
Calling C code from R - an Example
By Bahjat F. Qaqish

This document describes a simple example of how to call C code from within R. It is assumed that all
the necessary software (R itself, compiler and other tools) have been installed properly.

Our example is a function to which we pass an array x1 ��������� xn and it computes y1 ��������� yn defined by
yi

� x2
i . The example shows

1. How to pass arguments from R to C code

2. How to receive computed values from C code

3. How to compile the C code

4. How to load and run the C code from within R

5. Some rules about writing C code to link to R

The R function will be called vecsqr. An example usage is y = vecsqr(x), assuming a vector x has been
defined. The C function will be called vecsqr (other names will do as well) and stored in a file called
vecsqr.c. Here is that file:

#include <R.h>

void vecsqr(double *y, double *x, int *n_p)
/* y[0:n-1] <- x[0:n-1]ˆ2 */
{

int i, n = *n_p;

if (n < 1) Rprintf("vecsqr: error n = %d < 1\n", n);

for (i=0; i < n; i++) y[i] = x[i]*x[i];
}

Notice that there is no main function. Also, R.h must be included. Instead of printf, we use Rprintf to send
the output to the R console. Functions that will be called from R must have type void. All arguments are
passed by reference including single numbers such as n, the number of elements.

The next step is to compile the C code. This is done with the command

R CMD SHLIB vecsqr.c

The result is a file named vecsqr.so.
We are almost ready to call our C function from R. We can issue the call directly from R. However, it

is generally better and more convenient to write an R function that takes care of dynamically loading the
compiled code, translating back and forth between R and C, and making sure that the arguments have the
required type and are passed in the proper order. We put that function in a file named vecsqr.r. Here is that
file:

1



dyn.load("vecsqr.so") # load the compiled code
vecsqr = function(x) # our R interface to the compiled code
{

n = length(x)
result = .C("vecsqr",

y = double(n),
as.double(x),
as.integer(n) )

result[["y"]]
}

The function passes arguments in the proper order (y, x, n), forces the correct type using as.double and
as.integer, and allocates the required space for the result y. The R function .C performs the actual call to
the C function, and returns a list. The return value from the R function vecsqr is the vector y extracted from
the list returned by .C via result[[”y”]].

Now, in R, we source the R function

source("vecsqr.r")

and we are ready to call the C function,

a1 = 1:10
a2 = vecsqr(a1)
a4 = vecsqr(a2)
a8 = vecsqr(a4)
cbind(a1, a2, a4, a8)

To see the error message generated if n is less than 1 we call the compiled code directly via .C

x = 1:10
.C("vecsqr", y = double(length(x)), as.double(x), as.integer(-4))

A lot more is possible. Several functions can be defined in vecsqr.c and in vecsqr.r. It is possible to call
R functions from C code. Further, the package mechanism is especially convenient for distributing code to
others. See the Writing R Extensions manual for further details.

2


