n{B̂(s)− E[B̂(s)|S]} =

√
n{vec(B̂(s)−B(s)− 0.5B̈(s)U2(K; s,H)H2) + op(||H2||2)},

Xn,j(s) =
√
n{B̂j(s)− E[B̂j(s)|S]} =

√
n{B̂j(s)−Bj(s)− 0.5ru(K; s, h1j)h2

1jB̈j(s) + op(h2
1j)}.

According to the definition of vec(Âj(s)), it is easy to see that

vec(Âj(s)) = Σ(s, h1j)−1[TB,j(h1j , s) + Tε,j(h1j , s) + Tη,j(h1j , s)],(2)
Xn,j(s) =

√
n[Ip ⊗ (1, 0)]Σ(s, h1j)−1[Tε,j(h1j , s) + Tη,j(h1j , s)].(3)

Since Theorem 1 (ii) is a direct consequence of Theorem 1 (i) and Lemma 4, we focus on Theorem
1 (i). The proof of Theorem 1 (i) consists of two parts.

• Part 1 is to show that
√
nΣ(s, h1j)−1Tε,j(h1j , s) = op(1) holds uniformly for all s ∈ [0, 1] and

j = 1, . . . , J .
• Part 2 is to show that

√
nΣ(s, h1j)−1Tη,j(h1j , s) converges weakly to a Gaussian process G(·)

with mean zero and covariance matrix Ση,jj(s, s′)Ω−1
X for each j.

In part 1, we show that

(4)
√
n[Ip ⊗ (1, 0)]Σ(s, h1j)−1Tε,j(h1j , s) = Op(| log(h1j)|1/2(Mh1j)−1/2) = op(1).
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It follows from Lemma 1 that

n−1/2
n∑

i=1

xi ⊗ {M−1
M∑

m=1

Kh1j
(sm − s)zh1j

(sm − s)εi,j(sm)} = Op(| log(h1j)|1/2(Mh1j)−1/2) = op(1)

hold uniformly for all s ∈ [0, 1]. It follows from Lemma 2 that

(nM)−1Σ(s, h1j) = [n−1
n∑

i=1

x⊗2
i ⊗M−1

M∑
m=1

Kh1,j
(sm − s)zh1,j

(sm − s)⊗2](5)

= ΩX ⊗ Ω1(h1j , s) +Op(M−1/2h−1
1j + n−1/2) = ΩX ⊗ Ω1(h1j , s) + op(1)

hold uniformly for all s ∈ [0, 1]. Based on these results, we can finish the proof of (4).
In part 2, we show the weak convergence of

√
n[Ip⊗ (1, 0)]Σ(s, h1j)−1Tη,j(h1j , s) for j = 1, . . . , J .

The part 2 consists of two steps. In Step 1, it follows from the standard central limit theorem that
for each s ∈ [0, 1],

√
n[Ip ⊗ (1, 0)]Σ(s, h1j)−1Tη,j(h1j , s) →L N(0,Ση,jj(s, s)Ω−1

X ),(6)

where →L denotes convergence in distribution.
Step 2 is to the asymptotic tightness of

√
n[Ip ⊗ (1, 0)]Σ(s, h1j)−1Tη,j(h1j , s). We define

Hh(sm − s) = Kh(sm − s)zh(sm − s),

∆j(s;ηi, h1j) = M−1
M∑

m=1

Hh1j
(sm − s)ηij(sm)−

∫ 1

0
Hh1j

(u− s)ηij(u)π(u)du.(7)

By using (5) and (7), we can show that
√
nΣ(s, h1j)−1Tη,j(h1j , s)[1 + op(1)] can be approximated

by three terms as follows:
√
nΣ(s, h1j)−1Tη,j(h1j , s)[1 + op(1)] = (I) + (II) + (III)(8)

= n−1/2
n∑

i=1

Ω−1
X xi ⊗ Ω1(h1j , s)−1∆j(s;ηi, h1j)

+ n−1/2
n∑

i=1

Ω−1
X xi ⊗ Ω1(h1j , s)−1ηij(s)

∫ min((1−s)h−1
1j ,1)

max(−sh−1
1j ,−1)

K(u)(1, u)Tπ(s+ h1ju)du

+ n−1/2
n∑

i=1

Ω−1
X xi ⊗ Ω1(h1j , s)−1

∫ min((1−s)h−1
1j ,1)

max(−sh−1
1j ,−1)

K(u)(
1
u

)[ηij(s+ h1ju)− ηij(s)]π(s+ h1ju)du

We investigate the three terms on the right hand side of (8) as follows. It follows from Lemma 3
that the first term on the right hand side of (8) converges to zero uniformly.

We prove the asymptotic tightness of (II) as follows. Define

X̂n,j(s) = n−1/2
n∑

i=1

Ω−1
X xi ⊗ (1, 0)Ω1(h1j , s)−1ηij(s)

∫ min((1−s)h−1
1j ,1)

max(−sh−1
1j ,−1)

K(u)(1, u)Tπ(s+ h1ju)du.

Thus, we only need to prove the asymptotic tightness of X̂n,j(s). The asymptotic tightness of
X̂n,j(s) can be proved using the empirical process techniques [13]. It follows from (40) that

(1, 0)Ω1(h1j , s)−1
∫ min((1−s)h−1

1j ,1)

max(−sh−1
1j ,−1)

K(u)(1, u)Tπ(s+ h1ju)du

=
u2(K; s, h1j)u0(K; s, h1j)− u1(K; s, h1j)2 + o(h1j)
u2(K; s, h1j)u0(K; s, h1j)− u1(K; s, h1j)2 + o(h1j)

= 1 + o(h1j).
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Thus, X̂n,j(s) can be simplified as

X̂n,j(s) = [1 + o(h1j)]n−1/2
n∑

i=1

ηij(s)Ω−1
X xi.

We consider a function class Eη = {f(s;x, η·,j) = Ω−1
X xη·,j(s) : s ∈ [0, 1]}. Due to Assumption (C2),

Eη is a P−Donsker class.
Finally, we consider the third term (III) on the right hand side of (8). It is easy to see that (III)

can be written as

Ω−1
X ⊗ Ω1(h1j , s)−1

∫ min((1−s)h−1
1j ,1)

max(−sh−1
1j ,−1)

K(u)[n−1/2
n∑

i=1

xi{ηij(s+ h1ju)− ηij(s)}]⊗ (
1
u

)π(s+ h1ju)du

Using the same argument of proving the second term (II), we can show the asymptotic tightness of
n−1/2∑n

i=1 xiηij(s). Therefore, for any h1j → 0,

(9) sup
s∈[0,1],|u|≤1

|n−1/2
n∑

i=1

xi{ηij(s+ h1ju)− ηij(s)}| = op(1).

It follows from Assumptions (C5) and (C7) and (9) that (III) converges to zero uniformly. Therefore,
we can finish the proof of Theorem 1.

Lemma 1. Under Assumptions (C1), (C3)-(C5), and (C7), we have that for each j,

(10) sup
s∈[0,1]

n−1/2h1j |Tε,j(h1j , s)| = Op(
√
Mh1j | log h1j |) = op(Mh1j).

Proof. Let Fn(sm) = n−1/2∑n
i=1 xiεij(sm). Then it follows by the definition of Tε,j(h1j , s) that

n−1/2h1jTε,j(h1j , s) = h1j

M∑
m=1

Kh1j
(sm − s)Fn(sm)⊗ zh1j

(sm − s).

Let X = {x1, . . . ,xn} and T̃ε,j(h1j , s) = {T ′ε,j(h1j , s)− E[T ′ε,j(h1j , s)|X,S]}, where

T ′ε,j(h1j , s) =
√
n

M∑
m=1

Kh1j
(sm − s)Fn(sm)1(||Fn(sm)||2 ≤ γM )⊗ zh1j

(sm − s),

in which γM is a positive number to be specified below. The proof of Lemma 1 consists of three
steps. In Step 1, we show that

(11) sup
s∈[0,1]

n−1/2h1j ||Tε,j(h1j , s)− T̃ε,j(h1j , s)||2 = op(
√
Mh1j | log h1j |).

In Step 2, we define an equally-spaced grid S̃ = {s̃l = lh1j : l = 0, . . . , 1h−1
1j } and then show that

(12) max
l
h1j ||n−1/2T̃ε,j(h1j , s̃l)||2 = Op(

√
Mh1j | log h1j |).

In Step 3, we show that

(13) max
l

sup
s∈[s̃l−1,s̃l]

n−1/2h1j ||T̃ε,j(h1j , s̃l−1)− T̃ε,j(h1j , s)||2 = Op(
√
Mh1j | log h1j |).
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It is easy to see that the proof of Lemma 1 is completed by combing (11)-(13).
We first show (11). It follows from Assumption (C5) and sm, s ∈ [0, 1] that

n−1/2h1j ||Tε,j(h1j , s)− T̃ε,j(h1j , s)||2

≤ C1

M∑
m=1

||Fn(sm)||21(||Fn(sm)||2 ≥ γM ) + C1

M∑
m=1

E[||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S],

for a positive constant C1. Let γM = δ(M/| log h1j |)1/q1 , where δ is a positive scalar. It follows
from Assumption (C7) that (| log h1j |/M)1−2/q1 ≤ h1j → 0 and 1 − 2/q1 > 0, which yields that
| log h1j |/M → 0 and γM →∞. As γM →∞, we can show that

(14) max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S] = o(1).

For notational simplicity, we only consider the case p = 1, (i.e., xi is scalar). For any c > 0 with
q1 + c < 4, equation (14) is followed from Assumptions (C1), (C3) and (C7) and the partial sum
moment inequality [2] as follows:

max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S] ≤ max

m
E[|n−1/2

n∑
i=1

xiεik(sm)|q1+c|X,S]/γc
M

≤ max
m

n−(q1+c)/2C(q1)n(q1+c)/2−1
n∑

i=1

|xi|q1+cE[|εik(sm)|q1+c|]/γc
M = o(1),

where C(q1) is a universal constant independent of n. It follows from Assumptions (C1) and (C7)
and (14) that

M∑
m=1

E[||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S](15)

≤
M∑

m=1

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S]/γq1−1

M

≤ o(1)M1/q1 | log h1j |1−1/q1 ≤ o(
√
Mh1j | log h1j |).

Furthermore, we have

Var(
M∑

m=1

||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S)(16)

=
M∑

m=1

Var(||Fn(sm)||21(||Fn(sm)||2 ≥ γM )|X,S)

≤ E{[
M∑

m=1

||Fn(sm)||221(||Fn(sm)||2 ≥ γM )]|X,S}

≤ E[
M∑

m=1

||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S]/γq1−2

M

≤ max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S]M/γq1−2

M

≤ max
m

E[||Fn(sm)||q1
2 1(||Fn(sm)||2 ≥ γM )|X,S]Mh1j = o(Mh1j | log h1j |).
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Therefore, combing equations (15) and (16), we have

M∑
m=1

||Fn(sm)||21(||Fn(sm)||2 ≥ γM ) = op(
√
Mh1j | log h1j |),

which yields (11).
We next prove (12). It follows from Assumption (C5) that

h1j ||Kh1j
(sm − s){Fn(sm)1(||Fn(sm)||2 ≤ γM )−

E[Fn(sm)1(||Fn(sm)||2 ≤ γM )|X,S]} ⊗ zh1j
(sm − s)||2

≤ C2(M/| log h1j |)1/q1 ≤ C2

√
Mh1j/| log h1j |,

where C2 = 4δ supt∈[−1,1] |K(t)|. Furthermore, let ES denote the expectation to sm. We have

Var(
M∑

m=1

h1jKh1j
(sm − s)Fn(sm)1(||Fn(sm)||2 ≤ γM )⊗ zh1j

(sm − s)|X)

=
M∑

m=1

Var(h1jKh1j
(sm − s)Fn(sm)1(||Fn(sm)||2 ≤ γM )⊗ zh1j

(sm − s)|X)

≤
M∑

m=1

ES{h2
1jKh1j

(sm − s)2E[Fn(sm)⊗21(||Fn(sm)||2 ≤ γM )⊗ zh1j
(sm − s)⊗2|X,S]}

≤
M∑

m=1

h2
1jES [Kh1j

(sm − s)2n−1
n∑

i=1

x⊗2
i Σε(sm, sm)⊗ zh1j

(sm − s)⊗2] = Op(Mh1j).

Therefore, by applying Bernstein’s inequality to each component of h1jn
−1/2T̃ε,j(h1j , s̃l) [13], we

can prove (12). For instance, let e1 be a dim(T̃ε,j(h1j , s̃l)) × 1 vector with the first element 1 and
zero otherwise; we have

P (max
l
|e1h1jn

−1/2T̃ε,j(h1j , s̃l)| > t|X)(17)

≤ C3(1h−1
1j + 1)E[exp(−1

2
t2

v(X) + tC3

√
Mh1j/| log h1j |/3

)|X],

where C3 = O(1), t is a positive scalar, and v(X) ≥ Var(e1h1jn
−1/2T̃ε,j(h1j , s̃l)|X) for all l. By

setting t = C4

√
Mh1j | log h1j | for large C4 > 0, we can show that the right hand side of (17) is of

order hC5
1j , where C5 is a positive scalar. Thus, for sufficiently large C4 > 0, we have

P (max
l
|e1h1jn

−1/2T̃ε,j(h1j , s̃l)| > C4

√
Mh1j | log h1j |) → 0 as h1j → 0.

In Step 3, we focus on the first component of zh1j
(sm−s). We first consider the following function

class:

El = {wl(S; s) = h1j [Kh1j
(S − s̃l)−Kh1j

(S − s)]Fn(S)1(||Fn(S)||2 ≤ γM ) : s ∈ [s̃l−1, s̃l]}.

It follows from Assumption (C5) and γM that El is a pointwise measurable class of functions and
sups∈[0,1] |wl(S; s)| ≤ C6γM ≤ C7

√
Mh1j/| log h1j |. Let ||φ||D = supz∈D |φ(z)| for any real valued
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function φ defined on a set D and τ1, . . . , τM be a sequence of independent Rademacher random
variables independent of observed data. It follows from an inequality of Talagrand [12, 3] that
conditioning on X, we have for suitable finite constants A1, A2 > 0

P{||
M∑

m=1

[wl(sm; s)− E[wl(sm; s)|X]||El
≥ A1(E[||

M∑
m=1

τjwl(sm; s)||El
|X] + t)|X}

≤ 2[exp(−A2t
2/(MVEl

(X))) + exp(−A2t/(C7

√
Mh1j/| log h1j |))],

where VEl
(X) = sups∈[s̃l−1,s̃l]

Var(wl(S; s)|X). It can be shown that

VEl
(X) ≤ sup

s∈[s̃l−1,s̃l]
ES{h2

1j [Kh1j
(S − s̃l)−Kh1j

(S − s)]2E[Fn(S)2|X]} ≤ C8h1jn
−1

n∑
i=1

x⊗2
i ,

where C8 is a positive scalar. By setting t = C9

√
Mh1j | log h1j | for a large C9 > 0, we can show

that A2t
2/(MVEl

(X)) = C10| log h1j | and A2t/(C7

√
Mh1j/| log h1j |) = C11| log h1j |. Moreover, it

follows from Assumption (C5) that El is a pointwise measurable Vapnik and Cervonenkis (VC)
class [13]. By using Proposition A.1 of [3], we can show that maxlE[||

∑M
m=1 τjwl(sm; s)||El

|X] ≤
O(
√
Mh1j | log h1j |). This yields (13).

Lemma 2 . Under Assumptions (C1), (C4), (C5) and (C7), we have that for any r ≥ 0 and j,

sup
s∈[0,1]

∣∣∣∣∣
∫
Kh1j

(u− s)
(u− s)r

hr
1j

d[ΠM (u)−Π(u)]

∣∣∣∣∣ = Op((Mh1j)−1/2),(18)

sup
s∈[0,1]

∣∣∣∣∣
∫
Kh1j

(u− s)
(u− s)r

hr
1j

εij(u)dΠM (u)

∣∣∣∣∣ = Op((Mh1j)−1/2
√
| log h1j |),(19)

where ΠM (·) is the sampling distribution function based on S = {s1, . . . , sM}, and Π(·) is the
distribution function of sm.

Proof. Equations (18) can be proved by using the empirical process techniques [13]. Specifically, it
follows from Assumptions (C4) and (C5) that

{K
( · − s

h

)
(· − s)r

hr
: s ∈ [0, 1]} is a P −Donsker class.

Equation (19) can be proved by using the same arguments of Lemma 1, so we omit the details.

Lemma 3 . Under Assumptions (C2)-(C5), we have

sup
s∈[0,1]

|n−1/2
n∑

i=1

xi ⊗∆j(s;ηi, h1j)| = op(1).(20)

Proof. It follows from the Donsker Theorem [13] that

An,η(s) = n−1/2
n∑

i=1

xiηij(s) ⇒ G1(s), and M1/2[ΠM (s)−Π(s)] ⇒ G2(s),(21)

sup
s∈[0,1]

||n−1/2
n∑

i=1

xiηij(s)|| = Op(1) and sup
s∈[0,1]

|ΠM (s)−Π(s)| = Op(M−1/2),(22)
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where G1(·) and G2(·) are two centered Gaussian processes. Furthermore, we have

n−1/2
n∑

i=1

xi ⊗∆j(s;ηi, h1j) = (I)+(II)+(III)(23)

= M−1
M∑

m=1

Kh1j
(sm − s)zh1j

(sm − s)[n−1/2
n∑

i=1

xi ⊗ ηij(sm)− n−1/2
n∑

i=1

xi ⊗ ηij(s)]

+ [M−1
M∑

m=1

Kh1j
(sm − s)zh1j

(sm − s)−
∫ 1

0
Kh1j

(u− s)zh1j
(u− s)dΠ(u)]n−1/2

n∑
i=1

xi ⊗ ηij(s)

+
∫
Kh1j

(u− s)zh1j
(u− s)n−1/2

n∑
i=1

xi ⊗ [ηij(s)− ηij(u)]dΠ(u).

We examine the three terms on the righthand side of (23) as follows:

(I) ≤ M−1
M∑

m=1

Kh1j
(sm − s)||zh1j

(sm − s)||2|An,η(sm)−An,η(s)|

≤ sup
|s−s′|≤h1j

|An,η(s′)−An,η(s)| sup
s
M−1

M∑
m=1

Kh1j
(sm − s)||zh1j

(sm − s)||2 = op(1),

(II) ≤ sup
s∈[0,1]

|An,η(s)| sup
s∈[0,1]

||
∫ 1

0
Kh1j

(u− s)zh1j
(u− s)d[ΠM (u)−Π(u)]||2 = Op((Mh1j)−1/2),

(III) ≤
∫
Kh1j

(u− s)||zh1j
(u− s)||2|An,η(u)−An,η(s)|dΠ(u)

≤ sup
|s−s′|≤h1j

|An,η(s′)−An,η(s)| sup
s

∫
Kh1j

(u− s)||zh1j
(u− s)||2dΠ(u) = op(1).

This finishes the proof of Lemma 3.
Lemma 4 . If Assumptions (C1) and (C3)-(C6) hold, then for any s ∈ (0, 1), we have

E[B̂j(s)|S]−Bj(s) = 0.5h2
1ju2(K)B̈j(s)[1 +Op(n−1/2 + h1j + (Mh1j)−1/2)](24)

= 0.5h2
1ju2(K)B̈j(s)[1 + op(1)],

Var[B̂j(s)|S] = n−1Ση,jj(s, s)Ω−1
X [1 + op(1)],

where en(s) = Op((Mh1j)−1/2) is defined in (37) with E[en(s)] = 0.

Proof. First, we calculate E[B̂j(s)|S]. The vec(Âj(s)) can be written as follows:

vec(Âj(s)) = Σ(s, h1j)−1[TB,j(h1j , s) + Tε,j(h1j , s) + Tη,j(h1j , s)].

Because the components of Bj(s) are differentiable in the neighborhood of |sm−s| ≤ h1j , it follows
from a Taylor’s expansion and Assumption (C6) that

(25) xT
i Bj(sm) = xT

i Aj(s)zh1j
(sm − s) + 0.5h2

1jx
T
i B̈j(s)

(sm − s)2

h2
1j

+ oP (h2
1j).

For r ≥ 0, it follows from Assumptions (C4) and (C5) that

h−r
1j |M

−1
M∑

m=1

(sm − s)rKh1j
(sm − s)−

∫
(u− s)rKh1j

(u− s)π(u)du| = Op((Mh1j)−1/2).
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Thus, by substituting (25) into B̂j(s), we have

B̂j(s)−Bj(s) = [Ip ⊗ (1, 0)]Σ(s, h1j)−1 × {Tε,j(h1j , s) + Tη,k(h1j , s) +

0.5h2
1j [

n∑
i=1

x⊗2
i B̈j(s)]⊗ [

M∑
m=1

Kh1j
(sm − s)zh1j

(sm − s)
(sm − s)2

h2
1j

][1 + oP (1)]}.

It follows from Assumptions (C4)-(C6) that

Σ(s, h1j) = (nM)(n−1
n∑

i=1

x⊗2
i )⊗ [M−1

M∑
m=1

Kh1j
(sm − s)zh1j

(sm − s)⊗2]

= (nM)[ΩX ⊗ Ω1(h1j , s) +Op(n−1/2 +M−1/2h−1
1j )](26)

= (nM)[π(s)ΩX ⊗ diag(1, u2(K)) +Op(n−1/2 +M−1/2h−1
1j + h1j)].

Thus, with some calculation, we have

E[B̂j(s)|S]−Bj(s) = 0.5h2
1ju2(K)B̈j(s)[1 +Op(n−1/2 + h1j + (Mh1j)−1/2)].(27)

Secondly, we calculate Var[B̂j(s)|S]. We note that

(28) Var[B̂j(s)|S] = E{Var[B̂j(s)|S,X]|S}+ Var{E[B̂j(s)|S,X]|S}.

Define Ω̂−1
X =

∑n
i=1 x⊗2

i , P1(s) = [Ip⊗(1, 0)]Σ(s, h1j)−1, P2(s) = M−1∑M
m=1Kh1j

(sm−s)zh1j
(sm−

s)⊗2 and P3(s) = M−1∑M
m=1Kh1j

(sm − s)Bj(sm)⊗ zh1j
(sm − s). With some calculation, we have

E[B̂j(s)|S,X] = P1(s)
n∑

i=1

{xi ⊗ [
M∑

m=1

Hh1j
(sm − s)xT

i Bj(sm)]}(29)

= [Ip ⊗ (1, 0)P2(s)−1]P3(s),
Var[B̂j(s)|S,X] = P1(s)Var[Tε,j(h1j , s) + Tη,j(h1j , s)|S,X]P1(s)T .(30)

Thus, because P2(s) and P3(s) solely depend on S, we have

Var{E[B̂j(s)|S,X]|S} = 0.(31)

We calculate E{Var[B̂j(s)|S,X]|S}. DefineAεj(s) =
∑M

m=1Hh1j
(sm−s)Hh1j

(sm−s)T Σε,jj(sm, sm)
and Aηj(s) =

∑M
m,m′=1Hh1j

(sm − s)Hh1j
(sm′ − s)T Ση,jj(sm, sm′). It is easy to see that

Var[Tε,j(h1j , s) + Tη,j(h1j , s)|S,X] = n(Ω̂X − ΩX + ΩX)⊗ [Aεj(s) +Aηj(s)].

With some calculation, we have

Σ(s, h1j) = nM [n−1
n∑

i=1

(x⊗2
i − ΩX)Ω−1

X ⊗ I2 + Ip ⊗ I2][ΩX ⊗ P2(s)],

Σ(s, h1j)−1 = (nM)−1[Ω−1
X ⊗ P2(s)−1]{I2p − n−1

n∑
i=1

(x⊗2
i − ΩX)Ω−1

X ⊗ I2

+[n−1
n∑

i=1

(x⊗2
i − ΩX)Ω−1

X ⊗ I2]2 +Op(n−3/2)}.
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Based on the expansion of Σ(s, h1j)−1, we have

Var[B̂j(s)|S,X](32)
= [Ip ⊗ (1, 0)][Ω−1

X ⊗ P2(s)−1]× {n−1M−2(Ω̂X − ΩX + ΩX)⊗ [Aεj(s) +Aηj(s)]

− 2(nM)−2
n∑

i=1

(x⊗2
i − ΩX)⊗ [Aεj(s) +Aηj(s)] +Op(n−2 + (n2Mh1j)−1)} ×

[Ω−1
X ⊗ P2(s)−1][Ip ⊗ (1, 0)T ],

E{Var[B̂j(s)|S,X]|S}(33)
= Op(n−2 + (n2Mh1j)−1) + n−1M−2Ω−1

X ⊗ {(1, 0)P2(s)−1[Aεj(s) +Aηj(s)]P2(s)−1(1, 0)T }.

We approximate Aεj(s) and Aηj(s) as follows. It follows from Assumption (C1) that

(34) (1, 0)Aεj(s)(1, 0)T ≤ sup
sm

Σε,jj(sm, sm)
M∑

m=1

Kh1j
(sm − s)2 = O(Mh−1

1j ).

Moreover,Aηj(s) = A
(1)
ηj (s)+A(2)

ηj (s), whereA(1)
ηj (s) =

∑M
m=1Hh1j

(sm−s)Hh1j
(sm−s)T Ση,jj(sm, sm)

and A(2)
ηj (s) =

∑M
m6=m′ Hh1j

(sm − s)Hh1j
(sm′ − s)T Ση,jj(sm, sm′). Particularly, A(2)

ηj (s)/[(M − 1)M ]
is a U-statistic [2]. Similar to Aεj(s), it can be shown that

(35) (1, 0)Aηj(s)(1)(1, 0)T = Mh−1
1j [π(s)Ση,jj(s, s)v0(K) +Op((Mh1j)−1/2 + h1j)].

For A(2)
η (s), we define three 2 × 2 matrices Uη(s) = (Uη,ll′(s)) = [M(M − 1)]−1A

(2)
η (s), θ(s) =

(θll′(s)) = E[Uη(s)], and Pη(v) = (Pη,ll′(v)) =
∫
Hh1j

(v−s)Hh1j
(u−s)T Ση,jj(v, u)π(u)du. By using

the Hajek projection, we have

Uη,ll′(s) = θll′(s) +
2
M

M∑
m=1

[Pη,ll′(sm)− θll′(s)] + Ẽn,ll′(s) for l, l′ = 1, 2,(36)

in which 2
∑M

m=1[Pη,ll′(sm) − θll′(s)]/M is the projection of Uη,ll′(s) − θll′(s) onto the set of all
statistics of the form

∑M
m=1 fm(sm). Thus, with some calculation, we have

Var(Ẽn,ll′(s)) = Var(Uη,ll′(s)− θll′(s))−Var(
2
M

M∑
m=1

[Pη,ll′(sm)− θll′(s)]) = O((Mh1j)−2).

As h1j → 0, it follows from Taylor’s expansion that

θll′(s) +O(h1j) = π(s)2ul−1(K)ul′−1(K)Ση,jj(s, s).

Define

(37) en(s) = 2
M∑

m=1

[Pη,11(sm)− θ11(s)]/M + Ẽn,11(s) = Op((Mh1j)−1/2).

Then, we have

(1, 0)Aηj(s)(2)(1, 0)T = M2en(s) +M2π(s)2Ση,jj(s, s)[1 + op(1)].(38)

Substituting (30)-(38) into (28), we can obtain E{Var[B̂j(s)|S,X]|S} and Var[B̂j(s)|S].
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Lemma 5. If Assumptions (C1) and (C3)-(C6) hold, then for s = 0 or 1, we have

E[B̂j(s)|S]−Bj(s) = 0.5h2
1jru(K; s, h1j)B̈j(s)[1 + op(1)],(39)

Var[B̂j(s)|S] = n−1Ση,jj(s, s)Ω−1
X [1 + op(1)].

Proof. Since Lemma 5 follows directly from the proof of Lemma 4, we just highlight how to compute
the bias of B̂j(s) given S. If follows from the change of variable that all elements of Ω1(h, s) can
be written as

(40)
∫ 1

0
h−r(u− s)rKh(u− s)π(u)du = π(s)ur(K; s, h) +O(h)

for r = 0, 1, and 2. Thus, it follows from the arguments in (26) and (40) that

Σ(s, h1j) = (nM)[π(s)ΩX ⊗
(
u0(K; s, h1j) u1(K; s, h1j)
u1(K; s, h1j) u2(K; s, h1j)

)
+Op(n−1/2 + (Mh1j)−1/2 + h1j)].

Using arguments similar to (27), we get

E[B̂j(s)|S]−Bj(s) = 0.5h2
1j

u2(K; s, h1j)2 − u1(K; s, h1j)u3(K; s, h1j)
u0(K; s, h1j)u2(K; s, h1j)− u1(K; s, h1j)2

B̈j(s)[1 + op(1)].(41)

Proof of Theorem 2. Let K̃M,h(s) = K̃M (s/h)/h, where K̃M (s) is the empirical equivalent kernels
for the first-order local polynomial kernel [4]. Thus, we have

η̂ij(s)− ηij(s) =
M∑

m=1

K̃M,h2j
(sm − s)xT

i [Bj(sm)− B̂j(sm)](42)

+
M∑

m=1

K̃M,h2j
(sm − s)[ηij(sm) + εij(sm)− ηij(s)].

It follows from a Taylor’s expansion that

M∑
m=1

K̃M,h2j
(sm − s)[ηij(sm)− ηij(s)] = 0.5u2(K)η̈ij(s)h2

2j [1 + op(1)],

and
M∑

m=1

K̃M,h2j
(sm − s)xT

i {Bj(sm)− E[B̂j(sm)|S,η,X]}

=
M∑

m=1

K̃M,h2j
(sm − s)[0.5h2

1ju2(K)xT
i B̈j(sm) + xT

i Ω−1
X n−1

n∑
i′=1

xi′ηi′,j(sm)]

×[1 +Op(h1j + n−1/2 + (Mh1j)−1/2)]

= [0.5h2
1ju2(K)xT

i B̈j(s) + xT
i Ω−1

X n−1
n∑

i′=1

xi′ηi′,j(s)]

×[1 +Op(h1j + h2j + n−1/2) +Op((Mh2j)−1/2 + (Mh1j)−1/2)]

= [0.5h2
1ju2(K)xT

i B̈j(s) +Op(n−1/2)]

×[1 +Op(h1j + h2j + n−1/2) +Op((Mh2j)−1/2 + (Mh1j)−1/2)],



MULTIVARIATE VARYING COEFFICIENT MODEL 11

which leads to Bias[η̂ij(s)|S,η,X].
Furthermore, it can be shown that

η̂ij(s)− E[η̂ij(s)|S,η,X] =
M∑

m=1

K̃M,h2j
(sm − s){εij(sm)− xT

i [Ip ⊗ (1, 0)]Σ(sm, h1j)−1Tε,j(h1j , sm)}

=
M∑

m=1

K̃M,h2j
(sm − s){εij(sm)− xT

i [Ip ⊗ (1, 0)]Σ(sm, h1j)−1
n∑

i′=1

xi′ ⊗
M∑

m′=1

Hh1j
(sm′ − sm)εi′,j(sm′)}.

With tedious calculations, we have

Cov(η̂ij(s)− ηij(s), η̂ij(t)− ηij(t)|S,η,X)
= K∗((s− t)/h2j)π(t)−1Op((Mh2j)−1)− xT

i Ω−1
X xi(nMh1j)−1π(s)−1π(t)−1Op(1).

Furthermore, for i = 1, . . . , n, after dropping some higher order terms, we have

E{[η̂ij(s)− ηij(s)]2|S,η,X}
= {E[η̂ij(s)− ηij(s)|S,η,X]}2 + Var[η̂ij(s)− ηij(s)|S,η,X]

= [0.5h2
1ju2(K)xT

i B̈j(sm) + 0.5u2(K)η̈ij(s)h2
2j + xT

i Ω−1
X n−1

n∑
i′=1

xi′ηi′j(sm)]2[1 + op(1)]

+v0(K)π(s)−1Op((Mh2j)−1)− xT
i Ω−1

X xi(nMh1j)−1π(s)−1Op(1).

This completes the proof of Theorem 2 (a).
It follows from (27) that

M∑
m=1

K̃M,h2j
(sm − s)xT

i {Bj(sm)− E[B̂j(sm)|S,X]}

=
M∑

m=1

K̃M,h2j
(sm − s)0.5h2

1ju2(K)xT
i B̈j(sm)[1 +Op(h1j + n−1/2 + (Mh1j)−1/2)].

Furthermore, it can be shown that

η̂ij(s)− ηij(s)− E[η̂ij(s)|S,X]

=
M∑

m=1

K̃M,h2j
(sm − s)[ηij(sm) + εij(sm)− ηij(s)]

−
M∑

m=1

K̃M,h2j
(sm − s){xT

i [Ip ⊗ (1, 0)]Σ(sm, h1j)−1[Tη,j(h1j , sm) + Tε,j(h1j , sm)]}.

With tedious calculations, we have

Cov(η̂ij(s)− ηij(s), η̂ij(t)− ηij(t)|S,X)
= K∗((s− t)/h2j)π(t)−1Op((Mh2j)−1)− xT

i Ω−1
X xi(nMh1j)−1π(s)−1π(t)−1Op(1)

+[1 + op(1)]{0.25u2(K)2h(2)4
1j Σ(2,2)

η,jj (s, t) + n−1xT
i Ω−1

X xiΣη,jj(s, t)

−0.5n−1u2(K)h2
2jx

T
i Ω−1

X xi[Σ
(2,0)
η,jj (s, t)π(s)−1 + Σ(0,2)

η,jj (s, t)π(t)−1]}.
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It follows from (27) that

E{[η̂ij(s)− ηij(s)]2|S,X]
= {E[η̂ij(s)− ηij(s)|S,X]}2 + Var[η̂ij(s)− ηij(s)|S,X]

= {0.25h4
1ju2(K)2[xT

i B̈j(s)]2 + 0.25u2(K)2h(2)4
1j Σ(2,2)

η,jj (s, t)

+n−1xT
i Ω−1

X xiΣη,jj(s, t) + v0(K)π(s)−1Op((Mh2j)−1)}[1 + op(1)],

which leads to Theorem 2 (b). Furthermore, by noting that E{[η̂ij(s)− ηij(s)]2|S] = E(E{[η̂ij(s)−
ηij(s)]2|S,X]|S), we can easily get Theorem 2 (c) and (d).

We define

εij(s) =
M∑

m=1

K̃M,h2j
(sm − s)εij(sm),

∆ηij(s) =
M∑

m=1

K̃M,h2j
(sm − s)[ηij(sm)− ηij(s)],

∆Bj(s) =
M∑

m=1

K̃M,h2j
(sm − s)[Bj(sm)− B̂j(sm)],

∆ij(s) = εij(s) + ∆ηij(s) + xT
i ∆Bj(s).

Recall from (42) that

(43) η̂ij(s)− ηij(s) = ∆ij(s) = εij(s) + ∆ηij(s) + xT
i ∆Bj(s).

It follows from Lemma 2 and a Taylor’s expansion that

sup
s∈[0,1]

|εij(s)| = Op(

√
| log(h2j)|
Mh2j

) and sup
s∈[0,1]

|∆ηij(s)| = Op(1) sup
s∈[0,1]

|η̈ij(s)|h(2)2
1j .

Since
√
n{B̂j(·) − Bj(·) − 0.5u2(K)2h2

1jB̈j(·)[1 + op(1)]} weakly converges to a Gaussian process
in `∞([0, 1]) as n→∞,

√
n{B̂j(·)− Bj(·)− 0.5u2(K)2h2

1jB̈j(·)[1 + op(1)]} is asymptotically tight.
Thus, we have

∆Bij(s) = −
M∑

m=1

K̃M,h2j
(sj − s)0.5u2(K)2h2

1jB̈j(sm)[1 + op(1)]

+
M∑

m=1

K̃M,h2j
(sj − s){0.5u2(K)2h2

1jB̈j(sm)[1 + op(1)] +Bj(sm)− B̂j(sm)},

sup
s∈[0,1]

||∆Bj(s)|| = Op(n−1/2) +Op(h2
1j).

Combining these results, we have

sup
s∈[0,1]

|η̂ij(s)− ηij(s)| = Op(| log(h2j)|1/2(Mh2j)−1/2 + h
(2)2
1j + h2

1j + n−1/2).
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Lemma 6. Under Assumptions (C1)-(C9), we have

sup
(s,t)

n−1|
n∑

i=1

εij(s)ηij(t)| = Op(n−1/2(log n)1/2),

sup
(s,t)

n−1|
n∑

i=1

εij(s)∆ηij(t)| = Op(n−1/2(log n)1/2),

sup
s
n−1|

n∑
i=1

εij(s)xi| = Op(n−1/2(log n)1/2),

sup
s
n−1|

n∑
i=1

∆ηij(s)xi| = Op(n−1/2(log n)1/2).

Proof. For simplicity, we only prove the first result. We define c+ = c1(c ≥ 0) and c− = c1(c < 0)
for any scalar c, ∆n,εη(s, t) =

∑n
i=1 εij(s)ηij(t), and

Gn,εη(s, s+ v, t) =
1
n

n∑
i=1

1
Mπ(s)

M∑
m=1

εij(sm)ηij(t)1(s ≤ sm ≤ s+ v),

G+
n,εη(s, s+ v, t) =

1
n

n∑
i=1

1
Mπ(s)

M∑
m=1

[εij(sm)ηij(t)]+1(s ≤ sm ≤ s+ v),

G−
n,εη(s, s+ v, t) =

1
n

n∑
i=1

1
Mπ(s)

M∑
m=1

[εij(sm)ηij(t)]−1(s ≤ sm ≤ s+ v).

It follows from Lemma 2 that for large enough n, there exists a constant C0 > 1 such that

sup
(s,t)∈[0,1]2

n−1|∆n,εη(s, t)| ≤ C0 sup
(s,t)∈[0,1]2

∣∣∣∣∣ 1n
n∑

i=1

1
Mπ(s)

M∑
m=1

Kh2j
(sm − s)εij(sm)ηij(t)

∣∣∣∣∣
= C0 sup

(s,t)∈[0,1]2

∣∣∣∣∣∣
∫ h

(2)
1j

−h
(2)
1j

1
n

n∑
i=1

1
Mπ(s)

M∑
m=1

εij(sm)ηij(t)1(v ≤ sm − s ≤ h2j)dKh2j
(v)

∣∣∣∣∣∣
≤ C0 sup

(s,t)∈[0,1]2
sup

|v|≤2h2j

|Gn,εη(s, s+ v, t)|/h2j .

Let βn = h2
2j +h2j/M . By combining Lemma 1 with Lemma 2 of Li and Hsing [11], we can show

that

(44) sup
(s,t)∈[0,1]2

sup
|u|≤2h2j

|Gn,εη(s, s+ v, t)| = Op(n−1/2{βn log n}1/2).

Since E[Gn,εη(s, v, t)] = 0, we have

|Gn,εη(s, s+v, t)| ≤ |G+
n,εη(s, s+v, t)−E[G+

n,εη(s, s+v, t)]|+ |G−
n,εη(s, s+v, t)−E[G−

n,εη(s, s+v, t)]|.

From now on, we focus on Vn,εη(s, s+ v, t) = |G+
n,εη(s, s+ v, t)−E[G+

n,εη(s, s+ v, t)]|. We define an
equally-spaced grid S̃ = {s̃l = lh1j : l = 0, . . . , 1h−1

1j } and s̃l(s) to be a grid point that is within h1j

of both s and s+v. Since Vn,εη(s, s+v, t) is upper bounded by Vn,εη(s̃l(s), s+v, t)+Vn,εη(s̃l(s), s, t),
we have

(45) sup
(s,t)∈[0,1]2

sup
|v|≤2h2j

Vn,εη(s, s+ v, t) ≤ 2 sup
s̃l∈S̃

sup
|v|≤2h2j

sup
t∈[0,1]

Vn,εη(s̃l, s̃l + v, t).
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Let a−1/2
n {βn log n}1/2 and Qn = βn/an. We define

Ṽn,εη(s, s+ v, t) = |G̃+
n,εη(s, s+ v, t)− E[G̃+

n,εη(s, s+ v, t)]|,

G̃+
n,εη(s, s+ v, t) =

1
n

n∑
i=1

1
Mπ(s)

M∑
m=1

[εij(sm)ηij(t)]+1(s ≤ sm ≤ s+ v)1(|εij(sm)| ≤ Qn),

Ĝ+
n,εη(s, s+ v, t) =

1
n

n∑
i=1

1
Mπ(s)

M∑
m=1

[εij(sm)ηij(t)]+1(s ≤ sm ≤ s+ v)1(|εij(sm)| > Qn).

Then, we have

sup
(s,t)∈[0,1]2

sup
|v|≤2h2j

Vn,εη(s, s+ v, t)(46)

≤ 2 sup
s̃l∈S̃

sup
|v|≤2h2j

sup
t∈[0,1]

{Ṽn,εη(s, s+ v, t) + |Ĝ+
n,εη(s, s+ v, t)|+ |E[Ĝ+

n,εη(s, s+ v, t)]|}.

We consider the three terms on the right side of (46). It is obvious to see that

a−1
n E[Ĝ+

n,εη(s, s+ v, t)] ≤ a−1
n Q1−q2

n

1
n

n∑
i=1

E[ sup
t∈[0,1]

|ηij(t)|]
1
M

M∑
m=1

E[|εij(sm)|q2 ](47)

= a−1
n Q1−q2

n E[ sup
t∈[0,1]

|η1,k(t)|]
1
M

M∑
m=1

E[|ε1,k(sm)|q2 ],

which is independent of (s, v, t) and converges almost surely to zero. Similarly, by using Markov’s
inequality, we have

a−1
n Ĝ+

n,εη(s, s+ v, t) ≤ a−1
n Q1−q2

n

1
n

n∑
i=1

sup
t∈[0,1]

|ηij(t)|
1
M

M∑
m=1

|εij(sm)|q2 ,

which converges almost surely to zero.
We consider a further partition of [0, 1] in order to bound sup|v|≤2h2j

supt∈[0,1] Ṽn,εη(s, s+v, t) for
each fixed s ∈ [0, 1]. Following Li and Hsing (2010), let cn be any positive sequence tending to 0.
We define ωn = [Qncn/an +1] and ur = rcn/ωn for r = −ωn,−ωn +1, . . . , ωn. Since G̃+

n,εη(s, s+v, t)
is monotone in |v|, we have that for v ∈ [ur, ur+1],

|G̃+
n,εη(s, s+ v, t)− E[G̃+

n,εη(s, s+ v, t)]| ≤ max(ξnr(t), ξn,r+1(t)) + E[G̃+
n,εη(s+ ur, s+ ur+1, t)],

where ξnr(t) = |G̃+
n,εη(s+ ur, s+ ur+1, t)− E[G̃+

n,εη(s+ ur, s+ ur+1, t)]|. Thus,

sup
|v|≤2h2j

sup
t∈[0,1]

Ṽn,εη(s, s+ v, t) ≤ max
−ωn≤r≤ωn

sup
t∈[0,1]

ξnr(t) + max
−ωn≤r≤ωn

sup
t∈[0,1]

E[G̃+
n,εη(s+ ur, s+ ur+1, t)].

For all r, we have

E[G̃+
n,εη(s+ ur, s+ ur+1, t)] ≤ QnE[ sup

t∈[0,1]
|η1,k(t)|]

1
M

M∑
m=1

E[1(sm ∈ [s+ ur, s+ ur+1)] ≤ C1an,

where C1 is a given scalar.
For any B > 0, we have

P{ sup
|v|≤2h2j

sup
t∈[0,1]

Ṽn,εη(s, s+ v, t) ≥ Ban} ≤ P{ max
−ωn≤r≤ωn

sup
t∈[0,1]

ξnr(t) ≥ (B − C1)an}.



MULTIVARIATE VARYING COEFFICIENT MODEL 15

For each fixed s, we consider the following function class:

Xj = {gj(ε,η, t) =
1

Mπ(s)

M∑
m=1

[εj(sm)ηj(t)]+1(s+ur ≤ sm ≤ s+ur+1)1(|εj(sm)| ≤ Qn) : t ∈ [0, 1]}.

It follows from Assumption (C9a) that Xj is a pointwise measurable class of functions and ||gj ||[0,1] ≤
C2Qn, where C2 > 0 is a given scalar. It follows from Talagrand’s inequality [12, 3] that for suitable
finite constants A1, A2 > 0

P{||
n∑

i=1

[gj(ε,η, t)− E[gj(ε,η, t)]||[0,1] ≥ A1(E[||
n∑

i=1

τigj(ε,η, t)||Xj ] + t)}

≤ 2[exp(−A2t
2/(nσ2

Xj
)) + exp(−A2t/(C2Qn))],(48)

where τ1, . . . , τn is a sequence of independent Rademacher random variables and

σ2
Xj

= sup
t∈[0,1]

Var(gj(ε,η, t)) ≤ C3βn,

in which C3 is a positive scalar. It follows from Assumption (C4) that Xj is a pointwise measurable
Vapnik and Cervonenkis (VC) class [13]. By using Proposition A.1 of Einmahl and Mason [3], we
can show that for a scalar A3 > 0,

E[||
n∑

i=1

τigj(ε,η, t)||Xj ] ≤ A3

√
nβn| log βn| = A3an

√
| log βn|/ log(n).

By substituting t = A4nan into (48), we have

P{||
n∑

i=1

[gj(ε,η, t)− E[gj(ε,η, t)]||[0,1] ≥ A1(A3n
−1
√
| log βn|/ log(n) +A4)nan}

≤ 2[exp(−A2A
2
4na

2
n/βn) + exp(−A2A4na

2
n/βn)] = 2n−A2A2

4 + 2n−A2A4 .

Therefore, by using Bool’s inequality, for relatively large B > 0, we have

P{ max
−ωn≤r≤ωn

sup
t∈[0,1]

ξnr(t) ≥ (B − C1)an} ≤ n−B∗
,

in which B∗ can be chosen to be sufficiently large if we choose a large B, and

P{ sup
|v|≤2h2j

sup
t∈[0,1]

Ṽn,εη(s, s+ v, t) ≥ Ban} ≤ A5
Qn

an
n−B∗

= A5n
−B∗+1/ log n.

Therefore,

(49) sup
|v|≤2h2j

sup
t∈[0,1]

Ṽn,εη(s, s+ v, t) = Op(an).

Hence, (39) follows from combining (44)-(49).

Lemma 7. Under Assumptions (C1)-(C9a), we have

sup
(s,t)

n−1|
n∑

i=1

εij(s)εij(t)| = O((Mh2j)−1 + (log n/n)1/2) = op(1).
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Proof. We define ∆n,εε(s, t) =
∑n

i=1 εij(s)εij(t),

∆(1)
n,εε(s, t) =

1
n

n∑
i=1

1
M2π(s)π(t)

M∑
m=1

Kh2j
(sm − s)Kh2j

(sm − t)εij(sm)2

∆(2)
n,εε(s, t) =

1
n

n∑
i=1

1
M2π(s)π(t)

∑
m6=m′

Kh2j
(sm − s)Kh2j

(sm′ − t)εij(sm)εij(sj′)

Vn,εε(s, v1, t, v2)

= | 1
n

n∑
i=1

1
M2π(s)π(t)

M∑
m,m′=1

εij(sm)εij(sm′)1(s ≤ sm ≤ s+ v1)1(t ≤ sm′ ≤ t+ v2)|.

It follows from Lemma 2 that for large enough n, there exists a constant C1 > 1 such that

sup
(s,t)∈[0,1]2

n−1|∆n,εε(s, t)| ≤

C1 sup
(s,t)∈[0,1]2

∣∣∣∣∣∣ 1n
n∑

i=1

1
M2π(s)π(t)

M∑
m,m′=1

Kh2j
(sm − s)Kh2j

(sm′ − s)εij(sm)εij(sm′)

∣∣∣∣∣∣
≤ C1{ sup

(s,t)∈[0,1]2

∣∣∣∆(1)
n,εε(s, t)

∣∣∣+ sup
(s,t)∈[0,1]2

∣∣∣∆(2)
n,εε(s, t)

∣∣∣}.
Similar to the arguments in Lemmas 3 and 4 of Li and Hsing [11], we have

sup
(s,t)∈[0,1]2

∣∣∣∆(2)
n,εε(s, t)

∣∣∣ = O(
√

log n/n) a.s.

We need to consider sup(s,t)∈[0,1]2

∣∣∣∆(1)
n,εε(s, t)

∣∣∣. It follows from assumption C4 and by some calcu-
lations that

sup
(s,t)∈[0,1]2

∣∣∣∆(1)
n,εε(s, t)

∣∣∣ = Op((Mh2j)−1 + (log n/n)1/2).

This completes the proof.

Proof of Theorem 3. Recall that η̂ij(s) = ηij(s) + ∆i,j(s), we have

n−1
n∑

i=1

η̂ij(s)η̂ij(t) = n−1
n∑

i=1

∆ij(s)∆ij(t) + n−1
n∑

i=1

ηij(s)∆ij(t)(50)

+n−1
n∑

i=1

∆ij(s)ηij(t) + n−1
n∑

i=1

ηij(s)ηij(t).

This proof consists of two steps. The first step is to show that the first three terms on the right hand
side of (50) converge to zero uniformly for all (s, t) ∈ [0, 1]2 in probability. The second step is to
show the uniform convergence of n−1∑n

i=1 ηij(s)ηij(t) to Ση(s, t) over (s, t) ∈ [0, 1]2 in probability.
We first show that

(51) sup
(s,t)

n−1|
n∑

i=1

∆ij(s)ηij(t)| = Op(n−1/2 + h2
1j + h2

2j + (log n/n)1/2).
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Since

(52)
n∑

i=1

∆ij(s)ηij(t) ≤ n−1{|
n∑

i=1

εij(s)ηij(t)|+ |
n∑

i=1

∆ηij(s)ηij(t)|+ |
n∑

i=1

xT
i ∆Bj(s)ηij(t)|},

it is sufficient to focus on the three terms on the right-hand side of (52). Since

|xT
i ∆Bj(s)ηij(t)| ≤ ||xi||2 sup

s∈[0,1]
||∆Bk(s)||2 sup

t∈[0,1]
|ηij(t)|,

we have

n−1|
n∑

i=1

xT
i ∆Bj(s)ηij(t)| ≤ sup

s∈[0,1]
||∆Bk(s)||2n−1

n∑
i=1

||xi||2|ηij(t)| = Op(n−1/2 + h2
1j).

Similarly, we have

n−1|
n∑

i=1

∆ηij(s)ηij(t)| ≤ n−1
n∑

i=1

sup
s,t∈[0,1]

|∆ηij(s)ηij(t)| = Op(h
(2)2
1j ) = op(1).

It follows from Lemma 6 that sup(s,t) n
−1{|

∑n
i=1 εij(s)ηij(t)| = O((log n/n)1/2). Similarly, we can

show that sup(s,t) n
−1|

∑n
i=1 ∆ij(t)ηij(s)| = Op(n−1/2 + h2

1j + h2
2j + (log n/n)1/2).

We can show that

(53) sup
(s,t)

|n−1
n∑

i=1

[ηij(s)ηij(t)− Ση,jj(s, t)]| = Op(n−1/2).

Note that

|ηij(s1)ηij(t1)− ηij(s2)ηij(t2)|
≤ 2(|s1 − s2|+ |t1 − t2|) sup

s∈[0,1]
|η̇ij(s)| sup

s∈[0,1]
|ηij(s)|

holds for any (s1, t1) and (s2, t2), the functional class {ηj(u)ηj(v) : (u, v) ∈ [0, 1]2} is a Vapnik and
Cervonenkis (VC) class [13, 9]. Thus, it yields that (53) is true.

Finally, we can show that

(54) sup
(s,t)

n−1|
n∑

i=1

∆ij(s)∆ij(t)| = Op((Mh2j)−1 + (log n/n)1/2 + h4
j + h

(2)4
1j ).

With some calculations, we have

|
n∑

i=1

∆ij(s)∆ij(t)| ≤ C1 sup
(s,t)

[|
n∑

i=1

εij(s)εij(t)|+ |
n∑

i=1

εij(s)∆ηij(t)|+ |
n∑

i=1

∆ηij(t)xT
i ∆Bj(s)|(55)

+ |
n∑

i=1

εij(s)xT
i ∆Bj(t)|+ |

n∑
i=1

∆ηij(s)∆ηij(t)|+ |
n∑

i=1

xT
i ∆Bj(s)∆Bj(t)xi|],

for a positive constant C1.
It follows from Lemma 7 that

sup
(s,t)

n−1|
n∑

i=1

εij(s)εij(t)| = Op((Mh2j)−1 + (log n/n)1/2),

sup
(s,t)

n−1[|
n∑

i=1

εij(s)∆ηij(t)|+ |
n∑

i=1

∆ηij(t)xT
i ∆Bj(s)|+ |

n∑
i=1

εij(s)xT
i ∆Bj(t)|] = Op((log n/n)1/2).
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Since
sup

s∈[0,1]
|∆ηij(s)| = C2 sup

s∈[0,1]
|η̈ij(s)|h2

2j ,

we have sup(s,t) n
−1|

∑n
i=1 ∆ηij(s)∆ηij(t)| = O(h(2)4

1j ). Furthermore, since sups∈[0,1] ||∆B(s)|| =
Op(n−1/2 + h2

j ), we have

n−1|
n∑

i=1

xT
i ∆Bj(s)∆Bj(t)xi| = Op(n−1 + h4

j ).

Note that the arguments for (51)-(54) hold for Σ̂η,jj′(·, ·) for any j 6= j′. Thus, combining (51)-(54)
leads to Theorem 3 (i).

To prove Theorem 3 (ii), we follow the same arguments in Lemma 6 of Li and Hsing [11]. For
completion, we highlight several key steps below. We define

(56) (∆ψj,j)(s) =
∫ 1

0
[Σ̂η,jj(s, t)− Ση,jj(s, t)]ψj,j(t)dt.

Following Hall and Hosseini-Nasab [5] and the Cauchy-Schwarz inequality, we have

{
∫ 1

0
[ψ̂j,j(s)− ψj,j(s)]2ds}1/2

≤ C2{[
∫ 1

0
(∆ψj,j)(s)2ds]1/2 +

∫ 1

0

∫ 1

0
[Σ̂η,jj(s, t)− Ση,jj(s, t)]2dsdt}

≤ C2{
∫ 1

0

∫ 1

0
[Σ̂η,jj(s, t)− Ση,jj(s, t)]2dsdt}1/2{

∫ 1

0
[ψj,j(t)]2dt}1/2

+
∫ 1

0

∫ 1

0
[Σ̂η,jj(s, t)− Ση,jj(s, t)]2dsdt

≤ C3 sup
(s,t)∈[0,1]2

|Σ̂η,jj(s, t)− Ση,jj(s, t)|,

which yields Theorem 3 (ii.a).
Using (4.9) in Hall, Müller and Wang [6], we have

|λ̂j,j − λj,j | ≤ |
∫ 1

0

∫ 1

0
[Σ̂η,jj − Ση,jj ](s, t)ψj,j(s)ψj,j(t)dsdt+O(

∫ 1

0
(∆ψj,j)(s)2ds)

≤ C4 sup
(s,t)∈[0,1]2

|Σ̂η,jj(s, t)− Ση,jj(s, t)|,

which yields Theorem 3 (ii.b). This completes the proof.

We need to introduce some notation to establish the weak convergence of a sequence of stochas-
tic processes indexed by s ∈ [0, 1] [13]. The uniform metric is used here to define the weak con-
vergence. Let `∞([0, 1]) be the space of all uniformly bounded, real functions on [0, 1], and en-
dow `∞([0, 1]) with the uniform metric. We consider BL1(`∞([0, 1]) to be the space of real-valued
functions on `∞([0, 1]) with Lipschitz norm bounded by 1; that is, for any k(·) ∈ BL1(`∞([0, 1]),
supx(s)∈`∞([0,1]) |k(x)| ≤ 1 and |k(x) − k(y)| ≤ ||x − y||[0,1]. As n → ∞, a stochastic process Gj(·)
weakly converges to X(·) on `∞([0, 1]) if and only if supk∈BL1(`∞([0,1]) |Ek(Gj)− Ek(X)| → 0.
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Proof of Theorem 5. We define rij(s) = yij(s)− xT
i Bj(s) and

(57) G̃j(s)(g) =
√
n[Ip ⊗ (1, 0)]vec(Σ(s, h1j)−1

n∑
i=1

τ
(g)
i

M∑
m=1

xi ⊗Hh1j
(sm − s)rij(sm)).

Following the arguments in Kosorok [8] and Zhu and Zhang [16], we will prove Theorem 5 in
three steps. In Step 1, we will prove the unconditional weak convergence of G̃j(s)(g). In Step 2, we
will prove the weak convergence of G̃j(s)(g) conditional on the data. In Step 3, we will prove the
weak convergence of Gj(s)(g) conditional on the data by showing that G̃j(s)(g) and Gj(s)(g) are
asymptotically equivalent as n→∞.

In Step 1, we note that rij(sm) = ηij(sm) + εij(sm) and

G̃j(s)(g) =
√
n[Ip ⊗ (1, 0)]vec(Σ(s, h1j)−1

n∑
i=1

τ
(g)
i xi ⊗

M∑
m=1

Hh1j
(sm − s)[ηij(sm) + εij(sm)]).

Therefore, by treating τ (g)
i xi as the new ‘covariate’ vector, we can apply the same arguments in the

proof of Theorem 1 to prove that G̃(g)
j converges to Gj in distribution; that is, G̃(g)

j is asymptotically
measurable.

In Step 2, we define

Sj(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hh1j
(sm − s)Hh1j

(sm′ − t)rij(sm)rij(sm′),

Sj,ηη(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hh1j
(sm − s)Hh1j

(sm′ − t)ηij(sm)ηij(sm′),

Sj,ηε(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hh1j
(sm − s)Hh1j

(sm′ − t)ηij(sm)εij(sm′),

Sj,εε(s, t) = n−1n−2
G

n∑
i=1

x⊗2
i ⊗

M∑
m,m′=1

Hh1j
(sm − s)Hh1j

(sm′ − t)εij(sm)εij(sm′).

Thus, conditioning on the data, G̃j(s)(g) is a normal random vector with zero mean and covariance
given by (nM)−2[Ip ⊗ (1, 0)]Σ(s, h1j)−1Sj(s, t)Σ(s, h1j)−1[Ip ⊗ (1, 0)T ]. It is easy to see that

(58) Sj(s, t) = Sj,ηη(s, t) + Sj,ηε(s, t) + Sj,ηε(t, s) + Sj,εε(s, t).

Following the arguments of Lemmas 6 and 7, we can show that Sj,ηε(s, t) +Sj,ηε(t, s) +Sj,εε(s, t) =
o(1). Furthermore, it can be shown that E[Sj,ηη(s, t)] = ΩX ⊗ diag(1, 0)Ση,jj(s, t) + O(h1j) and
Cov[Sj,ηη(s, t)] = O(n−1). Therefore, Covτ [G̃j(s)(g), G̃j(t)(g)] converges to Ση,jj(s, t)Ω−1

X in proba-
bility, where the expectation is taken with respect to τ (g)

i conditioning on the data. We can obtain
the marginal convergence of G̃j(s)(g) in the conditional central limit theorem by using the Cramer-
Wald method.

For each δ > 0, let S̃δ = {lδ : l = 0, . . . , δ−1} be an equally δ−spaced grid and [0, 1]δ(s) assign
to each s ∈ [0, 1] a closest element of S̃δ. The finite convergence results yield

sup
k(·)∈BL1(`∞([0,1]))

|Eτk(G̃
(g)
j ([0, 1]δ))− Ek(Gj([0, 1]δ))| → 0
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in probability, as n → ∞. Due to the continuity of Gj(s), we have Gj([0, 1]δ(s)) → Gj(s) almost
surely as δ → 0; that is limδ→0 supk(·)∈BL1(`∞([0,1])) |Eτk(G̃j([0, 1]δ)− Eτk(Gj([0, 1]))| = 0. Finally,
we have

sup
k(·)∈BL1(`∞([0,1]))

|Eτk(G̃
(g)
j ([0, 1]δ(·)))− Eτk(G̃

(g)
j ([0, 1](·)))| ≤ Eτ ( sup

|s−s′|2≤δ
|G̃(g)

j (s)− G̃
(g)
j (s′)|).

Thus, the expectation on the left side of the above equation is smaller than E(sup|s−s′|2≤δ |G̃
(g)
j (s)−

G̃
(g)
j (s′)|), which was established by the unconditional weak convergence of G̃(g)

j (·) in Step 1. This
finishes the proof of Step 2.

In Step 3, following the arguments in Theorem 3 of Kosorok [8], we only need to prove that

∆n,B = sup
s∈[0,1]

n−1
n∑

i=1

tr{x⊗2
i ⊗ {M−1

M∑
m=1

Hh1j
(sm − s)xT

i [B̂j(sm)−Bj(sm)]}⊗2} = op(1).

It follows from the proof of Theorem 3 that ∆n,B = Op(n−1 + ĥ4
1j), which converges to zero in

probability. This finishes the proof of Theorem 5.

We prove several key results for ensuring that Theorems 1 and 2 are valid for the case with fixed
grid points.
Lemma 8 . Under Assumptions (C1), (C3), (C4b), (C5), and (C7b), we have the following results:

n−1/2
n∑

i=1

xi ⊗ {M−1
M∑

m=1

Kh1j
(sm − s)zh1j

(sm − s)εi,j(sm)} = op(1),(59)

sup
s∈[0,1]

∣∣∣∣∣
∫
Kh1j

(u− s)
(u− s)r

hr
1j

d[ΠM (u)−Π(u)]

∣∣∣∣∣ = Op((Mh1j)−1),(60)

sup
s∈[0,1]

|ΠM (s)−Π(s)| = Op(M−1).(61)

Proof of Lemma 8. To prove (59), we focus on the first component of zh1j
(sm − s) for the sake of

space. We introduce some notation as follows:

Dε,j(s, h) =
n∑

i=1

xi

M∑
m=1

M−1Kh1j
(sm − s)εij(sm),

F γn

L (εij , s, h) = (Mh1j)−1
M∑

m=1

εij(sm)1(|sm − s| ≤ h)1(|εij(sm)| ≤ γn),

F γn

U (εij , s, h) = (Mh1j)−1
M∑

m=1

εij(sm)1(|sm − s| ≤ h)1(|εij(sm)| > γn),

F λ
ε (εij) = M−1

M∑
m=1

|εij(sm)|λ, Gγn
ε,j(s, h) =

n∑
i=1

xiF
γn

L (εij , s, h),

εij(sm, γn) = εij(sm)1(|εij(sm)| ≤ γn), µjε(sm, γn) = E[εij(sm)1(|εij(sm)| ≤ γn)],

E[Gγn
ε,j(s, h)] = nµx(Mh1j)−1

M∑
m=1

1(|sm − s| ≤ h)µjε(sm, γn),

where εij = (εij(s1), · · · , εij(sm))T . It follows from Lemma 2 of Li and Hsing [11] that

(62) sup
s∈[0,1]

|Dε,j(s, h)| ≤ C1 sup
s∈[0,1]

|G∞
ε,j(s, h)|.
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We will prove that n−1/2 sups∈[0,1] |G∞
ε,j(s, h1j)| = op(1) by using two steps. In Step 1, for a certain

sequence of γn →∞, we will show that

(63) n−1/2 sup
s∈[0,1]

|G∞
ε,j(s, h1j)−Gγn

ε,j(s, h1j) + E[Gγn
ε,j(s, h1j)]| = op(1).

In Step 2, we will show that

(64) n−1/2 sup
s∈[0,1]

|Gγn
ε,j(s, h1j)− E[Gγn

ε,j(s, h1j)]| = op(1).

We first prove (63). It follows from the definition of Gγn
ε,j(s, h) and Assumption (C7b) that

n−1/2 sup
s∈[0,1]

|G∞
ε,j(s, h1j)−Gγn

ε,j(s, h1j)| = |n−1/2
n∑

i=1

xiF
γn

U (εij , s, h1j)|

≤ n1/2γ1−λ
n n−1

n∑
i=1

||xi||2(Mh1j)−1 sup
s∈[0,1]

M∑
m=1

|εij(sm)|λ1(|sm − s| ≤ h1j)1(|εij(sm)| > γn)

≤ n1/2γ1−λ
n h−1

1j n
−1

n∑
i=1

||xi||2F λ
ε (εij) = n1/2γ1−λ

n h−1
1j Op(1) = op(1).

Similarly, we can prove that n−1/2 sups∈[0,1] |E[Gγn
ε,j(s, h1j)]| = op(1).

We prove (64) as follows. It is easy to show that n−1/2{Gγn
ε,j(s, h1j) − E[Gγn

ε,j(s, h1j)]} can be
written as the sum of two terms given by

I1(s) = {n−1/2
n∑

i=1

(xi − µx)}{(Mh1j)−1
M∑

m=1

µjε(sm, γn)1(|sm − s| ≤ h)},

I2(s) = n−1/2
n∑

i=1

xi(Mh1j)−1
M∑

m=1

[εij(sm)1(|εij(sm)| ≤ γn)− µjε(sm, γn)]1(|sm − s| ≤ h).

We prove that sups∈[0,1] I1(s) = op(1) as follows. Since E[εij(sm)] = 0 and n−1/2∑n
i=1(xi − µx) =

Op(1), it follows from Assumption (C1) that

max
sm

|µjε(sm, γn)| = max
sm

|E{εij(sm)1(|εij(sm)| > γn)}|

≤ max
sm

E{|εij(sm)|1(|εij(sm)| > γn)}| ≤ γ1−q
n max

sm
E{|εij(sm)|q} = o(1),

which yields sups∈[0,1] I1(s) = op(1).
We prove that sups∈[0,1] I2(s) = op(1) as follows. We note that

||xi(Mh1j)−1
M∑

m=1

[εij(sm)1(|εij(sm)| ≤ γn)− µjε(sm, γn)]1(|sm − s| ≤ h)||∞ ≤ 2γn||xi||∞,

var(
n∑

i=1

xi(Mh1j)−1
M∑

m=1

{εij(sm, γn)− µjε(sm, γn)}1(|sm − s| ≤ h))

=
n∑

i=1

var(xi)(Mh1j)−2
M∑

m=1

E{εij(sm, γn)− µjε(sm, γn)}21(|sm − s| ≤ h))

= O(n(Mh1j)−1).
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Since s1 ≤ . . . ≤ sm are fixed grid points, the interval (s− h, s+ h) covers a consecutive grid point
block {si1 , si1+1, . . . , si1+L(i1)} such that

si1−1 < s− h, si1 ≥ s− h, si1+L(i1) ≤ s+ h, and si1+L(i1)+1 > s+ h.

Therefore, there are aboutO(M) number of such consecutive grid point blocks, and thus, F λ
ε (εij , s, h)

has the same number of values as s varies in [0, 1]. Without loss of generality, we assume that there
are M consecutive grid point blocks. Therefore, it follows from Bernstein’s inequality that

(65) P ( sup
s∈[0,1]

|I2(s)| > x) ≤M exp(− x2

C1(Mh1j)−1 + C2γnx/
√
n

).

Thus, a sufficient condition of P (sups∈[0,1] |I2(s)| > x) = o(1) is that for sufficiently large C, we
obtain a quadratic equation given by x2 = C log(M){C1(Mh1j)−1 + C2γnx/

√
n}, whose positive

solution is given by

(66) x∗ = 0.5
CC2γn log(M)√

n
+ 0.5

√
C2C2

2γ
2
n log(M)2

n
+ 4CC1

log(M)
Mh1j

It follows from Assumption (C7b) that x∗ = o(1). By substituting x∗ into (65), we have

(67) P ( sup
s∈[0,1]

|I2(s)| > x∗) ≤M exp(−C log(M)) = exp(−(C − 1) log(M)) = o(1),

which yields sups∈[0,1] I2(s) = op(1). Thus, we finish the proof of (59).
We prove (60) as follows. Let s0 = 0. It follows from Taylor’s expansion and Assumption (C5)

that ∫
Kh1j

(u− s)
(u− s)r

hr
1j

d[ΠM (u)−Π(u)]

=
M∑

m=1

Kh1j
(sm − s)

(sm − s)r

hr
1j

∫ sm

sm−1

π(u)du−
M∑

m=1

∫ sm

sm−1

Kh1j
(u− s)

(u− s)r

hr
1j

π(u)du

=
M∑

m=1

∫ sm

sm−1

[Kh1j
(sm − s)

(sm − s)r

hr
1j

−Kh1j
(u− s)

(u− s)r

hr
1j

]π(u)du = O((Mh1j)−1).

By using the same arguments, we can prove (61) and thus we omit the details.

2. Additional Simulation Results. Example 2 (continue). This example is used to eval-
uate the coverage probabilities of SCB of the accuracy of the estimators of the eigenvalues and
eigenfunctions of Ση(·, ·) and the estimators of (σ2

1, σ
2
2). The data were generated from the model

used in Example 1 under the same parameter values. We set n = 500 and M = 25, 50, and 75 and
generated 200 datasets for each combination.

We estimated the eigenvalues λ11, λ12, λ21, and λ22 and the variances σ2
1 and σ2

2 for each simulated
data set for M = 25, 50 and 75. The accuracy of estimators improves with M . The performance
of the estimators for M = 50 is almost as good as their performance for M = 75. Fig. 1 shows
the boxplots of values of λ̂jl and σ̂2

j for j = 1, 2 and l = 1, 2. The estimated eigenvalues and
variances should be compared with the true ones, which are (1.2, 0.6, 1, 0.5, 0.2, 0.1). When M is
large, the estimated eigenvalues and variances are very close to their true values. We summarized
the estimated results on ψjl(s) for j = 1, 2 and l = 1, 2 in Fig. 2, in which we plotted the mean and
the pointwise 1st and 99th percentiles of the estimated eigenfunctions with the true eigenfunctions.
The performance of the estimated eigenfunctions improves with M increasing as expected.
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Fig 1. Boxplot for the eigenvalues λ̂11, λ̂12, λ̂21, and λ̂22 and the variances σ̂2
1 and σ̂2

2, when M = 25, 50 and 75.

3. Additional Real Data Example. Attention deficit hyperactivity disorder (ADHD) is
one of the most common childhood disorders and can continue through adolescence and adulthood.
Symptoms include difficulty staying focused and paying attention, difficulty controlling behav-
ior, and hyperactivity (over-activity). ADHD has three common subtypes including predominantly
hyperactive-impulsive, predominantly inattentive, and combined hyperactive-impulsive and inat-
tentive. The resting-state fMRI (rs-fMRI) data set that we used here is part of ADHD-200 Global
Competition data sets and was collected from the New York University (NYU) site. The data
set consists of 170 subjects (98 normal controls and 72 combined hyperactive-impulsive subjects).
Among them, there are 108 males whose mean age is 11.4 years with standard deviation 5.7 years
and 62 females whose mean age is 11.9 years with standard deviation 6.0 years. Rs-fMRIs and
T1-weighted images were acquired for each subject. For the rs-fMRI, a T2∗-weighted EPI sequence
was used to acquire images. The imaging parameters were as follows: TR=2sec, TE=32 ms; 33
slices; and voxel size =4x4x4 mm3. This sequence was repeated 150 times so as to providing time
series images. The rs-fMRI data were preprocessed by standard steps including time shifting, mo-
tion correction, spatial smoothing (6-mm full width at half maximum Gaussian kernel), linear trend
removal, and band-pass filtered with frequency range of 0.009-0.08 Hz. Subsequently, rs-fMRI data
from each subject was co-registered to the automated anatomical labeling (AAL) atlas with 116
regions of interest (ROI).

For each individual subject, the average time series were calculated from each ROI and correlated
with each other to define a 116×116 correlation matrix. To analyze the efficiency properties of brain
functional network, each correlation matrix was thresholded to create an adjacency matrix G with
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Fig 2. Plot of eigenfunctions and their pointwise confidence intervals. The red solid line is the true eigenfunction,
the middle green dashed line is the pointwise mean of estimated eigenfunctions and other two blue dashed lines are
the pointwise 1% and 99% percentiles of the estimated eigenfunctions in 200 runs.

elements of either 1 or 0 depending on whether the corresponding correlation value exceeds the
threshold or not. Clearly the choice of threshold have major effects on the topology of the resulting
network: conservative thresholds will produce sparsely connected graphs, which might eliminates
true connections while more lenient thresholds will generate densely connected graph, which on the
other hand might includes spurious connections. As a result, the adoption of any single threshold
will inevitably raise the concern of possible bias associated with this unique value. Therefore, each
correlation matrix was repeatedly thresholded over a range of significance levels from 0.01 to 1 to
avoid such bias. Two connectivity and network complexity measures including local efficiency (LE)
(Fig. 3 (c) and (e)) and characteristic path length (CPL) (Fig. 3 (d) and (f)) were calculated for
each adjacency matrix G [10, 14, 7, 15, 1]. Finally, for each subject, we obtained two LE and CPL
values at 100 evenly spaced grid points between [0, 1].

The aim of this analysis is to characterize the association between (LE, CPL) and covariates of
interest including age and diagnosis status. We fitted model (1) to the LE and CPL values from all
170 subjects, in which xi = (1,G,Age,D,G×Age,G×D,Age×D)T , where G and D, respectively,
represent gender and diagnostic status. We then applied the estimation and inference procedures to
estimate B(s) and calculate Sn for each hypothesis test. We approximated the p-value of Sn using
the resampling method with G = 1, 000 replications. Finally, we constructed the 95% simultaneous
confidence bands for the functional coefficients of Bj(s) for j = 1, 2.

Fig. 4 presents the estimated coefficient functions corresponding to Age, D, and Age×D associ-
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Fig 3. ADHD data at NYU site: (a) the brain network using correlation matrix of time courses data, (b) the brain
network using Fisher’s z-transformed correlation matrix of time courses data, (c) local efficiency from 170 children,
(d) characteristic path length from 170 children, (e) and (f) the 3D plots with age of local efficiency and characteristic
path length from 170 children.

ated with LE and CPL (blue solid lines in all panels of Fig. 4). The three effects for the two brain
network properties are close to zero when the significance levels are either small or large, whereas
they are significantly different from zero when the significance levels are moderate. We observe
different change patterns in the coefficient functions of Age, D, and Age×D for LE and CPL. For
moderate significance levels, the coefficient functions of Age, D, and Age×D for LE are almost
consistently either positive or negative, while they swing between positive and negative for CPL.
For example, for LE, the coefficient functions of diagnostic group (panel (b) of Fig. 4) are negative
at most of the middle grid points, which may indicate that the local efficiency values of children
without ADHD are greater than those of children with ADHD. The p-values of the global test for
the interaction of age and diagnostic group are smaller than 0.001, indicating that the topologi-
cal structure of brain network varies significantly across age and diagnostic groups. Furthermore,
inspecting the SCBs of the Age×D interaction localizes correlation values around 0.3, where the
LE of brain network differs significantly across age and diagnostic groups (Fig. 4 (c)), whereas we
obtain important correlation values around 0.55 for the CPL of brain network (Fig. 4 (f)).

Fig. 5 presents the first 10 eigenvalues and 3 eigenfunctions of Σ̂η,jj(s, t) for j = 1, 2. For the
two network measures, the relative eigenvalues of Σ̂η,jj defined as the ratios of the eigenvalues of
Σ̂η,jj(s, t) over their sum have similar distributional patterns (panel (a) of Fig. 5). We observe that
the first three eigenvalues account for more than 90% of the total and the others quickly vanish
to zero. The eigenfunctions of LE corresponding to the largest three eigenvalues (Fig. 5 (b)) are
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Fig 4. Plot of estimated effects of age, diagnostic group, and age and diagnostic group interaction (from left to right)
and their 95% confidence bands. The upper panels are for local efficiency and the lower panels are for characteristic
path length. The blue solid curves are the estimated coefficient functions and the red dashed curves are the confidence
bands.

Fig 5. Plot of the first 10 eigenvalues and the first 3 eigenfunctions.

different from those of CPL (Fig. 5 (c)). For instance, for LE, the first eigenfunction is an weighted
average at around the 50-th grid point; the second one is a weighted contrast between the 30-th
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grid point and the 60-th grid point; the third eigenfunction is a contrast between the 50-th grid
point and the 30-th grid point together with the 60-th grid point. Here our interpretation of Fig. 5
is largely exploratory. How to statistically compare eigenvalues and eigenfunctions is an interesting
topic for future research.
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