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Big Neuroimaging Data 

 

Is it really big? 
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The Brain Research through  
            Advancing Innovative Neurotechnologies or BRAIN,  
aims to reconstruct the activity of every single neuron as they fire  
simultaneously in different brain circuits, or perhaps even whole brains.  
 

aims to simulate the complete human brain on  
Supercomputers to better understand how it functions. 
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Big Neuroimaging Data 

www.guysandstthomas.nhs.uk/.../T/Twins400.jpg  

NIH normal brain development 
   1000 Functional Connectome Project 
      Alzheimer’s Disease Neuroimaging Initiative 
          National Database for Autism Research (NDAR) 
              Human Connectome Project 
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Complex Study Design 

51⇔ρ

91⇔ρ

95⇔ρ

  cross-sectional studies; 
        clustered studies including  
              longitudinal and twin/familial studies;  
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Complex Data Structure 

Multivariate Imaging Measures 
      Smooth Functional Imaging Measures 
           Whole-brain Imaging Measures 
                 4D-Time Series Imaging Measures  
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Models for Big Data Integration 
Image-on-Scalar (IS) model 

Image data as response, clinical variables as predictors. 
 

Scalar-on-Image (SI) model 
Clinical variables as response, image data as predictors 

 

Image-on-Image (II) model 
Image data as response, image data as predictors 

 

Image-on-Genetic (IG) model 
Image data as response, genetic data as predictors 
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•  Spatial Maps 

Inference 

Estimation •  `Registration’  

•  `Smoothing’  

•  `Correlation’  

•  `Spatial Heterogeneity’ 

Prediction 

Noisy Imaging Data 
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Imaging-on-Scalar Regression 
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      VBA versus FDA 

{(xi,Yi ) : i =1,!,n}Data 

•  Intrinsic Functional Approach (FDA) 

•  Intrinsic Discrete Approach  (VBA) 

Yi (•) = {Yi (d) : d ! D}

Yi = {Yi (d0 ) : d0 ! D0}

Yi = {Yi (d0 ) : d0 ! D0}
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      Functional Data Analysis (FDA) 

   

Hotelling-type Test Statistics 

yi (d) = xi
TB (d)+!i (d) !i (•) ~ SP(0,!! )

Tn
2

Y = Yi
i=1

n

! / n SY = (Yi !Y )!
i=1

n

! (Yi !Y ) / n Tn
2 = nsup||u||=1

<Y ,u >2

< u,SYu >

P(Tn
2 =!) =1

Con:  
•        Computational and theoretical difficulties 

Pro:  
•        Incorporate spatial smoothness and spatial correlation 

SY !!(SY ) SY ! diag(SY )

Big data 
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      High-dimensional Regression Models 

   

Hotelling-type Test Statistics 

Yi = BXi +!i !i (•) ~ SP(0,!! )

Tn
2

Y = Yi
i=1

n

! / n SY = (Yi !Y )
i=1

n

! (Yi !Y )
T / n Tn

2 = nsup||u||=1
<Y ,u >2

< u,SYu >

P(Tn
2 =!) =1

dim(Yi ) >> n

?? ??
(Y ,SY )!!(Y ,SY )

Big data 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

      Voxel Based Analysis (VBA) 

Random Field Theory: functional data and local smoothness 
FDR 

Yi = {Yi (d0 ) : d0 ! D0}{(xi,Yi ) : i =1,!,n}

p(Yi | xi )
i=1

n

! =
i=1

n

! p(Yi (d0 ) | xi,!(d0 ))
d"D0

!

Data 

VBA 

Stage 1: Model Fitting 

Stage 2: Hypothesis Testing 

H0 :!(d) =!*(d) for all voxels 
H1 :!(d) !!*(d) for some voxels 

Ignore spatial smoothness 

Stage 0: Gaussian Kernel Smoothing 
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VBA 

Potential large smoothing errors.  
 
Treat voxels as independent units/images as a 
collection of independent voxels.  
 
Ignore spatial correlation and smoothness 
   in statistical analysis. 
 
Inaccurate for both Prediction and Estimation. 
 
Decrease statistical power. 
 

Cons  
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      VBA Bayesian Extensions 

Bayesian Modeling  
   

Pro:  
•        Computationally straightforward; 
•        Bayesian inference based on MCMC samples 

p(! |Y )!{ p(Yi | xi,! )
i=1

n

" }p(! ) = {
i=1

n

" p(Yi (d) | xi,!(d))
d#D0

" }p(! )

p(! ) = p({!(d0 ) : d0 ! D0})Spatial smooth prior (MRF) 

Con:  
•        Computationally heavy; 
•        Lack of understanding for Bayesian inference tools. 
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Varying Coefficient Models 

Reading materials: 

1.  Zhu, H. T., Chen, K. H., Yuan, Y. and Wang, J. L. (2014). Functional Mixed Processes Models for Repeated 
Functional Data. In submission.  

2.  Liang, J. L., Huang, C., and Zhu, H.T. (2014). Functional single-index varying coefficient models. In 
submission.  

3.  Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and Zhu, H.T. (2013). A longitudinal 
functional analysis framework for analysis of white matter tract statistics. NeuroImage, in press.  

4.  Yuan, Y., Zhu, H.T., Styner, M.,  J. H. Gilmore.,  and Marron, J. S. (2013). Varying coefficient model for 
modeling diffusion tensors along white matter bundles. Annals of Applied Statistics. 7(1):102-125.. 

5.  Zhu, H.T., Li, R. Z., Kong, L.L. (2012). Multivariate varying coefficient models for functional responses.  
Ann. Stat. 40, 2634-2666.  

6.  Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and Zhu, HT.  (2012). Semiparametric  Bayesian local 
functional models for diffusion tensor tract statistics.  NeuroImage, 63, 460-674.   

7.  Zhu, HT., Kong, L.,  Li, R., Styner, M.,  Gerig, G., Lin, W. and  Gilmore, J. H. (2011).  FADTTS: Functional 
Analysis of Diffusion Tensor Tract Statistics, NeuroImage, 56, 1412-1425. 

8.  Zhu, H.T., Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010).  FRATS: functional regression 
analysis of DTI tract statistics. IEEE  Transactions on Medical Imaging, 29, 1039-1049. 

9.  Greven, S., Crainiceanu, C., Caffo, B., Reich, D. (2010). Longitudinal principal component analysis. 
E.J.Statist. 4, 1022-1054. 

10.  Goodlett, C.B., Fletcher, P. T., Gilmore, J. H., Gerig, G. (2009). Group analysis of dti fiber tract statistics 
with application to neurodevelopement.  NeuroImage, 45, S133-S142. 

11.  Yushkevich, P. A., Zhang, H., Simon, T., Gee, J. C. (2008). Structure-specific statistical mapping of white 
matter tracts. NeuroImage, 41, 448-461.  

12.  Ramsay, J. O., Silverman, B. W. (2005). Functional Data Analysis, Springer-Verlag, New York.  
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Smoothed Functional Data 

Covariates (e.g., age, gender, diagnostic) 
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(e) 

DTI Fiber Tract Data 

Data 

  

! 

Yi(s j ) = (yi,1(s j ),!,yi,m (s j ))
T

•  Diffusion properties (e.g., FA, RA) 

  

! 

{s1,!,snG }•  Grids 

•  Covariates (e.g., age, gender, diagnostic) 

  

! 

x1,!,xn

! 

FA

! 

MD

! 

"1

! 

"2

! 

"3
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MVCM 

! 

yi,k (s) = xi
TBk (s) +"i,k (s) + #i,k (s)

! 

"i,k (•) ~ SP(0,#" ) !i,k (•) ~ SP(0,!! ),

!y (s, s ') = !! (s, s ')+!! (s, s ')
  

! 

x1,!,xn
Long-range Correlation Short-range Correlation Coefficients 

Decomposition: 

Covariance operator: 

Zhu, Li, and Kong (2012). AOS 

n{vec(B̂(d)!B(d)! 0.5O(H 2 )) : d ! D} L! "! G(0,!B (d,d '))
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Diffusion Tensor Tract Statistics  

  
      

Motivation 

2 week 1 year 2 year 2 week 1 year 2 year 

FA Tensor 
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Longitudinal Extensions 

yi (s, t) = xi (t)
T B (s)+ zi (t)

T!i (s)+"i (s, t)+#i (s, t)

Functional Mixed Effect Models 

Spatial-temporal Process Longitudinal Data 

yi (s, t1)
yi (s, t2 )
yi (s, t3)t

s

Objectives: 
Dynamic functional effects of covariates of interest on functional response. 
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FMEM 

!i (•,•) ~ SP(0,!! ),   "i (•) ~ SP(0,!! ) !i (•) ~ SP(0,!! ),
Global Noise Components Local Correlated Noise 

Decomposition: 

yi (d, t) = xi (t)
T B (d)+ zi (t)

T!i (d)+!i (d, t)+!i (d, t)

n{vec(B̂(d)!B(d)! 0.5O(H 2 )) : d ! D} L! "! G(0,!B (d,d '))

Ying et al. (2014). NeuroImage. 
Zhu, Chen, Yuan, and Wang (2014). Arxiv.  
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Real Data 

DTImaging parameters: 
 
•  TR/TE = 5200/73 ms 
•  Slice thickness = 2mm 
•  In-plane resolution = 2x2 mm^2 
•  b = 1000 s/mm^2 
•  One reference scan b = 0 s/mm^2 
•  Repeated 5 times when 6 gradient 
directions applied. 

genu 
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Real Data 
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Real Data Analysis Results 
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Prediction 

Hyun,J.W., Li, Y. M.,  J. H. Gilmore, Z. Lu, M. Styner, H. Zhu (2014) NeuroImage 

yi,k (s) =

                                  f (xi ,Bk (s)+!i,k (s))
                          
                                                                 +"i,k (s)

Long-range Correlation 

Small-range Correlation 

Missing Big Data??? 
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Real Data 

Prediction Accuracy is much improved 
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Multiscale Adaptive Regression Models 

Reading materials: 
1.  Zhu, HT., Fan, J., and Kong, L. (2014). Spatial varying coefficient model and its  applications in 

neuroimaging data with jump discontinuity. JASA, in press.  
2.  Li, YM, John Gilmore, JA Lin, Shen DG, Martin, S., Weili Lin, and Zhu, HT. (2013). Multiscale  

adaptive generalized estimating equations for longitudinal neuroimaging data. NeuroImage,  72, 
91-105.     

3.  Li, YM, John Gilmore, JP Wang, M. Styner, Weili Lin, and Zhu, HT. (2012). Two-stage  spatial 
adaptive analysis of twin neuroimaging data. IEEE Transactions on Medical  Imaging. 31, 1100-12. 

4.  Skup, M., Zhu, H.T., and Zhang HP. (2012). Multiscale adaptive marginal analysis of longitudinal 
neuroimaging data with time-varying covariates. Biometrics, 68(4):1083-1092. 

5.  Shi, XY, Ibrahim JG, Styner M., Yimei Li, and Zhu, HT. (2011). Two-stage adjusted  exponential tilted 
empirical likelihood for neuroimaging data. Annals of Applied Statistics, 5, 1132-1158. 

6.  Li, YM,   Zhu HT,  Shen DG, Lin WL, Gilmore J, and Ibrahim JG. (2011).  Multiscale adaptive 
regression models for neuroimaging data. JRSS, Series B, 73, 559-578. 

7.  Polzehl, Jörg; Voss, Henning U.; Tabelow, Karsten. Structural adaptive segmentation for statistical 
parametric mapping. NeuroImage, 52 (2010) pp. 515--523. 

8.  Polzehl, J. and Spokoiny, V. G. (2006). Propagation-separation approach for local likelihood 
estimation. Probability Theory and Related Fields, 135, 335-362. 

9.  J. Polzehl, V. Spokoiny, (2000)  Adaptive Weights Smoothing with applications to image restoration, 
J. R. Stat. Soc. Ser. B Stat. Methodol., 62 pp. 335--354. 
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Image is the point or set of points in the range corresponding  
       to a designated point in the domain of a given function. 

! 

f :"#M $ Rm

! 

˜ x "#$ Rk

! 

f ( ˜ x )"M # Rm

! 

" is a compact set. 

|| f (!x)||k d !x  
!" <#  for some k>0

Mathematics. 
Noisy Piecewise Smooth  

Functions  
with  Unknown 

Jumps and Edges 

Piecewise Smooth Data 
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Noisy Piecewise Smooth Function with  Unknown Jumps and Edges 

Neuroimaging Data with Discontinuity 

Subject1 Subject2 

Covariates (e.g., age, gender, diagnostic, stimulus) 
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SVCM 

yi (d ) = f (xi ,B(d )+!i (d ))+!i (d ),d ! D

( ) ~ (0, )ij SP ηη • Σ
!ij (•) ~ SP(0,!! ),

!y (d ,d ') = !! (d ,d ')+!! (d ,d )

Long-range Correlation 
Short-range Correlation Piecewise Smooth 

Varying Coefficients 

Decomposition: 

Covariance operator: 

3D volume/ 
2D surface 

B(d )! LK
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SVCM 

  

Cartoon Model Bk (d)
•  Disjoint Partition 

•  Piecewise Smoothness: Lipschitz condition 

•  Smoothed Boundary 

•  Local Patch  

•  Degree of Jumps 

φ=∩∪= = '1  and  lll
L
l DDDD
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Challenging Issues   

0.38 

0 

-0.38 

0.24 

0 

-0.24 

0.04 

0 

-0.04 

•  Smoothing coefficient images, while preserving  
    unknown boundaries  
•  Different patterns in different coefficient images 
•  Calculating standard deviation images 
•  Asymptotic theory  
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Propogation-Seperation Method  
J. Polzehl and V. Spokoiny,  (2000,2005) 
 

•  Increasing Bandwidth 

Smoothing Methods 

Features 

•  Adaptive Weights 

•  Adaptive Estimates 

0100 rhhh S =<<<< 
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MARM 

•  Increasing Bandwidth 

Smoothing Methods 

•  Adaptive Weights 

•  Adaptive Estimates 

0100 rhhh S =<<<< 

d

!(d,d ';h1)

µ̂(d;h1)

!(d,d ';h2 )

µ̂(d;hS )

!(d,d ';h2 )

!(d,d ';hs ) = Kloc (|| d ! d ' || /hs )Kst (Dµ (d,d ';hs!1) /Cn )
Dµ (d,d ';hs!1) = "(µ̂(d;hs!1), µ̂(d ';hs!1)) Stopping Rule 

At each voxel 

µ̂(d;h0 )
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Simulation 
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Simulation 
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Simulation 
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Scalar-on-Imaging Regression 
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     Scalar-on-Image Models 

Reading materials: 

1.  Miranda, M. F., Zhu, H.T. and Ibrahim, J. G. (2014). Bayesian partial supervised tensor decomposition with 
applications in Neuorimaging data analysis. 

2.  Yang, H., Zhu, H. T., and Ibrahim, J. G. (2014). Multiscale projection model in RKHS.  
3.  Zhu, H. T. and Shen, D. (2014). Multiscale Weighted PCA for Imaging Prediction.  
4.  Guo, R.X., Ahye M., and Zhu, H. (2014). Spatially weighted PCA for imaging classification. JCGS. In revision.  
5.  Zhou, H., Li, L., and Zhu, H. (2013). Tensor regression with applications in Neuorimaging data analysis. JASA. In 

press.  

6.  Cuingnet, R., Glaunes, J. A., Chupin, M., Benali, H., Colliot, O., and ADNI. (2012). Spatial and anatomical 
regularization of SVM: a general framework for neuroimaging data. IEEE PAMI. In press.  

7.  Cai, T. & Yuan, M. (2012). Minimax and adaptive prediction for functional linear regression. JASA. 107, 
1201-1216. 

8.  Fan, J. and Lv, J. (2010). A selective overview of variable selection in high-dimensional feature space. Statistica 
Sinica, 20, 101-148.  

9.  Li, B., Kim, M. K., and Altman, N. (2010). On dimension folding of matrix or array valued statistical objects. Ann. 
Stat., 38, 1097-1121. 

10. Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least 
squares. Journal of the American Statistical Association 102, 984–996.  

11. Bair, E., Hastie, T., Paul, D. and Tibshirani, R. (2006). Prediction by supervised principal components. JASA. 101, 
119-137.  

12. Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition. Springer, New York. 
13. James, G. (2002). Generalized linear models with functional predictor variables. JRSSB. 64, 411-432.  
14. Tibshirani, Robert (1996). Regression shrinkage and selection via the lasso. JRSSB. 58, 267-288.  



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

      HRM versus FRM 

Xi = {Xi (d) : d ! D}

yi =!0 + !(d)
D
! Xi (d)m(d)+"i

Data 

Strategy 1: Discrete Approach  
                   (High-dimension Regression Model (HRM)) 

Strategy 2: Functional Regression Model (FRM) 

{(yi,Xi ) : i =1,!,n}
yi =< Xi,! > +"i
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Key Conditions: 
•  Sparsity of S 
•  Restricted null-space property for design matrix X 

High-dimension Regression Model  

Approach 1: Regularization Methods 
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Tensor Structure: •  Ultra-high dimensionality (256^3)  
•  Spatial structure 

High-dimension Regression Model  

Tucker decomposition 

CP decomposition 

!

Zhou, Li, and Zhu (2013) 
Li, Zhou, and Li (2013) 
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Simulations 

Scalar-on-Image Models 

Key Conditions: 
•  Tensor Approximation B 
•  Restricted space property for X and B 
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ADHD 200 

Scalar-on-Image Models 
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      Scalar-on-Image Models 

yi =!0 + !(d)
D
! Xi (d)m(d)+"i

Strategy 2: Functional Approach 

yi =!0 + !k
k=1

!

" "k (d)
D
# Xi (d)m(d)+#i

!(d) = !k
k=1

!

" "k (d)

K! = {!(d) = !k
k=1

!

" "k (d) : (!1,!)# "
2} C(d,d ') =Cov(X(d),X(d ')) = !k"k (d)"k (d ')

k=1

!

"

Basis Methods: fixed and data-driven basis functions 
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Key Conditions 

Key Conditions: an excellent set of basis functions 

•  Sparsity of   

•  Decay rate of spectral of  

{!k : k =1,!}

!(d) ! !k
k=1

K

" "k (d)

C(d,d ') =Cov(X(d),X(d '))

K << n
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Mild Cognitive Impairment subjects	

     Interested in predicting the timing of an MCI patient that converts to AD by 

integrating the imaging data, the clinical variables, and genetic covariates.	

	

	


The ADNI data 

Full Model:      AUC=0.96 
Partial Model:  AUC=0.82 
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Limitations 

{ !k (d)
D
! Xi (d)m(d) : d " D}{Xi (d) : d ! D}

Is this the right space for statistical inference?   
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 Rabbit and Wolf Story 

{yi : i =1,!,n} Xi = {Xi (d) : d ! D}

!Xi = { !Xi (d) : d ! D0}Gi =G{ !Xi (d) : d ! D0}

yi = f (Gi )+!i

yi = f0 (Xi )+!i
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Feature Space Determination 

Xi = {Xi (d) : d ! D}

!Xi = { !Xi (d) : d ! D0}
Splitting/Weighting  methods  

Gi =G{ !Xi (d) : d ! D0}

Level sets 
Factor Models 

yi =!0 + !(d)
Dk

! Xi (d)m(d)
k
" +"i yi =!0 + !(d)

D
! w(d)Xi (d)m(d)+"i

Splitting Weighting 
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Spatially Weighted PCA 
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Spatially Weighted PCA 
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Multiscale Factor Prediction Model 
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Multiscale Factor Prediction Model 
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Multiscale Factor Prediction Model 
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ASA: Statistics in Imaging Section 

SAMSI  
 
     2013 Neuroimaging Data Analysis  
     2015-2016 Challenges in Computational Neuroscience 
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