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1. Simulation Studies

We conducted three sets of Monte Carlo simulations to examine the finite sample performance of β̂(d, h) and

Wµ(d, h) with respect to different scales h at the levels of a single voxel and an entire region. The first two were

based on simulated data on the 2D surface with the known ground truth. The third one was based on a 64× 64

phantom image with four known activation regions.

1.1. Simulation Studies Part I

We simulated data at all m = 4002 points on the surface of a hippocampus for n subjects. At a given voxel d in

D, yi(d) was simulated according to yi(d) = xT
i β(d) + εi(d) for i = 1, · · · , n, where β(d) = (β1(d), β2(d), β3(d))T ,

xi = (1, xi2, xi3)T , and the εi(d) were independently generated from N(0, 1). We set n = 60 and n = 80. We

generated xi2 independently from a Bernoulli distribution with the probability of success being 0.5, and generated

xi3 independently from the uniform distribution in [1, 2]. The xi2 and xi3 were chosen to represent group identity

and standardized age, respectively. We set β1(d) = β3(d) = 0 across all pixels d and created three different regions

of interests (ROIs) by varying β2(d) as 0, 0.5, and 1.0, which represent different signal-to-noise ratios, to examine

the performance of our method at different signal-to-noise ratios. Specifically, we created ROI1 and ROI2, which

are two nested circles with radius at 3 and 5, respectively, and labeled the region outside of ROI1 and ROI2 as

ROI3. We set β2(d) as 0 in ROI3, 0.5 in ROI2, and 1 in ROI1, respectively (Fig. 1(a)).

We fitted the linear model yi(d) = xT
i β(d)+ εi(d), where εi(d) ∼ N(0, τ(d)−1). We used the MAET described

in Example 4 to calculate adaptive parameter estimates across all voxels at 11 different scales (hs = 1.25s and
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Fig. 1. Simulation study parts I and II: (a) three regions of interest (R1: ROI1 with yellow color; R2: ROI2 with red color; R3:

ROI3 with green color) on a reference hippocampus; (b) a reference sphere with a red ROI; (c) a reference sphere with two

red ROIs.

h0 = 0). Since our primary interest is β2(d) and τ(d) was treated as nuisance parameters and fixed at τ̂(d, h0) after

the first iteration. In each ROI, we calculated the average bias, the average empirical standard errors (RMS), and

the average mean of the standard error estimates (SD) of β̂2(d, hs) based on the results from the 1,000 simulated

hippocampus data sets. In ROI1 and ROI3, the biases of β2(d) slightly decrease from h0 to h10, whereas they

fluctuate across all scales in ROI2. The biases of β2(d) are much smaller in ROI3 than in both ROI1 and ROI2.

As s increases, the RMS and SD of β2(d) dramatically decrease. In addition, the RMS and its corresponding

SD are relatively close to each other at all scales in each of the three ROIs (Table 1). As expected, increasing n

decreases the bias, RMS and SD of parameter estimates β̂2(d, hs) (Table 1).

1.2. Simulation Studies Part II

In this simulation, we simulated data at all m = 2064 points on the surface of a reference sphere for n subjects.

At a given voxel d in D, a 2 × 1 vector yi(d) was simulated according to yi(d) = Xiβ(d) + εi(d), where β(d) =

(β1(d), · · · , β6(d))T is a 6× 1 vector, xi = (1, xi2, xi3)T , and

Xi =




1 xi2 xi3 0 0 0

0 0 0 1 xi2 xi3


 .

Error vectors εi(d) = (εi1(d), εi2(d))T were independently generated from N(0, I2), in which I2 is a 2× 2 identity

matrix. We also simulated errors εi1(d) and εi2(d) independently from a χ2(3)− 3 distribution. Then the errors

were smoothed by using heat kernel smoothing with parameters 1 and 4 iterations, which gave an effective
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Table 1. Average BIAS (×10−3), RMS, SD, and RE of β̂2(d, hs) in the three ROIs at 11 different scales

(h0 − h10), N(0, 1) distributed data, and 2 different sample sizes (n = 60, 80). BIAS denotes the bias

of the mean of estimates; RMS denotes the root-mean-square error; SD denotes the mean of the

standard deviation estimates; RE denotes the ratio of RMS over SD.

ROI1 ROI2 ROI3

BIAS RMS SD RE BIAS RMS SD RE BIAS RMS SD RE

n = 60, N(0, 1)

h0 -0.01 0.44 0.42 1.03 7.49 0.43 0.42 1.01 -0.49 0.43 0.42 1.02

h1 38.80 0.19 0.18 1.06 -24.96 0.21 0.19 1.08 -0.08 0.19 0.18 1.07

h2 28.46 0.18 0.17 1.05 -5.38 0.19 0.18 1.06 -0.54 0.18 0.17 1.07

h3 23.22 0.18 0.17 1.05 -1.72 0.18 0.17 1.06 -0.57 0.17 0.15 1.07

h4 19.76 0.17 0.16 1.05 0.60 0.17 0.16 1.06 -0.58 0.16 0.14 1.07

h5 17.23 0.16 0.16 1.05 2.29 0.16 0.15 1.06 -0.58 0.14 0.13 1.07

h6 14.70 0.16 0.15 1.05 3.54 0.15 0.14 1.06 -0.58 0.13 0.13 1.07

h7 12.38 0.15 0.14 1.05 4.30 0.14 0.13 1.06 -0.57 0.12 0.12 1.07

h8 10.13 0.14 0.13 1.04 4.83 0.14 0.13 1.06 -0.55 0.12 0.11 1.07

h9 8.64 0.13 0.12 1.04 5.15 0.13 0.12 1.06 -0.55 0.11 0.10 1.07

h10 7.82 0.12 0.12 1.04 5.35 0.12 0.11 1.06 -0.56 0.10 0.09 1.07

n = 80, N(0, 1)

h0 -3.02 0.37 0.37 1.01 2.90 0.37 0.37 1.01 -0.21 0.38 0.37 1.01

h1 34.45 0.16 0.16 1.04 -23.62 0.18 0.17 1.05 0.24 0.16 0.16 1.05

h2 20.64 0.16 0.15 1.03 -6.02 0.17 0.16 1.03 -0.09 0.15 0.14 1.04

h3 14.37 0.15 0.15 1.03 -2.50 0.15 0.15 1.03 -0.09 0.14 0.13 1.04

h4 10.41 0.15 0.14 1.03 -0.49 0.14 0.14 1.03 -0.09 0.13 0.13 1.04

h5 7.68 0.14 0.14 1.03 0.68 0.14 0.13 1.03 -0.10 0.12 0.12 1.04

h6 5.47 0.13 0.13 1.03 1.41 0.13 0.12 1.02 -0.09 0.11 0.11 1.04

h7 3.81 0.12 0.12 1.02 1.84 0.12 0.12 1.02 -0.08 0.11 0.10 1.04

h8 2.54 0.12 0.11 1.02 2.06 0.12 0.11 1.02 -0.08 0.10 0.09 1.04

h9 1.78 0.11 0.11 1.02 2.10 0.11 0.11 1.02 -0.07 0.09 0.09 1.05

h10 1.39 0.11 0.10 1.02 2.14 0.10 0.10 1.02 -0.08 0.08 0.08 1.05
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Table 2. Simulation Study for Wµ(d, h): estimates (ES) and standard errors (SE) of rejection rates for pixels inside and outside

ROIs were reported at 3 different scales (h0, h5, h10), N(0, 1) and χ2(3) − 3 distributed data, and 2 different sample sizes

(n = 60, 80) at α = 5%. For each case, 2,000 simulated datasets were used.

n = 60, N(0, 1) n = 80, N(0, 1) n = 60, χ2(3)− 3 n = 80, χ2(3)− 3

ROI Inside Outside Inside Outside Inside Outside Inside Outside

s ES (SE) ES (SE) ES (SE) ES (SE) ES (SE) ES (SE) ES (SE) ES (SE)

h0 0.29 (0.05) 0.06 (0.01) 0.34 (0.06) 0.06 (0.01) 0.11 (0.04) 0.06 (0.01) 0.11 (0.04) 0.05 (0.01)

h5 0.72 (0.05) 0.07 (0.01) 0.76 (0.04) 0.07 (0.01) 0.29 (0.11) 0.07 (0.01) 0.33 (0.12) 0.07 (0.01)

h10 0.78 (0.04) 0.08 (0.02) 0.79 (0.03) 0.07 (0.02) 0.45 (0.15) 0.08 (0.02) 0.52 (0.16) 0.07 (0.02)

smoothness of about 2 points (Chung et al., 2005). We generated xi2 independently from a Bernoulli distribution

with an equal probability and generated xi3 independently from the uniform distribution in [0, 1]. We set n = 60

and n = 80. To assess both Type I and II error rates at the voxel level, we selected two region-of-interest (ROI).

One is with 64 points on the reference sphere and the other one with 17 points on the reference sphere. We set

β(d) = 06 across the whole sphere and then change β12(d) from 0 to 0.5 for all points d in ROIs (Fig 1(b)).

We fitted the same multivariate linear model yi(d) = Xiβ(d) + εi(d), where εi(d) ∼ N(0,Σ(d)), where Σ(d)

is a 2 × 2 covariance matrix. We test the hypotheses H0 : β2(d) = 0 and H1 : β2(d) 6= 0 across all points. Since

our primary interest is β(d) and the elements in Σ(d) can be treated as nuisance parameters, we fixed Σ(d) at

Σ̂(d, h0) after the first iteration. We applied the MAET procedure described in Example 4 to calculate β̂(d, hs)

and W (d, hs) across all voxels at 11 different scales. The 2,000 replications were used to calculate the estimates

and standard errors of the rejection rates with the significance level α = 5%. For the test statistic Wµ(d, h),

the Type I rejection rates outside the ROI were relatively accurate for all radius, while the statistical power for

rejecting the null hypothesis in the ROI significantly increased with the radius h (Table 2).

1.3. Simulation Studies Part III

We simulated data at all m = 4096 pixels on the 64 × 64 phantom image for n subjects. At a given pixel d in

D, yi(d) was simulated according to yi(d) = xT
i β(d) + εi(d) for i = 1, · · · , n, where β(d) = (β1(d), β2(d), β3(d))T

and xi = (1, xi2, xi3)T . Errors εi(d) were first independently generated from N(0, 1) and χ2(3)− 3, respectively,

and then they were smoothed by using heat kernel smoothing with parameters 1 and 4 iterations, which gave
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an effective smoothness of about 2 pixels (Chung et al., 2005). The χ2(3) − 3 distribution is a very skewed

distribution. We set n = 60 and n = 80. We generated xi2 independently from a Bernoulli distribution with

probability of success being 0.5, and generated xi3 independently from the uniform distribution on [1, 2]. The

xi2 and xi3 were chosen to represent group identity and standardized age, respectively. We set β1(d) = β3(d) = 0

across all pixels d and created five different regions of interests (ROIs) with different shapes by varying β2(d) as

0, 0.2, 0.4, 0.6 and 0.8, which represent different signal-to-noise ratios, to examine the performance of our method

at different signal-to-noise ratio and also to test whether MARM can perform well for different shapes. The true

β2(d) was displayed for all ROIs with black, blue, red, yellow, and white colors representing β2(d)=0, 0.2, 0.4,

0.6, and 0.8, respectively (Fig. 2(k)).

We fit the linear model yi(d) = xT
i β(d)+ εi(d), where εi(d) ∼ N(0, τ(d)−1). We applied the MAET procedure

described in Example 4 to calculate adaptive parameter estimates across all pixels at 10 different scales. We

calculated the bias, the empirical standard error (RMS), the mean of the standard error estimate (SD), and the

ratio of RMS over SD (RE) at each pixel of all five ROIs based on the results obtained from the 1,000 simulated

data sets. The biases are slightly increased from h0 to h10 (Figs. 2-5 (b) and (g) ), whereas RMS and SD at h10

are much smaller than those at h0 (Figs. 2-5 (c), (d), (h), and (i)). In addition, the RMS and its corresponding

SD are relatively close to each other at all scales for both the normal and Chi-square distributed data (Figs.

2-5 (e) and (j)). The biases, SDs, and RMSs of β2(d) are smaller in the normal distributed data than in the

chi-square distributed data, because the SNRs in the normal distributed data are 2.45 times bigger than the

SNRs in the chi-square distributed data. Moreover, SDs in these pixels of ROIs with β2(d) 6= 0 are larger than

SDs in those pixels of ROI with β2(d) = 0 (Figs. 2-5 (i)), because the interior of ROI with β2(d) = 0 contains

more pixels. MAET performs better in ROIs with relatively large β2(d) values than in ROIs with small β2(d)

values. The MAET procedure can really adapt to the shapes and boundaries of ROIs. Increasing sample size and

signal-to-noise ratio decreases the bias, RMS, and SD of parameter estimates.

To compare with the conventional analyses of imaging data, we first smoothed 1,000 imaging data by using

heat kernel smoothing with parameters 1 and 16 iterations, which gave an effective smoothness of about 4 pixels

(Chung et al., 2005), and then we fit the linear model at each voxel. We calculated the bias, the empirical standard

error (RMS), the mean of the standard error estimate (SD), and the ratio of RMS over SD (RE) at each pixel of

all five ROIs based on the results obtained from the 1,000 smoothed data sets. We calculated the average bias,
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Table 3. Average Bias, RMS, SD, and RE of β2(d) parameters obtained from the conventional analyses in the five ROIs, N(0, 1)

and χ2(3)− 3 distributed data, and 2 different sample sizes (n = 60, 80). BIAS denotes the bias of the mean of estimates; RMS

denotes the root-mean-square error; SD denotes the mean of the standard deviation estimates; RE denotes the ratio of RMS

over SD. For each case, 1,000 simulated datasets were used.

β = 0.2 0.4 0.6 0.8 0.0

χ2(3)− 3, n = 60 Bias 0.02 -0.15 -0.23 -0.27 0.02

RMS 0.19 0.17 0.17 0.17 0.19

SD 0.18 0.17 0.17 0.17 0.18

RE 1.02 0.98 1.01 1.01 1.02

χ2(3)− 3, n = 80 Bias -0.08 -0.13 -0.22 -0.26 0.02

RMS 0.14 0.15 0.15 0.15 0.16

SD 0.15 0.15 0.15 0.15 0.16

RE 0.97 1.01 1.01 1.00 1.01

N(0, 1), n = 60 Bias -0.08 -0.14 -0.22 -0.27 0.02

RMS 0.07 0.07 0.07 0.07 0.07

SD 0.07 0.07 0.07 0.07 0.07

RE 1.02 1.02 1.03 1.00 1.02

N(0, 1), n = 80 Bias -0.08 -0.14 -0.22 -0.26 0.02

RMS 0.06 0.06 0.06 0.06 0.06

SD 0.06 0.06 0.06 0.06 0.06

RE 0.99 0.98 1.02 1.03 1.01

RMS, SD, and RE in each of the five ROIs and presented in Table 3. For all ROIs, the biases are significantly

larger in the smoothed data sets (Table 3) than those in the Table 1 of Li et al., (2010). The biases of β2(d)

are comparable in both the normal and chi-square distributed data (Table 3). Compared with the conventional

analyses, MARM performs much better in preserving the edges of ROIs (Fig. 6).

To assess both Type I and II error rates at the pixel level, we tested the hypotheses H0 : β2(d) = 0 and

H1 : β2(d) 6= 0 across all pixels. We calculated the estimates and standard errors of rejection rates with significance

level α = 5% based on the 1,000 smoothed images. For the test statistic Wµ(d, h), the Type I rejection rates in

ROI with β2(d) = 0 were much larger than the significance level 5% in the normal distributed data. Moreover,
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Table 4. Simulation Study for Wµ(d, h): estimates (ES) and standard errors (SE) of

rejection rates for pixels in the five ROIs were reported at N(0, 1) and χ2(3)−3 distributed

data, and 2 different sample sizes (n = 60, 80) at α = 5%. For each case, 1,000 simulated

datasets were used.

n = 60, N(0, 1) n = 80, N(0, 1) n = 60, χ2(3)− 3 n = 80, χ2(3)− 3

β ES SE ES SE ES SE ES SE

0.2 0.35 0.139 0.42 0.122 0.11 0.095 0.13 0.101

0.4 0.86 0.073 0.91 0.066 0.30 0.170 0.44 0.181

0.6 0.96 0.031 0.98 0.018 0.52 0.093 0.64 0.096

0.8 0.99 0.009 1.00 0.001 0.77 0.096 0.78 0.193

0.0 0.11 0.012 0.12 0.013 0.07 0.013 0.04 0.032

the initial smoothing step can really increase the statistical power for rejecting the null hypothesis in ROIs with

β2(d) 6= 0 (Table 4).

2. Assumptions and Proof

The following assumptions are needed to facilitate development of our methods, although they are not the weakest

possible conditions.

(C1) 1 ≥ ω(d, d′; h) ≥ 0 and ω(d, d;h) = 1 for all d, d′ ∈ D and h ≥ 0.

(C2) The data {Zi = (xi,Yi,D) : i = 1, · · · , n} form an independent and identical sequence.

(C3) For any d ∈ D, the maximum θ∗(d) of E[log p(Y (d)|x, θ(d))] is an unique interior point of B, where B is

a compact set in Rp and the expectation is taken with respect to the true distribution of Y (d) given x.

(C4) For all voxels d ∈ D, `(θ(d)) = log p(Y (d)|x,θ(d)) is twice continuously differentiable on Θ. For all

j, k, l = 1, · · · , p, `(θ(d)), |∂j`(θ(d))|2, and |∂j∂k`(θ(d))|2 are dominated by an integral function G(Y (d),x) such

that E[maxd∈D |G(Y (d),x)|r] < ∞ for a r > 1, where ∂j = ∂/∂θj(d), in which θj(d) is the j−th component of

θ(d).
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(C5) For a fixed δ > 0,

∞ > sup
d∈D

max
θ(d)∈B(θ∗(d),δ)

(λmax{E[−∂2
θ(d)

`(θ(d))]}) ≥ inf
d∈D

min
θ(d)∈B(θ∗(d),δ)

(λmin{E[−∂2
θ(d)

`(θ(d))]}) > 0,

∞ > sup
d∈D

max
θ(d)∈B(θ∗(d),δ)

(λmax{E[∂θ(d)`(θ(d))⊗2]}) ≥ inf
d∈D

min
θ(d)∈B(θ∗(d),δ)

(λmin{E[∂θ(d)`(θ(d))⊗2]}) > 0,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a matrix, respectively.

(C6) The kernel functions Kst(u) and Kloc(u) are continuous decreasing functions of u ≥ 0 such that Kst(0) =

Kloc(0) = 1, limu→∞Kst(u) = limu→∞Kloc(u) = 0, and limu→∞ u1/2Kst(u) = 0.

(C7) limn→∞ Cn/n = limn→∞ C−1
n log(N(D)) = limn→∞ C−1

n = 0.

Remarks A1: Assumption (C2) is needed just for notational simplicity and can be easily modified to accom-

modate independent and non-identical distributed settings. For each fixed d ∈ D, Assumptions (C3)-(C5) are

generalizations of the standard conditions for ensuring first order asymptotic properties (e.g., consistency and

asymptotic normality) of M-estimators (van der Vaart, 1998). Assumption (C3) is an identification condition,

whereas Assumption (C4) is a uniform smoothness and integration condition. Particularly, Assumption (C4)

ensures that `(θ(d)), |∂j`(θ(d))|2, and |∂k∂j`(θ(d))|2 are uniformly integrable for all d ∈ D. Assumption (C5) is

needed to ensure that the covariance matrix of θ̂(d, h) is positive definite for all d ∈ D. Assumptions (C6) and

(C7) on Kst(·) and Kloc(·) are needed just for ensuring desirable asymptotic properties of θ̂(d, h) and Wµ(d, h)

based on the stochastic weights for the AET procedure.

Remarks A2: Assumption (C7) ensures that limn→∞ log(N(D))/n = 0. In neuroimaging data, although N(D)

is much larger than the sample size n, Assumption (C7) claims that we just need a relatively large sample size

compared to log(N(D)). For instance, in most neuroimaging data, N(D) ≈ 1003 and log(103) = 14. Therefore,

a sample size such as 100 may be reasonable to use asymptotic normality in making statistical inferences for

MARM. Assumption (C7) is needed to invoke maximal inequalities (var der Vaart and Wellner, 1996). Moreover,

Assumption (C7) also requires a large value of Cn relative to log N(D), but it may be weakened by assuming

spatial smoothness in the neuroimaging data.

Remarks A3: We first discuss the asymptotic properties of θ̂(d, h) and Wµ(d, h) in the case with fixed weights

ω(d, d′; h) for a fixed scale h. Let Yi(d, h) = (Yi(d′) : d′ ∈ B(d, h)) for i = 1, · · · , n. Without loss of generality,

we assume that the (Yi(d, h),xi) are independently and identically distributed as the true density p(Y (d, h),x).
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The MWQL estimator θ̂(d, h) maximizes the function n−1`n(θ(d); h, ω̃), which converges to

M(θ(d); h, ω̃) =
∑

d′∈B(d,h)

ω̃(d, d′;h)E[log p(Y (d′)|x, θ(d))] (1)

in probability (or almost surely) under some mild conditions as n → ∞, where the expectation is taken with

respect to p(Y (d, h),x). Under some identifiability conditions, θ̂(d; h) converges to θ∗(d; h), which maximizes

M(θ(d); h, ω̃) (van der Vaart, 1998). When h = 0, θ∗(d; 0) = θ∗(d) is the ‘pseudo’ true value in voxel d. When

h > 0, θ∗(d; h) can only be regarded as a weighted combination of all θ∗(d′) for d′ ∈ B(d, h). In a homogeneous

region, that is θ∗(d′) = θ∗(d), θ∗(d;h) = θ∗(d) even for h > 0. However, in a nonhomogeneous region, an

arbitrary set of weights ω(d, d′;h) can lead to undesirable consequences, such as smoothing out the boundary of

activated regions and reducing statistical power in detecting activated regions.

Proof of Theorem 1. The proof of Theorem 1 consists of three steps. In Step 1, we will show that θ̂(h0) =

(θ̂(d, h0) : d ∈ D) converges θ∗ = (θ∗(d) : d ∈ D) in probability. We need to introduce some notation. Let T

be a bounded brain region in Rg containing all voxels d ∈ D, where g = 2 for the 2D surface and g = 3 for the

3D volume. Let Θ =
∏

d∈D B be the parameter space for θ and `∞(T)p is the product of p `∞(T) = {z : T →
R, supt∈T |z(t)| < ∞}. Let Ψn : Θ → `∞(T)p and Ψ : Θ → `∞(T)p be random maps and a deterministic map,

respectively, such that

Ψn(θ)(t) = n−1
n∑

i=1

∂θ(dt)
log p(Yi(dt)|xi, θ(dt)) and Ψ(θ)(t) = E[∂θ(dt)

log p(Y (dt)|x, θ(dt))],

in which dt denotes the voxel covering t.

To prove the consistency of θ̂(h0), we will show that

sup
θ∈Θ

sup
t∈T

||Ψn(θ)(t)−Ψ(θ)(t)||2 → 0 and inf
θ∈Θ:||θ−θ∗||≥ε

sup
t∈T

||Ψ(θ)(t)||2 > sup
t∈T

||Ψ(θ∗)(t)||2. (2)

It follows from Assumptions (C3) and (C4) that the second term in equation (2) is true. To prove the first term

in equation (2), we note that

sup
θ∈Θ

sup
t∈T

||Ψn(θ)(t)−Ψ(θ)(t)||2 = max
d∈D

An(d), (3)

where An(d) = supθ(d)∈B |n−1
∑n

i=1 ∂θ(d)
log p(Yi(d)|xi, θ(d)) − E[∂θ(d)

log p(Y (d)|x,θ(d))]|. Then, we consider

F = {∂θ(d)
log p(Y (d)|x, θ(d)) : d ∈ D,θ(d) ∈ B} with an envelope maxd∈D G(Y (d),x). Following the arguments

in Theorem 2.4.3 of van der Vaart and Wellner (1996), we can show that E[maxd∈D An(d)] is bounded above by

√
[1 + p log(C1(ε)K) + log(N(D))]/nC2K + 2E[max

d∈D
G(Y (d),x)1{max

d∈D
G(Y (d),x) > K}] + ε → 0,
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where C2 is a constant independent of ε, K can be chosen such that the second term of the above equation is

arbitrarily small, and C1(ε) is a constant depending on ε. Finally, following the arguments in Theorems 5.7 and

5.9 of van der Vaart (1998), we can prove consistency of θ̂(h0).

In Step 2, we will prove the asymptotic normality of
√

n(θ̂(h0) − θ∗). For each d ∈ D, a Taylor’s series

expansion gives

0 = Ψn(θ̂(h0))(d) = Ψn(θ∗)(d) + ∂θ(d)
Ψn(θ̃)(d)[θ̂(d, h0)− θ∗(d)], (4)

where θ̃ ∈ Θ and θ̃(d) is on the line connecting θ(d) and θ∗(d). Similar to the proof of (3), we can show that

sup
θ∈Θ:||θ−θ∗||2≤ε

sup
t∈T

||∂θ(dt)
Ψn(θ)(t)− ∂θ(dt)

Ψ(θ)(t)||2 → 0 (5)

in probability, when log(N(D))/n is sufficiently small. Therefore, we can show that

√
n[θ̂(d, h0)− θ∗(d)] = [−∂θ(d)Ψ(θ∗)(d) + op,D(1)]−1

√
nΨn(θ∗)(d), (6)

for all d ∈ D, where op,D(1) denotes uniform convergence to zero for all d ∈ D. It is easy to prove the asymptotic

normality of
√

n[θ̂(d, h0) − θ∗(d)] for each d ∈ D. Furthermore, by using Theorem 2.14.1 of van der Vaart and

Wellner (1996), we can show that supd∈D ||Ψn(θ∗)(d)||2 = Op(
√

log(N(D))/n), which yields

max
d∈D

||θ̂(d, h0)− θ∗(d)||2 = Op(
√

log N(D)/n). (7)

In Step 3, we will derive the rate of convergence of Dθ(d, d′;h0). Since Dθ(d, d′; h0) can be rewritten as

n[∆̂(d, 0)− ∆̂(d′, 0) +4∗(d, d′)]T Σ∗(d, h)−1[∆̂(d, 0)− ∆̂(d′, 0) +4∗(d, d′)][1 + op(1)],

it follows from (7) that if4∗(d, d′) = 0, then maxd,d′∈D |Dθ(d, d′; h0)| = Op(log(N(D))) and Kst(Dθ(d, d′; h0)/Cn) =

Kst(Op(log(N(D)))/Cn) = 1 + op(1). However, if 4∗(d, d′) 6= 0, then we have

Dθ(d, d′;h0) = n||[Σ∗(d, h)]−1/2[4∗(d, d′) + Op(
√

log N(D)/n)]||22,

which yields the proof of Theorem 1.

Proof of Theorem 2. We prove Theorem 2 (a) and (b) by induction. The proof primarily consists of three steps:

(i) s = 0; (ii) s = 1; (iii) s ≥ 1. In Step 1, we have already proved the case s = 0 in Theorem 1.

We prove Step 2 as follows. It follows from the definition of ω̃(d, d′;h1) that

sup
θ(d)∈B

|n−1`n(θ(d); h1, ω̃)−M(θ(d); h1, ω̃)| ≤
∑

d′∈B(d,h1)

ω̃(d, d′; h1)δn(d′) ≤ max
d′∈B(d,h1)

δn(d′),
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where δn(d) = supθ(d)∈B |n−1
∑n

i=1 log p(Yi(d)|xi, θ(d)) − E[log p(Y (d)|x, θ(d))]|. Then, following arguments in

Theorems 2.7.11 and 2.4.3 of van der Vaart and Wellner (1996) and assumptions (C2)-(C4), we can show that

E[max
d∈D

δn(d)] ≤
√

[1 + p log(C1(ε)K) + log(N(D))]/nC2K + 2E[max
d∈D

G(Y (d),x)1{max
d∈D

G(Y (d),x) > K}] + ε → 0.

Since the above arguments are independent of ω̃(d, d′; h1), we can conclude that

max
d∈D

sup
θ(d)∈B

|n−1`n(θ(d); h1, ω̃)−M(θ(d); h1, ω̃)| → 0 (8)

in probability, and it holds for any adaptive weights ω̃(d, d′;h).

Let D∗(d)c = {d′ : 4∗(d, d′) 6= 0} and D∗(d) = {d′ : 4∗(d, d′) = 0}. According to Theorem 1 (c), for all

d′ ∈ B(d, h1) ∩ D∗(d)c and any d ∈ D, we have

C−1
n Dθ(d, d′; h0) = nC−1

n λmax(Σ∗(d, h0))−1 ×

inf
d′∈D∗(d)c

||4∗(d, d′) + Op(n−1/2)||22 = δ̃n(d) →∞. (9)

It follows from (9) and (7) that

max
d∈D

sup
θ(d)

∣∣∣∣∣∣
M(θ(d); h1, ω̃)−

∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′; h)E[log p(Y (d)|x, θ(d))]

∣∣∣∣∣∣
≤ max

d∈D
Kst(δ̃n(d))E[max

d∈D
G(Y (d),x)] → 0. (10)

Since θ∗(d) = argmaxθ(d)

∑
d′∈B(d,h1)∩D∗(d) ω̃(d, d′; h)E[log p(Y (d)|x, θ(d))], it follows from Theorem 5.7 of var

der Vaart (1998) and the arguments in the proof of Theorem 1 (a) that θ̂(h1) = (θ̂(d, h1) : d ∈ D) converges to

θ∗ in probability.

To prove asymptotic normality of θ̂(d, h1), we can use a Taylor’s series expansion to show that

0 = ∂θ(d)`n(θ̂(d, h1); h1, ω̃) = ∂θ(d)`n(θ∗(d); h1, ω̃) + ∂2
θ(d)

`n(θ̃(d, h1); h1, ω̃)[θ̂(d, h1)− θ∗(d)],

where θ̃(d, h1) is on the segment joining θ̂(d, h1) and θ∗(d). Similar to the arguments in the proof of Theorem 1

(b) and (10), we can show that

max
d∈D

sup
||θ∗(d)−θ(d)||2≤ε

|n−1∂2
θ(d)

`n(θ(d); h1, ω̃)−
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′; h1)E[∂2
θ(d)

log p(Y (d′)|x, θ(d))]| → 0,

max
d∈D

n−1/2|∂θ(d)`n(θ∗(d); h1, ω̃)−
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′; h1)
n∑

i=1

∂θ(d) log p(Yi(d′)|x,θ∗(d))|

≤ n1/2Kst(Op(nC−1
n ))E[sup

d∈D
G(Y (d),x)]O(1) → 0.
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Finally, we obtain

√
n[θ̂(d, h1)− θ∗(d)] = {−

∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′; h1)E[∂2
θ(d)

log p(Y (d′)|x, θ∗(d))] + op,D(1)}−1 ×

n−1/2
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)
n∑

i=1

∂θ(d) log p(Yi(d′)|x, θ∗(d)). (11)

By using Theorem 2.14.1 of van der Vaart and Wellner (1996), we can show that

max
d∈D

||n−1/2
n∑

i=1

∂θ(d)
log p(Yi(d)|x, θ∗(d))||2 = Op(

√
log N(D)),

which yields that maxd∈D ||[θ̂(d, h) − θ∗(d)]||2 = Op(
√

log N(D)/n). Based on these results for θ̂(d, h1), we can

prove the same results as Theorem 1 (c) and (d) for Dθ(d, d′; h1) and Kst(Dθ(d, d′; h1)C−1
n ).

In Step 3, by using induction and the above arguments in Step 2, we can prove Theorem 2 (a) and (b) for any

fixed s > 1.

Given the results in Theorem 2 (a) and (b), we can apply standard arguments in the literature to prove

Theorem 2 (c). We omit the details for simplicity.

Proof of Corollary 1. Because we can prove Corollary 1 (a) using the same arguments in proving Theorem 2 (a),

we omit the details.

The proof of Corollary 1 (b) consists of two steps. In Step 1, following the same arguments in Theorem 2 (a),

we can prove (11). In Step 2, we examine the asymptotic distribution of

A(d; h1) =
∑

d′∈B(d,h1)∩D∗(d)

ω(d, d′; h)n−1/2
n∑

i=1

∂θ(d) log p(Yi(d′)|x, θ(d)∗).

For any d′ ∈ B(d, h1)∩D∗(d), Dθ(d, d′;h0) converges to a random variable, denoted by Z(d, d′;h0), in distribution,

and thus ω(d, d′; h) converges to Kst(Z(d, d′; h0)) in distribution. In addition, for any d′ ∈ B(d, h1) ∩ D∗(d),

n−1/2
∑n

i=1 ∂θ(d)
log p(Yi(d′)|x, θ(d)∗) converges to a normal random vector, denoted by Z(d′), in distribution.

Note that Z(d′) and Z(d, d′; h0) are correlated with each other. Finally, using the continuous mapping theorem,

we can claim that A(d; h1) converges to

∑

d′∈B(d,h1)∩D∗(d)

Kloc(||d− d′||2/h1)Kst(Z(d, d′;h0))Z(d),

which is not a normal random variable when there is a d′ ∈ B(d, h1)∩D∗(d). Thus, Wµ(d, h1) is not asymptotically

χ2 distributed.
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Proof of Theorem 3. We prove Theorem 3 (a) using induction. The proof primarily consists of two steps: (i)
√

n[β̂(d, h0)−β∗(d)] = A1(d; h0)+op(1); (ii)
√

n[β̂(d, h1)−β∗(d)] = A1(d; h1)+op(1) for each voxel d. Moreover,

for notational simplicity, we assume that τ(d) is known through the proof.

In Step 1, since β̂(d, h0) = (
∑n

i=1 x⊗2
i )−1

∑n
i=1 xiYi(d) = β∗(d)+A1(d;h0)/

√
n = β∗(d)+(

∑n
i=1 x⊗2

i )−1
∑n

i=1 xiεi(d)

holds, it is easy to show that A1(d; h0) converges to E[x⊗2]−1/2Z(d) in distribution for any voxel d. Following

the arguments in Theorem 2.4.3, we can show that maxd∈D ||n−1
∑n

i=1 xiεi(d)||2 = Op(
√

log(N(D))/n).

In Step 2, since Dβ(d, d′; h0) can be rewritten as

nτ(d)||E[x⊗2]−1/2{4∗(d, d′) + (
n∑

i=1

x⊗2
i )−1

n∑

i=1

xi[εi(d′)− εi(d)]}||22,

where 4∗(d, d′) = β∗(d)−β∗(d′), we can check that Dβ(d, d′;h0) and Kst(Dβ(d, d′; h0)/Cn) have the asymptotic

expansions as described in Lemma 1. We can show that ω̃(d, d′; h1) are smaller than Kst(Op(nC−1
n )) for all

d′ ∈ B(d, h1) ∩ D∗(d)c and ω̂(d, d′; h1) converges to C(d, d′; h1) for all d′ ∈ B(d, h1) ∩ D∗(d). Therefore, we have

√
n[β̂(d, h1)− β∗(d)] =

∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)E[x⊗2]−1/2n−1/2
n∑

i=1

xiεi(d′) + op(1)

= A1(d, h) + op(1).

Applying the continuous mapping theorem yields weak convergence of A1(d, h1) and
√

n[β̂(d, h1) − β∗(d)]. We

can use the same arguments in Corollary 1 (b) to prove Theorem 3 (b). Note that for the PS approach, ω̂(d, d′; h1)

converges in distribution to C(d, d′; h1)Kst(τ(d)||Z(d)− Z(d′)||22) for all d′ ∈ B(d, h1) ∩ D∗(d).
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Fig. 2. Results from a simulation study of comparing voxel-wise method and MARM based on 1,000 χ2(3) − 3 distributed

data with n = 60. Panel (k) is the ground truth image of five ROIs with black, blue, red, yellow, and white color representing

β2(d)=0, 0.2, 0.4, 0.6, and 0.8, respectively. The first row contains the results from voxel-wise method: (a) a selected image

of β̂2(d, h0) obtained from a simulated data set; (b) bias image of β̂2(d, h0); (c) RMS image of β̂2(d, h0); (d) SD image

of β̂2(d, h0); and (e) RE image of β̂2(d, h0). The second row contains the results obtained from MAET as S = 10 and

ch = 1.1: (f) a selected image of β̂2(d, h10) obtained from a simulated data set; (g) bias image of β̂2(d, h10); (h) RMS image

of β̂2(d, h10); (i) SD image of β̂2(d, h10); and (j) RE image of β̂2(d, h10). Panels (l) and (m) are the scatter plots of biases and

REs of β̂2(d, h0) versus β̂2(d, h10), respectively.
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Fig. 3. Results from a simulation study of comparing voxel-wise method and MARM based on 1,000 χ2(3) − 3 distributed

data with n = 80. Panel (k) is the ground truth image of five ROIs with black, blue, red, yellow, and white color representing

β2(d)=0, 0.2, 0.4, 0.6, and 0.8, respectively. The first row contains the results from voxel-wise method: (a) a selected image

of β̂2(d, h0) obtained from a simulated data set; (b) bias image of β̂2(d, h0); (c) RMS image of β̂2(d, h0); (d) SD image

of β̂2(d, h0); and (e) RE image of β̂2(d, h0). The second row contains the results obtained from MAET as S = 10 and

ch = 1.1: (f) a selected image of β̂2(d, h10) obtained from a simulated data set; (g) bias image of β̂2(d, h10); (h) RMS image

of β̂2(d, h10); (i) SD image of β̂2(d, h10); and (j) RE image of β̂2(d, h10). Panels (l) and (m) are the scatter plots of biases and

REs of β̂2(d, h0) versus β̂2(d, h10), respectively.



16

Fig. 4. Results from a simulation study of comparing voxel-wise method and MARM based on 1,000 N(0, 1) distributed data

with n = 60. Panel (k) is the ground truth image of five ROIs with black, blue, red, yellow, and white color representing

β2(d)=0, 0.2, 0.4, 0.6, and 0.8, respectively. The first row contains the results from voxel-wise method: (a) a selected image

of β̂2(d, h0) obtained from a simulated data set; (b) bias image of β̂2(d, h0); (c) RMS image of β̂2(d, h0); (d) SD image

of β̂2(d, h0); and (e) RE image of β̂2(d, h0). The second row contains the results obtained from MAET as S = 10 and

ch = 1.1: (f) a selected image of β̂2(d, h10) obtained from a simulated data set; (g) bias image of β̂2(d, h10); (h) RMS image

of β̂2(d, h10); (i) SD image of β̂2(d, h10); and (j) RE image of β̂2(d, h10). Panels (l) and (m) are the scatter plots of biases and

REs of β̂2(d, h0) versus β̂2(d, h10), respectively.
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Fig. 5. Results from a simulation study of comparing voxel-wise method and MARM based on 1,000 N(0, 1) distributed data

with n = 80. Panel (k) is the ground truth image of five ROIs with black, blue, red, yellow, and white color representing

β2(d)=0, 0.2, 0.4, 0.6, and 0.8, respectively. The first row contains the results from voxel-wise method: (a) a selected image

of β̂2(d, h0) obtained from a simulated data set; (b) bias image of β̂2(d, h0); (c) RMS image of β̂2(d, h0); (d) SD image

of β̂2(d, h0); and (e) RE image of β̂2(d, h0). The second row contains the results obtained from MAET as S = 10 and

ch = 1.1: (f) a selected image of β̂2(d, h10) obtained from a simulated data set; (g) bias image of β̂2(d, h10); (h) RMS image

of β̂2(d, h10); (i) SD image of β̂2(d, h10); and (j) RE image of β̂2(d, h10). Panels (l) and (m) are the scatter plots of biases and

REs of β̂2(d, h0) versus β̂2(d, h10), respectively.
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Fig. 6. Selected results for the comparison of the conventional analyses and MARM obtained from a simulated phantom

data set with N(0, 1) noises and n = 60. Panel (a) is the ground truth image of five ROIs with black, blue, red, yellow, and

white color representing β2(d)=0, 0.2, 0.4, 0.6, and 0.8, respectively. Results from (b) the voxel-wise method without the

initial smoothing step; (c) MARM with S = 10; and (d) the conventional analyses.


