Big Data Challenges in Neuroscience and Neuroimaging Studies

Hongtu Zhu, Ph.D
Department of Biostatistics† and Biomedical Research Imaging Center‡
The University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA
Outline

• Big Data Challenges (BDC)

• BDC in Neuroscience and Neuroimaging

• Big Data Integration
Big Data Challenges
Big Data

What? Wikipedia for Big data

Big data refers to data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process data within a tolerable elapsed time.

Big data is a set of techniques and technologies that require new forms of integration to uncover large hidden values from large datasets that are diverse, complex, and of a massive scale.

Size?

A few dozen terabytes to many petabytes of data.

Characteristics?

Volume, Variety, Velocity, Variability, Veracity, Complexity, …
Big Data or Pig Data

Why?

Answer questions of commercial or scientific interest.

What matters?

Ensuring accurate and appropriate data collection.
Correct variables, Collection methods (techniques and sampling),
Quality assurance and Quality control

Does it work?

Big data does not work in many cases, since we do not know
(i) which variables (information at which scale) are critical;
(ii) whether we are able to collect such information.
Big data integration is to integrate multiple sources of data to improve knowledge discovery.

Data Sources Discovery: all related information

Data Exploration (e.g., meta analysis):
(i) the use of prior knowledge, and its efficient storage;
(ii) the development of statistical methods to analyze heterogeneous data sets;
(iii) the creation of data explorative tools that incorporate both useful summary statistics and new visualization tools.
Human Genome Project

The HGP aims to determine the sequence of chemical base pairs which make up human DNA and identify and map all of the genes of the human genome.

1000 Genomes Project

Encyclopedia of DNA Elements Project (ENCODE)

The Cancer Genome Atlas Project (TGCA) is to generate insights into the heterogeneity of different cancer subtypes by creating a map of molecular alternations for every type of cancer at multiple levels.

Immunological Genome Project (ImmGen)
HBP and BRAIN

The Brain Research through Advancing Innovative Neurotechnologies or BRAIN, aims to reconstruct the activity of every single neuron as they fire simultaneously in different brain circuits, or perhaps even whole brains.

The Human Brain Project aims to simulate the complete human brain on Supercomputers to better understand how it functions.
The four aims of BD2K are:

1. To facilitate broad use of biomedical digital assets by making them discoverable, accessible, and citable.
2. To conduct research and develop the methods, software, and tools needed to analyze biomedical data.
3. To enhance training in the development and use of methods and tools necessary for biomedical Big Data science.
4. To support a data ecosystem that accelerates discovery as part of a digital enterprise.
Precision medicine (PM) is a medical model that proposes the customization of healthcare—with medical decisions, practices, and/or products being tailored to the individual patient.

Precision Medicine refers to the tailoring of medical treatment to the individual characteristics of each patient. It does not literally mean the creation of drugs or medical devices that are unique to a patient, but rather the ability to classify individuals into subpopulations that differ in their susceptibility to a particular disease, in the biology and/or prognosis of those diseases they may develop, or in their response to a specific treatment.
Study Design

Scientific Questions

Design: cross-sectional studies; clustered studies including longitudinal and twin/familial studies;
Neuroimaging research examples:

- Structural MRI
- Diffusion MRI
- Functional MRI (resting)
- Functional MRI (task)

Overview
- Variety of acquisitions
- Measurement basics
- Limitations & artefacts
- Analysis principles
- Acquisition tips

PET
EEG/MEG
CT
Calcium
Multi-Omic Data

- SNP
- CNV
- LOH
- Genomic rearrangement
- Rare variant

- DNA methylation
- Histone modification
- Chromatin accessibility
- TF binding
- miRNA

- Gene expression
- Alternative splicing
- Long non-coding RNA
- Small RNA

- Protein expression
- Post-translational modification
- Cytokine array

- Metabolite profiling in serum, plasma, urine, CSF, etc.

Figure 1 | More comprehensive analysis of multi-omic information in the omic data.

Data integration

Why integrate data?

In this Review, we describe the principles of meta-dimensional analysis and multi-staged analysis, and provide an overview of some of the approaches that may improve our understanding of the mechanism involving the interactions between, variation in DNA, gene expression, methylation, metabolites and proteins (the important genomic factors and their interactions) that explain or predict disease risk or other biological outcomes. The success in understanding the architecture of complex traits or phenotypes has been modest, and this could be due to our limited exploration of the interactions among these variables to allow more thorough and comprehensive analyses.

The primary motivation behind integrated data analysis is to identify key genomic factors, and importantly the interactions, that explain or predict disease risk or other biological outcomes. The concept of integrating multiple different data types to build a multi-variant model associated with a given outcome reflects the complexity within biological systems.
Clinical Data and Acquisition

Clinical Data: a variety of clinical sources to present a unified view of a single patient.

Clinical laboratory test results, patient demographics, pharmacy information, hospital admission, discharge and transfer date, progress report, etc.

Clinical Acquisition:

- Paper or electronic medical records
- Paper forms completed at a site
- Interactive voice response systems
- Local electronic data capture systems
- Central web based systems
Data Exploration

Data Analysis

• **Single Level Data Analysis** for imaging or omics data, e.g., denoise, segmentation, cluster, network,

• **Multi-level Data Analysis** for across imaging or omics data

• **Prediction** by integrating imaging, clinical, and omics data.

Software/Computing Language/
Apache Spark

Data growing faster than processing speeds

Only solution is to parallelize on large clusters

» Wide use in both enterprises and web industry

How do we program these things?
Cloud Computing

- Shared pool of configurable computing resources
- On-demand network access
- Provisioned by the Service Provider

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by Peter Mell, Tim Grance
BDC in Neuroscience and Neuroimaging
The brain is the main organ of the nervous system and is composed of neurons, glial cells and blood vessels.

Brain regions communicate with one another in complex spatiotemporal patterns, which enable

- the formation of creative thoughts,
- the acquisition of new skills, and
- the adaptation of human behavior.
Fundamental Questions

• How do individual brain areas interact with one another to enable cognitive function?
• How is cognition constrained by white matter pathways?
• How does the brain transition between functions like memory, attention, and movement?
• How do we control the interactions between different neural circuits in our brains?
• How learned information is physically stored in the brain?
• How psychiatric diseases affect brain structure and function?
• How genetic and environmental interactions influence brain structure and its variability?
• How the brain changes over the course of development and aging may be usefully addressed?

........
A Multiscale Physical System

The Big Picture: The Brain is a Multiscale Physical System

- stimulus – activity – measurement chain

Robinson

The van Essen diagram
A Multi-modal Approach

- Different models at different scales.
- Ladder of overlapping models.
- Must be testable against multiple phenomena.

Image by A. Galka
A Multi-modal Approach
Single Level Analysis

Imaging Construction

Image Segmentation

Example: Airway Segmentation from CT
Single Level Analysis

Registration

Group Differences

Longitudinal/Family Brain

Hibar, Dinggang, Martin
A parcellation of the whole brain is needed

Volume based

AAL template
- Salvador (2005)

Surface based

Gyral-based parcellation
- Desikan (2006)

fMRI-based parcellation
- (spatial constrained spectral clustering)
 - Craddock (2011)
- (spatial constrained hierarchical clustering)
 - Blumensath (2013)
SLA: Brain Network Analysis

Brain connectivity analysis is a promising tool for investigating the human brain’s structural and functional organization.

- Seed correlation analysis
- Graph theoretic analysis
- Independent component analysis (ICA)
A complete human cortex will require a zetabyte (1,000 exabytes) of data, an amount of data approaching that of all the information recorded globally today.

http://www.scientificamerican.com/article/c-elegans-connectome/
Multilevel Analysis

Anatomical Connectivity: a pattern of anatomical links. DTI

Functional Connectivity: statistical dependencies. rfMRI, fMRI, EEG, MEG, Cas

Effective Connectivity: causal interactions. fMRI, EEG, MEG, Cas
Fact: Functional connectivity depends on structural connectivity.

- Diffusion MRI data has blind spots.
- Functional connectomics can help inform the anatomical connectome when structural information is missing or inaccurate.

biophysical network can embody both the structural and functional architecture, and allow information from the different modalities to be fused in a mathematically principled way.
MLA: A Combined Biophysical Network Model

Schematic of a combined biophysical model

- predicts both anatomical and functional imaging data;
- can be regarded as separate generative models for anatomical and functional modalities, linked probabilistically by common parameters (green arrows).
Prediction

Data

\[\{(y_i, X_i) : i = 1, \ldots, n\} \quad X_i = \{X_i(d) : d \in D\} \]

\[y_i = f(X_i) + \varepsilon_i \]

Disease Status, Survival
Time, Treatment, Trajectories

Interesting scientific questions include

- Determine disease status
- Identify earlier biomarker
- Predict disease trajectories
- Predict survival time (e.g., time-to-event)
Neuroimage analysis and its application to computer aided diagnosis and surgery planning

Morphological analysis
Functional analysis

Image Analysis
Connectivity analysis
Tumor segmentation & visualization

Diagnosis
Surgery Planning

Data Knowledge

fMRI
sMRI
DTI
Tumor image

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Big Neuroimaging Data

NIH normal brain development
1000 Functional Connectome Project
Alzheimer’s Disease Neuroimaging Initiative
National Database for Autism Research (NDAR)
Human Connectome Project
Philadelphia Neurodevelopmental Cohort
Genome superstruct Project

www.guysandstthomas.nhs.uk/.../T/Twins400.jpg
The Human Connectome

Brain connectivity analysis is a promising tool for investigating the human brain’s structural and functional organization.

The Heavily Connected Brain
Peter Stern, “Connection, connection, connection…”, Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

- The NIH Human Connectome Project
- The Harvard/MGH-UCLA project
- The WU-Minn Project

- The EU’s 7th Framework Programme for Research
- Consortium Of Neuroimagers for the Non-Invasive Exploration of Brain Connectivity and Tracts

The BRAIN Initiative
(Brain Research through Advancing Innovative Neurotechnologies)
The Human Connectome Project

The HCP is to elucidate the neural pathways that underlie brain function and behavior.

The Heavily Connected Brain
Peter Stern, “Connection, connection, connection…”, Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

- Resting-state fMRI (rfMRI) and dMRI provide information about brain connectivity.
- Task-evoked fMRI reveals much about brain function.
- Structural MRI captures the shape of the highly convoluted cerebral cortex.
- Behavioral data relate brain circuits to individual differences in cognition, perception, and personality.
- Magnetoencephalography (MEG) combined with electroencephalography (EEG) yield information about brain function on a milisecond time scale.
Alzheimer’s Disease Neuroimaging Initiative

PI: Dr. Michael W. Weiner

- detecting AD at the earliest stage and marking its progress through biomarkers;

- A longitudinal prospective study with 1700 aged between 55 to 90 years
- Clinical Data including Clinical and Cognitive Assessments
- Genetic Data including Ilumina SNP genotyping and WGS
- MRI (fMRI, DTI, T1, T2)
- PET (PIB, Florbetapir PET and FDG-PET)
- Chemical Biomarker

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Big Data Integration
Big Data Integration

E: environmental factors

G: genetic markers

D: disease

http://en.wikipedia.org/wiki/DNA_sequence
Representative T2-weighted images (upper row) from a subject imaged over the course of the first two years of life along with the segmented left and right ventricles (lower row) are shown.

Objectives: Chart changes in brain structure

Big Data Integration

E: environmental factors
G: genetic markers
D: disease

E → G → B → D
Selection

http://en.wikipedia.org/wiki/DNA_sequence
<table>
<thead>
<tr>
<th>Imaging</th>
<th>Candidate ROI</th>
<th>Many ROI</th>
<th>Voxelwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hibar, et al. HBM 2012
High Dimensional Regression Model

Data \[\{(Y_i, X_i) : i = 1, \ldots, n\}\]

\[Y_i = \{y_i(v) : v \in V_0\}\]
\[X_i = \{X_i(g) : g \in G_0\}\]

Phenotype \(Y\) \hspace{1cm} Genotype \(X\) \hspace{1cm} Error \(E\)

\[\begin{array}{c}
n \times p_y \\
\end{array} = \begin{array}{c}
n \times p_x \\
p_x \times p_y \\
\end{array} + \begin{array}{c}
n \times p_y \\
\end{array}\]

Key Conditions:

- Sparsity of \(B\)
- Restricted null-space property for design matrix \(X\)

\[\max(p_x, p_y) \sim n\]
Connectome-Wide Genome-Wide Screen
Alzheimer risk gene

Connectome-wide GWAS

Discovery sample – Young Adults
Effect in ADNI
Within 2 weeks Sherva et al. published *SPON1*
Found in a cognitive GWAS in AD

Jahanshad et al., PNAS 2013

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Big Data Integration

E: environmental factors

G: genetic markers

D: disease

http://en.wikipedia.org/wiki/DNA_sequence
Pattern classification of neuroimages

Functional information

Pattern Classification

Quantitative Diagnosis

Structural, functional, and multimodality image classification
- Diagnosis of Schizophrenia
- Diagnosis of Alzheimer’s disease (AD)
- Clinical outcomes

Morphological information
Alzheimer’s Disease DREAM Challenge 1

Its goal is to apply an open science approach to rapidly identify accurate predictive AD biomarkers that can be used by the scientific, industrial and regulatory communities to improve AD diagnosis and treatment.

Sub 1: Predict the change in cognitive scores 24 months after initial assessment.

Sub 2: Predict the set of cognitively normal individuals whose biomarkers are suggestive of amyloid perturbation.

Sub 3: Classify individuals into diagnostic groups using MR imaging.
Big Data Integration in Health Informatics

E: environmental factors
G: genetic/genomics
I: imaging/device
D: disease
Selection

http://en.wikipedia.org/wiki/DNA_sequence
Big Data Integration

Medical Informatics & Management

Disease
- Etiology
- Prevention
- Treatment

Medical Industry
- Care
- Policy
- System
- Science
- Insurance
- Economics
- Pharmaceutical
ASA: Statistics in Imaging Section

SAMSI

2013 Neuroimaging Data Analysis
2015-2016 Challenges in Computational Neuroscience

Thank You!!