



## Functional Data Analysis of Big Neuroimaging Data

Hongtu Zhu, Ph.D Department of Biostatistics<sup>†</sup> and Biomedical Research Imaging Center<sup>‡</sup> The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Acknowledgement: Some pictures were copied from multiple resources including Suetens (2009), Fass (2008), Dr. Niethammer, Drs. Lindquist, Rowe, Huettel, Wiki, google, gustaf@cb.uu.se, etc.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Big Neuroimaging Data**

# Is it really big?





Human Brain Project

aims to simulate the complete human brain on Supercomputers to better understand how it functions BR/



BRAIN Funding Opportunities

#### The Brain Research through

Advancing Innovative Neurotechnologies or BRAIN, aims to reconstruct the activity of every single neuron as they fire simultaneously in different brain circuits, or perhaps even whole brains.









## **Big Neuroimaging Data**

### NIH normal brain development 1000 Functional Connectome Project Alzheimer's Disease Neuroimaging Initiative National Database for Autism Research (NDAR) Human Connectome Project





www.guysandstthomas.nhs.uk/.../T/Twins400.jpg



## **Complex Study Design**

### cross-sectional studies; clustered studies including longitudinal and twin/familial studies;







### **Complex Data Structure**

#### Multivariate Imaging Measures Smooth Functional Imaging Measures Whole-brain Imaging Measures 4D-Time Series Imaging Measures





### **Big Data Integration**



http://en.wikipedia.org/wiki/DNA\_sequence



## **Models for Big Data Integration**

Image-on-Scalar (IS) model Image data as response, clinical variables as predictors.

Scalar-on-Image (SI) model Clinical variables as response, image data as predictors

Image-on-Genetic (IG) model Image data as response, genetic data as predictors

#### Image-on-Image (II) model Image data as response, image data as predictors





## **Noisy Imaging Data**

- Spatial Maps
- Registration'
- `Smoothing'
- Correlation'



Inference

**Prediction** 

Spatial Heterogeneity'





## **Imaging-on-Scalar Regression**



### **VBA versus FDA**

- **Data**  $\{(x_i, Y_i) : i = 1, \dots, n\}$   $Y_i = \{Y_i(d_0) : d_0 \in D_0\}$ 
  - Intrinsic Discrete Approach (VBA)  $Y_i = \{Y_i(d_0) : d_0 \in D_0\}$
  - Intrinsic Functional Approach (FDA)

$$Y_i(\bullet) = \{Y_i(d) : d \in D\}$$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Functional Data Analysis (FDA)**

Big data

$$y_i(d) = x_i^T B(d) + \eta_i(d)$$
  $\eta_i(\bullet) \sim SP(0, \Sigma_{\eta})$ 

Hotelling-type Test Statistics

$$T_n^2$$

Pro:

Incorporate spatial smoothness and spatial correlation

#### Con:

Computational and theoretical difficulties

$$\overline{Y} = \sum_{i=1}^{n} Y_i / n \quad S_Y = \sum_{i=1}^{n} (Y_i - \overline{Y}) \otimes (Y_i - \overline{Y}) / n \qquad T_n^2 = n \sup_{\|u\|=1} \frac{\langle \overline{Y}, u \rangle^2}{\langle u, S_Y u \rangle}$$

$$P(T_n^2 = \infty) = 1 \qquad S_Y \rightarrow \alpha(S_Y) \qquad S_Y \rightarrow diag(S_Y)$$



### **High-dimensional Regression Models**

Big data

$$Y_i = BX_i + \eta_i$$
  $\eta_i(\bullet) \sim SP(0, \Sigma_\eta)$   $\dim(Y_i) >> n$ 

 $T_n^2$ 

Hotelling-type Test Statistics

$$\overline{Y} = \sum_{i=1}^{n} Y_i / n \qquad S_Y = \sum_{i=1}^{n} (Y_i - \overline{Y})(Y_i - \overline{Y})^T / n \qquad T_n^2 = n \sup_{\|u\|=1} \frac{\langle \overline{Y}, u \rangle^2}{\langle u, S_Y u \rangle}$$
$$P(T_n^2 = \infty) = 1 \qquad (\overline{Y}, S_Y) \to \alpha(Y, S_Y)$$

?? ??



## **Voxel Based Analysis (VBA)**

Data 
$$\{(x_i, Y_i) : i = 1, \dots, n\}$$
  $Y_i = \{Y_i(d_0) : d_0 \in D_0\}$ 

#### VBA

Stage 0: Gaussian Kernel Smoothing

## Stage 1: Model Fitting $\prod_{i=1}^{n} p(Y_i \mid x_i) = \prod_{i=1}^{n} \prod_{d \in D_0} p(Y_i(d_0) \mid x_i, \theta(d_0))$

Ignore spatial smoothness

Stage 2: Hypothesis Testing

 $H_0: \theta(d) = \theta_*(d)$  for all voxels

 $H_1: \theta(d) \neq \theta_*(d)$  for some voxels

# Random Field Theory: functional data and local smoothness FDR







## VBA

Cons

Potential large smoothing errors.

Treat voxels as independent units/images as a collection of independent voxels.

Ignore spatial correlation and smoothness in statistical analysis.

Inaccurate for both Prediction and Estimation.

**Decrease statistical power.** 



## **VBA Bayesian Extensions**

### **Bayesian Modeling**

**Spatial smooth prior (MRF)**  $p(\theta) = p(\{\theta(d_0) : d_0 \in D_0\})$ 

$$p(\theta \mid Y) \propto \{\prod_{i=1}^{n} p(Y_i \mid x_i, \theta)\} p(\theta) = \{\prod_{i=1}^{n} \prod_{d \in D_0} p(Y_i(d) \mid x_i, \theta(d))\} p(\theta)$$

#### Pro:

- Computationally straightforward;
- Bayesian inference based on MCMC samples

#### Con:

- Computationally heavy;
- Lack of understanding for Bayesian inference tools.



### **Varying Coefficient Models**

#### **Reading materials:**

- 1. <u>Zhu, H. T.</u>, Chen, K. H., Yuan, Y. and Wang, J. L. (2014). Functional Mixed Processes Models for Repeated Functional Data. In submission.
- 2. Liang, J. L., Huang, C., and <u>Zhu, H.T</u>. (2014). Functional single-index varying coefficient models. In submission.
- 3. Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and <u>*Zhu*, H.T.</u> (2013). A longitudinal functional analysis framework for analysis of white matter tract statistics. *NeuroImage*, in press.
- 4. Yuan, Y., <u>Zhu, H.T.</u>, Styner, M., J. H. Gilmore., and Marron, J. S. (2013). Varying coefficient model for modeling diffusion tensors along white matter bundles. *Annals of Applied Statistics*. 7(1):102-125.
- 5. Zhu, H.T., Li, R. Z., Kong, L.L. (2012). Multivariate varying coefficient models for functional responses. *Ann. Stat.* 40, 2634-2666.
- 6. Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and <u>*Zhu, HT.*</u> (2012). Semiparametric Bayesian local functional models for diffusion tensor tract statistics. *NeuroImage*, 63, 460-674.
- 7. <u>Zhu, HT.</u>, Kong, L., Li, R., Styner, M., Gerig, G., Lin, W. and Gilmore, J. H. (2011). FADTTS: Functional Analysis of Diffusion Tensor Tract Statistics, NeuroImage, 56, 1412-1425.
- 8. <u>Zhu, H.T.</u>, Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010). FRATS: functional regression analysis of DTI tract statistics. *IEEE Transactions on Medical Imaging*, 29, 1039-1049.
- 9. Greven, S., Crainiceanu, C., Caffo, B., Reich, D. (2010). Longitudinal principal component analysis. E.J.Statist. 4, 1022-1054.
- 10. Goodlett, C.B., Fletcher, P. T., Gilmore, J. H., Gerig, G. (2009). Group analysis of dti fiber tract statistics with application to neurodevelopement. NeuroImage, 45, S133-S142.
- 11. Yushkevich, P. A., Zhang, H., Simon, T., Gee, J. C. (2008). Structure-specific statistical mapping of white matter tracts. NeuroImage, 41, 448-461.
- 12. Ramsay, J. O., Silverman, B. W. (2005). Functional Data Analysis, Springer-Verlag, New York.



### **Smoothed Functional Data**



## Covariates (e.g., age, gender, diagnostic)



## **DTI Fiber Tract Data**



#### Data

- Diffusion properties (e.g., FA, RA)
- $Y_i(s_j) = (y_{i,1}(s_j), \cdots, y_{i,m}(s_j))^T$ • Grids { $s_1, \cdots, s_{n_G}$ }
- Covariates (e.g., age, gender, diagnostic)  $x_1, \cdots, x_n$





### **MVCM**

#### **Decomposition:**

$$y_{i,k}(s) = x_i^T B_k(s) + \eta_{i,k}(s) + \varepsilon_{i,k}(s)$$
Coefficients
$$x_1, \dots, x_n$$

$$y_{i,k}(\bullet) \sim SP(0, \Sigma_\eta)$$
Covariance operator:
$$\sum_y (s, s') = \sum_\eta (s, s') + \sum_{\varepsilon} (s, s')$$

$$\sqrt{n} \{ \operatorname{vec}(\hat{B}(d) - B(d) - 0.5O(H^2)) : d \in D \} \xrightarrow{L} G(0, \Sigma_B(d, d'))$$

Zhu, Li, and Kong (2012). AOS



## **Motivation**

#### **Diffusion Tensor Tract Statistics**

FA







## **Longitudinal Extensions**

**Longitudinal Data** 

**Spatial-temporal Process** 

Functional Mixed Effect Models

 $t \wedge y_i(s,t_3)$   $y_i(s,t_2)$   $y_i(s,t_1)$ 

$$y_i(s,t) = x_i(t)^T B(s) + z_i(t)^T \xi_i(s) + \eta_i(s,t) + \varepsilon_i(s,t)$$

**Objectives:** Dynamic functional effects of covariates of interest on functional response.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **FMEM**

#### **Decomposition:**

$$\sqrt{n} \{ \operatorname{vec}(\hat{B}(d) - B(d) - 0.5O(H^2)) : d \in D \} \xrightarrow{L} G(0, \Sigma_B(d, d'))$$

Ying et al. (2014). NeuroImage. Zhu, Chen, Yuan, and Wang (2014). Arxiv.



## **Real Data**

| Gender: Male/Female              | 83/54               |
|----------------------------------|---------------------|
| Gestational age at birth (weeks) | $38.67 \pm 1.74$    |
| Age at scan 1 (days)             | $297.89 \pm 13.90$  |
| Age at scan 2 (days)             | $655.34 \pm 24.00$  |
| Age at scan 3 (days)             | $1021.70 \pm 28.26$ |
| Number of Gradient directions    |                     |
| dir6/dir42 at scan 1             | 80/24               |
| dir6/dir42 at scan 2             | 59/44               |
| dir6/dir42 at scan 3             | 42/49               |

| Available scans                | Ν  |
|--------------------------------|----|
| Neonate scan only              | 1  |
| 1 year scan only               | 2  |
| 2 year scan only               | 3  |
| Neonate + 1 year scan          | 43 |
| Neonate + 2 year scan          | 30 |
| 1 year + 2 year scan           | 28 |
| Neonate + 1 year + 2 year scan | 30 |



#### **DTImaging parameters:**

- TR/TE = 5200/73 ms
- Slice thickness = 2mm
- In-plane resolution = 2x2 mm<sup>2</sup>
- b = 1000 s/mm^2
- One reference scan b = 0 s/mm^2
- Repeated 5 times when 6 gradient directions applied.



#### **Real Data**





### **Real Data Analysis Results**



CHAPEL HILL



### **Prediction**

 $y_{i,k}(s) =$ 



 $f(x_i, B_k(s) + \eta_{i,k}(s))$ 

Long-range Correlation

 $+\mathcal{E}_{i,k}(S)$ 

**Small-range Correlation** 

#### Missing Big Data???

Hyun, J.W., Li, Y. M., J. H. Gilmore, Z. Lu, M. Styner, H. Zhu (2014) NeuroImage



### **Real Data**

#### Table 3: rtMSPE for the surface data of the left lateral ventricle

| Missingness |              | VWLM   | GLM+fPCA | SGPP   |
|-------------|--------------|--------|----------|--------|
| 10%         | x-coordinate | 1.9272 | 0.9810   | 0.0738 |
|             | y-coordinate | 2.2448 | 1.3455   | 0.1067 |
|             | z-coordinate | 2.1554 | 1.1753   | 0.0926 |
| 30%         | x-coordinate | 1.9337 | 1.0197   | 0.1156 |
|             | y-coordinate | 2.2655 | 1.3827   | 0.1657 |
|             | z-coordinate | 2.1906 | 1.2069   | 0.1446 |
| 50%         | x-coordinate | 1.9263 | 1.0294   | 0.1615 |
|             | y-coordinate | 2.2012 | 1.3471   | 0.2204 |
|             | z-coordinate | 2.1862 | 1.1830   | 0.1924 |

#### **Prediction Accuracy is much improved**



## **Multiscale Adaptive Regression Models**

#### **Reading materials:**

- 1. Zhu, HT., Fan, J., and Kong, L. (2014). Spatial varying coefficient model and its applications in neuroimaging data with jump discontinuity. *JASA,* in press.
- 2. Li, YM, John Gilmore, JA Lin, Shen DG, Martin, S., Weili Lin, and <u>*Zhu, HT.*</u> (2013). Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data. *NeuroImage*, 72, 91-105.
- 3. Li, YM, John Gilmore, JP Wang, M. Styner, Weili Lin, and <u>Zhu, HT.</u> (2012). Two-stage spatial adaptive analysis of twin neuroimaging data. *IEEE Transactions on Medical Imaging.* 31, 1100-12.
- 4. Skup, M., <u>Zhu, H.T.</u>, and Zhang HP. (2012). Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates. *Biometrics*, 68(4):1083-1092.
- 5. Shi, XY, Ibrahim JG, Styner M., Yimei Li, and <u>Zhu, HT</u>. (2011). Two-stage adjusted exponential tilted empirical likelihood for neuroimaging data. *Annals of Applied Statistics*, 5, 1132-1158.
- 6. Li, YM, <u>Zhu HT</u>, Shen DG, Lin WL, Gilmore J, and Ibrahim JG. (2011). Multiscale adaptive regression models for neuroimaging data. *JRSS, Series B*, 73, 559-578.
- 7. <u>Polzehl, Jörg; Voss, Henning U.; Tabelow, Karsten. Structural adaptive segmentation for statistical</u> parametric mapping. *NeuroImage*, 52 (2010) pp. 515--523.
- 8. Polzehl, J. and Spokoiny, V. G. (2006). Propagation-separation approach for local likelihood estimation. Probability Theory and Related Fields, 135, 335-362.
- 9. J. Polzehl, V. Spokoiny, (2000) Adaptive Weights Smoothing with applications to image restoration, J. R. Stat. Soc. Ser. B Stat. Methodol., 62 pp. 335--354.



## **Piecewise Smooth Data**

#### Mathematics.





Noisy Piecewise Smooth Functions with Unknown Jumps and Edges

Image is the point or set of points in the range corresponding to a designated point in the domain of a given function.
 ▲ Ω is a compact set. x̃ ∈ Ω ⊆ R<sup>k</sup>

 $\longrightarrow f(\tilde{x}) \in M \subseteq R^m \qquad f: \Omega \to M \subseteq R^m$ 





# **Neuroimaging Data with Discontinuity**

#### Noisy Piecewise Smooth Function with Unknown Jumps and Edges



## Covariates (e.g., age, gender, diagnostic, stimulus)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **SVCM**

**Decomposition:** 

$$y_{i}(d) = f(x_{i}, B(d) + \eta_{i}(d)) + \varepsilon_{i}(d), d \in D$$

$$\xrightarrow{\text{Piecewise Smooth}} Short-range Correlation} Short-range Correlation} Short-range Correlation} Short-range Correlation} \varepsilon_{ij}(\bullet) \sim SP(0, \Sigma_{\eta})$$

$$\varepsilon_{ij}(\bullet) \sim SP(0, \Sigma_{\eta})$$

**Covariance operator:** 

$$\Sigma_{y}(d,d') = \Sigma_{\eta}(d,d') + \Sigma_{\varepsilon}(d,d)$$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## SVCM

#### **Cartoon Model**

$$B_k(d)$$

- **Disjoint Partition**  $D = \bigcup_{l=1}^{L} D_l$  and  $D_l \cap D_{l'} = \phi$
- Piecewise Smoothness: Lipschitz condition
- Smoothed Boundary
- Local Patch
- Degree of Jumps







## **Challenging Issues**

- Smoothing coefficient images, while preserving unknown boundaries
- Different patterns in different coefficient images
- Calculating standard deviation images
- Asymptotic theory





## **Smoothing Methods**

#### Propogation-Seperation Method J. Polzehl and V. Spokoiny, (2000,2005)



Reconstruction local constant PS





Reconstruction local quadratic PS



nonadaptive kernel smoothing



Maximum Overlap DWT



#### **Features**

Increasing Bandwidth



- Adaptive Weights
- Adaptive Estimates



## **Smoothing Methods**

#### MARM

At each voxel d

- **Increasing Bandwidth** ٠
- **Adaptive Weights** •
- **Adaptive Estimates** •

At each voxel 
$$d$$
  
Increasing Bandwidth  
Adaptive Weights  
Adaptive Estimates  
 $\omega(d,d';h_s) = K_{loc}(\|d-d'\|/h_s)K_{st}(D_{\mu}(d,d';h_{s-1})/C_n)$   
 $D_{\mu}(d,d';h_{s-1}) = \rho(\hat{\mu}(d;h_{s-1}),\hat{\mu}(d';h_{s-1}))$ 



## **Simulation**



From up to down: initial and adaptive estimates; left to right:  $\beta_1(d)$ ,  $\beta_2(d)$ , and  $\beta_3(d)$ .



## **Simulation**

#### True Image



SVCM



Initial Estimate in SVCM



#### Estimate with LF and r=2



Estimate with LF and r=1



Estimate with LF and r=0





## Simulation





## **Scalar-on-Imaging Regression**



#### **Reading materials:**

- 1. Miranda, M. F., Zhu, H.T. and Ibrahim, J. G. (2014). Bayesian partial supervised tensor decomposition with applications in Neuorimaging data analysis.
- 2. Yang, H., Zhu, H. T., and Ibrahim, J. G. (2014). Multiscale projection model in RKHS.
- 3. Zhu, H. T. and Shen, D. (2014). Multiscale Weighted PCA for Imaging Prediction.
- 4. Guo, R.X., Ahye M., and <u>Zhu, H. (</u>2014). Spatially weighted PCA for imaging classification. *JCGS*. In revision.
- 5. Zhou, H., Li, L., and <u>Zhu, H.</u> (2013). Tensor regression with applications in Neuorimaging data analysis. *JASA*. In press.
- 6. Cuingnet, R., Glaunes, J. A., Chupin, M., Benali, H., Colliot, O., and ADNI. (2012). Spatial and anatomical regularization of SVM: a general framework for neuroimaging data. IEEE PAMI. In press.
- 7. Cai, T. & Yuan, M. (2012). Minimax and adaptive prediction for functional linear regression. JASA. 107, 1201-1216.
- 8. Fan, J. and Lv, J. (2010). A selective overview of variable selection in high-dimensional feature space. Statistica Sinica, 20, 101-148.
- 9. Li, B., Kim, M. K., and Altman, N. (2010). On dimension folding of matrix or array valued statistical objects. Ann. Stat., 38, 1097-1121.
- 10.Reiss, P. T., and Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association 102, 984–996.
- 11.Bair, E., Hastie, T., Paul, D. and Tibshirani, R. (2006). Prediction by supervised principal components. JASA. 101, 119-137.
- 12.Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition. Springer, New York.
- 13.James, G. (2002). Generalized linear models with functional predictor variables. JRSSB. 64, 411-432.
- 14. Tibshirani, Robert (1996). Regression shrinkage and selection via the lasso. JRSSB. 58, 267-288.



### **HRM versus FRM**

Data 
$$\{(y_i, X_i) : i = 1, \dots, n\}$$
  $X_i = \{X_i(d) : d \in D\}$   
 $y_i = \langle X_i, \theta \rangle + \varepsilon_i$ 

#### Strategy 1: Discrete Approach (High-dimension Regression Model (HRM))



**Strategy 2: Functional Regression Model (FRM)** 

$$y_i = \theta_0 + \int_D \theta(d) X_i(d) m(d) + \varepsilon_i$$



#### **High-dimension Regression Model**

#### **Approach 1: Regularization Methods**



### **Key Conditions:**

- Sparsity of S
- Restricted null-space property for design matrix X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### **High-dimension Regression Model**

 $n \times p$ 



n





**CP decomposition** 

**Tucker decomposition** 



 $S^c$ 

INA at CHAPEL HILL



#### Simulations



### **Key Conditions:**

- Tensor Approximation B
- Restricted space property for X and B



#### **ADHD 200**

#### Attention Deficit and Hyperactivity Disorder (ADHD) data

(http://fcon\_1000.projects.nitrc.org/indi/adhd200/)

- ▶ 776 subjects: 491 normal controls and 285 combined ADHD subjects
- 442 males (average age: 11.98, sd: 3.14 years) and 287 females (average: 11.86, sd: 3.49)
- T1-weighted images were acquired and preprocessed by standard steps
- Segmentation: grey matter (GM), white matter (WM), ventricle (VN), and cerebrospinal fluid (CSF)



Figure: Panel (a) is the unpenalized estimate overlaid on a randomly selected subject; (b) is the regularized estimate; (c) is a selected slice of the regularized estimate overlaid on the template; and (d) is a 3D rendering of the regularized estimate.

Two regions of interest: left temporal lobe white matter and the splenium in the corpus callosum



#### **Strategy 2: Functional Approach**

$$y_{i} = \theta_{0} + \int_{D} \theta(d) X_{i}(d) m(d) + \varepsilon_{i}$$
$$\theta(d) = \sum_{k=1}^{\infty} \theta_{k} \psi_{k}(d)$$
$$y_{i} = \theta_{0} + \sum_{k=1}^{\infty} \theta_{k} \int_{D} \psi_{k}(d) X_{i}(d) m(d) + \varepsilon_{i}$$

**Basis Methods: fixed and data-driven basis functions** 



#### **Key Conditions**

Key Conditions: an excellent set of basis functions

- Sparsity of  $\{\theta_k : k = 1, \cdots\}$
- Decay rate of spectral of C(d,d') = Cov(X(d),X(d'))

$$\theta(d) \approx \sum_{k=1}^{K} \theta_k \psi_k(d) \qquad K << n$$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **The ADNI data**

#### **Mild Cognitive Impairment subjects**

Interested in predicting the timing of an MCI patient that converts to AD by integrating the imaging data, the clinical variables, and genetic covariates.



Full Model:AUC=0.96Partial Model:AUC=0.82



### Limitations

## Is this the right space for statistical inference?











### **Rabbit and Wolf Story**

 $y_i = f_0(X_i) + \varepsilon_i$  $\{y_i : i = 1, \dots, n\}$ 

 $X_i = \{X_i(d) : d \in D\}$ 







# $G_i = G\{\tilde{X}_i(d) : d \in D_0\}$









 $\tilde{X}_i = \{\tilde{X}_i(d) : d \in D_0\}$ 





### **Feature Space Determination**



**Splitting** 

**Weighting** 

$$y_i = \theta_0 + \sum_k \int_{D_k} \theta(d) X_i(d) m(d) + \varepsilon_i \qquad y_i = \theta_0 + \int_D \theta(d) w(d) X_i(d) m(d) + \varepsilon_i$$



### **Spatially Weighted PCA**





## **Spatially Weighted PCA**

Table 1: Average Misclassification Percentage for Simulation I

|      | PCA    |        |        | SPCA   |        |        | WPCA-1 | WPCA-2 | SWPCA  | PSWPCA |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|      | ALL    | 50     | 100    | 200    | 400    | 1000   | ALL    | ALL    | ALL    | ALL    |
| REG  | .302   | .126   | .132   | .142   | .162   | .205   | .199   | .130   | .026   | .025   |
|      | (.078) | (.052) | (.052) | (.055) | (.057) | (.064) | (.064) | (.056) | (.025) | (.024) |
| k-NN | .338   | .135   | .141   | .152   | .182   | .225   | .186   | .156   | .030   | .027   |
|      | (.071) | (.049) | (.049) | (.050) | (.053) | (.071) | (.055) | (.059) | (.029) | (.025) |
| SVM  | .327   | .140   | .147   | .159   | .183   | .226   | .215   | .152   | .033   | .028   |
|      | (.078) | (.054) | (.055) | (.055) | (.059) | (.072) | (.067) | (.055) | (.029) | (.026) |

Standard deviations are in parenthesis. For SPCA, the number of "top" selected voxels used in the algorithm are considered to be 50, 100, 200, 400, and 1000.

Table 2: Average Misclassification Percentage for Simulation I (Non-PCA Methods)

| SPLS-REG | SPLS-kNN | SPLS-SVM | SPLS   | SDA    |
|----------|----------|----------|--------|--------|
| .130     | .139     | .156     | .128   | .120   |
| (.052)   | (.056)   | (.066)   | (.050) | (.050) |

Standard deviations are in parenthesis.



## **Multiscale Factor Prediction Model**

#### Hippocampal Surfaces Data Analysis

- Hippocampal surface data consist of the vector with the length 30,000 at the baseline for each subject.
- The first 15,000 parts of the vector were from the left location and the rest parts of it were from the right location.
- We use the diagnostic covariate (Alzheimer's disease VS Normal), gender and age as demographic information.
- We also use the APOE genotype variables since relevant studies have shown that the APOE4 genotype has significant effect on the subject.



## **Multiscale Factor Prediction Model**

#### Hippocampal Surfaces Data Analysis

- Our goal is to predict the behavior score of the subject at the time when it is five year after the baseline.
- We had 406 individulas, 226 individuals for training and 180 individuals for test set, respectively.
- First, we estimated the number of the nonzero gobal coordinates as 500, 700 and 1000 cases where for each case, the half of each case was selected from the left and the rest was selected from the right.
- Next, we extracted the local information from the sequence of the correlation matrices.



### **Multiscale Factor Prediction Model**

Table: Predictions for behavior score in hippocampal surfaces data.

| ID  | $Y_{true}$ | $\hat{Y}_{1000}$ | $\hat{Y}_{700}$ | $\hat{Y}_{500}$ | Age  | Status | Gender | AP1 | AP2 |
|-----|------------|------------------|-----------------|-----------------|------|--------|--------|-----|-----|
| 270 | 27.33      | 27.934           | 27.746          | 27.559          | 85.2 | 1      | 1      | 3   | 4   |
| 268 | 13.33      | 14.895           | 14.733          | 15.238          | 82.8 | 1      | 1      | 3   | 4   |
| 318 | 30.67      | 32.029           | 32.237          | 31.742          | 88.2 | 1      | 1      | 3   | 3   |
| 283 | 20         | 18.348           | 18.631          | 19.043          | 80.1 | 1      | 1      | 3   | 3   |
| 304 | 24         | 22.873           | 23.128          | 22.894          | 80.1 | 1      | 0      | 3   | 4   |
| 307 | 17.67      | 16.163           | 16.126          | 16.267          | 76.2 | 1      | 0      | 3   | 4   |
| 312 | 17.33      | 17.484           | 17.532          | 17.42           | 72.3 | 1      | 0      | 3   | 4   |
| 280 | 20.67      | 22.537           | 20.688          | 20.092          | 72   | 1      | 0      | 3   | 4   |
| 302 | 17.67      | 17.947           | 17.425          | 17.506          | 80.1 | 1      | 0      | 2   | 4   |
| 345 | 10.33      | 10.132           | 11.517          | 12.233          | 80.7 | 0      | 1      | 3   | 4   |
| 343 | 3.67       | 4.035            | 3.502           | 3.977           | 73.8 | 0      | 1      | 3   | 4   |
| 337 | 7.33       | 6.809            | 7.012           | 7.758           | 72.6 | 0      | 1      | 3   | 4   |
| 361 | 9.67       | 10.466           | 10.794          | 10.992          | 85.8 | 0      | 1      | 3   | 3   |
| 344 | 13         | 14.677           | 14.689          | 14.61           | 70.8 | 0      | 1      | 3   | 3   |
| 364 | 11         | 11.557           | 11.718          | 11.742          | 70.8 | 0      | 1      | 3   | 3   |
| 401 | 0.67       | 1.12             | 1.175           | 1.082           | 74.1 | 0      | 1      | 2   | 3   |
| 380 | 7          | 6.866            | 5.476           | 5.961           | 72.9 | 0      | 0      | 3   | 4   |
| 353 | 8.67       | 8.123            | 7.431           | 7               | 83.7 | 0      | 0      | 3   | _3  |



### **ASA: Statistics in Imaging Section**

SAMSI

### 2013 Neuroimaging Data Analysis 2015-2016 Challenges in Computational Neuroscience



### Acknowledgement

