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Outline 
•  Medical Imaging 

•  Regression Models for Symmetric Positive Definite Matrices 
•         
•  Nonparametric Models for Symmetric  Positive Definite 

Matrices  

•  Simulation Studies and Real Data Analysis 

•  Future Work 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Medical Imaging 

Study function and development of brain functional and 
structural connectivity.  
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Medical Imaging 

Neuroimaging Data 

Study Design  

www.guysandstthomas.nhs.uk/.../T/Twins400.jpg  
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Medical Imaging 

Data       Euclidean-valued Data 
intensity, fMRI, volume, grey matter density, SPHARM,  
invariant measure, signed-Euclidean distance, …  

SPHARM fMRI Grey matter density Signed-Euclidean 
distance 
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Medical Imaging 

Data  Manifold-valued Data 
Directional data, deformation tensors, diffusion tensors, 
principal directions,  medial representation, projections, 
orientation, rigid motion,  

Diffusion 
 Tensor 

Principal  
Direction 

Medial  
Representation 

Deformation 
Tensor 
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Medical Imaging 
White Matter Maturation 

Week 2 Week 2 
Year 1 Year 1 Year 2 Year 2 
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Medical Imaging 

Shape Representation Volumetric Measures 
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Medical Imaging 

Deformation Field 
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Medical Imaging 

Manifold-valued Data 
Riemannian Response Space: 
Riemannian manifold is connected 
and geodesically complete 

 Euclidean Covariate 
 Space  

Link Function 
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Medical Imaging 

Existing Literature in Statistics 
Parametric/Semiparametric Statistical Inference in Euclidean Space:  
     Rao (1945), Efron (1975), Amari (1985), Cook (1986), McCullagh (1987),  
     Barndorff-Nielsen and Cox (1994), Wei (1988), …   
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Medical Imaging 

Semiparametric and Nonparametric Regression for  
         Manifold-valued Response from Cross-sectional,  
         Longitudinal and Family-based Neuroimaging Studies  
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Regression Models for SPDs 

•  Diffusion Tensors in DTI are 3x3 SPDs.    DTI is an imaging 
modality that allows measurement of fiber-tract trajectories in 
vivo in soft tissues. 

•  Covariance Matrices: Multivariate analysis, Longitudinal data, 
Spatial data, ...  

•  Network Data:  

Symmetric Positive Definite Matrix (SPD) 
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Regression Models for SPDs 

Age, Gender, Race, Diagnostic Status, … 

Euclidean Space 

Diffusion Tensors 

… 

An appropriate statistical analysis of   SPD matrices is  
important for understanding normal brain development, 
the neural bases of  neuropsychiatric disorders, and 
the joint effects of  environmental  and genetic factors 
on brain structure and function.  
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Regression Models for SPD 

A formal statistical framework for using a set of  covariates  in a 
Euclidean space to predict  SPD matrices as responses:  

•  Extrinsic Methods:   Ignore the fact that SPD matrices are in a 
nonlinear space and then directly apply classical multivariate 
regression. Schwartzman and Taylor (2008), …   

•  Intrinsic Methods:   Several parametric models for SPD matrices. 
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Regression Models for SPD 

Dryden, I.L., Koloydenko, A. and Zhou, D. (2009).  

Extrinsic Methods 

Intrinsic Methods 
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Regression Models for SPD 

€ 

Y

€ 

X

•   residual   

•  link function 

Space of Y 
€ 

e(x,θ )

€ 

y

€ 

g(x,θ )

Conditional mean 
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Regression Models for SPD 

€ 

Sym+(m)

€ 

X

€ 

E[e(x,θ ) | x] = E[S − g(x,θ) | x] = 0

  

€ 

{(xi,Si) : i =1,,n}

€ 

e(x,θ ) = S − g(x,θ )
•  How to define residual ?  

•  How to define link function ? 

€ 

g(x,θ ) :Rk × Θ→Sym+(m)
Space of S 

€ 

e(x,θ )

€ 

S

€ 

g(x,θ )

Questions: 

•  How to define conditional mean ? 
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Regression Models for SPD 

Scale Frobenius inner product 

Geodesic 

Riemannian exponential/logarithm maps 

€ 

X = ExpD (YD ) = γD (1;YD ) =Gexp(G−1YDG
−T )GT

YD = LogD (X) =G log(G−1XG−T )GT



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Regression Models for SPD 

Riemannian logarithm map 

€ 

YΣ(x ) = LogΣ(x )(S) =G(x)log(G(x)−1SG(x)−T )G(x)T
€ 

TΣ (x )Sym(m)
+

€ 

YΣ(x )

•  Use Riemannian logarithm map to construct residuals 
•  Rotate residuals to the same tangent plane  (parallel transport)      

L € 

Σ(x) = Σ(x,θ) =G(x,θ)G(x,θ )T =G(x)G(x)T

Q1: Residual 
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Regression Models for SPD 

L 

Q2: Link functions 

•  Cholesky decomposition 

€ 

G(x,θ ) =

g11(x,θ) 0 0
g21(x,θ) g22(x,θ) 0
g31(x,θ) g32(x,θ) g33(x,θ)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

小  

€ 

gii(x,θ) ≥ 0
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Regression Models for SPD 

L 

Link functions 

•  matrix logarithm link 

•  geodesic link 

€ 

Σ(x = 0,θ ) = D,
Σ(x,θ ) = γD (t(x),YD (x,θ)),
t(x)YD (x,θ ) = g(x,θ )

小  
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Regression Models for SPD 

Intrinsic least square estimator (ILSE) 

Q3: Conditional Moment Model 

ILSE includes the intrinsic mean as a special case.  

€ 

ˆ θ = argminGn (θ) = argmin tr(LogΣ(xi ,θ )(Si)LogΣ(xi ,θ )(Si))
i=1

n

∑

€ 

tr(LogΣ(xi ,θ )(Si)LogΣ(xi ,θ )(Si)) =
i=1

n

∑ d(Si
i=1

n

∑ ,Σ(xi,θ))
2
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Regression Models for SPD 

•   Gradient algorithm for computing ILSE is relatively sensitive 
to the starting point.  

Annealing Optimization Algorithm 

•  Gibbs sampler 

 Annealing Evolutionary Stochastic Approximation Monte Carlo Algorithm  
          Liang (2010)  
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Regression Models for SPD 

Estimation Theory 
•  Consistency 

•  Asymptotic Normality 
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Regression Models for SPD 

Testing Linear Hypothesis 

•  Wald/Score test statistics 

•  Resampling method/false discovery rate  to correct for 
multiple comparisons 
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Regression Models for SPD 

€ 

G(x,θ ) =

xi
Tβ1 0 0
xi
Tβ2 xi

Tβ3 0
xi
Tβ4 xi

Tβ5 xi
Tβ6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

Si =G(xi,θ )exp(Ei)G(xi,θ )
T

Ei ~ MN(0,Ω)

€ 

Ω1 =

0.6 0 0
0 0.6 0
0 0 0.6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Cholesky decomposition 

Simulation Studies 

Data model 

Correlation 

€ 

Ω2 =

0.6 0.3 0.3
0.3 0.6 0.3
0.3 0.3 0.6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

xi = (1,zi)
T
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Regression Models for SPD 

Simulation 
Study I 
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Regression Models for SPD 

Simulation  Study II 
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Regression Models for SPD 

Simulation  Study III 
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Regression Models for SPD 
HIV Neuroimaging Data (PI: Colin Hall) 
Objective: Assess diagnosis and age on the integrity of white matter 
in a cross-sectional study of human immunodeciency virus (HIV). 

Participants:  All 47 subjects with 29 HIV+ subjects (21 males and 
8 females) and 18 healthy (9 males and 9 females) controls were studied. 
We limited the statistical analysis within the major white matter regions 
(FA>0.4).  
Results: We observe statistically significant diagnosis effects in 
superior internal capsule area and age effects in inferior longitudinal 
fasciculus. 
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Regression Models for SPD 
Group Effect 

ROI 

Uncorrected 

Corrected 
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Regression Models for SPD 

30 35 40 45 

30 35 40 45 50 

30 35 40 45 

30 35 40 45 50 

HC HC HIV HIV 

Age 
Age 

Age 
Age 

Diagnostic Effect Age Effect 
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Local Polynomial Kernel Regression for SPD 

€ 

S(x)Data 

Styner, M. (2008). 
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€ 

M = Sym(m)+

Local Polynomial Kernel Regression for SPD 

Inner product  

Geodesic 

Riemannian exponential/logarithm maps 

Dryden et al. (2009) 
Ying, Zhu, Lin and Marron (2010) 

•  Affine invariant metric 

•  Log-Euclidean metric 

€ 

<<YD ,ZD >>D,R = tr(YDD
−1ZDD

−1)

€ 

<<YD ,ZD >>D,L = tr(RD (YD )RD (ZD ))

€ 

RD :TDM →TImM
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Local Polynomial Kernel Regression for SPD 

Questions: 
•    How to define local polynomial kernel regression to nonparametrically 
estimate an intrinsic mean of S given x? 
•    Whether local linear regression performs better than local constant 
regression?  
•    How much statistical inferences depend on a specific inner product defined 
on the tangent  space?  
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Local Polynomial Kernel Regression for SPD 

€ 

E[e(x) | X = x] = E[S −D(x) | X = x] = 0

Conditional Expectation 

€ 

D(x) = E[S | X = x]

Intrinsic Conditional Expectation 

€ 

eD(x ) = LogD(x )(S)∈TD(x )Sym
+(m)

€ 

E[eD(x ) | X = x] = E[logD(x )(S) | X = x] = 0
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Local Polynomial Kernel Regression for SPD 

€ 

φD(x0 )(.) :TD(x0 )Sym
+(m)→TImSym

+(m)

Local Polynomial Kernel Regression 

€ 

LogD(x0 )(D(x))∈TD(x0 )Sym
+(m)

€ 

Y (x) = φD(x0 )(LogD(x0 )(D(x)))

€ 

LogD(x0 )(D(x))) = φ D ( x0 )
−1 (Y (x)) ≈ φ D ( x0 )

−1 (Y (x0) + Y (k )(x0)(x − x0)
k

k=1

K

∑ )

€ 

D(x) = ExpD(x0 )(φ D ( x0 )
−1 (Y (x))) ≈ ExpD(x0 )(φ D ( x0 )

−1 ( Y (k )(x0)(x − x0)
k

k=1

K

∑ ))
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Local Polynomial Kernel Regression for SPD 

€ 

ˆ α I (x0) = argminα(x0 ) Kh (xi − x0)d(Si,ExpD(x0 )(φ D ( x0 )
−1 ( Y (k )(x0)(x − x0)k

k=1

K

∑ )))2

i=1

n

∑
Q1: Define Intrinsic LPK Estimator 

Cross-validation 
K=0: Local constant estimator;  K=1: Local linear estimator 

€ 

CV = d(Si, ˆ D I (xi;h)(−i))2

i=1

n

∑ ≈ d(Si, ˆ D I (xi;h))2 + 2pn (h)
i=1

n

∑
Asymptotic average mean squared error (AMSE) 

Asymptotic average mean integrated squared error (AMISE)  

€ 

AMSE(log( ˆ D IR (x0;h,k0))) = E(tr[{log( ˆ D IR (x0;h,k0)) − log(D(x0))}2] | x)

€ 

AMISE(log( ˆ D IR (h,k0))) = ∫ AMISE(log( ˆ D IR (x;h,k0)))ω(x)dx
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Local Polynomial Kernel Regression for SPD 

Log-Euclidean metric 

€ 

<<UD(x ),VD(x ) >>D(x ),L = tr(RD(x )(UD(x ))RD(x )(VD(x )))

Let 

€ 

E[log(S) − log(D(x)) | X = x] =Om

€ 

D(x) = exp(log(D(x0)) +Y (x))

€ 

Y (x) = φD(x0 ),L (LogD(x0 )(D(x))) = log(D(x)) − log(D(x0))

Intrinsic Mean 

€ 

d(D(x),S)2 = tr{[log(D(x)) − log(S)]2}
Geodesic Distance 
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Local Polynomial Kernel Regression for SPD 

Q2: Intrinsic local linear is better than intrinsic local constant 

€ 

AMSE(log( ˆ D IL (x0;h,0))) = h4u2
2tr([vecs{0.5 × log(D(x0))(2) + fX

(1)(x0) fX (x0)−1log(D(x0))(1)}]⊗2)

+ v0(nhfX (x0))−1tr(ΣεD(x0)) + o(h4 + (nh)−1)

€ 

hopt ,L (x0;0) =
n−1v0 fX

−1(x0)tr(ΣεD(x0))
4u2

2tr([vecs{0.5log(D(x0))
(2) + fX

(1)(x0) fX (x0)
−1log(D(x0))

(1)}]⊗2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 5

€ 

AMSE(log( ˆ D IL (x0;h,1))) = h4u2
2tr([vecs{0.5 × log(D(x0))(2)}]⊗2) + v0(nhfX (x0))−1tr(ΣεD(x0))

+ o(h4 + (nh)−1)

€ 

hopt ,L (x0;1) =
n−1v0 fX

−1(x0)tr(ΣεD(x0))
u2
2tr([vecs{log(D(x0))

(2)}]⊗2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 5

€ 

AMSE(log( ˆ D IL (x0;h,0)))
AMSE(log( ˆ D IL (x0;h,1)))

=
tr([vecs{0.5log(D(x0))(2) + fX

(1)(x0) fX (x0)−1log(D(x0))(1)}]⊗2)
tr([vecs{0.5log(D(x0))(2)}]⊗2)

Optimal bandwidth 

Optimal bandwidth 

Ratio of AMSEs 
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Local Polynomial Kernel Regression for SPD 

Affine invariant metric 

€ 

<<UD(x ),VD(x ) >>D(x ),R = tr(UD(x )D(x)
−1VD(x )D(x)

−1)

Let 

€ 

D(x) =G(x)G(x)T

€ 

E[log(G(x)−1SG(x)−1) | X = x] =Om

€ 

D(x) =G(x0)exp(Y (x))G(x0)
T

€ 

Y (x) = φD(x0 ),R (LogD(x0 )(D(x))) = log(G(x0)
−1D(x)G(x0)

−1)

Intrinsic Mean 

€ 

d(D(x),S)2 = tr{log2(G(x)−1SG(x)−1)}
Geodesic distance 
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Local Polynomial Kernel Regression for SPD 

Q2: Intrinsic local linear is better than intrinsic local constant 

€ 

AMSE(log( ˆ D IR (x0;h,0))) = h4u2
2tr([GD(x0)T vecs{G(1)(x0) fX

(1)(x0) fX (x0)−1 + 0.5G(2)(x0)}]⊗2)
+ (nh)−1tr(GD(x0)⊗2Ω0(x0)) + o(h4 + (nh)−1)

€ 

hopt ,R (x0;0) =
n−1tr(GD(x0)

⊗2Ω0(x0))
4u2

2tr([GD(x0)
T vecs{G(1)(x0) fX

(1)(x0) fX (x0)
−1 + 0.5G(2)(x0)}]

⊗2)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1/ 5

€ 

AMSE(log( ˆ D IR (x0;h,1))) = 0.25h4u2
2tr([GD(x0)TΨ1(x0)−1Ψ2(x0)T vecs{Y(2)(x0)}]⊗2)

+ (nh)−1tr(GD(x0)⊗2Ω0(x0)) + o(h4 + (nh)−1)

€ 

hopt ,R (x0;1) =
n−1tr(GD(x0)

⊗2Ω0(x0))
4u2

2tr([GD(x0)
TΨ1(x0)

−1Ψ2(x0)
T vecs{Y (2)(x0)}]

⊗2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 5

Optimal bandwidth 

Optimal bandwidth 

€ 

AMSE(log( ˆ D IR (x0;h,0)))
AMSE(log( ˆ D IR (x0;h,1)))

=
tr([GD (x0)T vecs{G(1)(x0) fX

(1)(x0) fX (x0)−1 + 0.5G(2)(x0)}]⊗2)
tr([GD (x0)TΨ1(x0)−1Ψ2(x0)T vecs{Y (2)(x0)}]⊗2)

Ratio of AMSEs 
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Local Polynomial Kernel Regression for SPD 

Q3: Affine Invariant Metric versus Log-Euclidean Metric  

€ 

rMSE(R,L;0) =
AMSE(log( ˆ D IR (x0;h,0)))
AMSE(log( ˆ D IL (x0;h,0)))

=
tr{GD (x0)⊗2Ψ1(x0)−1Ψ11(x0)Ψ1(x0)−1}

tr{ΣeD (x0)}
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

4 / 5

×
tr([GD (x0)T vecs{ fX

(1)(x0) fX (x0)−1G(1)(x0) + 0.5G(2)(x0)}]⊗2)
tr([vecs{0.5log(D(x0))(2) + fX

(1)(x0) fX (x0)−1log(D(x0))(1)}]⊗2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 5

Let m=1, 

€ 

rMSE(R,L;0) =
tr([ fX

(1)(x0) fX (x0)
−1G(1)(x0) + 0.5G(2)(x0)]

⊗2)
tr([ fX

(1)(x0) fX (x0)
−1G(1)(x0) + 0.5G(2)(x0) − 0.5G

(1)(x0)
2G(x0)

−1]⊗2)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1/ 5

€ 

D(x0) =G(x0)
2 with G (x0) > 0

€ 

fX
(1)(x0) fX (x0)

−1G(1)(x0) + 0.5G(2)(x0) > 0.25G(1)(x0)
2G(x0)

−1 ⇔ rMSE(R,L;0) >1

It depends on both design density and  

€ 

D(x0) =G(x0)
2.



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Local Polynomial Kernel Regression for SPD 

Q3: Affine Invariant Metric versus Log-Euclidean Metric  

€ 

rMSE(R,L;1) =
tr{GD (x0)

⊗2Ω0(x0)}
tr{ΣeD (x0)}

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

4 / 5

×
tr([GD (x0)

TΨ1(x0)
−1Ψ2(x0)

T vecs(Y(2)(x0))}
⊗2)

tr(vecs{log(D(x0))
(2)}⊗2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 5

Let m=1, 

€ 

D(x0) =G(x0)
2 with G (x0) > 0

€ 

rMSE(R,L;1) =
AMSE(log( ˆ D IR (x0;h,1)))
AMSE(log( ˆ D IL (x0;h,1)))

=1
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Regression Models for SPD 

€ 

C(x) =

−0.1x 0.2x sin(x)
0.2x 0.6x −0.4x
sin(x) −0.4x 0.5x

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

Si = C(xi)exp(Ei)C(xi), Ei ~ MN(0,Ω)
D(x) = C(x)2

€ 

Σ1 =

0.3 0.049 0.052
0.049 0.2 0.0424
0.052 0.0424 0.1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Simulation Studies 
Data model 

Covariance 

€ 

Σ2 = 2Σ1, Σ3 = 4Σ1, Σ4 = 8Σ1

€ 

xi ~ N(0,0.25)

  

€ 

{(xi,Si) : i =1,,n} for n = 50 or 100Data 
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Local Polynomial Kernel Regression for SPD 

Set 

€ 

3 × 3 SPD D(x) > 0

€ 

λ1 ≥ λ2 ≥ λ3 > 0

€ 

FA =
3{(λ1 − λ )2 + (λ2 − λ )2 + (λ3 − λ )2}

2(λ1
2 + λ2

2 + λ3
2))
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Local Polynomial Kernel Regression for SPD 

Set 
Truth 

Noisy 
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Local Polynomial Kernel Regression for SPD 

Truth 

Log-Euclidean 
Local Linear 

Riemannian 
Local Linear 
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Local Polynomial Kernel Regression for SPD 

Simulation 1. 

•  Compare the performance of the local linear with the local constant  

•  Assess the performance using the Average Geodesic Distance (AGD) 
for each replication j=1, … , N with N as the number of replications,  
denoted by   

€ 

AGD = (nN)−1 d( ˆ D j (xi),D(xi))
i=1

n

∑
j =1

N

∑
where 

€ 

ˆ D j (xi) and D(xi) are, respectively, the estimated and true  
diffusion tensors at  

€ 

xi
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Local Polynomial Kernel Regression for SPD 
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Local Polynomial Kernel Regression for SPD 
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Σ1
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Σ3Log-Euclidean 

Log-Euclidean 

Riemannian 

Riemannian 

Local constant (solid) 
Local linear (dashed) 
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Local Polynomial Kernel Regression for SPD 

€ 

Σ4

Simulation 2. High noisy level 
Compare the performance of the local linear under two metrics  

Riemannian (solid)  Log-Euclidean (dashed) 
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Local Polynomial Kernel Regression for SPD 

Simulation 3. 

•  Value of developing the LPK smoothing method 

•  Two different methods for smoothing FA values  

 M1. Calculate FA values from `noisy’ SPDs and then use the local    
linear method to smooth the FA values 

 M2. Use the local linear method to smooth SPDs and then calculate 
FA values from the smoothed SPDs  

•  Calculate the Mean Absolute Deviation Error (MADE):          

€ 

MADE = (nN)−1 | FA
∧

j (xi) −FA j (xi) |
i=1

n

∑
j=1

N

∑
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Manifold Data 

•  How to characterize the `variation’ in the manifold data and 
use such information for statistical analysis?    

•  For a specific type of manifold data, is it possible to define 
an optimal geometrical structure that can capture the most 
important target information from the data at hand? 

•  How to efficiently analyze discrete time and continuous time 
manifold data?   
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Future Work 

•  Minimax efficiency for the local linear method for SPD 

•  Statistical models for Lie group 

•  Statistical models of correlated Manifold-valued data  

•  Statistical models for deformation field 

•  Statistical models for spherical needlets  
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