

# Statistical Analysis of Neuroimaging Data

Hongtu Zhu, Ph.D

Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill





# **Outline**

**Imaging Science** 

**Imaging Modalities** 

Data

**Projects** 





# **Imaging Science**



Imaging Science From Wikipedia, the free encyclopedia

### **Imaging Science**

is a multidisciplinary field concerned with the generation, collection, duplication, analysis, modification, and visualization of images.

As an evolving field, it includes research and researchers from

Physics, Mathematics, Statistics, Electrical Engineering, Computer Vision, Computer Science and Perceptual Psychology.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## Three key components of imaging science

- Image acquisition: studies the physical mechanisms and mathematical models and algorithms by which imaging devices generate image observations.
- •Image interpretation/application: is to see, monitor, and Interpret the targeted world/patterns being imaged.
- Image processing: is any linear or nonlinear operator that operates on the images and produces targeted patterns.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## What is image?

 (i) In computer science an image is an exact replica of the contents of a <u>storage device (a hard disk drive or CD-ROM for</u> <u>example) stored on a second storage device.</u>
(ii) is an optically formed duplicate or other reproduction of an object formed by a lens or mirror.





Mathematics. Image is the point or set of points in the range corresponding to a designated point in the domain of a given function.

As  $\tilde{x} \in \Omega \subseteq R^k$   $f(\tilde{x}) \in M \subseteq R^m$   $f: \Omega \to M \subseteq R^m$  $\Omega$  is a compact set.





**Additional Conditions:** 

Each component of  $f(\tilde{x})$  is nonnegative.

 $\int_{\Omega} \|f(\tilde{x})\|^k \, \mathrm{d}\tilde{x} < \infty \text{ for any } k > 0$ 



# **Digitized Images** $f: \Omega_0 \rightarrow \{0, 1, \cdots, M_0\}$

 Sampling (grid points): Ω<sub>0</sub> ∈Ω An ordered array or a triangular array or etc; A set of small cells of the same shape and size (pixels, voxels).

Sometime, it involves interpolation.

Sampling Rate ensure that all the relevant information contained in the image is largely retained by sampling.

 Quantization: is a process of assigning the function value at each sampling point to one of the finite set of integers.

 $0, 1, 2, \dots, 2^m$  for  $m = 5 \sim 12$ , that is  $M_0 = 2^m$ 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **General Digital Image**

$$f(x,y,z,t,s): \Omega \longrightarrow \{0,1,\cdots,M_0\}$$

Spatial parameters

(x,y,z)

• Time parameters

 $M_0$ 

- Spectral parameters *S*
- A limited range of values



- Spatial resolution
- Temporal resolution
- Spectral resolution Range of wave-length Number of color
- Gray scale resolution



# **Imaging Modalities**



# **Imaging Devices**





# **Targets**

- Electromagnetic waves (most technologies)
- Sound (ultrasound)
- Particles (electron microscopy)
- Mechanical contact forces (scanning probe microscopy)



# **Electromagnetic Waves**





# **Electromagnetic Imaging**



Figure 4 – Frequency spectrum of electromagnetic radiation imaging technologies.



# **Electromagnetic Imaging**

- Radio range: radio astronomy, MRI
- Microwave range: RADAR
- Visible range: Standard camera, light microscopy
- X-ray range: CT, micro-CT
- Gamma range: Gamma camera

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## Medical imaging From Wikipedia, the free encyclopedia

- Medical imaging is the technique and process used to create images of the human body (or parts and function thereof) for clinical purposes (medical procedures seeking to reveal, diagnose or examine disease) or medical science (including the study of normal anatomy and physiology).
- 2010, 5 billion medical imaging studies were done worldwide.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### X-rays are ionizing waves consisting of photons traveling at the speed of light with energy E=hf





- X-rays produced by a tube.
  - Filtered to removed undesired energy.
- Restriction to illuminate organ of interest
- Grid removes scattered radiation.
- Recording of image on electronic plate (or film).







# **Computed Tomography (3D X-rays)** is a imaging method employing tomography created by computer. Digital geometry processing is used to generate a 3D image of the inside of an object from a large series of 2D X-ray images taken around a single axis of reference.





Figure 3.2 Basic scanning procedure in CT. A set of lines is scanned covering the entire field of view: (a) parallel-beam geometry and (b) fan-beam geometry. This process is repeated for a large number of angles (c and d).



Figure 3.1 (a) Schematic representation, and (b) photograph of a CT scapper. (Courtesy of GE Healthcare)







### **SPECT and PET**





### **SPECT=Single-Photon Emission Computed Tomography** is a nuclear medicine tomographic imaging technique using gamma rays for measuring the blood flow to the brain.

Radio-labeled chemical (ECD or HMPAO) is quickly injected at time of seizure onset to detect the region of increased blood flow, which is associated with seizure activity.

By comparing the ictal scan (imaged during seizure) and the interictal scan (imaged without seizure), the regions of activation in the brain are detected to locate the seizure origin.



http://www.youtube.com/watch?v=I6V6VLxQIkY



## **PET=Positron Emission Tomography** is a functional imaging

technique to extensively study the relationship between energy consumption and neuronal activity. It uses positron-emitting radioactive tracers that are attached to molecules that enter biological pathways of interest.

FDG: Fluorodeoxyglucose (similar to Glucose).

Brain uses glucose as major source of energy. Normal brain picks up FDG in a large amount.

In epilepsy, the brain cell (neuron) does not function in the neurons are lost due to a variety of reasons.

FDG-PET scan detects the regions of brain where the Glucose uptake is low (hypo-metabolism), which is often associated with the site of seizure origin.







### **PET measures**



**Reduced Cerebral Blood Flow** (CBF) and elevated compensatory **Oxygen Extraction (OEF) before** and after carotid artery angioplasty (stroke risk)



Prostate cancer <sup>11</sup>C Acetate



Adrenocortical tumours <sup>11</sup>C-Metomidate







Bone metastases <sup>18</sup>F-Fluoride









**Malignant tumours** <sup>18</sup>F-Fluorodeoxyglucose

Figure 13 - Examples of PET tracers in oncology where endogenous substances are framed (courtesy of Imanet Uppsala).

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **PET tracers**



# **PET and SPECT**

PET and SPECT scan is different from CT, MRI or Ultrasound, which detect structure changes and anatomy, can provide physiological and molecular information of brain.

PET and SPECT are clinically indicated for pre-surgical localization of seizure origin. They are covered by most insurance providers.

They provide valuable seizure localization information in addition to MRI scan, EEG and clinical assessment to the surgeons.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



**Ultrasound imaging** involves exposing part of the body to highfrequency sound waves to produce pictures of the inside of the body.

• Because ultrasound images are captured in real-time, they can show the structure and movement of the body's internal organs, as well as blood flowing through blood vessels.

• When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves it is possible to determine how far away the object is and its size, shape, and consistency (whether the object is solid, filled with fluid, or both).

 In medicine, ultrasound is used to detect changes in appearance of organs, tissues, and vessels or detect abnormal masses, such as tumors.



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### Fetus at 14 weeks Fetus at 29 weeks



Figure 6.34 Example of a commercial echocardiographic scanner. (Courtesy of the Department of Cardiology.)







to tener pr tana dina il presi



2D transducer: general appearance





Magnetic Resonance Imaging (MRI) is to visualize detailed internal structures. The good contrast is provides between the different soft tissues of the body make it useful in brain, muscles, heart, and cancer. No ionizing radiation.

It uses a powerful magnetic field to align the magnetization of some atoms in the body, then uses radio frequency fields to systematically alter the alignment of this magnetization. This causes the nuclei to produce a rotating magnetic field detectable by the scanner.



Paul Lauterbur and Peter Mansfield were awarded the 2003 Nobel Prize in Physiology or Medicine for their "discoveries concerning magnetic resonance imaging".

http://www.youtube.com/watch?v=6\_2D3Lh1v74&feature=related

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Magnetic Resonance Imaging (MRI)**





### **Functional MRI**

measures the hemodynamic response (change in blood flow) related to neural activity in the brain or spinal cord of humans or other animals. Since the early 1990s, fMRI has come to dominate the brain mapping field due to low invasiveness, absence of radiation exposure, and relatively wide availability.





### Diffusion MRI can provide information about damage to parts of the nervous system and about white matter connections among brain regions.





http://www.youtube.com/watch?v=XwUn64d5Ddk&feature=related



**Molecular Imaging** originated from the field of radiopharmacology to better understand the molecular pathways inside organisms.

• Molecular imaging uses biomarkers to help image particular targets or pathways. Probes interact chemically with their surroundings and in turn alter the image according to molecular changes occurring with the area of interest.

• This process is markedly different from previous methods of imaging which primarily imaged differences in qualities such as density or water content.

•This ability to image fine molecular changes opens up an incredible number of exciting possibilities for medical application, including early detection and treatment of disease and basic pharmaceutical development.

•Molecular imaging allows for quantitative tests, imparting a greater degree of objectivity to the study of these areas.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

















# Large Neuroimaging Data

**NIH normal brain development 1000 Functional Connectome Project Alzheimer's Disease Neuroimaging Initiative National Database for Autism Research (NDAR) Human Connectome Project** 





www.guysandstthomas.nhs.uk/.../T/Twins400.jpg



## **Complex Study Design:**

## cross-sectional studies; clustered studies including longitudinal and twin/familial studies;







## **Complex Data Structure**

Multivariate Imaging Measures Smoothed Functional Imaging Measures Whole-brain Imaging Measures Time Series Imaging Measures





Anatomical Connectivity: Functional Connectivity: Effective Connectivity:

### a pattern of anatomical links; statistical dependencies; causal interactions



http://www.scholarpedia.org/article/Brain\_connectivity


Brain connectivity refers to AC, FC, and EC between distinct units within a nervous system. It is crucial to elucidating how neurons and neural networks process information. The units include Individual Neurons, Neuronal Populations, Anatomically ROIs.



http://www.humanconnectomeproject.org/informatics/



- Raw time series
- Connectivity strength (Correlation or Partial Correlation)
- Directed and undirected graphs
- Covariates (e.g., age, gender, diagnostic)





The UNIVERSITY of NORTH



### **Multiple Data Types**



EL HILL



# **Projects**





#### UNC BIOSTATISTICS AND IMAGING ANALYSIS LAB (BIA)



#### The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

of NORTH CAROLINA







# **Project I: Corpus Callosum Shape for ADHD Diagnosis**



# **Attention Deficit Hyperactivity Disorder**

<u>ADHD</u> affects at least 5-10% of school-age children and is associated with substantial lifelong impairment, with annual direct costs exceeding \$36 billion/year in the US.

- Despite a voluminous empirical literature, the scientific community remains without a comprehensive model of the pathophysiology of ADHD.
- The clinical community remains without <u>objective biological tools</u> capable of informing the diagnosis of ADHD for an individual or guiding clinicians in their decision-making regarding treatment.



www.google.com





# **ADHD 200**

#### PI: Michael P. Milham, M.D., Ph.D.

**The ADHD-200 Sample** is a grassroots initiative, dedicated to accelerating the scientific community's understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science.

**776** resting-state fMRI and anatomical MRI datasets aggregated across 8 independent imaging sites, **491** of which were obtained from typically developing individuals and **285** in children and adolescents with ADHD (ages: 7-21 years old).

**Phenotypic information** includes: diagnostic status, dimensional ADHD symptom measures, age, sex, intelligence quotient (IQ), and lifetime medication status.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **ADHD 200 Global Competition**

#### Imaging-Based Diagnostic Classification Contest

The team from Johns Hopkins University scored 119 out of 195 points, with one point awarded per correct diagnosis (typically developing, ADHD primarily inattentive type, or ADHD combined type).

while the intent of the competition was imaging-based classification, the team of the **University of Alberta** scored 124 points using all available phenotypic data while excluding imaging data – **5 more points than the winning imaging-based classification approach**.

Percentage prediction accuracy ranged between 43.08% and 61.54% (mean = 56.02%) when using a two-class classifier to classify TDC vs. ADHD, disregarding the ADHD subtypes.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Data Processing**

#### **Corpus Callosum**



#### **CC Segmentation**





CC is a wide, flat bundle of neural fibers beneath the cortex in the eutherian brain at the longitudinal fissue. It connects the left and right cerebral hemispheres and facilitates interhemispheric commucation. It is the largest white matter structure in the brain.

n.

wiki



#### **Simulation Studies**

#### Setting: 2 Clusters. Generated from NC and ADHD subjects respectively





### **Simulation Studies**

# Performance of MOS and penalized MOSFA models for different simulation cases

| Case 1: $c_1 = 2, c_2 = 1$ |             |            |            |            |  |
|----------------------------|-------------|------------|------------|------------|--|
| Model                      | Cluster     | $m_0 = 30$ | $m_0 = 60$ | $m_0 = 90$ |  |
|                            | 1           | 0          | 25         | 29         |  |
| MOS                        | 2           | 200        | 172        | 22         |  |
|                            | 3           | 0          | 3          | 149        |  |
|                            | $RI(aRI)^*$ | 1(1)       | 0.95(0.92) | 0.59(0.17) |  |
|                            | 1           | 0          | 0          | 0          |  |
| penalized                  | 2           | 200        | 198        | 195        |  |
| MOSFA                      | 3           | 0          | 2          | 5          |  |
|                            | RI(aRI)     | 1(0.99)    | 1(0.99)    | 0.96(0.92) |  |
| Case 2: $c_1 = 5, c_2 = 2$ |             |            |            |            |  |
| Model                      | Cluster     | $m_0 = 30$ | $m_0 = 60$ | $m_0 = 90$ |  |
|                            | 1           | 32         | 46         | 56         |  |
| MOS                        | 2           | 139        | 102        | 31         |  |
|                            | 3           | 29         | 52         | 113        |  |
|                            | RI(aRI)     | 0.86(0.74) | 0.76(0.54) | 0.61(0.20) |  |
|                            | 1           | 0          | 12         | 23         |  |
| penalized                  | 2           | 188        | 160        | 141        |  |
| MOSFA                      | 3           | 12         | 28         | 36         |  |
|                            | RI(aRI)     | 0.99(0.98) | 0.92(0.91) | 0.88(0.85) |  |



# **Real Data Analysis**

# Four clusters: First three clusters contain 167 NC and 3 ADHD subjects while the last one contains 4 NC and 67 ADHD subjects.





# **Real Data Analysis**

Shapes placed equidistant along the geodesic paths in four clusters





# **Real Data Analysis**

Geodesic distance between each pair of shapes

| Distance  | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
|-----------|-----------|-----------|-----------|-----------|
| Cluster 1 | 0.0805    | 0.0840    | 0.0862    | 0.1295    |
| Cluster 2 | -         | 0.0398    | 0.0731    | 0.1295    |
| Cluster 3 | -         | -         | 0.0510    | 0.1496    |
| Cluster 4 | -         | -         | -         | 0.0989    |

Mean shape difference test among different clusters

|           | Cluster 2 | Cluster 3 | Cluster 4 |
|-----------|-----------|-----------|-----------|
| Cluster 1 | 0.0552    | 0.0881    | 0.6431    |
|           | (0.3284)  | (0.1343)  | (0.0050)  |
| Cluster 2 | -         | 0.0044    | 0.0474    |
|           |           | (0.5808)  | (0.0040)  |
| Cluster 3 | -         | -         | 0.0218    |
|           |           |           | (0.0349)  |



# Project II: Functional Imaging Data Reconstruction



# **Motivation**

#### **Functional MRI**

measures the hemodynamic response (change in blood flow) related to neural activity in the brain or spinal cord of humans or other animals. Since the early 1990s, fMRI has come to dominate the brain mapping field due to low invasiveness, absence of radiation exposure, and relatively wide availability.









- The most common approach towards fMRI uses the Blood Oxygenation Level Dependent (BOLD) contrast.
- fMRI measurements are of amount of deoxyhemoglobin per voxel.
- BOLD response in fMRI is a complex, nonlinear function of the results of neuronal and vascular changes.
- HRF has multiple components
  - Changes delayed by 1-2 sec (lags activity)
  - Initial dip (not always seen)
  - Influx of Hb greater than needed for activity
  - ♦ 5-6 sec time to peak
  - Undershoot follows ~6s later





## **A Linear Time Invariant System**

is characterized by the following properties:

• Scaling – if the input is scaled by a factor *b* then the BOLD response will also be scaled by a factor *b*.

• Superposition – the response to two different stimuli applied together is equal to the sum of the individual responses.

• **Time-invariance** – if a stimulus is shifted by a time *t*, then the response is shifted by *t*.





### **Convolution**

#### **Block Design**

#### **Experimental Stimulus Function**

Hemodynamic Response **Function** 

> Predicted Response



#### **Event-Related**

80

80

80

60

60

20

40

100

100

100







#### **Timing of Brain Events**

- The ability to estimate features of the hemodynamic response plays an important role in using fMRI to study mental processes.
  - the amplitude of the HRF may provide information about the strength of neuronal activity.
  - the onset of the HRF may provide information about the timing of neuronal activity.
  - the duration of the HRF may provide information about the duration of neuronal activity.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### Simulation











(a.1)

(a.2)

(a.3)



#### **Simulation Set-up**







(i) A temporal cut of the true images;

(ii) The true curves



(iii) A temporal cut of the simulated images

(iv) The simulated curves





### **Real fMRI data**

#### PI: Kelly Giovanello

- This data set is from a memory related experiment to compare the neural correlates of relational memory during implicit (non-strategic) versus explicit (conscious, strategic) retrieval.
- There are four different sequences of stimuli.
- We use SPM8 to preprocess the images including the realignment, timing slicing, segmentation, coregistration, normalization and spatial smoothing.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Data Analysis Results**

We focus on some significant regions of interest (ROI) detected by SPM to study the HRFs of the voxels by our method. The results are verified by sFIR and GAM.



(1)-(4) The slices containing ROIs (colored ones) of the F maps for the 1st-4th stimulus sequences, respectively.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Data Analysis Results (Cont.)**



(1)-(4) Estimated HRFs at the significant ROIs corresponding each condition from MASM (red), sFIR(green) and GAM(yellow); (5)-(8) Estimated HRFs from only MASM in the each ROI.



#### **Clustering Results**



Slices from raw images



Sample of original curves



#### **Clustered pattern**





### **An Application – Functional Connectivity**





# **Project III: White Matter Tract Statistics for Brain Development**



# **Real Data**

- PI: Dr. John H. Gilmore from Dept of Psychiatry at UNC-CH
- Healthy/High risk full-term infants
- Diffusion Tensor Images
- 5 diffusive outcomes: FA, MD,  $\lambda_1, \lambda_2, \lambda_3$  along multiple major fiber tracts







# **DTI Fiber Tract Data**



#### Data

- Diffusion properties (e.g., FA, RA)
- $Y_i(s_j) = (y_{i,1}(s_j), \cdots, y_{i,m}(s_j))^T$ • Grids { $s_1, \cdots, s_{n_G}$ }
- Covariates (e.g., age, gender, diagnostic)  $x_1, \cdots, x_n$





# **FADTTS Path Diagram**



HILL



### **Real Data**




### **Confidence Bands**

### Intercept



A at CHAPEL HILL



### **Functional Principal Component Analysis**



ILL



### **Longitudinal Fiber Tracts**





### **Longitudinal Functional Mixed Effects Model**











ĽL



### **FADTTS GUI Toolbox**

| FRACTS for Windows 1.0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                      | FADTTS: Functional Analysis of Diffusion Tensor T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ract Statistics                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                                                      | BIAS @ UNC. 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| _ Load Raw Data                                                      | Basic Plots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Load Test Data P-value Plots                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Tract Design Di                                                      | iffusion Diffusion Coefficients Eigens C-Bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CMatrix B0Vector P-values                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| A FADTTS Output                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| First 8 eigenvalues                                                  | The first Eigenfunctions The second<br>0.2<br>0.1<br>0.15<br>0.1<br>0.05<br>0.0<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eigenfunctions<br>0.4<br>0.3<br>0.2<br>0.1                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| $\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 2 \\ 4 \\ 6 \end{array}$ | -0.1<br>-0.1<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.2<br>-0.3<br>-0.3<br>-0.3<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4 | -0.1<br>-0.2<br>-0.3<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.2<br>-0.3<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4<br>-0.4 |  |  |  |  |  |  |  |



# **Project IV: Structural and Functional Specialization**



# **Real Data**

### ADHD200 NYU Data

Subjects:174 subjects, 99 normal and 75 ADHD-combinedResponse:RAVEN mapCovariates:age, gender, group, and whole brain volumeGoal:Group\*Age and Group\*Gender

Our goal of study is to detect the <u>location of structural atrophy</u> in ADHD patients.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# Voxel Based Analysis (VBA)

### SPM/FSL

- Images from Multiple Subjects
- Multiple Images from a single subject

$$Y_i(d) = x_i^T \beta(d) + \varepsilon_i(d)\sigma(d)_i \qquad \text{Subject } i = 1, \dots, n$$

Voxel  $d \in D$ 

# **Inaccurate for both Prediction and Estimation**





Huettel, Song, and McCarthy (2009)



# VBA

Cons

### Potential large smoothing errors.

Treat voxels as independent units/images as a collection of independent voxels.

Ignore spatial correlation and smoothness in statistical analysis.

**Decrease statistical power.** 







# **Simulation**



From up to down: initial and adaptive estimates; left to right:  $\beta_1(d)$ ,  $\beta_2(d)$ , and  $\beta_3(d)$ .



# **Simulation**



From up to down:  $-log_{10}(p)$  of initial and adative estimates; left to right:  $\beta_1(d), \beta_2(d), \text{ and } \beta_3(d).$ 

### Interaction effect estimates





### -log10(p) Maps





### **Significant Regions**

Table 3: The first two largest significant regions of the first three largest significant blocks for hypothesis tests  $H_0$ :  $\beta_6(d) = 0$  and  $H_0$ :  $\beta_7(d) = 0$  with block and region voxel sizes. WM, L and R, respectively represent white matter, left and right.

|                              |       |      | 1st largest ROI                          |      | 2nd largest ROI                     |      |  |  |
|------------------------------|-------|------|------------------------------------------|------|-------------------------------------|------|--|--|
|                              | block | size | ROI label                                | size | ROI label                           | size |  |  |
| $\mathbf{A}\times\mathbf{D}$ | 1     | 3954 | frontal lobe WM L 1567 frontal lobe WM R |      | frontal lobe WM R                   | 455  |  |  |
|                              | 2     | 2065 | frontal lobe WM R                        | 900  | anterior limb of internal capsule R | 220  |  |  |
|                              | 3     | 1642 | nucleus accumbens L                      | 1019 | 9 frontal lobe WM L                 |      |  |  |
| $\mathbf{G}\times\mathbf{D}$ | 1     | 228  | temporal lobe WM L $$                    | 184  | middle temporal gyrus L             | 22   |  |  |
|                              | 2     | 216  | frontal lobe WM R                        | 163  | superior frontal gyrus L            | 33   |  |  |
|                              | 3     | 95   | temporal lobe WM R $$                    | 66   | lateral occipitotemporal gyrus R    | 21   |  |  |

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Prediction**





# **Project V: Functional Connectivity Comparisons**



### **Functional Connectivity**



**Resting-State Network** fMRI for finger tapping task; fcMRI:

contralateral motor cortex showed activation and low frequency (<0.1 Hz) fluctuations in the signal of the resting brain, revealing a high degree of temporal correlation.

is the mechanism for the coordination of activity between different neural assemblies in order to achieve a complex cognitive task or perceptual process. (Fingelkurts, Fingelkurts, Seppo Kahkonen, Fingelkurts, 2005)

# fMRI fcMRI



# **Functional Connectivity**

**Magnetoencephalography** (**MEG**) is a technique for mapping brain activity by recording magnetic fields produced by electrical currents in the brain using very sensitive magnetometers.

**Electroencephalography** (**EEG**) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.





### **Development of the Default Network**





6-12 months: It's another baby! 13-20 months: withdrawal, smile occasionally and make some noise 20-24 months: It's me!

an evolving trajectory of self-consciousness, essentially for self projection/referential



# **Functional Connectivity**

- is to make inferences on the structure of relationships among brain regions and across groups or time.
- Interesting scientific questions include
  - These ROIs form a network."
  - "ROIs are more connected during task A than B."
  - "Quantify the emergence and development of some brain networks."
  - Connectivity pattern differs between groups A and B."

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **Standard Method**







Graph

0.6

0.4

0.2

0

-0.2









### **Spatial and Temporal Time Series Data**



Covariates (e.g., age, gender, diagnostic, stimulus)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Motivation : The ADHD-200 Sample**

- Global competition in 2011 to develop a predictive tool for ADHD diagnosis based on functional and structural MRI of the brain
- Data were collected from 8 institutions around the world
- There are 4 groups of subjects : Typically developing children (488) ADHD Combined type(158) ADHD Hyperactive/Impulsive type (11) ADHD Inattentive type (110)
- Our goals of study :

Find group difference using time course data Find brain regions and time frequencies where ADHD groups show strong signals, compared with control group

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Time course data**

### **Region of interest**

| -0.076 | -0.030 | 0.004  | 0.063  | -0.109 | -0.085 | -0.020 | 0.039  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| -0.077 | -0.017 | -0.011 | 0.091  | -0.211 | -0.103 | -0.030 | 0.083  |
| -0.052 | 0.009  | -0.011 | 0.088  | -0.273 | -0.109 | -0.021 | 0.119  |
| -0.016 | 0.034  | 0.012  | 0.049  | -0.259 | -0.104 | 0.004  | 0.122  |
| 0.011  | 0.040  | 0.052  | -0.013 | -0.175 | -0.093 | 0.028  | 0.081  |
| 0.027  | 0.020  | 0.090  | -0.074 | -0.070 | -0.087 | 0.038  | 0.009  |
| 0.042  | -0.013 | 0.107  | -0.113 | -0.003 | -0.094 | 0.033  | -0.063 |
| 0.066  | -0.038 | 0.100  | -0.118 | 0.000  | -0.111 | 0.026  | -0.103 |
| 0.096  | -0.037 | 0.082  | -0.091 | -0.033 | -0.123 | 0.036  | -0.097 |
| 0.116  | -0.004 | 0.072  | -0.042 | -0.046 | -0.111 | 0.067  | -0.056 |
| 0.109  | 0.047  | 0.078  | 0.016  | 0.004  | -0.063 | 0.107  | -0.012 |
| 0.078  | 0.098  | 0.089  | 0.064  | 0.112  | 0.010  | 0.133  | 0.009  |
| 0.043  | 0.129  | 0.086  | 0.087  | 0.225  | 0.077  | 0.125  | -0.002 |
| 0.030  | 0.135  | 0.056  | 0.072  | 0.280  | 0.107  | 0.084  | -0.033 |
| 0.046  | 0.116  | 0.009  | 0.021  | 0.252  | 0.085  | 0.033  | -0.067 |



### NYU data have 117 time points. AAL atlas divides brain into 116 regions of interest.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

**Time point** 



### Periodogram



0.015 0.012 0.001 0.003 0.018 0.022 0.004 0.003 0.011 0.007 0.009 0.007 0.003 0.008 0.006 0.001 0.027 0.018 0.024 0.031 0.106 0.112 0.063 0.033 0.019 0.019 0.029 0.014 0.005 0.007 0.014 0.006 0.006 0.009 0.007 0.004 0.002 0.009 0.002 0.001 0.004 0.000 0.003 0.002 0.002 0.019 0.001 0.000 0.003 0.001 0.016 0.006 0.004 0.006 0.004 0.003 0.002 0.012 0.008 0.004 0.001 0.000 0.008 0.004  $0.013\,0.009\,0.011\,0.014\,0.001\,0.001\,0.014\,0.011$ 0.027 0.019 0.004 0.004 0.007 0.012 0.006 0.002  $0.010\,0.017\,0.000\,0.005\,0.004\,0.001\,0.001\,0.000$ 0.0040.0000.0090.0020.0030.0100.0050.0010.005 0.002 0.010 0.002 0.002 0.006 0.000 0.000 0.004 0.004 0.002 0.006 0.000 0.001 0.007 0.007 0.002 0.002 0.002 0.000 0.003 0.001 0.005 0.004

### < An example of periodogram >

Band-pass filter (0.009<f<0.08 Hz) was used to exclude frequencies not implicated in resting state functional connectivity



0.020

0.035

0.049

0.064

20

40

60

ROI

frequency

# **Mean Spectrum**

### **Control group**

### 0.35 0.3 0.25 U.2 0.2 booker about 0.2 booker booke 0.1 0.05 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 frequency

80

100

### ADHD combined subtype

0.35

0.3

0.25

untipeds Javed 0.2

0.1

0.05

0

0.01

0.02

20

40

60

ROI

80

### **ADHD** inattentive subtype



0.25

0.2

0.15

0.1

0.05

100





0.04

frequency

0.05

0.06

0.07

0.08



### before





after penalization



Ine UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL



# **Testing differences among three groups**



13<sup>th</sup> ROI : triangular part of inferior frontal gyrus (left) → language

74<sup>th</sup> ROI : right putamen → movement regulation and some forms of learning



### **Controls vs ADHD combined subtype**



### ROIs include:

Dorsolateral prefrontal cortex, Anterior prefrontal cortex, Inferior prefrontal gyrus, insular cortex, Motor cortex, Dorsal anterior cingulate cortex, Ventral anterior cingulate cortex, Visual cortex, Somatosensory cortex, Supramarginal gyrus, Temporal gyri (superior, middle, inferior), Parahippocampal gyrus, cerebellum



# **Controls vs ADHD inattentive subtype**



ROIs include:

Dorsolateral prefrontal cortex, Anterior prefrontal cortex, Inferior prefrontal gyrus, insular cortex, Motor cortex, Visual cortex, Somatosensory cortex, Temporal gyri (superior, middle), cerebellum



# ADHD combined subtype vs inattentive subtype



### ROIs include:

Dorsolateral prefrontal cortex, Anterior prefrontal cortex, Inferior prefrontal gyrus, insular cortex, Motor cortex, Visual cortex, Somatosensory cortex, Temporal gyri (superior, middle), Parahippocampal gyrus, cerebellum



### Conclusion

- In resting-state fMRI studies, abnormalities were found in anterior cingulate cortex, prefrontal cortex, putamen, temporal cortex, and cerebellum (Anderson et al, 2002; Tamm et al, 2004; Schulz et al, 2004; Valera et al, 2005; Tian et al, 2006; Cao et al, 2006; Cao et al, 2006; Toplak et al, 2006; Cherkasova and Hechtman, 2009)
- Especially, it is well-known that cerebellum, basal ganglia, and prefrontal cortex are important in ADHD.
- We found that normal controls and ADHD children show differences in several brain regions, including prefrontal cortex, motor cortex, cingulate cortex, visual cortex, somatosensory cortex, temporal gyrus, and cerebellum.
- We also identified some important frequencies by applying a penalization method (

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **Project VI. Imaging Genetics**






Environment





**Imaging genetics** allows for the identification of how common genetic polymorphisms influencing molecular processes (e.g., serotonin signaling), bias neural pathways (e.g., amygdala reactivity), mediating individual differences in complex behavioral **Relatively Increased** processes (e.g., trait anxiety) related to disease risk in response to environmental adversity.

Relatively Increased Amygdala Reactivity

Relatively Increased

**Temperamental Anxiety** & Threat Sensitivity

Relatively Increased

Susceptibility for Affective Disorders

5-HT Signaling

(Hariri AR, Holmes A.

Genetics of emotional regulation:

the role of the serotonin transporter in neural function.

Trends Cogn Sci. [10:182–191])



#### **Directed Acyclic Graphs for Imaging Genetic Studies**



http://en.wikipedia.org/wiki/DNA\_sequence



# **Neuroimaging Phenotype**



Multivariate, smoothed functions, and piecewisely smoothed functions Dimension varies from 100~500,000.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **Genetic Data**

| X | $\langle \langle$ | X  |   | St fr |     |    |
|---|-------------------|----|---|-------|-----|----|
| K | N <sup>10</sup>   | (C | 5 | ((    | (۲  | X  |
| π | r                 | 12 |   | н     | 11  | 22 |
|   | 18                | 8  |   | 28    | 9.8 | 51 |













# **Imaging Genetics**



Hibar, et al. HBM 2012







## **Simulation I**

N = 150, 200, 250, 300

q = 50, 100, 150, 200

 $\begin{array}{l} \textbf{e_i} \sim \textbf{Normal (0, Cov(e_i))} \\ \text{Var}(e_{ij}) &= 1 \quad , j = 1 \sim q \\ \text{Cov}(e_{i1}, e_{i2}) = 0.6 \\ \text{Cov}(e_{i1}, e_{ij}) = 0.3 \quad , j = 3 \sim q \\ \text{Cov}(e_{ij}, e_{ik}) = 0.1 \quad , j = 2 \sim q, k = 3 \sim q \end{array}$ 

 $y_i = B^t x_i + e_i$ 

 $H_0$ : (β<sub>1,SNP</sub>, ..., β<sub>q,SNP</sub>) = 0

 $\beta_{1,SNP} = 0.5$  $\beta_{2,diagnosis} = 0.5$ Others are zero P = 5 Interest : Additive SNP – MAF 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 Diagnosis Status ~ Bernoulli (0.5) 3 Continuous covariates ~ Normal ( 0, V) ( $v_{ii} = 1$  and  $v_{ij} = 0.3$ )



# **Results: Type I Error**





# **Results: Type I Error**





#### **Results: Power**





#### **Results: Power**





## **Simulation II**

#### **Voxed Based**

### **True Value**

#### **Our Method**









# **Results: Hypothesis Testing** $H_0: \sigma_v^2(v) = 0 vs H_1: \sigma_v^2(v) \neq 0$





# **Neonatal Study**

- Objective: Identify putative genes impacts early age brain development
- Subject: 237 infants (128 M, 109 F)
- Image: 47 ROIs from diffusion-weighted images and T1 weighted images which was assessed once for each subject
- Demographic Info: Gestational age (264.0 ± SD 18.91 days), Age after birth (30.2 ± SD 17.8 days), Gender, ICV (481799.9 ± SD 61528.96), 9 SNPs
- Method: Projection Regression Method (PRM)



# **Neonatal Study**

 Null Hypothesis H<sub>0</sub>: the i<sup>th</sup> SNP has no effects on the brain volume size, while adjusting for other SNPs and demographic information

| Gene                              | Abbreviation | SNP        | P-value |
|-----------------------------------|--------------|------------|---------|
| Catechol-O-methyltransferase      | COMT         | rs4680     | 0.88    |
| Disrupted-in-schizophrenia-1      | DISC1        | rs821616   | 0.75    |
|                                   |              | rs6675281  | 0.016   |
| Neuregulin 1                      | NRG1         | rs35753505 | 0.0136  |
|                                   |              | rs6994992  | 0.51    |
| Estrogen Receptor Alpha           | ESR1         | rs9340799  | 0.44    |
|                                   |              | rs2234693  | 0.57    |
| Brain-derived Neurotrophic Factor | BDNF         | rs6265     | 0.60    |
| Glutamate Decarboxylase 1         | GAD1 (GAD67) | rs2270335  | 0.39    |



### **ADNI Study**

- Objective: Heritability of 93 Regional Brain Volumes
  explained by all common SNPs
- Subject: 818 elders/747
- Genetic Data: 620,901/512,905 SNPs
- Demographic Info: Gender, Baseline age, Diagnostic status, Handedness, Education Level, first ten eigenfunctions

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## Brain structure is highly heritable

#### Heritability by chromosome

Proportion of Variance Explained by each Chromosome





### **Highly heritable brain structures**

| Region     | <b>Estimated Heritability</b> | LRT P-value |
|------------|-------------------------------|-------------|
| ICV        | 0.80331                       | 0.0368      |
| GM Volume  | 1.00E-06                      | 0.5         |
| WM Volume  | 1.00E-06                      | 0.5         |
| CSF Volume | 0.60148                       | 0.0965      |

|     | Jakob<br>ROI |                                      | Estimated    |             |         |
|-----|--------------|--------------------------------------|--------------|-------------|---------|
| ROI | Label        | Description                          | Heritability | LRT P-value | Cluster |
| 39  | 53           | caudate nucleus right                | 0.999999     | 0.0159      | 1       |
| 40  | 54           | cuneus left                          | 0.999999     | 0.00694     | 1       |
| 68  | 100          | entorhinal cortex right              | 0.999999     | 0.000844    | 1       |
| 59  | 88           | superior parietal lobule right       | 0.874851     | 0.0236      | 1       |
| 89  | 175          | cuneus right                         | 0.762135     | 0.0415      | 1       |
| 43  | 59           | temporal lobe WM right               | 0.757369     | 0.0528      | 1       |
| 52  | 73           | occipital lobe WM left               | 0.734196     | 0.0523      | 1       |
| 11  | 11           | globus palladus right                | 0.710845     | 0.0591      | 1       |
| 58  | 86           | perirhinal cortex right              | 0.695142     | 0.0685      | 1       |
| 8   | 8            | lateral ventricle right              | 0.683006     | 0.0848      | 1       |
| 67  | 99           | lateral occipitotemporal gyrus right | 0.641683     | 0.0699      | 1       |
| 5   | 5            | precentral gyrus right               | 0.620564     | 0.087       | 1       |



## Acknowledgement

