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Medical Imaging

Euclidean-valued Data

intensity, fMRI, volume, grey matter density, SPHARM,
invariant measure, signed-Euclidean distance, ...
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fMRI Grey matter density Signed-Euclidean SPHARM
distance
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Medical Imaging

Manifold-valued Data

Directional data, deformation tensors, diffusion tensors,
principal directions, medial representation, projections,
orientation, rigid motion,
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Medical Imaging

Shape Representation
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Medical Imaging
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Medical Imaging

Manifold-valued Data

Riemannian Response Space:
Riemannian manifold is connected
and geodesically complete

............ K Euclidean Covariate
(x) Space

Link Function
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N, Medical Imaging

Existing Literature in Statistics

Parametric/Semiparametric Statistical Inference in Euclidean Space:

Rao (1945), Efron (1975), Amari (1985), Cook (1986), McCullagh (1987),
Barndorff-Nielsen and Cox (1994), Wei (1988), ...

Statistics for Manifold-valued Data:
* Directional Statistics: Fisher (1953), Fisher (1993), Kent (1977), Watson
(1983), Mardia and Jupp (1999), ...

« Axial and Shape Spaces: Kendall (1977, 1984), Dryden and Mardia
(1998), Kendall, Barden, Carne, and Le (1999), ...

« Diffusion Tensors: Armin Schwartzman (2006, 2008), Fletcher and Joshi
(2007), Dryden et al. (2009), Zhu et al. (2009), ...

« Riemmanian Manifold: Bhattacharya and Patrangenaru (2003a, b), ...
 Data Mining: Huckemann, S., Hotz, T., Munk, A. (2010), Huckemann et al.
(2006), ..

 Bayesian methods: Jermyn (2005), Angers and Kim (2005),
Bhattacharya and Dunson (2010), ...
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Medical Imaging

Semiparametric and Nonparametric Regression for
Manifold-valued Response from Cross-sectional,
Longitudinal and Family-based Neuroimaging Studies
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Regression Models for SPDs

Symmetric Positive Definite Matrix (SPD)

« Diffusion Tensors in DTl are 3x3 SPDs. DTl is an imaging
modality that allows measurement of fiber-tract trajectories in

vivo in soft tissues.

« Covariance Matrices: Multivariate analysis, Longitudinal data,
Spatial data, ...

e Network Data:

d, d, dj
21 n dy >0

D=\|d, d
dy, dy, d;

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Y Regression Models for SPDs
=4

Diffusion Tensors

S S, (v) S (v)

Age, Gender, Race, Diagnostic Status, ...

An appropriate statistical analysis of SPD matrices is

important for understanding normal brain development, Euclidean Space
the neural bases of neuropsychiatric disorders, and

the joint effects of environmental and genetic factors

on brain structure and function.
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Regression Models for SPD

A formal statistical framework for using a set of covariates in a
Euclidean space to predict SPD matrices as responses:

* Extrinsic Methods: Ignore the fact that SPD matrices are in a
nonlinear space and then directly apply classical multivariate
regression. Schwartzman and Taylor (2008), ...

* Intrinsic Methods: Several parametric models for SPD matrices.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Regression Models for SPD

Extrinsic Methods

Intrinsic Methods

Dryden, I.L., Koloydenko, A. and Zhou, D. (2009).
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Regression Models for SPD

{(’xi?yi):i: 19"'971}

* residual
/ e(x,0)=y-g(x,0)
et 6) T * link function
/ g(x 0) 2(x,0):R"x® — R
> Spa;)fY

Conditional mean

Ele(x,0) | x] = E[y - g(x,0) | x] =
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Regression Models for SPD

2
{(x;,8):i=1,---,n}
5y m+(m)A Questions:
s C
’ 0 - How to define residual ?
e(10) A e(x.0) = § - g(x.0)
‘ g(x,@) * How to define link function ?
A g(x,0):R" x ©® = Sym" (m)
X Space of S

- How to define conditional mean ?

Ele(x,0)Ix]=E[S -g(x,0) | x]=0
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WY, Regression Models for SPD

Scale Frobenius inner product

<Y,,Z,>=tr(Y,D"'Z,D™)

Geodesic
Yp(t:Yp) = Gexp(tG_lyDG_T)GT
D =GG'

Sym(m)’
Riemannian exponential/logarithm maps
X =Exp,(Y,)=7,1;Y,) = Gexp(GY,G")G"

Y, = Log,(X) = Glog(G'XG™")G'
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Wy, Regression Models for SPD

Sym(m)’

Riemannian logarithm map
Y =L0gy, () = G(x)log(G(x)"SG(x)™"G(x)"

2(x) = 2(x,0) = G(x,0)G(x,0)" = G(x)G(x)"

* Use Riemannian logarithm map to construct residuals
* Rotate residuals to the same tangent plane (parallel transport)

Q1: Residual ¢(x,0) = Logy, 4,(S) = log(G(x,0)"' SG(x,0)™")
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Regression Models for SPD

Q2: Link functions
S(x,0): R x® — Sym(m)*

» Cholesky decomposition

>(x,0) = G(x,0)G(x,0)"
(g,(x,0) 0 0
G(x,0) =| g, (x,0) g,,(x,0) 0
\&31(x,0)  85,(x,0)  g3;(x,0),

g.(x,0)=0
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Regression Models for SPD

Link functions

S(x,0): R x® — Sym(m)* Symm):

» matrix logarithm link

log(2(x,0)) = g(x,0) v (,
- geodesic link

S(x =0.0) = D,

2(x,0) =y, (1(x),Y,(x,0)),
t(-x)YD (.X,',H) = g(xae)
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Regression Models for SPD

Q3: Conditional Moment Model
Ele(x,0)| x]=E[Logy 4 (S)]|x]=0

Intrinsic least square estimator (ILSE)
0 = argminG, (0) = argminz tr(Logs .. 5y(S)L0gs .. 5)(S)))
i=1

ILSE includes the intrinsic mean as a special case.

Etr(Logz(xi 0 (S)L0gs,. 51(S))) = E d(S,.2(x,,0))"
i=1 i=1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Regression Models for SPD

Annealing Optimization Algorithm

» Gradient algorithm for computing ILSE is relatively sensitive
to the starting point.

6" =0 + p{-V’G,(6")}"'VG,(0") OE&ER?
Hess{G (6")}8, =-VG, (6") 6cM
6" = RH(") ((Sr)

» Gibbs sampler exp(-G,(0)/1)

Annealing Evolutionary Stochastic Approximation Monte Carlo Algorithm
Liang (2010)
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M Regression Models for SPD

Estimation Theory
- Consistency H—L 50

*

« Asymptotic Normality

(E[i{a@n«e(x,-,é>2)}®2]>'”2E{—V2Gn(é>}<é -0,)—~—=N(0,1,,)
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Regression Models for SPD

=

Testing Linear Hypothesis

H,:A0=4, vs. H,:40= A,
 Wald/Score test statistics

 Resampling method/false discovery rate to correct for
multiple comparisons
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Regression Models for SPD

Simulation Studies B0 0
Cholesky decomposition G(x,0)=|x", x'g, 0
X B, x B x/ B

X, = (LZ,')T

Data model S. = G(x,,0)exp(E,)G(x,,0)"
E, ~ MN(0,Q)
Correlation
06 O 0 06 03 03
Q=0 06 0 Q,=|03 06 03
0 0O 06 03 03 0.6
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Regression Models for SPD

Simulation
Study |

Table 1. Bias (x1072), RMS (x1072), SE (x102), SD-SE (x10~2), and RS of all 12 parameters under €] and £2. BIAS denotes the bias
of the mean of the ILSE estimates; RMS denotes the root-mean-square error; SE denotes the mean of the standard deviation estimates; SD-SE
denotes the standard deviation of the standard deviation estimates; RS denotes the ratio of RMS over SD. Two different sample sizes {20, 80}
and 500 simulated datasets were used for each case

n=20 n=80
BIAS RMS SE SD-SE RS BIAS RMS SE SD-SE RS
2
Bi 2.60 6.10 6.73 2.20 1.10 0.58 3.59 3.37 0.68 0.94
B2 1.78 6.10 6.61 1.72 1.08 0.06 3.90 3.61 0.55 0.92
B3 1.88 7.06 6.96 1.32 0.98 0.69 3.91 3.56 0.35 0.91
Ba 1.15 6.86 6.89 1.30 1.01 0.35 3.83 3.51 0.33 0.92
Bs 3.83 15.34 17.24 422 1.12 1.08 8.35 8.58 1.20 1.02
Be 2.83 15.07 16.97 3.76 1.12 0.54 8.45 8.46 0.95 1.01
By 1.43 8.75 8.07 1.42 0.92 —0.37 4.19 4.10 0.39 0.98
Bs 0.48 8.32 7.98 1.40 0.96 —0.44 4,12 4.06 0.38 0.98
Bg 5.14 29.38 32.06 7.57 1.09 1.6 14.84 16.07 2.23 1.08
Bio 3.97 28.88 31.59 7.14 1.09 1.05 14.84 15.85 1.77 1.07
B11 3.62 20.32 1991 3.87 0.98 1.00 10.63 10.15 0.85 0.96
Bi2 2.69 20.11 19.68 3.83 0.98 0.53 10.48 10.03 0.84 0.96
20
Bi 2.76 6.87 6.73 2.21 0.97 0.59 4.00 3.7 0.57 0.93
B2 1.81 6.72 6.61 1.63 0.98 0.46 3.97 3.7 0.53 0.93
B3 1.96 7.74 7.23 1.27 0.93 0.23 3.72 3.54 0.36 0.95
Ba 1.24 7.43 7.15 1.26 0.96 0.03 3.67 35 0.36 0.95
Bs 3.08 11.63 12.61 2.85 1.08 1.02 6.87 6.33 0.73 0.92
Be 1.87 11.78 12.41 2.31 1.05 0.86 6.9 6.3 0.7 0.91
B7 1.56 8.44 8.26 1.46 0.98 0.11 4.5 4.2 0.34 0.93
Bg 0.62 8.09 8.17 1.44 1.01 0.04 4.5 4.1 0.34 0.91
Bg 2.75 18.90 19.75 4.14 1.04 1.06 10.74 9.93 1.09 0.93
Bio 1.33 18.84 19.46 3.68 1.03 0.86 10.79 9.82 0.93 0.91
B 3.87 16.68 15.49 2.54 0.93 —0.58 7.45 7.44 0.66 0.99
Biz 2.88 16.46 15.31 2.51 0.94 —-0.91 7.22 7.37 0.65 1.02
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Regression Models for SPD

Simulation Study Il

Table 2. Comparisons of the rejection rates for score test statistics under §2] and 2;. Three differing sample sizes {20, 40, 80} and 1,000
simulated datasets were used for each case and two significance levels, 5% and 1%, were considered. The null and alternative hypotheses were,
respectively, given by Hy: B, , =0 and Hy : B, 5 # 0. Two methods including the resampling method (RE) and 2 distribution [ x2(6)] were
used to calculate the rejection rates

- een en an e en e en e en e e e e e e o e o el

E n=20 n =40 n=80

E 5% 1% 5% 1% 5% 1%

\ B.o RE  x*6) RE  x%6 RE  x36) RE  x%6) RE  x*6) RE  x%6)
: 2 !
| 0x1g 0.143  0.031 0037 0 0067 0043  0.026 0007 0067 0037 0017  0.003"
| 02x1g 0513 0177 0253 0011 0957 0883 0796 0461 1 1 0.991 0971 !
 04x1g 0597 0213 0293 002 0993 0951 0832 0481 1 1 1 1
L 06x1g 0773 0442 0520 0042 1 1 1 0983 1 1 1 1
E 2 E
' 0x1g 0.126 0023 0037 0 0.063 0037 0017 0003 0061 0033 0013  0.003
| 02x1g 0581 0221 0302 0010 0977 0953  0.851 0491 1 1 0.991  0.991 !
| 04x1¢ 0602 0227 0321 0032 0991 0981 0871 0562 1 1 1 1
» 06x1 0903 051 0.611  0.051 1 1 1 0.981 1 1 1 1
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Regression Models for SPD

Simulation Study llI

Table 3. Comparisons of the family-wise error rates and average powers for the test procedure under two different correlations p = 0.0 and 0.5.
We considered two different sample sizes {40, 80} and 100 simulated datasets for each case at the 5% significance level. In all voxels, the null
and alternative hypotheses were, respectively, given by Hy: B. 2(d) = 0g and H : B. 7(d) # 0g. We considered four different B. ;(d)

{0.0 x 14,0.3 x 15, 0.6 x 14, 0.9 x 14} for all voxels within the region of interest, whereas we set B. 7(d) = 0g for all voxels outside the region
of interest. FWR denotes the family wise error rate and Apower denotes the average rejection rate for voxels inside the region of interest

n=40 n=80
p=00 p=0.5 p=0.0 p=05
B.2(d) FWR Apower FWR Apower FWR Apower FWR Apower
0.0 x 14 0.12 0.00 0.06 0.00 0.08 0.00 0.07 0.00
03 x1g 0.18 0.10 0.12 0.10 0.06 0.56 0.06 0.57
0.6 x 14 0.14 0.67 0.06 0.68 0.02 1.00 0.03 1.00
0.9 x1g 0.12 0.83 0.10 0.85 0.08 1.00 0.06 1.00
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Regression Models for SPD

HIV Neuroimaging Data (Pl: Colin Hall)

Objective: Assess diagnosis and age on the integrity of white matter
in a cross-sectional study of human immunodeciency virus (HIV).

Participants: All 47 subjects with 29 HIV+ subjects (21 males and
8 females) and 18 healthy (9 males and 9 females) controls were studied.
We limited the statistical analysis within the major white matter regions

(FA>0.4).

Results: We observe statistically significant diagnosis effects in
superior internal capsule area and age effects in inferior longitudinal
fasciculus.
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Group Effect

Corrected

Uncorrected

ROI
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Regression Models for SPD
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V, Local Polynomial Kernel Regression for SPD
7

Data (x,.S,),---.(x,,S))

1

Tensor Measure
L
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Local Polynomial Kernel Regression for SPD

+
M = Sym(m) Inner product << YD,ZD >>

Geodesic

T.M

Riemannian exponential/logarithm maps

Y

» Affine invariant metric
-1 —1
<<Y,,Z,>>,,=tt(Y,D"Z,D")

* Log-Euclidean metric

<< YD 9ZD >>D,L = tr(RD (YD)RD (ZD))

Dryden et al. (2009) Ry :T,M =1, M
Ying, Zhu, Lin and Marron (2010)
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Local Polynomial Kernel Regression for SPD

Questions:
 How to define local polynomial kernel regression to nonparametrically
estimate an intrinsic mean of S given x?

« Whether local linear regression performs better than local constant
regression?

 How much statistical inferences depend on a specific inner product defined
on the tangent space?
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\, Local Polynomial Kernel Regression for SPD
2

Conditional Expectation
D(x) = E[S|X = x]
Ele(x)| X =x]=E[S-D(x)| X = x]
Intrinsic Conditional Expectation

€p =Logy (S ET), ,Sym™ (m)
Ele, ., | X = x] =E[log,,($) | X =x]=0

0
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\, Local Polynomial Kernel Regression for SPD
2

Local Polynomial Kernel Regression
Log, . (D(x)) €T, ,Sym™(m)
Opie ) () T, Sym” (m) %T,mSym+(m)
Y(x) = ¢p,,(LOgp, ,(D(X)))

Log,,. (D(x))) = $otu (Y (1)) = @ity (Y (x0) + P Y (x)(x = x)")

D(x) = EXP (.. ($rt0 (YOO = EXP i (@5t (Y O 0)(x = 50)))
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Local Polynomial Kernel Regression for SPD

Q1: Define Intrinsic LPK Estimator

n K
&, (x,) =argmin,, | Y K, (x, = x)d(SExpy,. (@rte (O, YO (x,)(x = 1))’
K=0: Local constaﬁ% estimator; K=17: Local Iinearkzlstimator
Cross-validation

CV = Y d(S,.D, (x;m)") = ¥ d(S,.D, (x;1))* +2p, (h)
Asymptotilélaverage mean squalr=eld error (AMSE)
AMSE(log(Dy5 (xy:h k) = E(tr{{log(Dyg (xy3h.k,) = log(D(x, )} 11.x)
Asymptotic average mean integrated squared error (AMISE)

AMISE(log(Dy; (hk,))) = [ AMISE(log(D, (x:h k) (x)dx

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Local Polynomial Kernel Regression for SPD

Log-Euclidean metric

<< UD(X),VD(x) >> 0L = tr(RD(x)(UD(x))RD(x)(VD(x)))

Let
Y(x) = ¢p,, ). L0Ogp, ,(D(x))) =log(D(x)) —log(D(x,))
D(x) =exp(log(D(x,)) +Y(x))
Intrinsic Mean
Eflog($) —log(D(x)) | X =x]=0,,

Geodesic Distance

d(D(x),S)" = tr{[log(D(x)) -~ log(S)]’}

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Local Polynomial Kernel Regression for SPD

Q2: Intrinsic local linear is better than intrinsic local constant
AMSE(log(lA),L(xo;h,O))) = h*ustr([vecs{0.5 x log(D(x,))'? + fi(x,) f (x,) " Tog(D(x,) ")

+v,(nhf, (x,)) 't (x,)) +0o(h* +(nh)™)
Optimal bandwidth

n‘lvo fx 1(xo)tr(Z‘.sD(xO)) .
4ustr([vecs{0.5log(D(x,))"” + £+ (x,) fy (x,) " Tog(D(x, )" }*)

hopt,L(‘xO;O) = |:

AMSE(log(D,, (x,:h,1)) = h*ultr([vecs{0.5 x log(D(x,))*}®) + v, (nhf,, (x,)) " tr(S 5 (x,))
+o(h* +(nh)™)

Optimal bandwidth ho (el = [ n'lvof;(xo)tr(zm(xo))
LT % loo(D(x. N
Ratio of AMSEs uptr([vees{log(D(x)) 731™)

1/5

AMSE(log(D,, (x,3h,0))) _ tr({vees{0.5log(D(x,))™ + f;"(x) fy ()" log(D(x,))"}™)
AMSE(log(D,, (x,;h.D)) tr([vecs{0.5log(D(x,))"" }**)
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Local Polynomial Kernel Regression for SPD

Affine invariant metric

<<Up Vi >>peor = U p o, D(X) 'V, D(X) ™)

Let D(x)=Gx)G(x)"
Y(x) = ¢y, 2 LOZp,. (D(X))) =10g(G(xy) " D(x)G(x,)™)
D(x) = G(x,)exp(Y (x))G(x,)"

Intrinsic Mean

E[log(G(x)"'SG(x)™) X =x] = O,

Geodesic distance

d(D(x),S)" =tr{log*(G(x)" SG(x)™)}

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Local Polynomial Kernel Regression for SPD

Q2: Intrinsic local linear is better than intrinsic local constant
AMSE(log(D,, (x,:h,0))) = h*ultr([G, (x,)" vees{G" (x,) fV(x,) f;, (x,) " +0.5G? (x,) %)
+(nh)'tr(G(x,) % Q,(x,)) + o(h* +(nh)™)

(G () Q, (x,)) .
4utr([G o (x,)" vees{G" (x,) £ (xy) fy (x,) ™ +0.5G? (x,)}1%)

AMSE(log(D,, (x,;h,1))) = 0.25h* u2tr([G o (x,) ¥ (x,) "W, (x,) vees{ Y (x,)} )
+(nh)'tr(G o (x,) % Q,(x,)) + o(h* +(nh)™)

110Gy (1), (x,)
412tr([Gp (x) W (x) "W, (x, ) vees{Y P (x,)}%)

Optimal bandwidth

or. (X30) =

Optimal bandwidth By (X03]) =

Ratio of AMSEs
AMSE(log(Dyy (x,sh0))) _ tr(1G,(x,) vees{G"(x)) £ (x,) i (x,) ' 405G (x)} ™)
AMSE(log(D, (b)) tr([Gy ey WiCx,) W ) vees {2 )}
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Local Polynomial Kernel Regression for SPD

2

Q3: Affine Invariant Metric versus Log-Euclidean Metric

b . ®2 -1 1 7405
IMSE(R.L:0) = AMSEW0g(Dy (x:1.0)) _ | tH{Gy (x0)™ Wi (x) ™ W, (B (%) }]

AMSE(log(D,, (x,;h,0))) tr{Z,p(x)}

y tr([G,(x,) vecs{ £’ (x,) fy (x,) " GV (x,) +0.5G? (x,)}I%) "
tr([vecs{0.51og(D(x, )™ + £ (x,) £ (x,) Tog(D(x,)) "} 1%*)

Letm=1, D(x)=G(x)" with G(x,)>0

(L0 f () GV (xy) + 05GP (x,)[P)
tr([f;)(xo)fx (xo)_lG(l)(xo) + O.SG(Z)(xO) - 0.5G(1)(x0)2G(x0)'1]®2)

rMSE(R,L;0) = [

D) f (x,)" GV (x,)) +0.5G7(x,) > 025GV (x,)’G(x,)”" < tMSE(R,L;0) > 1

It depends on both design density and D(x,) = G(x,)".
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Local Polynomial Kernel Regression for SPD

Q3: Affine Invariant Metric versus Log-Euclidean Metric

(G, (x)2Q,(x )} |
tr{Z,,(x,)}
tr([G (x) W (x,) "W, (x,) vees(YP(x,))}*?)
tr(vecs{log(D(x,))*}*) }
Letm=1, D(x,)=G(x,)’ with G(x0)>0
AMSE(log(D,R(xO hD) _
AMSE(log(D,L(xO,h 1)))

rMSE(R,L;]) = [

rMSE(R,L;1) =

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Regression Models for SPD

Simulation Studies
Data model S, =C(x,)exp(E,)C(x,), E. ~ MN(0,Q2)
D(x) = C(x)* x; ~N(0,0.25)
-0.1x 02x sin(x)

Cx)=[02x 06x -04x

sin(x) -04x 0.5x
Covariance

03 0049 0.052
3 =[0049 02 00424| Z,=2%, 2X2;=4%, 2, =83
0.052 00424 0.1

Data {(x,S):i=1:---,n} for n=50 or 100

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Local Polynomial Kernel Regression for SPD

3x3 SPD D(x)>0 AzA,zA, >0
(A=A + (A -2 +(A, - 1)}
2AT+ A7+ A7)

FA: a scalar quantity derived from diffusion tensor (SPD matrix).

» Low FA values: isotropic diffusion.
» High FA values: highly directional diffusion.

FA =
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Fig. 1. Ellipsoidal representations of the true (the first row) and simulated SPD matrix data along
the design points under the four different noise distributions (the second to the fifth rows: ¥:-34)
colored with FA values.
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7 =

Truth

Log-Euclidean x,
Local Linear

Riemannian
Local Linear

Fig. 2. Ellipsoidal representations of the true (the first row) and estimated SPD matrix data along
the design points under the four different noise levels colored with FA values. The second to the fifth
rows (Log-Euclidean metric): X,-X4, the sixth to the ninth rows (the Riemannian metric): X;-%,.
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Local Polynomial Kernel Regression for SPD

Simulation 1.
» Compare the performance of the local linear with the local constant

» Assess the performance using the Average Geodesic Distance (AGD)
for each replication j=1, ... , N with N as the number of replications,
denoted by N n
AGD = (nN)"' Y ¥ d(D,(x,).D(x)))

R j=1 i=1

where Dj(xl.) and  D(x,) are, respectively, the estimated and true

l

diffusion tensors at Xi
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Local Polynomial Kernel Regression for SPD

4
z, s, =,
. 1.2 1.2 1.2
Log-Euclidean .
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(b) (d) ()

Fig. 3. Boxplots of the AGD using the intrinsic local constant and linear estimators under the log-
Euclidean (the first row) and Riemannian (the second row) metrics based on 100 replications under
the three covariance matrices (a)-(b) X1, (c)-(d) X2, and (e)-(f) 3. C50 and C100 represent the
intrinsic local constant estimators at sample sizes 50 and 100, respectively. L50 and L100 represent
the intrinsic local linear estimators at sample sizes 50 and 100, respectively.
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Log-Euclidean :

o8
o6
o4

oz —

AGD

Riemannian ;

o8
o.6
o4

oz ~—

(AGD

Log-Euclidean - - -

LAGD

Riemannian

hl bl

o.8 o.s
s
= os o.s
= o.a

o.2

o o.S 1 —0.5 o O.S 1

Local constant (solia) T = T e
Local linear (dashed)

g. 4. The LAGD curves at each sample point using the intrinsic local constant (solid line) and
linear (dash-dotted line) estimators under the three covariance matrices (a)-(d) =.:. (e)-(h) ==, (i)-
{1 = for sample sizes 50 (the top two rows) and 100 (the bottom two rows). The first and third
rows correspond to the log-Euclidean metric while the second and fourth rows correspond to the
Riemannian metric.
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Local Polynomial Kernel Regression for SPD

2

Simulation 2. High noisy level
Compare the performance of the local linear under two metrics

1.7 = 18 1.8
1.51 + 1.6 1.6
o 1‘13 T 4 . o 14 o 14
3 e : _ _ Q 1? Q 1?
< 07 S g
. g E 0.8 0.8
051 L n T 0.6 T X 0.6 S
LLS0 LRS5O0 LL100 LR100 02 -0.5 0 0.5 1 02 -0.5 0 0.5 1
X X

(@) (b) (c)
Riemannian (solid) Log-Euclidean (dashed)

Fig. 5. (a) Boxplots of the AGD’s using the linear regressions based on 100 replications under
the covariance matrix 34, under the Log-Euclidean and Riemannian metrics, respectively. (b) and
(c) LAGD curves at each sample point using the local linear regressions under the affine invari-
ant (dash-dotted line) and Log-Euclidean (solid line) metrics under the the covariance matrix ¥, at
sample size 50 (b) and 100 (c), respectively. LL50 (LR50) and LL100 (LR100), respectively, rep-
resent the local linear regressions under Log-Euclidean (Riemannian) metrics at sample sizes 50
and 100.
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Local Polynomial Kernel Regression for SPD

Simulation 3.
 Value of developing the LPK smoothing method
» Two different methods for smoothing FA values

M1. Calculate FA values from "noisy’ SPDs and then use the local
linear method to smooth the FA values

M2. Use the local linear method to smooth SPDs and then calculate
FA values from the smoothed SPDs

 Calculate the Mean Absolute Deviation Error (MADE):

MADE = (nN)*Eile ((x) —FA;(x,)|

j=1i=1
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Local Polynomial Kernel Regression for SPD

2, 2, 25

0.6 0.6 0.6
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0.4 0.4 0.4 %
A L Ly
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(d) (e) 4))]

Fig. 6. Boxplot of the MADE’s using the two smoothing methods based on 100 replications under
the covariance matrices (a) 3., (b) X2, and (c)X3 at sample size 50. Smoothed FA curves for the
realizations with median MADE under the covariance matrices: (d) i, (e) X2, and (f) 3. The
true FA curve (the solid line), the estimated FA curve using the first method (the dash-dotted line)
and the estimated FA curve using the second method (the dashed line). This shows that the more
intrinsic approach is much better.
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LTy, Local Polynomial Kernel Regression for SPD

Fig. 7. (a)The splenium of the corpus callosum in the analysis of HIV DTl data. (b)The ellipsoidal
representation of full tensors on the fiber tract from a selected subject.
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Fig. 8. (a) Ellipsoidal representations of the diffusion tensor data and estimated tensors using the
intrinsic local linear regression under the (b)log-Euclidean and (c) Riemannian metrics along the
fiber tract f1 colored with FA values. The estimated tensors in the middle right part (highlighted in
the red line) are more anisotropic using the method under the Log-Euclidean metric.
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\, Local Polynomial Kernel Regression for SPD
2
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Fig. 9. (a) FA's, (b) MD’s and (c) PE’s derived from the raw tensor data (dot line) and estimated
tensors using the intrinsic local linear regression under the Riemannian (dash-dot line) and log-
Euclidean (dash line) metrics as the function of arc-length along the tract f1. Estimated FA function
along the fiber tract f1 by using the standard local linear regression for scalars (solid line).
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Fig. 10. Ellipsoidal representations of estimated mean tensors along the fiber tract f1 for the control
and HIV groups using the intrinsic local linear regression under the log-Euclidean ((a) and (b)) and
Riemannian ((c) and (d)) metrics colored with FA values.
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Local Polynomial Kernel Regression for SPD
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Fig. 11. (a) FA differences and (b) geodesic distances between pairs of mean diffusion tensors of
HIV and control groups along the fiber f1 under the Log-Euclidean (the solid line) and Riemannian
(the dashed line) metrics.
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Manifold Data

« How to characterize the variation’ in the manifold data and
use such information for statistical analysis?

 For a specific type of manifold data, is it possible to define
an optimal geometrical structure that can capture the most

important target information from the data at hand?

* How to efficiently analyze discrete time and continuous time
manifold data?
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Future Work

» Minimax efficiency for the local linear method for SPD
- Statistical models for Lie group

- Statistical models of correlated Manifold-valued data
- Statistical models for deformation field

« Statistical models for spherical needlets
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UNC Biostatistics and Imaging Analysis Lab (BIAS)

http://Iwww.bios.unc.edu/research/bia
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About Us

We have diverse interest in solving methodological issues in statistics. Our past and present
statistical projects include diagnostic measures, stochastic approximation algorithm, structural
equation models, mixed effect models, spline regression, missing data problems, variable
selections, empirical likelihood, mixture models and regression tree.

We have developed methods and software for the analysis of the data from a state-of-the art
magnetic resonance imaging (MRI) technique including MRI, functional MRI, and diffusion tensor
image. We have developed and enhanced tools in data mining, Monte Carlo method, statistical
modeling, and applied them to scientific problems to understand the function and structure of the
brain. Our collaborators and we work closely to study healthy and neurologically disordered children
and adults.
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