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Motivation: Neuroimaging Data 
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Large Neuroimaging Data 

www.guysandstthomas.nhs.uk/.../T/Twins400.jpg  

NIH normal brain development 
   1000 Functional Connectome Project 
      Alzheimer’s Disease Neuroimaging Initiative 
          National Database for Autism Research (NDAR) 
              Human Connectome Project 
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Complex Study Design 

51⇔ρ

91⇔ρ

95⇔ρ

  cross-sectional studies; 
        clustered studies including  
              longitudinal and twin/familial studies;  
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Complex Data Structure 

Multivariate Imaging Measures 
      Smooth Functional Imaging Measures 
           Whole-brain Imaging Measures 
                 4D-Time Series Imaging Measures  
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Group Analysis Applications 

Longitudinal/Family Brain Group Differences Prediction 

Imaging Genetics 

NC/Diseased 

Multimodal Analysis 

DTI FLAIR 
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http://en.wikipedia.org/wiki/DNA_sequence 
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Roles of Imaging Data 
Image-on-scalar (IS) model: 
Image data as response, clinical variables as predictors. 
 Scalar-on-image (SI) model: 
Clinical variables as response, image data as predictors. 
 

Image-on-image (II) model: 
Image data as response, image data as predictors. 
 

Image-on-Genetic (IG) model: 
Image data as response, genetic data as predictors. 
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Challenges in Image Data 
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Image 
Reconstruction 

Image 
Registration 

Image 
Smoothing 

Statistical 
Analysis 

Statistical  
Modelling 

Multiple 
Comparisons 

Identify brain regions associated with covariates of interest   
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Independently and sequentially run each step. 
 
Each step has profound effects on the final statistical  
results and scientific findings.  
 
Most existing statistical methods ignore the effects of 
image registration and inherent spatial feature on 
statistical analysis. 
 

Cons  
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Image Registration 

Image registration is the process of transforming 
different sets of data into one coordinate system. 
Given a reference image R and a template image T, 
find a reasonable transformation Y, such that the 
transformed image T[Y] is similar to R.    
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Method LPBA40 IBSR18 CUMC12 MGH10 

FLIRT 59.29±11.94 39.71±13.00 39.63±11.51 46.24±14.03 

AIR 65.23±10.72 41.41±13.35 42.52±11.90 47.99±14.10 

ANIMAL 66.20±10.17 46.31±13.51 42.78±11.95 50.40±15.21 

ART 71.85±9.59 51.54±14.42 50.54±12.16 56.10±15.33 

D. Demons 68.93±9.23 46.83±13.37 46.45±11.46 52.28±14.94 

FNIRT 70.07±9.80 47.63±14.15 46.53±12.26 49.54±14.58 

IRTK 70.02±10.26 52.09±14.97 51.75±12.45 54.90±15.70 

JRD-fuild 70.02±9.83 48.95±13.87 46.37±12.06 52.33±14.81 

ROMEO 68.49±10.12 46.48±13.91 44.49±13.04 51.23±14.55 

SICLE 60.41±16.21 44.53±13.03 42.08±12.19 48.36±14.31 

SyN 71.46±10.86 52.81±14.85 51.63±12.60 56.83±15.81 

SPM_N1 66.97±10.14 42.10±13.25 36.70±12.43 49.77±14.54 

SPM_N2 57.13±14.95 37.18±14.11 42.93±11.75 43.16±15.88 

SPM_US3 68.62±9.00 45.29±12.60 44.81±11.35 49.61±14.08 

SPM_D4 67.15±18.34 54.02±14.70 51.98±13.91 54.31±16.05 

S-HAMMER 72.48±8.46 55.47±11.27 53.74±9.82 58.20±15.03 

 
 

[1] SPM 5 (“SPM2-type” Normalization) 
[2] SPM 5 (Normalization)   [3] SPM 5 (Unified Segmentation)  [4] SPM 5 (DARTEL Toolbox) 

[1] Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song, 
J.H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey, R.V., 2009. Evaluation of 14 
nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786-802. 
[2] Wu, G., Kim, M., Wang, Q., Shen, D.: Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Images. MICCAI 2012, 
Nice, France (2012) 

Brain image dataset with 
manually labeled ROIs 

Registration ErrorS  



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

•  Smoothing method is independent of data 
•  Degree of smoothness is arbitrary  
•  Effect of smoothness is profound  
•  The relationship between smoothing method  
and study design is unknown 

Jones et al. (2006),  
Yue et al. (2010) 

Smoothing ErrorS 
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Real Twin Data 

Gaussian Smoothing Twin-MARM 
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Spatial Pattern 
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Spatial Correlation 

Long-range Correlation  Short-range Correlation  

“Unmodeled effects” “Signal Processing” 
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Data types 
Euclidean-valued data (non-normal distributed data) 

Manifold-valued data 

M-rep 
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Image-on-Scalar: Voxel-based Analysis 

Reading materials: 
1.  D.O. Siegmund, K.J. Worsley (1995). Testing for a signal with unknown location and scale in a stationary gaussian random field. 

Ann. Stat., 23, pp. 608–639.  
2.  TE Nichols and S Hayasaka. Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Statistical 

Methods in Medical Research, 12:419–446, 2003. 
3.  WL Luo and TE Nichols. Diagnosis & Exploration of Massively Univariate Neuroimaging Models. NeuroImage, 19:1014–1032, 2003. 
4.  K.J. Worsley, J.E. Taylor, F. Tomaiuolo, J. Lerch (2004). Unified univariate and multivariate random field theory. Neuroimage, 23, pp. 

189–195. 
5.  Penny, Flandin, and Trujillo-Bareto (2005). Bayesian comparison of spatially regularised general linear models. Human Brain 

Mapping, 28: 275-293.  
6.  Harrison, Penny, Ashburner, Trujillo-Bareto, and Friston. (2007). Diffusion-based spatial priors for imaging. NeuroImage, 38: 677-695. 
7.  Bowman, F. D., Caffo, B. A, Bassett, S., and Kilts, C. (2008).  Bayesian Hierarchical Framework for Spatial Modeling of fMRI Data. 

NeuroImage 39: 146–156. 
8.  L Xu, TD Johnson, TE Nichols, DE Nee. Modeling inter-subject variability in fMRI activation location: A Bayesian hierarchical spatial 

model. Biometrics, 65(4):10410–51, 2009.  
9.  Chumbley, K.J. Worsley, G. Flandin, K.J. Friston (2010). Topological fdr for neuroimaging Neuroimage, 49 (4), pp. 3057–3064. 
10.  Y Yue, JM Loh, MA Lindquist. (2010). Adaptive spatial smoothing of fMRI images. Statistics and its Interface 3, 3-13. 
11.  G Salimi-Khorshidi, SM Smith, TE Nichols. Adjusting the effect of nonstation- arity in cluster-based and TFCE inference. 

Neuroimage, 54(3):2006-19, 2011. 
12.  TE Nichols. Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62(2):811-815, 2012. 
13.  Zhao, L., Boucher, M., Rosa-Neto, P., Evans, A., (2013). Impact of scale space search on age- and gender-related changes in mri-

based cortical morphometry. Human Brain Mapping, in press.  
14.  Nicholas J. Tustison, Brian B. Avants, Philip A. Cook, Junghoon Kim, John Whyte, James C. Gee and James R. Stone. (2013).  

Logical circularity in voxel-based analysis: normalization strategy may induce statistical bias. Human Brain Mapping, In press.  
15.  Michelle F. Miranda, Hongtu Zhu, and Joseph G. Ibrahim. (2013). Bayesian Analysis of Spatial Transformation Models with 

Applications in Neuroimaging Data. Biometrics, in press.  
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      Voxel Based Analysis (VBA) 

Random Field Theory: functional data and local smoothness 
FDR 

Yi = {Yi (d) : d ! D}{(xi,Yi ) : i =1,!,n}

p(Yi | xi )
i=1

n

! =
i=1

n

! p(Yi (d) | xi,!(d))
d"D
!

Data 

VBA 

Stage 1: Model Fitting 

Stage 2: Hypothesis Testing 

H0 :!(d) =!*(d) for all voxels 
H1 :!(d) !!*(d) for some voxels 

Ignore spatial smoothness 

Stage 0: Gaussian Kernel Smoothing 
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VBA 

Potential large smoothing errors.  
 
Treat voxels as independent units/images as a 
collection of independent voxels.  
 
Ignore spatial correlation and smoothness 
   in statistical analysis. 
 
Inaccurate for both Prediction and Estimation. 
 
Decrease statistical power. 
 

Cons  
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      VBA Bayesian Extensions 

Bayesian Modeling  
   

Pro:  
•        Computationally straightforward; 
•        Bayesian inference based on MCMC samples 

p(! |Y )!{ p(Yi | xi,! )
i=1

n

" }p(! ) = {
i=1

n

" p(Yi (d) | xi,!(d))
d#D
" }p(! )

p(! ) = p({!(d) : d ! D})Spatial smooth prior 

Con:  
•        Computationally heavy; 
•        Lack of understanding for Bayesian inference tools. 
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Example 

T (Yi (d),!(d)) = xi
T"(d)+# (d)$i (d)

Spatial Transformation Model 

where                is a Box-Cox transformation function at d.   T (.,!(d))
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      VBA Frequentist Extensions 

   

Spatial Correlation 
Spatial Smoothness 

p(Yi | xi,! )
i=1

n

!

Con:  
•       Derive all inference tools. 

i=1

n

! p(Yi (d) | xi,!(d))
d"D
!

Pro:  
•        Computationally easy and fast; 
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  Image-on-Scalar: Varying Coefficient Models 

Reading materials: 
1.  Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and Zhu, H.T. (2013). A longitudinal functional analysis 

framework for analysis of white matter tract statistics. NeuroImage, in press.  
2.  Yuan, Y., Zhu, H.T., Styner, M.,  J. H. Gilmore.,  and Marron, J. S. (2013). Varying coefficient model for modeling diffusion tensors 

along white matter bundles. Annals of Applied Statistics. 7(1):102-125.. 
3.  Zhu, H.T., Li, R. Z., Kong, L.L. (2012). Multivariate varying coefficient models for functional responses.  Ann. Stat. 40, 2634-2666.  
4.  Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and Zhu, HT.  (2012). Semiparametric  Bayesian local functional models for 

diffusion tensor tract statistics.  NeuroImage, 63, 460-674.   
5.  Zhu, HT., Kong, L.,  Li, R., Styner, M.,  Gerig, G., Lin, W. and  Gilmore, J. H. (2011).  FADTTS: Functional Analysis of Diffusion Tensor 

Tract Statistics, NeuroImage, 56, 1412-1425. 
6.  Zhu, H.T., Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010).  FRATS: functional regression analysis of DTI tract 

statistics. IEEE  Transactions on Medical Imaging, 29, 1039-1049. 
7.  Greven, S., Crainiceanu, C., Caffo, B., Reich, D. (2010). Longitudinal principal component analysis. E.J.Statist. 4, 1022-1054. 
8.  Goodlett, C.B., Fletcher, P. T., Gilmore, J. H., Gerig, G. (2009). Group analysis of dti fiber tract statistics with application to 

neurodevelopement.  NeuroImage, 45, S133-S142. 
9.  Yushkevich, P. A., Zhang, H., Simon, T., Gee, J. C. (2008). Structure-specific statistical mapping of white matter tracts. NeuroImage, 

41, 448-461.  
10.  Ramsay, J. O., Silverman, B. W. (2005). Functional Data Analysis, Springer-Verlag, New York.  
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Smooth Neuroimaging Data 

Smooth Functional Data 

Covariates (e.g., age, gender, diagnostic) 
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(e) 

DTI Fiber Tract Data 

Data 

  

! 

Yi(s j ) = (yi,1(s j ),!,yi,m (s j ))
T

•  Diffusion properties (e.g., FA, RA) 

  

! 

{s1,!,snG }•  Grids 

•  Covariates (e.g., age, gender, diagnostic) 

  

! 

x1,!,xn

! 

FA

! 

MD

! 

"1

! 

"2

! 

"3
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Longitudinal Extensions 

yi (s, t) = xi (t)
T B (s)+ zi (t)

T!i (s)+"i (s, t)+#i (s, t)

Functional Mixed Effect Models 

Spatial-temporal Process Longitudinal Data 

yi (s, t1)
yi (s, t2 )
yi (s, t3)t

s

Objectives: 
Dynamic functional effects of covariates of interest on functional response. 
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Functional mixed effects 
model 

Initial estimator Local constant and functional 
principal component  analysis 

Simultaneous 
confidence bands 

)()(  :H
)()( :H

01

00

sbsCB
sbsCB

≠

=

)()()()()( ssszsBxsy ijij
T
ij

T
ijij εηξ +++=

Resampling 
method 

Resampling 
method 

Hypothesis 
test 

(c) 

(d) (d) 

(f) (g) 

Refined estimator 

∑
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(b) 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Real Data 

DTImaging parameters: 
 
•  TR/TE = 5200/73 ms 
•  Slice thickness = 2mm 
•  In-plane resolution = 2x2 mm^2 
•  b = 1000 s/mm^2 
•  One reference scan b = 0 s/mm^2 
•  Repeated 5 times when 6 gradient 
directions applied. 

genu 
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Real Data 
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Real Data Analysis Results 
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Real Data Analysis Results 
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     Image-on-Scalar: Multiscale Adaptive Regression Models 

Reading materials: 
1.  Zhu, HT., Fan, J.Q., and Kong, L. (2013). Spatial varying coefficient model and its  applications in neuroimaging data with jump 

discontinuity. in submission.  
2.  Li, YM, John Gilmore, JA Lin, Shen DG, Martin, S., Weili Lin, and Zhu, HT. (2013). Multiscale  adaptive generalized estimating 

equations for longitudinal neuroimaging data.  72, 91-105.     
3.  Li, YM, John Gilmore, JP Wang, M. Styner, Weili Lin, and Zhu, HT. (2012). Two-stage  spatial adaptive analysis of twin neuroimaging 

data. IEEE Transactions on Medical  Imaging. 31, 1100-12. 
4.  Skup, M., Zhu, H.T., and Zhang HP. (2012). Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying 

covariates. Biometrics, 68(4):1083-1092. 
5.  Shi, XY, Ibrahim JG, Styner M., Yimei Li, and Zhu, HT. (2011). Two-stage adjusted  exponential tilted empirical likelihood for 

neuroimaging data. Annals of Applied Statistics, 5, 1132-1158. 
6.  Li, YM,   Zhu HT,  Shen DG, Lin WL, Gilmore J, and Ibrahim JG. (2011).  Multiscale adaptive regression models for neuroimaging 

data. JRSS, Series B, 73, 559-578. 
7.  Polzehl, Jörg; Voss, Henning U.; Tabelow, Karsten. Structural adaptive segmentation for statistical parametric mapping 

NeuroImage, 52 (2010) pp. 515--523. 
8.  Polzehl, J. and Spokoiny, V. G. (2006). Propagation-separation approach for local likelihood estimation. Probability Theory and 

Related Fields, 135, 335-362. 
9.  J. Polzehl, V. Spokoiny, (2000)  Adaptive Weights Smoothing with applications to image restoration, J. R. Stat. Soc. Ser. B Stat. 

Methodol., 62 pp. 335--354. 
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Image is the point or set of points in the range corresponding  
       to a designated point in the domain of a given function. 

! 

f :"#M $ Rm

! 

˜ x "#$ Rk

! 

f ( ˜ x )"M # Rm

! 

" is a compact set. 

|| f (!x)||k d !x  
!" <#  for some k>0

Mathematics. 
Noisy Piecewise Smooth  

Functions  
with  Unknown 

Jumps and Edges 

Piecewise Smooth Data 
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Noisy Piecewise Smooth Function with  Unknown Jumps and Edges 

Neuroimaging Data with Discontinuity 

Subject1 Subject2 

Covariates (e.g., age, gender, diagnostic, stimulus) 
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Multiscale Adaptive Regression Model
  Voxel-wise Approach 

             MARM 

                                           

denotes the set of all voxels in a homogeneous region 

MARM 5

among others.

Statistically, our primary interest is to build the conditional distribution of YD = {Yi,D : i = 1, · · · , n} given

X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-sectional design, it is natural to assume that data from

different subjects are independent, that is p(YD|X) =
�n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi)

for each i. However, the number of voxels in each brain region can be more than 500,000 voxels, and at each

voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling a billion or more data points in an

entire study. In addition, imaging data Yi,D are spatially correlated in nature, and thus given the large number

of voxels on each brain structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.

The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =

�

d∈D
p(Yi(d)|xi,θ(d)), (1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))
T

is a p× 1 vector in

an open subset Θ of Rp
. Note that due to possible model misspecification, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’

density function for Yi(d). Model (1) is general enough to comprise most statistical models in the existing voxel-

wise approach. However, since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contains spatially contiguous regions of activation with rather sharp edges, it may lead to loss

of power in detecting statistical significance in the analysis of neuroimaging data.

We propose the multiscale adaptive regression model as follows. Assume that for a relatively large radius r0,

p(Yi,D|Xi) can be well approximated by the product of p({Yi(d�) : d� ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
�

d∈D
p({Yi(d

�
) : d� ∈ B(d, r0)}|xi), (2)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with radius r0. Using the data

in all of the B(d, r0)’s can at least preserve the local spatial correlation structure in the imaging data; see panels

(a)-(c) in Fig. 1. Moreover, since for a given radius r0, the spherical neighborhoods B(d, r0) of all voxels are

consecutively connected, (2) can capture a substantial amount of global spatial information in the neuroimaging

data. Statistically, the right hand-side of (2) can be regarded as a composite likelihood (Lindsay, 1988; Varin,

2008).

In many neuroimaging studies, our primary interest is to make statistical inference about a vector of parameters

of interest, denoted by θ(d), at each voxel d ∈ D. It would be very efficient to utilize all the data {Yi(d�) : d� ∈

B(d, r0)} to estimate θ(d). Instead of specifying spatial correlations among all the {Yi(d�) : d� ∈ B(d, r0)}, assume

MARM 5

among others.

Statistically, our primary interest is to build the conditional distribution of YD = {Yi,D : i = 1, · · · , n} given

X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-sectional design, it is natural to assume that data from

different subjects are independent, that is p(YD|X) =
�n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi)

for each i. However, the number of voxels in each brain region can be more than 500,000 voxels, and at each

voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling a billion or more data points in an

entire study. In addition, imaging data Yi,D are spatially correlated in nature, and thus given the large number

of voxels on each brain structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.

The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =

�

d∈D
p(Yi(d)|xi,θ(d)), (1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))
T

is a p× 1 vector in

an open subset Θ of Rp
. Note that due to possible model misspecification, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’

density function for Yi(d). Model (1) is general enough to comprise most statistical models in the existing voxel-

wise approach. However, since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contains spatially contiguous regions of activation with rather sharp edges, it may lead to loss

of power in detecting statistical significance in the analysis of neuroimaging data.

p(Yi,D|Xi) ≈
�

Dk

p({Yi(d
�
) : d� ∈ Dk}|xi), (2)

We propose the multiscale adaptive regression model as follows. Assume that for a relatively large radius r0,

p(Yi,D|Xi) can be well approximated by the product of p({Yi(d�) : d� ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
�

d∈D
p({Yi(d

�
) : d� ∈ B(d, r0)}|xi), (3)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with radius r0. Using the data

in all of the B(d, r0)’s can at least preserve the local spatial correlation structure in the imaging data; see panels

(a)-(c) in Fig. 1. Moreover, since for a given radius r0, the spherical neighborhoods B(d, r0) of all voxels are

consecutively connected, (2) can capture a substantial amount of global spatial information in the neuroimaging

data. Statistically, the right hand-side of (2) can be regarded as a composite likelihood (Lindsay, 1988; Varin,

2008).

In many neuroimaging studies, our primary interest is to make statistical inference about a vector of parameters

of interest, denoted by θ(d), at each voxel d ∈ D. It would be very efficient to utilize all the data {Yi(d�) : d� ∈

MARM 5

among others.

Statistically, our primary interest is to build the conditional distribution of YD = {Yi,D : i = 1, · · · , n} given

X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-sectional design, it is natural to assume that data from

different subjects are independent, that is p(YD|X) =
�n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi)

for each i. However, the number of voxels in each brain region can be more than 500,000 voxels, and at each

voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling a billion or more data points in an

entire study. In addition, imaging data Yi,D are spatially correlated in nature, and thus given the large number

of voxels on each brain structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.

The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =

�

d∈D
p(Yi(d)|xi,θ(d)), (1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))
T

is a p× 1 vector in

an open subset Θ of Rp
. Note that due to possible model misspecification, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’

density function for Yi(d). Model (1) is general enough to comprise most statistical models in the existing voxel-

wise approach. However, since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contains spatially contiguous regions of activation with rather sharp edges, it may lead to loss

of power in detecting statistical significance in the analysis of neuroimaging data.

p(Yi,D|Xi) ≈
�

Dk

p({Yi(d
�
) : d� ∈ Dk}|xi), (2)

We propose the multiscale adaptive regression model as follows. Assume that for a relatively large radius r0,

p(Yi,D|Xi) can be well approximated by the product of p({Yi(d�) : d� ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
�

d∈D
p({Yi(d

�
) : d� ∈ B(d, r0)}|xi), (3)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with radius r0. Using the data

in all of the B(d, r0)’s can at least preserve the local spatial correlation structure in the imaging data; see panels

(a)-(c) in Fig. 1. Moreover, since for a given radius r0, the spherical neighborhoods B(d, r0) of all voxels are

consecutively connected, (2) can capture a substantial amount of global spatial information in the neuroimaging

data. Statistically, the right hand-side of (2) can be regarded as a composite likelihood (Lindsay, 1988; Varin,

2008).

In many neuroimaging studies, our primary interest is to make statistical inference about a vector of parameters

of interest, denoted by θ(d), at each voxel d ∈ D. It would be very efficient to utilize all the data {Yi(d�) : d� ∈
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among others.

Statistically, our primary interest is to build the conditional distribution of YD = {Yi,D : i = 1, · · · , n} given

X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-sectional design, it is natural to assume that data from

different subjects are independent, that is p(YD|X) =
�n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi)

for each i. However, the number of voxels in each brain region can be more than 500,000 voxels, and at each

voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling a billion or more data points in an

entire study. In addition, imaging data Yi,D are spatially correlated in nature, and thus given the large number

of voxels on each brain structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.

The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =

�

d∈D
p(Yi(d)|xi,θ(d)), (1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))
T

is a p× 1 vector in

an open subset Θ of Rp
. Note that due to possible model misspecification, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’

density function for Yi(d). Model (1) is general enough to comprise most statistical models in the existing voxel-

wise approach. However, since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contains spatially contiguous regions of activation with rather sharp edges, it may lead to loss

of power in detecting statistical significance in the analysis of neuroimaging data.

p(Yi,D|Xi) ≈
�

Dk

p({Yi(d
�
) : d� ∈ Dk}|xi), (2)

We propose the multiscale adaptive regression model as follows. Assume that for a relatively large radius r0,

p(Yi,D|Xi) can be well approximated by the product of p({Yi(d�) : d� ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
�

d∈D
p({Yi(d

�
) : d� ∈ B(d, r0)}|xi), (3)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with radius r0. Using the data

in all of the B(d, r0)’s can at least preserve the local spatial correlation structure in the imaging data; see panels

(a)-(c) in Fig. 1. Moreover, since for a given radius r0, the spherical neighborhoods B(d, r0) of all voxels are

consecutively connected, (2) can capture a substantial amount of global spatial information in the neuroimaging

data. Statistically, the right hand-side of (2) can be regarded as a composite likelihood (Lindsay, 1988; Varin,

2008).

In many neuroimaging studies, our primary interest is to make statistical inference about a vector of parameters

of interest, denoted by θ(d), at each voxel d ∈ D. It would be very efficient to utilize all the data {Yi(d�) : d� ∈
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Fig. 1. Illustration of the key features in the multiscale adaptive regression model. For a relatively large radius r0, panel (a)

shows the overlapping spherical neighborhoods B(d, r0) of multiple points (or voxels) d on the cortical surface. Panel (b)

shows the spherical neighborhoods with four different bandwidths h of the six selected points d on the cortical surface. Panel

(c) shows the spherical neighborhoods B(d, r0) of three selected voxels in a 3D volume, in which voxels A and C are inside

the activated regions, whereas voxel B is on the boundary of an activated region.

B(d, r0)} to estimate θ(d). Instead of specifying spatial correlations among all the {Yi(d�) : d� ∈ B(d, r0)}, assume

that p({Yi(d�) : d� ∈ B(d, r0)}|xi) can be approximated by

p({Yi(d
�
) : d� ∈ B(d, r0)}|xi) ≈

�

d�∈B(d,r0)

p(Yi(d
�
)|xi,θ(d))

ω(d,d�;r0), (4)

where ω(d, d�;h) as a weight function of two voxels and a radius h characterizes the similarity between the data in

voxels d and d�. We require that ω(d, d�;h) be independent of i just for simplicity. In neuroimaging data, voxels,

which are not on the boundary of regions of activation, often have a neighborhood in which θ(d) is nearly constant.

This assumption reflects the fact that neuroimaging data are spatially correlated and contain spatially contiguous

regions of activation with rather sharp edges. Moreover, the weights ω(d, d�; r0) can prevent incorporating voxels

whose data do not contain information on θ(d), and thus preserve the edges of the regions of activation. Finally,

we obtain an approximation of p(Yi,D|Xi) given by

p(Yi,D|Xi) ≈
�

d∈D
{

�

d�∈B(d,r0)

p(Yi(d
�
)|xi,θ(d))

ω(d,d�;r0)}. (5)

An important issue for MARM is to determine ω(d, d�; r0). We use a multiscale strategy to adaptively deter-

mine {ω(d, d�; r0) : d, d� ∈ D} and then we adaptively estimate θ(d) and its associated test statistic. Our multiscale

strategy starts with building a sequence of nested spheres with increasing radiuses h0 = 0 < h1 < · · · < hS = r0

ranging from the smallest scale h0 = 0 to a large scale hS = r0 at each d ∈ D (panel (b) in Fig. 1). By setting
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Fig. 1. Illustration of the key features in the multiscale adaptive regression model. For a relatively large radius r0, panel (a)

shows the overlapping spherical neighborhoods B(d, r0) of multiple points (or voxels) d on the cortical surface. Panel (b)

shows the spherical neighborhoods with four different bandwidths h of the six selected points d on the cortical surface. Panel

(c) shows the spherical neighborhoods B(d, r0) of three selected voxels in a 3D volume, in which voxels A and C are inside

the activated regions, whereas voxel B is on the boundary of an activated region.

B(d, r0)} to estimate θ(d). Instead of specifying spatial correlations among all the {Yi(d�) : d� ∈ B(d, r0)}, assume

that p({Yi(d�) : d� ∈ B(d, r0)}|xi) can be approximated by

p({Yi(d
�
) : d� ∈ B(d, r0)}|xi) ≈

�

d�∈B(d,r0)

p(Yi(d
�
)|xi,θ(d))

ω(d,d�;r0), (4)

where ω(d, d�;h) as a weight function of two voxels and a radius h characterizes the similarity between the data in

voxels d and d�. We require that ω(d, d�;h) be independent of i just for simplicity. In neuroimaging data, voxels,

which are not on the boundary of regions of activation, often have a neighborhood in which θ(d) is nearly constant.

This assumption reflects the fact that neuroimaging data are spatially correlated and contain spatially contiguous

regions of activation with rather sharp edges. Moreover, the weights ω(d, d�; r0) can prevent incorporating voxels

whose data do not contain information on θ(d), and thus preserve the edges of the regions of activation. Finally,

we obtain an approximation of p(Yi,D|Xi) given by

p(Yi,D|Xi) ≈
�

d∈D
{

�

d�∈B(d,r0)

p(Yi(d
�
)|xi,θ(d))

ω(d,d�;r0)}. (5)

An important issue for MARM is to determine ω(d, d�; r0). We use a multiscale strategy to adaptively deter-

mine {ω(d, d�; r0) : d, d� ∈ D} and then we adaptively estimate θ(d) and its associated test statistic. Our multiscale

strategy starts with building a sequence of nested spheres with increasing radiuses h0 = 0 < h1 < · · · < hS = r0

ranging from the smallest scale h0 = 0 to a large scale hS = r0 at each d ∈ D (panel (b) in Fig. 1). By setting
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among others.

Statistically, our primary interest is to build the conditional distribution of YD = {Yi,D : i = 1, · · · , n} given

X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-sectional design, it is natural to assume that data from

different subjects are independent, that is p(YD|X) =
�n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi)

for each i. However, the number of voxels in each brain region can be more than 500,000 voxels, and at each

voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling a billion or more data points in an

entire study. In addition, imaging data Yi,D are spatially correlated in nature, and thus given the large number

of voxels on each brain structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.

The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =

�

d∈D
p(Yi(d)|xi,θ(d)), (1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))
T

is a p× 1 vector in

an open subset Θ of Rp
. Note that due to possible model misspecification, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’

density function for Yi(d). Model (1) is general enough to comprise most statistical models in the existing voxel-

wise approach. However, since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contains spatially contiguous regions of activation with rather sharp edges, it may lead to loss

of power in detecting statistical significance in the analysis of neuroimaging data.

p(Yi,D|Xi) ≈
�

Dk

p({Yi(d
�
) : d� ∈ Dk}|xi), (2)

h0 = 0 < h1 < · · · < hS = r0

We propose the multiscale adaptive regression model as follows. Assume that for a relatively large radius r0,

p(Yi,D|Xi) can be well approximated by the product of p({Yi(d�) : d� ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
�

d∈D
p({Yi(d

�
) : d� ∈ B(d, r0)}|xi), (3)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with radius r0. Using the data

in all of the B(d, r0)’s can at least preserve the local spatial correlation structure in the imaging data; see panels

(a)-(c) in Fig. 1. Moreover, since for a given radius r0, the spherical neighborhoods B(d, r0) of all voxels are

consecutively connected, (3) can capture a substantial amount of global spatial information in the neuroimaging
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ω(d, d�;h0) = 1, we can estimate θ(d) at scale h0, denoted by θ̂(d;h0), and construct a test statistic Wµ(d, h0).

Then, based on the information contained in {θ̂(d;h0) : d ∈ D}, we use methods as detailed below to calculate

weights ω(d, d�;h1) at scale h1 for all d ∈ D. In this way, we can sequentially determine ω(d, d�;hs) and adaptively

update θ̂(d;hs) and Wµ(d, hs) from h0 = 0 to hS = r0. A path diagram of the multiscale strategy is given below:

ω(d, d�;h0) ω(d, d�;h1) · · · ω(d, d�;hS = r0)

⇓ � ⇓ � · · · � ⇓

θ̂(d;h0) θ̂(d;h1) · · · θ̂(d;hS)

⇓ ⇓ · · · ⇓

Wµ(d;h0) Wµ(d;h1) · · · Wµ(d;hS)

(6)

At each iteration, the computation involved for MARM is of the same order as that for the voxel-wise approach.

Thus, this multiscale method provides an efficient method for adaptively exploring the neighboring areas of each

voxel. Since MARM sequentially includes more data at each iteration, it will adaptively increase the statistical

efficiency in estimating θ(d) in a homogenous region and decreases the variation of the weights ω(d, d�;h). This

multiscale strategy distinguishes MARM from the composite likelihood methods in the literature (Lindsay, 1988;

Varin, 2008).

2.2. Estimation and Hypothesis Testing At a Fixed Radius

We present the estimation method and test statistic at each d ∈ D for a fixed radius h. Specifically, we consider

maximum weighted likelihood estimates of θ(d) across all voxels d ∈ D given the current weights {ω(d, d�;h) :

d, d� ∈ D}. For the sphere with radius h of the voxel d, the weighted quasi-likelihood function �n(θ(d);h, ω̃) is

given by

�n(θ(d);h, ω̃) =
n�

i=1

�

d�∈B(d,h)

ω̃(d, d�;h) log p(Yi(d�)|xi,θ(d)), (7)

which utilizes all data in {Yi(d�) : d� ∈ B(d, h)} and the weights {ω(d, d�;h) : d� ∈ B(d, h)}, where ω̃(d, d�;h) =

ω(d, d�;h)/
�

d�∈B(d,h) ω(d, d�;h). Thus, the maximum weighted quasi-likelihood (MWQL) estimate of θ(d), de-

noted by θ̂(d, h), is defined by

θ̂(d, h) = argmaxθ(d)n
−1�n(θ(d);h, ω̃). (8)

Numerically, we use various algorithms, such as Newton-type algorithms, to estimate θ̂(d, h). Throughout the

paper, the Newton-Raphson algorithm is used to calculate θ̂(d, h) by iterating

θ̂(d, h)(t+1) = θ̂(d, h)(t) + {−∂2
θ(d)

�n(θ̂(d, h)(t);h, ω̃)}−1∂θ(d)�n(θ̂(d, h)(t);h, ω̃),

Being  Adaptive    
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An important issue for MARM is to determine ω(d, d�; r0). We use a multiscale strategy to adaptively deter-

mine {ω(d, d�; r0) : d, d� ∈ D} and then we adaptively estimate θ(d) and its associated test statistic. Our multiscale

strategy starts with building a sequence of nested spheres with increasing radiuses h0 = 0 < h1 < · · · < hS = r0

ranging from the smallest scale h0 = 0 to a large scale hS = r0 at each d ∈ D (panel (b) in Fig. 1). By setting

ω(d, d�;h0) = 1, we can estimate θ(d) at scale h0, denoted by θ̂(d;h0), and construct a test statistic Wµ(d, h0).

Then, based on the information contained in {θ̂(d;h0) : d ∈ D}, we use methods as detailed below to calculate

weights ω(d, d�;h1) at scale h1 for all d ∈ D. In this way, we can sequentially determine ω(d, d�;hs) and adaptively

update θ̂(d;hs) and Wµ(d, hs) from h0 = 0 to hS = r0. A path diagram of the multiscale strategy is given below:

ω(d, d�;h0) ω(d, d�;h1) · · · ω(d, d�;hS = r0)

⇓ � ⇓ � · · · � ⇓

θ̂(d;h0) θ̂(d;h1) · · · θ̂(d;hS)

⇓ ⇓ · · · ⇓

Wµ(d;h0) Wµ(d;h1) · · · Wµ(d;hS)

(6)

At each iteration, the computation involved for MARM is of the same order as that for the voxel-wise approach.

Thus, this multiscale method provides an efficient method for adaptively exploring the neighboring areas of each

voxel. Since MARM sequentially includes more data at each iteration, it will adaptively increase the statistical

efficiency in estimating θ(d) in a homogenous region and decreases the variation of the weights ω(d, d�;h). This

multiscale strategy distinguishes MARM from the composite likelihood methods in the literature (Lindsay, 1988;

Varin, 2008).

2.2. Estimation and Hypothesis Testing At a Fixed Radius

We present the estimation method and test statistic at each d ∈ D for a fixed radius h. Specifically, we consider

maximum weighted likelihood estimates of θ(d) across all voxels d ∈ D given the current weights {ω(d, d�;h) :

d, d� ∈ D}. For the sphere with radius h of the voxel d, the weighted quasi-likelihood function �n(θ(d);h, ω̃) is

given by

�n(θ(d);h, ω̃) =

n�

i=1

�

d�∈B(d,h)

ω̃(d, d�;h) log p(Yi(d
�
)|xi,θ(d)), (7)

which utilizes all data in {Yi(d�) : d� ∈ B(d, h)} and the weights {ω(d, d�;h) : d� ∈ B(d, h)}, where ω̃(d, d�;h) =

ω(d, d�;h)/
�

d�∈B(d,h) ω(d, d�;h). Thus, the maximum weighted quasi-likelihood (MWQL) estimate of θ(d), de-

noted by θ̂(d, h), is defined by

θ̂(d, h) = argmaxθ(d)n
−1�n(θ(d);h, ω̃). (8)

8

Numerically, we use various algorithms, such as Newton-type algorithms, to estimate θ̂(d, h). Throughout the

paper, the Newton-Raphson algorithm is used to calculate θ̂(d, h) by iterating

θ̂(d, h)(t+1) = θ̂(d, h)(t) + {−∂2
θ(d)

�n(θ̂(d, h)(t);h, ω̃)}−1∂θ(d)�n(θ̂(d, h)(t);h, ω̃),

where ∂θ(d) and ∂2
θ(d)

denote, respectively, the first- and second-order partial derivatives with respect to θ(d)

evaluated at θ̂(d, h)(t). To stabilize the Newton-Raphson algorithm, we approximate −∂2
θ(d)

�n(θ̂(d, h)(t);h, ω̃)

by E[−∂2
θ(d)

�n(θ̂(d, h)(t);h, ω̃)]. We stop the Newton-Raphson algorithm when the absolute difference between

consecutive θ̂(d, h)(t)’s is smaller than a predefined small number, say 10−4. After convergence, Cov[θ̂(d, h)] can

be approximated by

Cov[θ̂(d, h)] ≈ Σn(θ̂(d, h)) = [Σn,1(θ̂(d, h))]−1Σn,2(θ̂(d, h))[Σn,1(θ̂(d, h))]−1
, (9)

where Σn,1(θ(d)) = −∂2
θ(d)

�n(θ(d);h, ω̃) and

Σn,2(θ(d)) =
n�

i=1

[
�

d�∈B(d,h)

ω̃(d, d
�;h)∂θ(d) log p(Yi(d�)|xi,θ(d))]⊗2

,

in which a⊗2 = aaT for any vector a.

Our choice of which hypotheses to test is motivated by either a comparison of brain structure (or function)

across diagnostic groups or the detection of a change in brain structure (or function) across time (Styner et al.,

2005; Thompson and Toga, 2002; Zhu et al., 2007a). These questions of interest usually can be formulated as

testing hypotheses about θ(d) as follows:

H0,µ : R(θ(d)) = b0 vs. H1,µ : R(θ(d)) �= b0, (10)

where µ = R(θ(d)) is an r× 1 vector function of θ(d) with p ≥ r and b0 is an r× 1 specified vector. We test the

null hypothesis H0,µ : R(θ(d)) = b0 using the Wald test statistic Wµ(d, h), which is given by

[R(θ̂(d;h))− b0]T [∂θ(d)R(θ̂(d;h))Σ̂n(θ̂(d;h))∂θ(d)R(θ̂(d;h))T ]−1[R(θ̂(d;h))− b0]. (11)

To test whether H0,µ holds in all voxels of the region under study, we may consider various statistical methods

including the false discovery rate (FDR) method (Benjamini and Hochberg, 1995) and the random field theory

(Worsley et al., 2004). In most applications, we are interested in testing H0 : R(θ(d)) = R0θ(d) for a given r× k

matrix R0. For simplicity, we only consider testing H0 : R0θ(d) = b0 from here on.

2.3. Adaptive Estimation and Testing Procedure

We develop an adaptive estimation and testing (AET) procedure evolving from the smallest scale h0 = 0 to the

largest scale hS = r0 for MARM. The AET procedure starts with an individual voxel d ∈ D and then successively

Newton-Raphson Algorithm 

Expectation-Maximization Algorithm 

Weighted quasi-likelihood  
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Then, based on the information contained in {θ̂(d;h0) : d ∈ D}, we use methods as detailed below to calculate

weights ω(d, d�;h1) at scale h1 for all d ∈ D. In this way, we can sequentially determine ω(d, d�;hs) and adaptively

update θ̂(d;hs) and Wµ(d, hs) from h0 = 0 to hS = r0. A path diagram of the multiscale strategy is given below:

ω(d, d�;h0) ω(d, d�;h1) · · · ω(d, d�;hS = r0)

⇓ � ⇓ � · · · � ⇓

θ̂(d;h0) θ̂(d;h1) · · · θ̂(d;hS)

⇓ ⇓ · · · ⇓

Wµ(d;h0) Wµ(d;h1) · · · Wµ(d;hS)

(5)

At each iteration, the computation involved for MARM is of the same order as that for the voxel-wise approach.

Thus, this multiscale method provides an efficient method for adaptively exploring the neighboring areas of each

voxel. Since MARM sequentially includes more data at each iteration, it will adaptively increase the statistical

efficiency in estimating θ(d) in a homogenous region and decreases the variation of the weights ω(d, d�;h). This

multiscale strategy distinguishes MARM from the composite likelihood methods in the literature (Lindsay, 1988;

Varin, 2008).

θ̂(d, h) = argmaxθ(d)n
−1�n(θ(d);h, ω̃). (6)

2.2. Estimation and Hypothesis Testing At a Fixed Radius

We present the estimation method and test statistic at each d ∈ D for a fixed radius h. Specifically, we consider

maximum weighted likelihood estimates of θ(d) across all voxels d ∈ D given the current weights {ω(d, d�;h) :

d, d� ∈ D}. For the sphere with radius h of the voxel d, the weighted quasi-likelihood function �n(θ(d);h, ω̃) is

given by

�n(θ(d);h, ω̃) =
n�

i=1

�

d�∈B(d,h)

ω̃(d, d�;h) log p(Yi(d�)|xi,θ(d)), (7)

which utilizes all data in {Yi(d�) : d� ∈ B(d, h)} and the weights {ω(d, d�;h) : d� ∈ B(d, h)}, where ω̃(d, d�;h) =

ω(d, d�;h)/
�

d�∈B(d,h) ω(d, d�;h). Thus, the maximum weighted quasi-likelihood (MWQL) estimate of θ(d), de-

noted by θ̂(d, h), is defined by

θ̂(d, h) = argmaxθ(d)n
−1�n(θ(d);h, ω̃). (8)

Numerically, we use various algorithms, such as Newton-type algorithms, to estimate θ̂(d, h). Throughout the

paper, the Newton-Raphson algorithm is used to calculate θ̂(d, h) by iterating

θ̂(d, h)(t+1) = θ̂(d, h)(t) + {−∂2
θ(d)

�n(θ̂(d, h)(t);h, ω̃)}−1∂θ(d)�n(θ̂(d, h)(t);h, ω̃),

MWQLE 
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where ∂θ(d) and ∂2
θ(d)

denote, respectively, the first- and second-order partial derivatives with respect to θ(d)
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where Σn,1(θ(d)) = −∂2
θ(d)

�n(θ(d);h, ω̃) and

Σn,2(θ(d)) =
n�

i=1

[
�

d�∈B(d,h)

ω̃(d, d
�;h)∂θ(d) log p(Yi(d�)|xi,θ(d))]⊗2

,

in which a⊗2 = aaT for any vector a.

Our choice of which hypotheses to test is motivated by either a comparison of brain structure (or function)

across diagnostic groups or the detection of a change in brain structure (or function) across time (Styner et al.,

2005; Thompson and Toga, 2002; Zhu et al., 2007a). These questions of interest usually can be formulated as

testing hypotheses about θ(d) as follows:

H0,µ : R(θ(d)) = b0 vs. H1,µ : R(θ(d)) �= b0, (10)

where µ = R(θ(d)) is an r× 1 vector function of θ(d) with p ≥ r and b0 is an r× 1 specified vector. We test the

null hypothesis H0,µ : R(θ(d)) = b0 using the Wald test statistic Wµ(d, h), which is given by

[R(θ̂(d;h))− b0]T [∂θ(d)R(θ̂(d;h))Σ̂n(θ̂(d;h))∂θ(d)R(θ̂(d;h))T ]−1[R(θ̂(d;h))− b0]. (11)

To test whether H0,µ holds in all voxels of the region under study, we may consider various statistical methods

including the false discovery rate (FDR) method (Benjamini and Hochberg, 1995) and the random field theory

(Worsley et al., 2004). In most applications, we are interested in testing H0 : R(θ(d)) = R0θ(d) for a given r× k

matrix R0. For simplicity, we only consider testing H0 : R0θ(d) = b0 from here on.

2.3. Adaptive Estimation and Testing Procedure

We develop an adaptive estimation and testing (AET) procedure evolving from the smallest scale h0 = 0 to the

largest scale hS = r0 for MARM. The AET procedure starts with an individual voxel d ∈ D and then successively

increases the radius (or bandwidth) hs of a spherical neighborhood around each d ∈ D. For a given d ∈ D, each

voxel d
� in the neighborhood of d will be given a weight ω(d, d

�;hs) that depends on the distance between d and d
�
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among others.

Statistically, our primary interest is to build the conditional distribution of YD = {Yi,D : i = 1, · · · , n} given

X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-sectional design, it is natural to assume that data from

different subjects are independent, that is p(YD|X) =
�n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi)

for each i. However, the number of voxels in each brain region can be more than 500,000 voxels, and at each

voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling a billion or more data points in an

entire study. In addition, imaging data Yi,D are spatially correlated in nature, and thus given the large number

of voxels on each brain structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.

The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =

�

d∈D
p(Yi(d)|xi,θ(d)), (1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))
T

is a p× 1 vector in

an open subset Θ of Rp
. Note that due to possible model misspecification, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’

density function for Yi(d). Model (1) is general enough to comprise most statistical models in the existing voxel-

wise approach. However, since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contains spatially contiguous regions of activation with rather sharp edges, it may lead to loss

of power in detecting statistical significance in the analysis of neuroimaging data.

p(Yi,D|Xi) ≈
�

Dk

p({Yi(d
�
) : d� ∈ Dk}|xi), (2)

h0 = 0 < h1 < · · · < hS = r0

We propose the multiscale adaptive regression model as follows. Assume that for a relatively large radius r0,

p(Yi,D|Xi) can be well approximated by the product of p({Yi(d�) : d� ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
�

d∈D
p({Yi(d

�
) : d� ∈ B(d, r0)}|xi), (3)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with radius r0. Using the data

in all of the B(d, r0)’s can at least preserve the local spatial correlation structure in the imaging data; see panels

(a)-(c) in Fig. 1. Moreover, since for a given radius r0, the spherical neighborhoods B(d, r0) of all voxels are

consecutively connected, (3) can capture a substantial amount of global spatial information in the neuroimaging

As S increases, the first kernel gets larger for any voxel pairs, whereas  
the second kernel penalizes more and more for the voxel pairs with  
distinctive features.  
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Voxel size is much larger than the sample size 

Sample size increases to infinity, whereas voxel size is fixed 

A multiscale adaptive procedure 

Propagation-separation conditions do not work  
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Multiscale Adaptive Regression Model 
 

log(Voxel size)<<Cn << sample size 

Kernel functions 

Conditions for M-estimators hold uniformly 

Weak Consistency 

Asymptotical Normality 

Asymptotically Chi-squared distribution 
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Infant Brain Development Data 
•  Objective: We  want to assess the brain structure 

change in the early brain development.  

•  Subject: 38 infants.  

•  Image: Diffusion-weighted images and T1 weighted 
images were acquired for each subject at 2 weeks, 1 and 
2 years old.  

•  Method: Voxel-wise imaging analysis and MARM. 
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  Adaptive Neighhoods 

Parametric and Nonparametric 
Components 

Cross-sectional, longitudinal,  
twin and family studies 

Robust Procedure 

  Adaptive Weights 

New Developments 
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SVCM 

yi (d ) = xi
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Long-range Correlation 
Short-range Correlation Piecewise Smooth 

Varying Coefficients 

Decomposition: 

Covariance operator: 

3D volume/ 
2D surface 
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SVCM 

  

Piecewise Smoothness Condition Bk (d)
•  Disjoint Partition 

•  Piecewise Smoothness: Lipschitz condition 

•  Local Patch  

•  Degree of Jumps 

φ=∩∪= = '1  and  lll
L
l DDDD
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Challenging Issues   

0.38 

0 

-0.38 

0.24 

0 

-0.24 

0.04 

0 

-0.04 

•  Smoothing coefficient images, while preserving  
    unknown boundaries  
•  Different patterns in different coefficient images 
•  Calculating standard deviation images 
•  Asymptotic theory  

yi (d ) = xi
T B(d )+!i (d )+!i (d ), d ! D
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   Adaptively Smoothing LSEs 

!̂! (d ,d ') = !̂i (d )!̂i (d ')
T
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 Estimate covariance operator  

 Least Squares Estimates 

SVCM 
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Smoothing residual images 

  Calculate standard deviation 

!̂i (d ) = S(yi (d )! xi
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Propogation-Seperation Method  
J. Polzehl and V. Spokoiny,  (2000,2005) 
 

•  Increasing Bandwidth 

Smoothing Methods 

Features 

•  Adaptive Weights 

•  Adaptive Estimates 

0100 rhhh S =<<<< 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

                  
Propogation-Seperation Method 

•  Increasing Bandwidth 

Smoothing Methods 

•  Adaptive Weights 

•  Adaptive Estimates 

0100 rhhh S =<<<< 

d

!(d,d ';h1)

µ̂(d;h1)

!(d,d ';h2 )

µ̂(d;hS )

!(d,d ';h2 )

!(d,d ';hs ) = Kloc (|| d ! d ' || /hs )Kst (Dµ (d,d ';hs!1) /Cn )
Dµ (d,d ';hs!1) = "(µ̂(d;hs!1), µ̂(d ';hs!1)) Stopping Rule 

At each voxel 

µ̂(d;h0 )
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              How to determine              ? 
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Simulation 
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Simulation 
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Simulation 
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Real Data 
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Real Data 
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Real Data 
ADHD200 NYU Data 
 
Subjects:   174 subjects, 99 normal and 75 ADHD-combined  
Response:     RAVEN  map  
Covariates: age, gender, group, G*Age, G*Gender  
                     and whole brain volume 
Goal:           Group*Age and Group*Gender 
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First Four Eigenfunctions 
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Significant Regions 
Age  Diagnotic Status×

Gender  Diagnostic status×
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Prediction 
Raw  
Image 

GLM 

SVCM 
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Prediction 
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Focus on the Mild Cognitive Impairment people	

	

     Interested in predicting the timing of an MCI patient that 

converts to the AD by considering the imaging data, the clinical 
and genetic covariates.	


	

	


The ADNI data	
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The imaging data: radial distance obtained from left and right	

 hippocampus, 15000 dimensional vector each	

	

The clinical covariates: Gender, Handedness, Marital Status, 

Education length, Retirement and Age. 	

	

The genetics covariates: APOE4 genotypes	

	




The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

	

Semiparametric functional linear Cox regression	

	

	

	

	

Using Functional Principal Component Analysis	
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For the first functional predictor, the first three functional principal	

 components are significant. 	

	

For the second functional predictor, the first and the fifth 

components are significant.	

	

Indicates that both left hippocampus and right hippocampus have	

 significant effect on the conversion.	

	

For the clinical and genetics covariates, the gender, age and the 

genotype of the second allele in APOE4 are significant.	
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Panel (a) is the color bar illustration. Panel (b) are the estimated of the coefficient functions. 	

Panel (c)-(i) represent the first seven estimated eigenfunctions for both predictors.	
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