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SUMMARY

When testing for stochastic order in ordered 2 x J contingency tables, it is common to select
the cutoff required to declare significance so as to ensure that the size of the test is exactly a
conditionally on the margins. It is valid, however, to use the margins to select not only the cutoff
but also the form of the test. Linear rank tests, which are locally most powerful and frequently
used in practice, suffer from the drawback that they may have power as low as zero to detect
some alternatives of interest when the margins satisfy certain conditions. The Smirnov and convex
hull tests are shown, through exact conditional power calculations and simulations, to avoid this
drawback. The convex hull test is also admissible and palindromic invariant and minimizes the
required significance level to have limiting power of one as the alternative moves away from the
null in any direction.

1. Introduction

We consider the problem of testing for a treatment effect in a two-arm randomized clinical trial with
J ordered outcome levels. For example, active and placebo antineoplastic agents might be compared
for their effects on the size of tumors, with shrinkage rated as complete, partial, or none (J = 3),
the data displayed as an ordered 2 x 3 contingency table, X = (X1, X3, X3;Y1, ¥2,Y3). Moses,
Emerson, and Hosseini (1984) and Rahlfs and Zimmermann (1993) cited the common practice of
combining categories to create a 2 x 2 table as inefficient and suggested instead linear rank tests, in
which the three outcome levels are assigned (without loss of generality) scores of (0,,1) and the
treatments are compared by the t-test, here denoted as ¢.. The choice of v € R (often v € (0,1])
was discussed by Chakraborti and Schaafsma (1996) and Gautam (1997). Some authors recommend
that scores be assigned according to an a priort assessment of how far apart the outcomes are, while
others base them on the marginal totals for the outcome levels, usually in a way that corresponds to
standard rank tests for continuous data. Graubard and Korn (1987) suggested that, if the choice is
not apparent, then ¢g s (equally spaced scores) should be used. Kimeldorf, Sampson, and Whitaker
(1992) considered v(;y and V() to maximize and minimize, respectively, the p-value. The results
may straddle «, with pmin < @ < Pmax, meaning that the choice of scores influences the results.
As with continuous data, linear rank tests have reasonable power to detect shifts but poor
(possibly zero) power for alternatives in which the cumulative distribution functions (c.d.f.'s) are
strongly separated over part of the range but nearly coincide elsewhere. Thus, Podgor, Gastwirth,
and Mehta (1996) and Sharp and Koch (1996) proposed looking at several sets of scores, and
Behnen and Neuhaus (1989) proposed nonlinear rank tests. The Smirnov test (Hilton, Mehta, and
Patel, 1994; Nikiforov, 1994), which has been proposed for situations in which nonshift alternatives
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are of importance, is a nonlinear rank test based on the largest difference between empirical c.d.fg,
and is denoted as ¢s. Because the acceptance regions of t-tests and oy are linear and piecewise
linear, respectively, these tests are typically inadmissible (Berger and Sackrowitz, 1997; Berger,
1998). Berger (1995) and Cohen and Sackrowitz (1996) proposed applying convex hull peeling
(Eddy, 1982: Green, 1985; Petitjean and Saporta, 1992) to the sample space. Unlike linear rank
tests and the Smirnov test, these convex hull tests do not have close analogs for continuous dats,
Rather, the finiteness of the sample space is exploited by recursively adding points to the critica]
region one set at a time until the desired size is achieved. Berger (1998) established the equivalence
of the class of convex hull tests and the minimal complete class of admissible tests. We describe the
construction of the simplest convex hull test ¢y in Section 3. In Sections 4 and 5, we compare
the exact conditional and simulated unconditional power, respectively, of dcpy to that of g ;
and bg. We refer to ¢o.5 as either the exact t-test or the linear rank test with equally-spaced
scores.

2. Notation and Formulation

Let m; ; be the probability that a patient results in outcome j (1, 2, or 3) if given treatment i (1 or
2), with w1 = {m1,1, 71,2, 71,3} and w2 = {m2.1, ™22, 2,3} each summing to one and 7 = (1, 79).
For j = 1,2, let A\j(m) = (my jm2,3)/(m2,;m1,3), 05(m) = In(A;), and 8 = (61, 62). The row margins
are n = n(X) = (n1,n2) and the column margins are T = T(X) = (T1,T2,T3). We consider
exact conditional (on T) tests of H*: 7, = 73 against the one-sided stochastic order alternative
hypothesis K™: 7y # 72 and Zl;zl T 2 2?:1 o,k =123 As the conditional distribution of
X given T (and hence the conditional power) depends on m only through 8 (Berger, 1998), the
(conditional) hypotheses must be formulated in terms of 8 to be identifiable. Because w1 =
if and only if 8(r) = O, the null hypothesis'is H: § = 0. However, 8 is insufficient to classify
each alternative as being stochastically ordered or not, and thus the remaining parameters are not
nuisance parameters. As a result, no conditional alternative hypothesis can be equivalent to K*,
but we consider testing H against K: 8 € Q = {6 | 61 > 0} as in Berger (1998). The sample
space [ is the set of 2 x 3 contingency tables with nonnegative integer-valued cell counts with row
totals n(X) and column totals T(X). As one can reconstruct the entire table from (X1, X2), we
let X = (X}, X2) denote a point of T.

The likelihood ratio is Ag(X) = Pp{X | T}/Po{X | T} = k(T;0) exp(X'0)/k(T;0), and the
most powerful (MP) test to detect @ is the linear rank test ¢(p, —g.)/8, which depends on the
direction (82/61), but not the magnitude (9% +9§)1/2, of @ (Berger, 1998). Because the quantity (61~
8)/61 can assume any value in R! as 0 ranges over Q, each linear rank test ¢., v € R! isMPona
slice (with Lebesgue measure zero) {0y = {8 € Q| (1—62)/01 = v} of Q. Let R(ex; @) be the critical
region (including any randomization points) of ¢ at level «, and let R(c; 8) = R(c; (9, —9,)/6,) be
the critical region of the MP level- test to detect 8. If R(c; ¢) N R(o; 8) = @, then ¢ will be seen
to have poor power to detect 8. Let It = {R(a;¢) |[Ya >0, 8 €Q R(a;8) N R(c; 8) # @} be the
class of critical regions R{c; $) that intersect with R(a;8) for all 8 € . The corresponding tests
will have good power to detect each 8 € Q. For A C T, let D[4] be the set of (directed extreme)
points of A that uniquely maximize Ag(X) for some 8 € ). Berger and Ivanova (1997) showed DT
to consist of the points Wi = (min(ny, T1), max(0,n; =T1~T3)), Wa = (min{ny, T1), min{n;, T1+
T3) — min(ny, T1)), and W3 = (min(ny, T1 +T2) — min(ny, T2), min(ny, T2)). Because each R(a; 9)
must contain at least one of these three points, we see that D(I'] € Ir. In fact, D[T'] = Naerr 4, so
D[I'] consists of precisely those points that are needed in the critical region to intersect with each
R(x; 6).

It would seem reasonable to construct the critical region by starting with DIT]. However, care
needs to be exercised because there are sets of margins for which some directed extreme points are
not suitable candidates for early entry into the critical region. If ny < T, then W3 has a zero in the
upper left cell and provides evidence that the control is superior to the treatment. If n; > Ty + T3,
then Xo > 0 for all X € T, so any alternative that specifies X3 as a structural zero (m1,2 = 0)
will not explain the observed data. If §2 = —o0, then necessarily m) 2723 = 0. Under H* or K
7y 3 = 0 implies that w1 3 = 0, so w3 = 0 is inconsistent with T3 being positive. This means that,
if ny > Ty + T3 > T, we have no interest in detecting alternatives for which 83 = —c0, and W1
(which derives its prominence as a directed extreme point from such alternatives) ought not be
treated as a directed extreme point, Because the smaller of the lower ranges of Y] and X3 and of
Y, and X3 are always structural zeros, we always wish to detect §; = oo and 82 = 0. '

Like Ferron and Foster-Johnson (1996), we exploit the fact that, when conditioning on T,
margin-based tests, whose form depends on T, are valid (preserve the nominal Type [ error rate}:
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Specifically, we restric‘h attentioq 'to r.hos? margins for which it is reasonable to peel each di-
rected extreme point nto the critical region and which have positive marginal totals. We thus
require that max(T;. To) < ni < Tv + min(T>, Ty + 1) < ¥ = n; + ny. As shown in Sec-
tion 5, these conditions are not so restrictive, and data with such margins are frequently en-
countered (an example is presented in Section 4). With this requirement, the directed extreme
points become W = (T,,0,n, — T1,0,Ty,n2 — Tg), Wy = (T, ny — T1,0;0,n0 — T3, T3), and
Wi =(ny -T2, 72,002 — T4,0,T3) and are all distinct.

Any pair of cells not in the same column can be used, instead of (X, X2). to uniquely identify a

table (and this transformation preserves directed extremity). Thus. each directed extreme point is
uniquely determined by its pattern of zero cell counts and has probability one under any alternative
that specifies structural zeroes for its zero cell counts. This implies that a nonrandomized test
will have power one or zero to detect alternatives of the form = = (71'1.1,0,71'13;0,7!‘2'2,77'_)'3),
= (7!‘1‘1,Tt‘lgz,o;o,?r-zg,?rgvg), orm={m 1,720 72.1,0,m2.3), respectively, as its critical region
does or does not contain W1, Wa, or Wy If 62/61 is held constant and 9, gets large, 8 must tend to
3 limit that corresponds to a set of cell probabilities of one of these three types, so having DiI'] in
the critical region is essential for having positive limiting power as 8 moves away from O in various
directions. Linear rank tests have convex rejection regions in (X1, X2), s0 if DIT] € R{e;¢u),
CH(D[T}) C R(a; ¢v), where CH(DIT)) is the convex hull of DI[T]. When Po{CH(D[I]) | T} > o,

no o-level linear rank test has positive limiting power as 6 moves away from O in all directions.

3. Derivative of the Convex Hull Test

Convex hull tests (Berger, 1998) are derived iteratively by constructing the critical region layer
by layer with a recursive algorithm. The simplest convex hull test, proposed here as ¢cH, is
constructed as follows. First, D[T} is placed in the critical region. Then the reduced sample space
[ = [ — D[I} is defined, and D[I'1] is added to the critical region. This directed convex peeling
process is continued until the desired size is achieved. The formal algorithm (arbitrarily selecting
the sample size IV as the value of the test statistic for the first peel) is as follows:

Step 0: Initialize each point in T by setting Zo(X) =0 forall X € T
Step 1: Let Z1(X) = NV (the sample size) if X € D[I'] and Z1(X) = Zo(X)=0uXel1 =
T - D[
Stepk+1: Zxr(X)=N-kifXe€ D[k} = D{X | Zx(X) = 0} and Zer1(X) = Zp(X) =0 if
X € Tjsy =Tk — DTk
Final step: Letting Z(X) = maxi<ig<n Zp(X), the level-a critical region is (Xel|Z(X)>

Cla)}
4. Exact Conditional Power Calculations

The exact conditional power of ¢cr, 0.5 (the t-test with equally-spaced scores), and the Smirnov
test (¢g) are compared by enumerating the points of I and finding the probability of the critical
region for each test under a variety of alternatives. Example J of Table 1 of Emerson and Moses
(1985, p. 306) is X = (8,6,41,7, 10), with row margins n = (18,18) and column margins T =
(9,13,14) satisfying our margin conditions. We find that D[] consists of W1 = (9,0,9;0,13,5),
Wy =(9,9,0;0,4.14), and W3 = (5,13,0;4,0,14), so Z(8.0) = 7(9,9) = Z(5,13) = N = 36. We
place D[['} in the critical region and define the reduced sample space, I'1 = {X | Z(X) < 36}. Now
Z(X) = 35 on D[I'1], which consists of the points {(8,0,10;1,13,4), (9, 1,8:0,12,6),(8,10,0: 1,3,
14),(9,8.1:0,5,13). (6, 12,0;3,1,14), (4,13,1;5,0,13)}, and Z(X) = 34 on D[Ta] = {(7,0),(9,2),
(7,11),(9,7),(3,13)}. Notice that DTy} can be found as the set of points that start with a point
of D(T'] and replace a zero with a one, D[I'9] is the set of points that replace a zero from a point of
D[[] with a two, D{['3] is the set of points that either replace a zero with a three or replace both
zeroes with ones, and so on. Figure 1 shows the derivation of ¢c g with Z(X)—27, instead of Z(X),
plotted on each point, so the points labeled 9 are peeled first, then 8, and so on. At significance
lgvel a = 0.025, ¢c g rejects H when Z(X) —27 > 1 and has to randomize, to attain the exact
significance level, when Z(X) — 27 = 1.

In contrast, ¢g.5 rejects H when 2X1 + X2 >20and randomizes when 2X1 + X2 = 20, and ¢g
rejects H when either X1 > 8 or Xj + X2 > 14 and randomizes when X1 + X2 = 14. The auxiliary
fandomization required to obtain exact significance levels is ancillary and thus is conditioned upon.
Th'e power of the resulting conservative (nonrandomized) versions of each test (randomization
Points are not placed in the critical region) is given in Table 1. While © requires 1 > 0, alternatives

r which 8; = 0 are included as limits of points in { (power functions are continuous). Table 1
Teveals that ¢ 5 is severely biased (with power much less than o = 0.025), at § = (1, —4), e.g., as
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Plot of X12*X11. Symbol is value of HULL.
12
13 + 4 S 6 7 8 9
12 + 1 2 3 4 5 6 8
11+ 0 1 2 4 5 7
10 4 0 1 3 5 8
g t 1 4 6 9
8 + Q 2 5 8
74 - 1 4 7
6 + 0 3 6
5L - 0 2 5
4 + 1 3 5
34 - 0 2 4 6
2+ - 0 1 2 3 5 7
1+ 1 2 3 4 5 (<] 8
04+ 4 5 6 7 8 9
' I ! } } I % } % %
o} 1 2 3 4 5 5] 7 8 9

X11

Figure 1. The derivation of the convex hull test on (8, 6, 4; 1, 7, 10). Data from Emerson and
Moses (1985). The first peel is labeled 9, the second peel is labeled 8, and so on.

is predictable from the fact that it fails to reject H on Wi. As expected, ¢o.5 is most powerful
on and near Qg5 (§ = 262) and fails to attain the envelope power function (maximal attainable
power of any level-a test) on Q.5 only because of the conservatism induced by discreteness.

The maximum shortcomings (largest difference in power compared to the envelope power func-
tion) over the range of alternatives considered (including a grid search to find the maximum short-
comings of each test) are 0.633 for ¢ at (0.0,2.5), 0.534 for ¢y at (0.0,2.0), and 1.00 for ¢o.5 at
(1, —4), indicating that ¢cp appears to be most stringent (the desirable property of minimizing
the maximum shortcoming) among these three tests and ¢ 5 is least stringent (a most undesirable
property) among all tests, as in Berger and Ivanova (1997). Notice that not only does ¢o.5 have
poor power when 62 < 0 but also when 62 > 6, and that this poor power persists even in the
limit as 8; gets large. The power of ¢g and ¢cy exceeds 0.025 for all alternatives considered, so
these tests appear to be unbiased based on this analysis. In fact, these tests are not unbiased, by
virtue of their power functions having negative directional derivatives at the null point, but having
a power function dip slightly below a close to the null point seems less worrisome than having
limiting power of 0.

When 8; = 0, ¢cg is more powerful than ¢g for 85 > 1.6 or #2 < 0 but less powerful than
¢g for 1 < 0> < 1.5. When 8; = 1, ¢cy is more powerful than ¢g for 82 > 4 or 2 < 0 but less
powerful than ¢g for 1 < 62 < 3. When 6, = 2 or 3, ¢cy is more powerful than ¢g for f2 < 0
but less powerful than ¢g for 1 < 82 < 4. While ¢g tends to have somewhat better power than
dc i, by as much as 0.173 at (2,2), when 8, > 0 and 62 > 0 are close, ¢¢ g may have much better
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power, by as much as 0.706 at (0, —4), than ¢5 otherwise. Notice that, when 61 = 3, the powe,
advantage of o5 over ¢¢cy is not monotonic in this common value. Note also that, when §; = 9
the envelope power is symmetric about 2 = 0, but, when 8, > 0, no such symmetry exists and,
the envelope power is actually larger when #2 < 0. Also. for fixed values of f2, the envelope power
is not monotonic in 7.

5. Simulated Unconditional Power Calculations

To explore the unconditional power of the conservative nonrandomized version of each test, we useg
various sets of cell probability vectors to generate simulated data. The row margins were chosen tq
be 20 each, allowing for 861 possible sets of column margins (T} ranges from 0 to 40 and T, rangeg
from 0 to 40 — Ty), of which only the 171 (T} ranges from 2 to 19 and 7> ranges from 21 — T,
to 19) meeting our conditions are considered. For some sets of cell probability vectors, such ag
(0.4,0.2,0.4;0.2,0.4,0.4), the probability of obtaining one of these 171 sets of margins is close to
one. There were either 1000 total replications (in which case the number of replications with the
required margin structure is shown and is no larger than 100} or 100 replications with the required
margin structure (in which case the total number of replications is shown and is between 10g
and 1000). For 71 as each of (0.1,0.8,0.1), (0.2,0.6,0.2), (0.3,0.4,0.3), (0.4,0.2,0.4), (0.5,0.5,0.0),
(0.5,0.0,0.5), and (0.0,0.5,0.5), we let 72 range freely subject to being an integer divided by 10,
provided that # € H* UK"* and that there was at least 1 replication out of 1000 with the required
margin structure.

For brevity, cases for which ¢5 and ¢y each had power 1.00 were deleted (we note that, for
7 = (0.5,0.0,0.5;0.0,0.4,0.6), 552 replications were required to obtain 100 with the required margin
structure, and the power of ¢g and ¢c g each were 1.00, while the power of ¢p.5 was only 0.73).
The simulation shows that ¢¢c g tends to have better unconditional power than ¢g, especially when
w1 is roughly uniform or 82 < 0, with uniform superiority when there is a structural zero. Also, as
with the exact conditional power calculations, when ¢5 was more powerful than ¢cy, it tended
not to be so by much, whereas when ¢ g was more powerful than ¢g, it tended to be much more
powerful, as shown in Table 2.

6. Discussion

By declaring significance only when the observed outcome is one of the 100a% most extreme
of all outcomes obtained by permuting the treatment assignments, permutation tests have size
exactly (or, without auxiliary randomization, no greater than) « for all null parameter values. What
constitutes an extreme observation may depend on both the margins and the direction, 82/6;. It is
reasonable, therefore, to select the form of the test based on the margins. For margins that satisfy
max(Ty, Ta) < np < T +min(Tp, T3 +1) < N = ny +no, there is a different most powerful test for
each direction, each of which may have poor (or no) power to detect alternatives in other directions.
The failure of any one linear test statistic to capture extremity for all directions transcends the
realm of hypothesis testing and has implications even for data description and estimation. The
proportional hazards and proportional odds tests (McCullagh, 1980) are admissible (Berger, 1998),
but the boundaries of their critical regions are well approximated by linear functions, and thus
they may still have zero power to detect certain alternatives of interest. The Smirnov test always
has positive power, and nonrandomized Smirnov tests are admissible at their actual (conservative)
level. However, like linear rank tests, randomized Smirnov tests tend to be inadmissible, indicating
that the nonrandomized versions of both tests are overly conservative.

By repeatedly improving the trivially unbiased “ignore-the-data test” (which randomizes on each
point of T’ with the same probability), Berger and Sackrowitz (1997) constructed the first test for
this problem that is simultaneously admissible and unbiased. This is a rather general construct
for obtaining tests with good power properties. However, it is difficult to obtain a nested family
of critical regions, meaning that observed data may be significant at one significance level yet not
at a larger significance level. A second approach to constructing tests with good power properties
is to estimate the direction for each point in ['. Then the p-value of the most powerful test for
the estimated direction is computed for each point in T, and the p-value for the observed data is
compared to its null distribution. Berger (1998) proved the admissibility of such an adaptive test
when the direction is estimated by finding the linear rank test that minimizes the p-value for the
given data, using the algorithm of Kimeldorf et al. (1992). However, the computations involved in
this approach can be complicated.

Convex hull peeling is a third general construct, which is based on the directed extreme points,
i.e., on those points that are most extreme for some direction. The convex hull test is admissible
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Berger, 1998}, has power tending to one as 6 moves away from O in any direction for o as small
as Po{DI[T] | T} (which is the minimum o-level required for any test to have this property).
and palindromic invariant (McCullagh, 1980) to reversals of both rows and columns. Palindromic
invariance is seen as follows. The reversal maps 6 = (8;,62) into R(B) = (8,01 — 6) and X =
(X1, X2) into R(X) = (Y3,Ys) = (T3 —ny + X, + X2, T2 — X3). Either both 8 and R(6) or neither
are in €. Further, Ap(g)(R(X)) = Ag(X), and the points of A C T that uniquely maximize one
of these likelihood ratios will also maximize the other, so D[A] can be defined in an unambiguous
manner. Linear rank tests require the significance level to be at least Po{CH(D(TY) | T} to have
limiting power of one in all directions. The convex hull test is qualitatively similar to the test
that is uniformly more powerful than the Smirnov test (Berger and Sackrowitz, 1997) because the
improvements to the Smirnov test are based on transfer of rejection mass to the directed extreme
points.

Our power calculations show that the convex hull test tends to be much more powerful than
the Smirnov test when 8 or 6 is large or when 2 < 0. When the Smirnov test is more powerful
than the convex hull test, which tends to be the case when §; and 82 are comparable in size and
a0t too far from zero, the difference in power tends to be rather modest. Nonlinear rank tests
can be exploited to allow for smaller studies (exposing fewer patients to a potentially harmful or
ineffective treatment), with roughly the same power as one would obtain with linear rank tests. It
must be borne in mind when interpreting this statement that the sample size for a nonlinear rank
test (such as the Smirnov test) will generally be larger than that for a linear test because the latter
is computed under the optimistic assumption that the direction of the effect is known. If it is not,
the power of the linear rank test may be much less than expected.

When one can predict the direction of an effect, the convex hull test will not be much worse than
the linear rank test, which is seen as follows. Recall that R(c; ¢) is the critical region of ¢ at level
. Let a1 be the smallest number such that R(c; o) C R(a+ 1; ¢u) and let ap be the smallest
sumber such that R(a — ag;¢v) C R(e; ¢c ). Both ay and as will depend on «, v, and X, but in
general, aj will be large and a9 will be small. By using the convex hull test even when one expects
that the direction of the effect is known, one can pay a small premium (ag of the critical region of
the linear rank test is taken away) to receive a large return (an additional a; would be required for
the linear rank test to have the same sensitivity in all directions as the convex hull test) in case the
direction did not turn out as planned. The convex hull test would still have good power properties
when there are more than three columns except that I’ could then not be plotted as it was in
this paper. It seems reasonable to expect that the convex hull peeling approach can offer globally
powerful tests for other problems involving discrete data, composite alternatives, and no monotone
likelihood ratio. However, for a convex hull test to be unbiased, it would need to account for both
the null probabilities of the points being peeled into the critical region and the correlation between
the cell counts X7 and Xs. This would add an extra level of complexity to the construction.
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RESUME

Quand on fait le test d’un ordre stochastique pour un tableau de contingence ordonné 2x J, il y a
quelques ensembles de marges pour lesquelles il existe un test optimal ou des tests de rang linéaire
ayant une bonne puissance globale. Pour la majorité, néanmoins, les tests de rang linéaire ont une
faible puissance pour détecter des alternatives éloignées de la région étroite dans laquelle ils sont
optimaux. La surface de I’enveloppe convexe de l’espace de permutation échantillonné peut étre
utilisée pour déduire un test globalement puissant.
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